
Cyclo-AMC: Automatic Modulation Classification
on Versal utilising Cyclostationary Features

Ruilin Wu∗ , Carol Jingyi Li† , Wei Zhang† , Xueyuan Liu∗ , Philip H.W. Leong∗
∗ School of Electrical and Computer Engineering, The University of Sydney, NSW, Australia

† Reconfigurable Computing Systems Lab, The Hong Kong University of Science and Technology, Hong Kong
{ruilin.wu, xueyuan.liu, philip.leong}@sydney.edu.au, {eecarol, eeweiz}@ust.hk

Abstract—Recently, it has been shown that cyclostationary
features can greatly improve generalization of deep neural net-
work (DNN) automatic modulation classification (AMC) systems.
Unfortunately, its computation has a high computational cost,
limiting its application in real-time settings. To address these
issues, we present Cyclo-AMC, the first field-programmable gate
array (FPGA)-based custom AMC accelerator that combines
cyclostationary features with a DNN. Cyclo-AMC runs entirely
on an AMD Versal VEK280 AI Engine-Machine Learning (AIE-
ML) device and integrates an area-efficient implementation of
the FFT accumulation method (FAM) algorithm to extract
cyclostationary features, with a compact ResNet-18 model. Cyclo-
AMC achieves a 32× reduction in energy consumption over an
NVIDIA GeForce RTX 3090 graphics processing unit (GPU).
On the CSPB.ML.2022 dataset, Cyclo-AMC achieves 93.8%
classification accuracy compared to 81.7% for FINN-A.

Index Terms—Automatic modulation classification, Versal,
FPGA, Cyclostationary, Deep Learning, Signal Classification.

I. INTRODUCTION

Recent developments in wireless systems have significantly
increased spectrum utilization and the variety of signal for-
mats; a fundamental building block of cognitive radio is the
ability to detect unused channels, allowing them to be utilized
dynamically [1]. In a non-cooperative setting, blind modula-
tion classification can be utilized for this purpose based on two
requirements. Firstly, accurate detection and classification of
signals is necessary, and we refer to the problem as automatic
modulation classification (AMC). Secondly, this must be done
under strict real-time constraints to ensure high utilization of
radio channels.

In 2017, O’Shea et. al. [2] classified raw in-phase and
quadrature (I/Q) radio samples using a deep neural networks
(DNNs) to significantly improve AMC accuracy over con-
ventional approaches. Since then, numerous publications have
achieved further improvements using different deep learning
techniques, but mostly based on directly learning features
from I/Q inputs [3]–[21]. A promising new approach to
improve generalization is to first transform the I/Q inputs to
cyclostationary features before applying a DNN [22]. This is
the approach utilized in the present work.

Unfortunately, extracting cyclostationary features is compu-
tationally intensive and often requires hardware acceleration
for real-time performance [23]. Graphics processing units
(GPUs) are commonly used but have high power dissipation,
which limits their practical deployment on edge nodes [24].

Furthermore, the interface between the radio and GPU intro-
duces significant latency [25] and edge devices often have
small on-chip memories, limiting the resolution of cyclosta-
tionary features and the size of the DNN that can be imple-
mented [26]. This is addressed through field-programmable
gate array (FPGA)-based acceleration using a reduced feature
representation and knowledge distillation [27] to substantially
reduce computational and storage requirements.

To enhance robustness and meet the real-time requirement
described above, we introduce Cyclo-AMC, an open-source
and reproducible1 AMC algorithm and AMD/Xilinx Versal
AI Engine-Machine Learning (AIE-ML) VEK280 design. Our
novel contributions are summarized as follows:

• Cyclo-AMC is the first single-FPGA AMC system that
combines cyclostationary feature extraction with a DNN
model. In particular, we integrate a FFT accumulation
method (FAM)-based spectral correlation density (SCD)
estimator [28], [29] and a lightweight ResNet [30] clas-
sifier on a VEK280 device.

• To minimize the memory footprint of our design, we
utilize knowledge distillation in the form of a teacher-
student model [27]. It achieves a two-order magnitude
reduction in model size (6.40M vs. 0.59M parameters)
with minimal loss in accuracy, allowing us to store all
model parameters and intermediate values on the FPGA,
resulting in significant performance improvement.

• To the best of our knowledge, our results achieve the
highest reported accuracy for an FPGA-based implemen-
tation on the CSPB.ML.2022 dataset [31].

The remainder of this paper is structured as follows. Section
II reviews the cyclostationary analysis, the FAM algorithm,
AMC, and summarizes the Versal architecture. Section III
details the algorithmic aspects of Cyclo-AMC and Section IV
describes its hardware considerations. Section V presents the
experimental results, and Section VI concludes the paper.

II. BACKGROUND

A process is cyclostationary if its statistics vary periodically
over time [32]. The SCD, also known as the cyclic spectral
density or spectral correlation function, captures the complete
set of spectral cross-correlations and is a common way to
characterize cyclostationarity.

1The code for data preprocessing and model architecture is available at
https://github.com/ruilin-wu/Cyclo-AMC.

https://orcid.org/0009-0009-9927-0898
https://orcid.org/0000-0001-7638-6323
https://orcid.org/0000-0002-7622-6714
https://orcid.org/0000-0001-5397-3066
https://orcid.org/0000-0002-3923-3499
https://github.com/ruilin-wu/Cyclo-AMC

Fig. 1: Dataflow for FAM.

A. Spectral Correlation Density and the FAM Technique

The description of the SCD function below follows that
of Roberts et. al. [28], [29]. The discrete-time complex de-
modulate of a continuous-time complex-valued signal x(t) at
frequency f is

XT (n, f) =

N/2∑
r=−N/2

a(r)x(n− r)e−i2πf(n−r)Ts (1)

where a(r) is a length T = NTs second windowing function,
Ts is the sampling period, and N is the number of samples.
Complex demodulates are low pass sequences with bandwidths
∆f ≈ 1/T . For inputs x(n) and y(n) of length N samples,
we correlate demodulates XT (n, f1) and YT (n, f2) separated
by α0 (f1 = f0 + α0/2, f2 = f0 − α0/2) over the time
window ∆t = NTs using a complex multiplier followed by
a low pass filter (LPF) with bandwidth approximately 1/∆t.
Thus, the SCD function is given by

Sα0
xyT

(n, f0)∆t =
∑
r

XT (r, f1)Y
∗
T (r, f2)g(n− r) (2)

where the ∗ operator is a complex conjugate and g(n) is a
length ∆t = NTs windowing function. For the special case
of auto-correlation studied in this paper, y(n) is a time-delayed
value of x(n), i.e., y(n) = x(n+ d) where d is the delay.

Fig. 1 illustrates the signal flow for the FAM method,
in which decimation and the fast Fourier transform (FFT)
are applied to reduce the computational requirements of
Eq. (2) [28]. We summarize the approach below and refer
readers to references [29], [33] for a detailed derivation, with
implementation guidance in [34].

1) Decimation: In FAM, the complex demodulate is deci-
mated by the factor L. Reducing the window size of a(r) from
N to NP , Eq. (1) becomes:

XT (pL, fm)

= [

NP−1∑
k=0

a(d− k)x(pL− d+ k)︸ ︷︷ ︸
x(n) windowed by a(n)

e−i2πmk/NP]

︸ ︷︷ ︸
NP -point FFT

e−i2πmpL/NP︸ ︷︷ ︸
Down Conversion

,

(3)

where p = {0, 1..., P − 1}, d = NP /2 − 1, r = d − k, fm =
mfs/NP , fs = 1/Ts, and −NP /2 < m < NP /2 [33]. Thus,
in Eq. (3), the input is windowed via a(n), then passed through
a NP -Point FFT. A phase shift is introduced to compensate
for the down conversion from N to NP samples.

2) FAM method: Taking Eq. (2), and substituting XT = YT

to compute at the frequency fkl = (fk + fl)/2 in P segments
(Eq. (3)), Eq. (2) becomes

Sα0
xyT

(pL, fkl)∆t =
∑
r

XT (rL, fk)X
∗
T (rL, fl)gd(p− r) (4)

where p = {0, 1, ..., P−1} and gd(r) = g(rL). Now the cycle
frequency parameter has been redefined to α0 = fl − fk + ϵ,
as the ϵ = ∆f is the introduced frequency shift.

Introducing ϵ = q∆α (∆α = fs/P and q = ∆f
∆α) to Eq. (4)

and substituting akl = fk − fl, f0 = fkl = (fk + fl)/2, and
α0 = akl + q∆α [33], the following equation for FAM is
obtained

Sakl+∆α
x (pL, fkl)∆t

=
∑
r

XT (rL, fk)X
∗
T (rL, fl)︸ ︷︷ ︸

Conjugate Multiplication

gd(p− r)

︸ ︷︷ ︸
windowed by g(n)

e−i2πrq/P

︸ ︷︷ ︸
P -point FFT

.

(5)

FAM implementations of the AMD ZCU111 [34], [35] and
AMD Versal VCK5000 [36] have been proposed but none have
integrated it with a DNN.

B. Deep-Learning in AMC and Dataset Strategy

1) DNN-Based AMC: Early work by O’Shea et. al. re-
vealed that a DNN trained directly on I/Q samples can
outperform cumulant detectors under additive white Gaussian
noise (AWGN) [2]. Over-the-air trials confirmed that deeper
DNNs retain accuracy in realistic channels [37]. However,
it was later revealed that this approach may not generalize
well because the I/Q waveform implicitly embeds fading, DC
bias, and frequency drift. Exhaustive training would require
an impractically large dataset [38], [39]. To address this
problem, cyclostationary representations that are invariant to
many channel effects were proposed. John et. al. augmented
capsule networks (CAPs) with cyclostationary features [40],
however it is computationally expensive and poorly suited for
implementations on FPGAs.

Cyclo-AMC adopts the FAM for the SCD estimation and
couples it with a lightweight ResNet. The SCD representation
emphasizes periodic correlations that are insensitive to carrier
offset and narrowband interference, while the residual network
excels at spatial pattern extraction. FPGA implementations of
SCD estimators have previously been proposed [34]–[36], as
has a statistics-based AMC employing cyclostationary features
with FPGA and Tegra K1 GPU acceleration [24].

2) Datasets: The DeepSig RadioML datasets (RADIOML
2016.04C, 2016.10A and 2018.01A) [41] have been widely
used for AMC research [4]–[21], [42]. In particular, the FINN-
A network [43] representing a state-of-the-art implementation
was trained on the RadioML 2018 dataset [41] and achieved
an accuracy of 94.1% at 30 dB.

Unfortunately, the DeepSig website [41] itself says that
there are several known errata and do not appear to recommend
the use of these data. Moreover, issues regarding which param-
eters were varied, the length of the I/Q inputs, and the mix of
modulation types available have been raised [44]. Therefore,
we advocate the use of the CSPB.ML.2022 dataset [31] that
has addressed these issues.

The CSPB.ML.2022 dataset [31] incorporates 4,000 files,
each containing 32,768 I/Q samples. Eight different modu-
lations are represented: BPSK, QPSK, 8PSK, π/4–DQPSK,
16QAM, 64QAM, 256QAM, and MSK.

C. Versal Architecture

The Versal AI Edge VEK280 board integrates a scalar
processing subsystem(central processing unit (CPU)), pro-
grammable logic (PL), and a high-density AIE-ML array into
a single heterogeneous device. The AIE-ML processor can run
up to 1.3 GHz [45]. A single AIE-ML tile supports 512 INT4
operations per cycle at 1 GHz and is equipped with 64 kB
of local data memory. Each memory tile has 512 kB of non-
blocking local SRAM and supports autonomous DMA and
hardware mutual exclusion, enabling data streaming between
modules without traversing DRAM. There are up to 304 AIE-
ML tiles and 76 memory tiles on the VEK280 board, which
are suitable for FAM and lightweight on-chip DNN inference,
eliminating transfers between host devices and unnecessary
PL transfers [46]. Each AIE-ML tile of the VC2802 device is
connected north-south and east-west via a fully bidirectional
512 bit cascade bus. The compute core of the AIE-ML tile is a
VLIW SIMD processor with 16 KB of program memory and
64 KB of data memory organized into eight 8 KB banks, twice
the native capacity of the original AI Engine (AIE) tile. Each
AIE-ML tile achieves up to 128 bfloat16 multiply-accumulate
(MAC) operations per cycle [46].

D. Knowledge Distillation

Hinton et al. [27] first formalized knowledge distillation
as a model-compression technique that transfers the behavior
of a large, accurate Teacher Network to a compact Student
Network. Instead of learning only from hard one-hot labels,
the student is trained to mimic the soft targets.

The distillation loss is shown in Eq. (6).

L = (1− α)LCE + αT 2 KL
(
ps(T) ∥ pt(T)

)
(6)

where pt(T) and ps(T) are the teacher and student logits
passed through a softmax divided by a temperature T > 1;
LCE is the standard cross-entropy with ground-truth labels;
α ∈ [0, 1] balances hard-label supervision and imitation of
soft targets.

TABLE I: Network Topology of Teacher/Student Network
(tuple values represent the parameter for (Teacher,Student)).

Stage Layer type #Filters Kernel / Stride

Input – 1 – / –

Stem
Conv + BN + ReLU (64,24) (7, 3)× (7, 3) / 1

MaxPool – 3× 3 / 2
Stage 1 (3, 2)×BasicBlk (64,24) 3× 3 / 1
Stage 2 (3, 2)×BasicBlk (128,48) 3× 3 / 2
Stage 3 (3, 2)×BasicBlk (192,72) 3× 3 / 2
Stage 4 (3, 2)×BasicBlk (256,96) 3× 3 / 2

Head
GAP – 1× 1 / –

FC (Soft-max) 8 – / –

III. ALGORITHMIC OPTIMIZATIONS

In this section, we introduce the algorithmic optimizations
in Cyclo-AMC. In Section III-A, we describe how to sparsify
the original SCD matrix. We then introduce the knowledge
distilled DNN architecture in Section III-B.

A. SCD Extraction using Customized FAM

Similarly to reference [29], we adopted the FAM parameter
values N = 512, NP = 64, L = NP /4 = 16, and
P = N/L = 32. Calculating the full SCD matrix (P/2×N2

P

samples) is expensive both in terms of storage and run-time
so we adopt a simplified spectral correlation representation
that (i) retains modulation-related information, (ii) reduces the
amount of data by a factor of P

2 , and (iii) matches the memory
and compute envelope of a lightweight ResNet.

This is done using a subset of the FAM output. Starting
from Eq. (5), let q ∈ {−P

4 , . . . ,
P
4 − 1} and fk, fl ∈

{−NP

2 , . . . , NP

2 }. The indices (q, k1, k2) are mapped to the
normalized frequency f and cyclic frequency α via

f =
fk + fl
2NP

, α =
fk − fl
NP

+
q

PL
, (7)

with −0.5 ≤ f ≤ 0.5 and −1 ≤ α ≤ 1 when fs = 1.
Setting q = 0 retains the entire power spectral density (PSD)
slice (α = 0) and a thin band of spectral correlation functions
(SCFs) whereby Eq. (7) simplifies to

f =
fk + fl
2NP

, α =
fk − fl
NP

. (8)

As a result, the original three-dimensional tensor of size
P
2 ×(NP × NP) collapses to a two-dimensional SCD matrix
Sα
x (f) ∈ CNP×NP , thereby lowering storage and computation

costs.
Our customized FAM reduces the final SCD output by a

factor of 256, allowing efficient use of the on-chip resources.
Section V-B demonstrates that the extracted α = 0 slice
preserves modulation-related information relevant to classifi-
cation.

B. Knowledge Distillation in DNN

1) Teacher–Student Network Pair: Both Teacher and Stu-
dent are implementations of ResNet, as detailed in Table I.

Fig. 2: Cyclo-AMC architecture overview.

The Teacher, SCDResNet64, has 6.40 M parameters and
SCDResNet64_S has 0.59 M. Both accept single-channel
64×64 spectral correlation slices and share four residual
stages. The Teacher Network uses a 7×7 convolutional layer,
each followed by three BasicBlk structures, while the Student
Network uses a 3×3 convolutional layer, each followed by
two BasicBlk structures. A final fully connected layer is used
to map eight modulation classes.

Given an input feature map x ∈ RCin×H×W , BasicBlk
computes

y = ReLU
(
BN2

(
Conv2

(
ReLU

(
BN1

(
Conv1(x)

))))
+ Residual(x)

)
(9)

This module follows the typical dual-convolution ResNet
design: 3×3 convolution-batch normalization-ReLU units are
stacked twice, where the first convolution adopts stride s ∈
{1, 2} for optional downsampling. When s > 1 or the in-
put/output channel widths are different (Cin ̸=Cout), the skip
connection is upgraded from identity to 1×1 convolution-BN
projection. The final ReLU activation is the summed feature
map. This compact unit serves as the main part in the Teacher
and Student Networks.

IV. FPGA IMPLEMENTATION

This section details the implementation of the FAM and
neural network inference stages. Section IV-B covers the
hardware mapping of the FAM. Section IV-C describes the
implementation of the Student Network inference.

A. System Overview

Fig. 2 illustrates how Cyclo-AMC is partitioned across the
AIE-ML array. The Demodulate Stage frames the incoming
I/Q samples, applies a Hamming window, performs a NP -
point FFT, and executes down-conversion; the resulting matrix
is buffered in a memory tile. The FFT2 Stage performs
NP × NP times conjugate multiplication and P -point FFT
to generate a reshaped SCD matrix. Finally, the Neural Net-
work Inference Stage executes ResNet-based inference on the

Fig. 3: FAM implementation in AIE-ML.

reshaped SCD matrix, and its final classification result is
returned to the host. All data are kept in the memory tiles
at the bottom of the AIE-ML array and direct memory access
(DMA) is used for transfers between AIE-ML and the memory
tiles.

B. FAM Implementation

The end-to-end FAM datapath is divided into two pipeline
stages, as illustrated in Fig. 3. Alg. 1 introduces the pseu-
docode of the FAM part implemented on AIE-ML.

1) Demodulate Stage: The normalised I/Q stream x(t) is
first buffered in a memory tile and divided into P overlapping
frames of length NP with stride L = NP /4 to form the deci-
mated matrix XDe[n, p] = x[pL+n]∈CNP×P . To fully utilize
the six MM2S ports of the tile, XDe is split column-wise into
kD sub-matrices X

(i)
De ∈CNP×P/kD , i = 0 . . . kD − 1, which

are streamed to kD identical Fam_stage1 tiles (denoted
K1(0)∼K1(kD − 1) in Fig. 3). Each K1(i) tile operates on
its frame subset Ji = { j | iP/kD ≤ j < (i + 1)P/kD}, per-
forming Hamming windowing, a NP -point FFT, and complex
down-conversion, i.e.

X
(i)
T (fm) =

[
XT (jL, fm)

]
j∈Ji

, i = 0 . . . kD − 1.

A K_broadcast tile then gathers the kD buffers and
reorders them into kD contiguous P/kD-column groups. The
K_broadcast tile forwards the data to the FFT2 Stage,
facilitating data delivery using its stream port by issuing two
broadcasts to all Fam_stage2 tiles:

• Broadcast A (data delivery). The K_broadcast tile
streams to each Fam_stage2 tile a block of NP /kF
XT (rL, fkj

) vectors.
• Broadcast B (conjugate term delivery). Broadcasts a

conjugate vector X∗
T (rL, fl) to all Fam_stage2 tiles

for multiplication with the inputs from Broadcast A.
Because AIE-ML tiles support multiple input buffer inter-

faces, only one K_broadcast tile can aggregate the output
of kD Fam_stage1 tiles [46]. We note that this scheme

Algorithm 1: AIE-ML-based FAM pipeline pseu-
docode.

Function Demodulate(iq input):
X ← zeros(NP , P);
for k = 0 to P − 1 do

X(:, k + 1)← iq input[k · L : k · L+NP − 1];

Y ← zeros(NP , P);
for k = 0 to P − 1 do

data win← Window(hamming[NP], X(:, k));
data fft← NP -Point FFT(data win);
Y (:, k)← Down Conversion(data fft, k);

return Y ;

Function FFT2(Y):
for m = 0 to NP − 1 do

for n = 0 to NP − 1 do
zabs ←
|P -point FFT (Y (:,m) · conj(Y (:, n)))|2;

write to output(zabs[P4]);

cannot be used in the AIE tile as it can only receive from
two input interfaces [47].

2) FFT2 Stage: The FFT2 Stage performs conjugate mul-
tiplications followed by P -point FFTs. For the generalized
setting with NP frequency bins, we deploy kF Fam_stage2
tiles, denoted K2(0) ∼ K2(kF−1), each operating on NP /kF
adjacent bins:

fkj
=

NP

kF
i+ j, j = 0, . . . ,

NP

kF
− 1, i = 0, . . . , kF−1.

Each K2(i) performs N2
P /kF times conjugate multiplica-

tions between the XT (rL, fkj
) and the X∗

T (rL, fl) (from the
K_broadcast tile), followed by a P -point FFT to compute
the corresponding slice of the SCD matrix.

As shown in Fig. 3, the kF output streams are gathered
by kF /8 memory tiles (8 streams per tile) and merged into
a single tile that stores the SCD matrix for the NN inference
stage.

C. ResNet Implementation

In Cyclo-AMC, the entire neural network inference pipeline
is embedded within the AIE-ML array. The network weights
are streamed into the compute tiles through multiple pro-
grammable logic input/output (PLIO) interfaces, while the
feature maps produced by each layer are retained in the
memory tiles, thus reducing PLIO traffic. All inputs, outputs,
weights, and biases of the layers are stored in the bfloat16
format. Every convolutional layer is statically fused with its
subsequent batch normalization layer to minimize inference
latency in our AIE-ML deployment [48].

Fig. 4 describes the mapping on-chip of the Cyclo-AMC
inference pipeline in the AIE-ML array. Each colored dashed
box contains a group of AIE-ML tiles assigned to one network
stage, while the blue blocks labeled Mem Tile represent
memory tiles that cache the feature maps produced by the
preceding layer. The weights for every layer are streamed
from the PL through dedicated PLIO interfaces (green arrows),

Algorithm 2: AIE-ML 3× 3 Conv2D Pipeline
Function ConvTile_3x3(X4×8,W8×4[3][3]):

ACC4×4 ← 0;
for kh = 0 to 2 do

for kw = 0 to 2 do
Y ←W8×4[kh][kw];
ACC4×4 += mac_4x8_8x4(X4×8, Y);

return ACC;
Function
ConvMap_3x3(x[CI][HI][WI],w[CO][CI][3][3]):

for o0 = 0 to CO − 1 step 4 do
for r = 0 to HO − 1 do

for p = 0 to WO − 1 step 4 do
for c0 = 0 to CI − 1 step 8 do

X ← x[c0 : c0+7][r : r+2][p : p+3];
W b← w[o0 : o0 + 3][c0 :
c0 + 7][∗][∗];

OUT += ConvTile_3x3(X, W b);

y[o0 : o0+3][r][p : p+3]← ReLU(OUT);

return y;

allowing the compute tiles to operate without off-chip traffic.
The input SCD matrix enters the AIE-ML array in stem and
is forwarded layer by layer entirely within the AIE-ML array;
only the weight input and the final classification output cross
the PL interface.

1) Vectorised 3× 3 Convolution with mac_4x8_8x4():
Xilinx AIE-ML application-level programming tools include
the mac_4x8_8x4(), intrinsic which performs the matrix
product: M4×4 = X4×8Y8×4, in a single clock cycle,
yielding 4 × 4 = 16 MAC results from 32 input pixels
and 32 weights. We exploit this capability to realize a 3 × 3
convolution as follows:

1) Input blocking. For four contiguous spatial positions
{ p, p + 1, p + 2, p + 3 } in row r, we gather the cor-
responding pixels from eight input channels into X4×8,
each column contains one row of pixels, while the rows
are mapped onto input channels and vector lanes.

2) Weight blocking. The 8 × 4 matrix Y stores kernel
weights that connect the same eight input channels to
four output channels for a single kernel tap (kh, kw).

3) Nine-tap accumulation. Repeating Step 1 and Step 2 for
the nine kernel offsets (kh, kw) ∈ {0, 1, 2}2 and summing
the intermediate mac_4x8_8x4() outputs in a local
accumulator produces the complete 3×3 convolution over
the 4× 4 output tile.

4) Write back. After all the taps are processed, all 16 results
are streamed to the output feature map.

This scheme sustains the intrinsic’s peak throughput
(128MAC/cycle) provided the DMA engines keep the 4× 8
pixel stripes and 8× 4 weight blocks double-buffered.

Alg. 2 shows how a single AIE-ML tile performs a 3 × 3
Conv2D using the intrinsic mac_4x8_8x4().

Fig. 4: Neural network implementation in AIE-ML.

Algorithm 3: BasicBlk pipeline with 9 AIE-ML tiles
Function BASICBLK CLUSTER(x):

fin ← MemTile1.write();
parallel for g = 0 to 2

{fg ← ReLU
(
Conv3x3

(
fin, W

(1)
g

))
;

rg ← Conv3x3
(
fin, W

(res)
g

)
};

MemTile2 ← {f0, f1, f2};
fin1 ← MemTile2.write();
parallel for g = 0 to 2

{yg ← ReLU
(
Conv3x3

(
fin1, W

(2)
g

)
+ rg

)
};

MemTile3 ← {y0, y1, y2};
return MemTile3.write();

2) Mapping of a single BasicBlk: Table I reveal that the
majority of both Teacher and Student Networks are composed
of BasicBlk units. Consequently, devising an efficient paral-
lelization strategy for these blocks is important to accelerating
inference. Packing the entire computation into a single AIE-
ML tile is impractical for the following reasons:

1) Insufficient on-tile memory. Even for modest feature
map sizes, the intermediate tensor produced by Conv1
cannot be stored in the 64 kB data memory of a tile [46].

2) Bandwidth contention between main and residual
paths. After Conv1, the tile would need to fetch a second
kernel (Conv2) and simultaneously stream the original
input for bypass. The single stream ports cannot sustain
the two disjoint dataflows at line rate.

For these reasons, we adopt the BasicBlk shown in the
right half of Fig. 4. Conv1, the residual projection, and Conv2
are assigned to an independent group of AIE-ML tiles, while
three memory tiles (Memory Tile 1–3) retain the intermediate
feature maps locally. Alg. 3 shows how we implement the Ba-
sicBlk pipeline in AIE-ML by creating a tile cluster consisting
of 9 AIE-ML tiles. Eq. (9) requires two 3×3 convolutions,
two batch normalization layers, two ReLU activations, and a
residual bypass that must be added element-wise to the main
path.

Since each memory tile provides only 6 MM2S ports [46].

To broadcast an input feature map to both the Conv1 and
the residual kernels, we allocate 3 MM2S ports to them,
respectively. Consequently, the number of output channels per
BasicBlk is chosen to be a multiple of 24. This value is
divisible by 3, enabling an even workload distribution across
the three Conv1 (or Residual) tiles, and also divisible by 8,
allowing each tile to utilize mac_4x8_8x4() to achieve peak
vector load rate.

V. RESULTS

We deploy the FAM and neural network designs described
in Sec. III on the VEK280 platform, where the AIE-ML array
operates at 1 GHz and the PL at 625 MHz. For reference, we
benchmark an x86 server with an Intel® Core i9-9900KF CPU
and an NVIDIA GeForce RTX 3090 GPU, running at 3.60
GHz and 2.10 GHz under Ubuntu 22.04.4 LTS respectively.

A. Experimental Setup

1) Data Preparation: The Student Network is trained of-
fline in PyTorch using the CSPB.ML.2022 dataset [31]. The
features were extracted from the I/Q data using FAM to
produce the (64×64) spectral correlation slices corresponding
to Eq. (8). We use 20 batches (01–10 and 19–28) to form the
training set, 4 batches (11–14) for the validation set and 4
batches (15–18) for the test set, yielding Ntrain = 80, 000,
Nval = 16, 000 and Ntest = 16, 000 images. A global Z-score
normalization [49] is applied to each SCD matrix: x̂ = xγ+β
with γ = 6.93232×10−5 and β = −0.296705.

2) Teacher Network training: We use stochastic gradient
descent (SGD) (lr=0.1, momentum=0.9, weight-decay=10−4)
with a linear warm-up of 5 epochs, then cosine annealing
to 10−8 over 500 epochs [50]. Cross-entropy loss includes
5 % label smoothing.

3) Knowledge Distillation Settings: The fixed teacher pro-
vides soft targets [27]. The student is optimized with SGD
(lr=0.05, weight-decay=2 × 10−4) under the same warm-
up/cosine schedule. The settings in Eq. (6) are temperature
T = 4 and mixing factor γ = 0.7 [51].

TABLE II: Execution time and resource usage (kD = 4)

kF 8 16 32 64

AIE-ML Tiles 13 21 37 69

Memory Tiles 4 6 6 10

Execution Time (ms) 0.668 0.352 0.186 0.109

TABLE III: Classification Accuracy on CSPB.ML.2022

Model Params (M) Accuracy (%)

Teacher Network (Ours) 6.40 97.2

Student Network (Ours) 0.59 93.8

Tiny Student Network (Ours) 0.15 83.6

FINN-A (Retrained) [43] 0.16 81.7

CC-trained CAP [52] 1.27 92.5

4) FAM Implementation Settings: In Section IV-B, we
introduce the parameters kD and kF that affect the parallelism
in the FAM pipeline. Since the MAC operations in the Demod-
ulate Stage are significantly lower than in the FFT2 Stage,
we allocate more AIE-ML tiles to the FFT2 Stage by setting
kD = 4. Given NP = 64, the value of kF must be a power of
two no greater than 64. Table II compares execution time and
resource usage for different kF values. Empirically, we found
that kF = 16 achieves the best trade-off.

B. Accuracy

Table III summarizes the overall classification accuracy and
model size. Our three design models and FINN-A2 were all
retrained and then evaluated on the CSPB.ML.2022 dataset
using the same data splits, i.e. FINN-A and our networks
were trained and tested using identical data and methodologies.
Our Student Network achieves an overall precision of 93.8%
with only 0.59 M parameters: a 11× reduction in parameters
compared to the Teacher Network, while incurring a 3.4%
drop in accuracy. Compared to FINN-A [43], our Student
Network achieves a 12.1% improvement in accuracy with a
modest increase in parameters. To ensure a fair comparison,
we also developed a Tiny Student Network with only 0.15 M
parameters - comparable to FINN-A’s 0.16 M - but it still
delivers a 1.9% gain in accuracy. Although the CC-trained
CAP method [52] uses more parameters, it still lags behind
our Student Network. The Teacher’s soft outputs show how
different classes relate, helping the Student learn smoother
decision boundaries and avoid overfitting to hard labels. This
regularization lets the smaller model retain useful features and
is more robust to noise and interference.

To gain deeper insights into class-wise performance, Fig. 5
presents the normalized confusion matrices of both networks.
The upper and lower parts of each cell are the classification
results of the Student and Teacher Network, respectively.

As illustrated in Fig. 5, BPSK records the lowest accuracy in
both models (Student: 92.2%, Teacher: 96.0%), whereas MSK

2The source code for FINN-A is available at https://github.com/Xilinx/
brevitas-radioml-challenge-21.

Fig. 5: Confusion matrix for Teacher and Student Networks.

attains the highest (Student: 95.7%, Teacher: 98.7%). The fact
that this max-min pattern is preserved after training confirms
that knowledge distillation enables the Teacher Network to
transfer the difficulty of distinguishing modulation categories
to the Student Network.

As shown in Table VI, we further compare Cyclo-AMC with
FINN-A. FINN-A, based on a VGG10 network with 0.16 M
parameters on the ZCU111 platform, achieves 81.7% accuracy
on CSPB.ML.2022 with a latency of 11.7 µs. In contrast,
Cyclo-AMC employs a larger ResNet-based student network
with 0.59 M parameters on the VEK280 platform, reaching
93.8% accuracy on CSPB.ML.2022 but with a longer latency
of 1803 µs.

C. Utilization

Table IV presents the utilization, latency, power composi-
tion, and energy efficiency of the proposed FAM and Stu-
dent Network implementations on the AIE-ML array. We
separately report FAM and Student Network utilization from
vitis_analyzer to facilitate comparisons with prior work.

We measured power consumption using Xilinx Power De-
sign Manager [53]. The Student Network consumes a total
of 12.38 W, higher than FAM (2.45 W) due to deeper layers
and increased I/O. Despite this, it achieves excellent en-
ergy efficiency (6.371 GFLOPs/W), slightly higher than FAM
(5.854 GFLOPs/W).

Compared to FAM part, the Student Network uses more
AIE-ML tiles, PLIOs, and memory tiles. FAM occupies
only 21 AIE-ML tiles, enabling lightweight feature extraction
with low memory usage and 0.35 ms latency. In contrast,
the Student Network uses 79 tiles to achieve 78.91 GFLOPs
throughput. As shown in Table IV, FAM consumes only
0.859 mJ (4.6% of total energy), while the Student Network
consumes 17.957 mJ (95.4%). Our customized FAM reduces

https://github.com/Xilinx/brevitas-radioml-challenge-21
https://github.com/Xilinx/brevitas-radioml-challenge-21

TABLE IV: Utilization comparison of FAM and Student Network implementations on AIE-ML

AIE-ML Total Memory PLIOs Latency Throughput AIE core Memory Power Energy Energy Eff.

Implementations AIE-ML tiles Tiles (ms) (GFLOPs) P. (W) P. (W) (W) (mJ) (GFLOPs/W)

FAM 21 (6.9%) 5 (6.6%) 2 (1.0%) 0.35 14.36 1.993 0.460 2.453 0.859 5.854

Student Network 79 (26.0%) 20 (26.3%) 79 (40.3%) 1.45 78.91 8.282 4.102 12.384 17.957 6.371

Total 100 (32.9%) 25 (32.9%) 81 (41.3%) 1.80 66.30 7.059 3.394 10.453 18.816 6.343

TABLE V: End-to-End Inference Performance and Efficiency: AIE-ML vs. CPU and GPU Platforms

Platform Inference Latency (ms) Speedup Throughput Power Energy Eff.

FAM Stem Stage 1 Stage 2 Stage 3 Stage 4 Head Total (GFLOPs) P. (W) (GFLOPs/W)

CPU (i9-9900KF) 6.40 0.79 2.14 1.72 1.03 0.91 0.23 13.24 1 9.03 14 0.65

GPU (RTX 3090) 2.95 0.51 0.56 0.72 0.71 0.70 0.23 6.38 2.08 18.75 95 0.20

AIE-ML 0.35 0.14 0.60 0.39 0.23 0.08 0.01 1.80 7.36 66.30 10 6.34

TABLE VI: Comparison of Cyclo-AMC and FINN-A Imple-
mentations.

Metric FINN-A [43] Cyclo-AMC (Ours)

Platform ZCU111 VEK280
Network VGG10 ResNet

Parameters (M) 0.16 0.59
Accuracy (%) 81.7 93.8
Latency (µs) 11.7 1803

TABLE VII: Comparison of the FAM in Cyclo-AMC with
Prior FAM Implementations.

Metric [34] [35] [36] Cyclo-AMC

Platform ZCU111 ZCU111 VCK5000 VEK280

AIE/AIE-ML tiles — — 137 21

Initiation Interval (ms) 0.26 0.164 0.63 0.35

Throughput (MS/s) 7.88 12.50 3.25 1.46

Computational Performance (GOPS) 60.40 460 189 14.36

Power (W) 12.50+ 35∗ 40∗ 2.453+

* Full board power.
+ Chip-only power.

computational complexity and power, while parallelization of
the Student Network maintains high throughput.

D. Performance

We implemented both the CPU and GPU versions of Cyclo-
AMC using PyTorch 2.5.1 with CUDA 12.1 support. Power
consumption during inference was measured using a dedicated
power station for the CPU and the nvidia-smi command-
line tool for the GPU. Table V compares end-to-end inference
performance with Cyclo-AMC achieving a 7.36× speedup on
CPU and 3.54× over GPU.

While GPU offers moderate throughput (18.75 GFLOPs)
at the cost of high power consumption (95 W), Cyclo-AMC
delivers a throughput of 66.30 GFLOPs with only 10 W of
power, resulting in an energy efficiency of 6.34 GFLOPs/W.
This represents almost 31.7× better energy efficiency than
GPU and 9.8× better than the CPU.

Table VII presents a comparison between our implementa-
tion and prior FPGA-based designs. Prior FPGA-based works
were based on the parameter configuration of N = 2, 048,
NP = 256, L = 64, and P = 32. In contrast, Cyclo-AMC
operates with a smaller configuration of N = 512, NP = 64,
L = 16, and P = 32. The most comparable work is [36],
which employs 137 AIE tiles, while Cyclo-AMC implements
the FAM using only 21 AIE-ML tiles.

The Cyclo-AMC implementation attains 66.30 GFLOPs
on the VEK280. This corresponds to merely 0.26% of the
approximately 25.6 TFLOPs peak achievable with 100 AIE-
ML tiles operating at 1 GHz [46]. The low utilization arises
because most of the AIE-ML tiles in Cyclo-AMC spend most
of their time on data movement rather than on arithmetic
operations, thereby limiting the arithmetic intensity delivered
to the compute units. On RTX 3090, Cyclo-AMC reaches
18.75 GFLOPs, that is, only 0.05% of the theoretical GPU
FP32 peak of 35.5 TFLOPs. The low operational intensity
keeps the kernel below the compute roof, so the performance
is limited by memory bandwidth. Consequently, both AIE-ML
and GPU implementations are bandwidth-bound rather than
compute-bound.

VI. CONCLUSION

We presented Cyclo-AMC, the first FPGA-based AMC
system that integrates cyclostationary feature extraction with
a compact DNN classifier entirely on the Versal AIE-ML
platform. By combining FAM with ResNet, Cyclo-AMC
achieves 93.8% classification accuracy on the CSPB.ML.2022
dataset while using only 0.59 M parameters. The system
delivers 66.30 GFLOPs at 10 W, achieving 6.34 GFLOPs/W,
a 31.7x improvement in energy efficiency over a high-end
GPU, and 7.4x faster inference compared to a CPU. The
proposed architecture lays the foundation for future integration
with software-defined radio front ends to produce a fully
embedded AMC system. Future work will investigate how
complementary software-level techniques such as ensembles
can be used to further enhance the accuracy of Cyclo-AMC.

REFERENCES

[1] B. Wang and K. R. Liu, “Advances in cognitive radio networks: A
survey,” IEEE Journal of Selected Topics in Signal Processing, vol. 5,
no. 1, pp. 5–23, 2011.

[2] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[3] A. Parmar, A. Chouhan, K. Captain, and J. Patel, “Deep multilevel
architecture for automatic modulation classification,” Physical
Communication, vol. 64, p. 102361, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187449072400079X

[4] Y. Dong, Y. Peng, M. Yang, S. Lu, and Q. Shi, “Signal transformer:
Complex-valued attention and meta-learning for signal recognition,” 06
2021.

[5] Y. TU, Y. LIN, H. ZHA, J. ZHANG, Y. WANG, G. GUI, and S. MAO,
“Large-scale real-world radio signal recognition with deep learning,”
Chinese Journal of Aeronautics, vol. 35, no. 9, pp. 35–48, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1000936121002934

[6] H. Zhang, F. Zhou, Q. Wu, and C. Yuen, “Fsos-amc: Few-shot open-set
learning for automatic modulation classification over multipath fading
channels,” IEEE Internet of Things Journal, vol. 12, no. 12, pp. 18 718–
18 731, 2025.

[7] X. Kang, H. mei Chen, G. Chen, K.-C. Chang, and T. M. Clemons,
“Joint detection and classification of communication and radar signals
in congested rf environments using yolov8,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.00582

[8] J. Krzyston, R. Bhattacharjea, and A. Stark, “High-capacity complex
convolutional neural networks for i/q modulation classification,” 2020.
[Online]. Available: https://arxiv.org/abs/2010.10717

[9] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional
radio modulation recognition networks,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.04105

[10] T. J. O’Shea, L. Pemula, D. Batra, and T. C. Clancy, “Radio transformer
networks: Attention models for learning to synchronize in wireless
systems,” in 2016 50th Asilomar Conference on Signals, Systems and
Computers, 2016, pp. 662–666.

[11] A. Faysal, M. Rostami, T. Boushine, R. G. Roshan, H. Wang,
and N. Muralidhar, “Denomae2.0: Improving denoising masked
autoencoders by classifying local patches,” 2025. [Online]. Available:
https://arxiv.org/abs/2502.18202

[12] D. Zhang, Y. Lu, Y. Li, W. Ding, B. Zhang, and J. Xiao,
“Frequency learning attention networks based on deep learning
for automatic modulation classification in wireless communication,”
Pattern Recognition, vol. 137, p. 109345, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320323000468

[13] C. Harper, M. Thornton, and E. Larson, “Automatic modulation
classification with deep neural networks,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.11773

[14] J. Cai, F. Gan, X. Cao, and W. Liu, “Signal modulation classification
based on the transformer network,” IEEE Transactions on Cognitive
Communications and Networking, vol. 8, no. 3, pp. 1348–1357, 2022.

[15] X. Wu, S. Wei, and Y. Zhou, “Deep multi-scale representation learning
with attention for automatic modulation classification,” 2022. [Online].
Available: https://arxiv.org/abs/2209.03764

[16] Y. Chen, “Automatic modulation recognition algorithm based on phase
transformation and rescnn-bilstm,” Advances in Engineering Innovation,
vol. 16, pp. None–None, 04 2025.

[17] M. R. Ziemann and C. A. Metzler, “Adaptive lpd radar waveform
design with generative deep learning,” IEEE Transactions on
Radar Systems, vol. 3, p. 417–429, 2025. [Online]. Available:
http://dx.doi.org/10.1109/TRS.2025.3542283

[18] H. Xing, X. Zhang, S. Chang, J. Ren, Z. Zhang, J. Xu, and S. Cui,
“Joint signal detection and automatic modulation classification via deep
learning,” IEEE Transactions on Wireless Communications, vol. 23,
no. 11, pp. 17 129–17 142, 2024.

[19] A. Owfi, A. Abbasi, F. Afghah, J. Ashdown, and K. Turck, “Dynamic
online modulation recognition using incremental learning,” 2023.
[Online]. Available: https://arxiv.org/abs/2312.04718

[20] V. Clerico, J. González-López, G. Agam, and J. Grajal, “Lstm framework
for classification of radar and communications signals,” in 2023 IEEE
Radar Conference (RadarConf23), 2023, pp. 1–6.

[21] H. Zhang, L. Yuan, G. Wu, F. Zhou, and Q. Wu, “Automatic modulation
classification using involution enabled residual networks,” IEEE Wireless
Communications Letters, vol. 10, no. 11, pp. 2417–2420, 2021.

[22] J. A. Snoap, D. C. Popescu, and C. M. Spooner, “Deep-learning-based
classifier with custom feature-extraction layers for digitally modulated
signals,” IEEE Transactions on Broadcasting, vol. 70, no. 3, pp. 763–
773, 2024.

[23] D. de Oliveira Rubiano, G. Korol, and A. C. S. Beck, “Adaptive
inference for fpga-based 5g automatic modulation classification,” in
Design and Architecture for Signal and Image Processing, M. Chavarrı́as
and A. Rodrı́guez, Eds. Cham: Springer Nature Switzerland, 2023, pp.
95–106.

[24] N. Bidyanta, G. Vanhoy, M. Hirzallah, A. Akoglu, and B. Ryu, “Gpu
and FPGA based architecture design for real-time signal classifica-
tion,” in Proceedings of the Wireless Innovation Forum Conference
on Wireless Communications Technologies and Software Defined Radio
(WInnComm’15), San Diego, CA, USA, Mar. 24–26 2015, pp. 70–79.

[25] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, “Design
and implementation of a stateful network packet processing framework
for gpus,” IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp.
610–623, 2017.

[26] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira,
X. Ma, E. Shiu, and O. Mutlu, “Google neural network models for
edge devices: Analyzing and mitigating machine learning inference
bottlenecks,” 2021. [Online]. Available: https://arxiv.org/abs/2109.14320

[27] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015. [Online]. Available: https://arxiv.org/abs/1503.02531

[28] R. S. Roberts, W. A. Brown, and H. H. Loomis, “Computationally
efficient algorithms for cyclic spectral analysis,” IEEE Signal Processing
Magazine, vol. 8, no. 2, pp. 38–49, 1991.

[29] W. A. Brown and H. H. Loomis, “Digital implementations of spectral
correlation analyzers,” IEEE Transactions on Signal Processing, vol. 41,
no. 2, pp. 703–720, 1993.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[31] C. Spooner, “Data Sets for the Machine Learning Challenge,” 2022,
accessed: 16 May 2022. [Online]. Available: https://cyclostationary.
blog/data-sets/

[32] W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: Half
a century of research,” Signal Processing, vol. 86, no. 4, pp. 639–697,
2006.

[33] W. A. Gardner, Cyclostationarity in communications and signal process-
ing. New York: IEEE Press, 1994.

[34] X. Li, D. L. Maskell, C. J. Li, P. H. W. Leong, and D. Boland,
“A scalable systolic accelerator for estimation of the spectral
correlation density function and its fpga implementation,” ACM Trans.
Reconfigurable Technol. Syst., vol. 16, no. 1, Dec. 2022. [Online].
Available: https://doi.org/10.1145/3546181

[35] C. J. Li, X. Li, B. Lou, C. T. Jin, D. Boland, and P. H. W. Leong,
“Fixed-point fpga implementation of the fft accumulation method
for real-time cyclostationary analysis,” ACM Trans. Reconfigurable
Technol. Syst., vol. 16, no. 3, Jun. 2023. [Online]. Available:
https://doi.org/10.1145/3567429

[36] C. J. Li, R. Wu, and P. H. W. Leong, “Amd versal implementations
of fam and ssca estimators,” 2025. [Online]. Available: https:
//arxiv.org/abs/2506.18003

[37] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based
radio signal classification,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 168–179, 2018.

[38] J. A. Latshaw, D. C. Popescu, J. A. Snoap, and C. M. Spooner,
“Using capsule networks to classify digitally modulated signals
with raw i/q data,” in 2022 14th International Conference on
Communications (COMM). IEEE, Jun. 2022, p. 1–6. [Online].
Available: http://dx.doi.org/10.1109/COMM54429.2022.9817229

[39] J. A. Snoap, D. C. Popescu, and C. M. Spooner, “On deep learning
classification of digitally modulated signals using raw i/q data,” in
2022 IEEE 19th Annual Consumer Communications & Networking
Conference (CCNC). IEEE, Jan. 2022, p. 441–444. [Online]. Available:
http://dx.doi.org/10.1109/CCNC49033.2022.9700688

[40] J. A. Snoap, J. A. Latshaw, D. C. Popescu, and C. M. Spooner, “Robust
classification of digitally modulated signals using capsule networks and
cyclic cumulant features,” in MILCOM 2022 - 2022 IEEE Military
Communications Conference (MILCOM), 2022, pp. 298–303.

https://www.sciencedirect.com/science/article/pii/S187449072400079X
https://www.sciencedirect.com/science/article/pii/S1000936121002934
https://www.sciencedirect.com/science/article/pii/S1000936121002934
https://arxiv.org/abs/2406.00582
https://arxiv.org/abs/2010.10717
https://arxiv.org/abs/1602.04105
https://arxiv.org/abs/2502.18202
https://www.sciencedirect.com/science/article/pii/S0031320323000468
https://arxiv.org/abs/2301.11773
https://arxiv.org/abs/2209.03764
http://dx.doi.org/10.1109/TRS.2025.3542283
https://arxiv.org/abs/2312.04718
https://arxiv.org/abs/2109.14320
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1512.03385
https://cyclostationary.blog/data-sets/
https://cyclostationary.blog/data-sets/
https://doi.org/10.1145/3546181
https://doi.org/10.1145/3567429
https://arxiv.org/abs/2506.18003
https://arxiv.org/abs/2506.18003
http://dx.doi.org/10.1109/COMM54429.2022.9817229
http://dx.doi.org/10.1109/CCNC49033.2022.9700688

[41] DeepSig, “Datasets,” 2018, accessed: May 16, 2022. [Online]. Available:
https://www.deepsig.ai/datasets/

[42] D. Hou, L. Li, W. Lin, J. Liang, and Z. Han, “Clst: A convolutional trans-
former framework for automatic modulation recognition by knowledge
distillation,” IEEE Transactions on Wireless Communications, vol. 23,
no. 7, pp. 8013–8028, 2024.

[43] F. Jentzsch, Y. Umuroglu, A. Pappalardo, M. Blott, and M. Platzner,
“Radioml meets finn: Enabling future rf applications with fpga streaming
architectures,” IEEE Micro, vol. 42, no. 6, pp. 125–133, 2022.

[44] C. Spooner, “DeepSig’s 2018 Dataset,” 2020, accessed: May
16, 2022. [Online]. Available: https://cyclostationary.blog/2020/09/
24/deepsigs-2018-data-set-2018-01-osc-0001 1024x2m-h5-tar-gz/

[45] AMD Xilinx Inc. (2025) AMD AI Engine Technology. Accessed:
Jul 28 2025. [Online]. Available: https://www.amd.com/en/products/
adaptive-socs-and-fpgas/technologies/ai-engine.html

[46] AMD Xilinx Inc, Versal Adaptive SoC AIE-ML Architecture Manual
(AM020), 1st ed., May 2024, accessed: May 14, 2025. [Online].
Available: https://docs.amd.com/r/en-US/am020-versal-aie-ml

[47] ——, Versal Adaptive SoC AI Engine Architecture Manual (AM009),
1st ed., May 2023, accessed: May 14, 2025. [Online]. Available:
https://docs.amd.com/r/en-US/am009-versal-ai-engine

[48] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on International Conference on Machine
Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, p. 448–456.

[49] K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. [Online].
Available: https://doi.org/10.1080/14786440109462720

[50] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400 – 407, 1951.
[Online]. Available: https://doi.org/10.1214/aoms/1177729586

[51] Y. Matsubara, “torchdistill: A Modular, Configuration-Driven Frame-
work for Knowledge Distillation,” in International Workshop on Repro-
ducible Research in Pattern Recognition. Springer, 2021, pp. 24–44.

[52] J. A. Snoap, D. C. Popescu, J. A. Latshaw, and C. M. Spooner,
“Deep-learning-based classification of digitally modulated signals using
capsule networks and cyclic cumulants,” Sensors, vol. 23, no. 12, 2023.
[Online]. Available: https://www.mdpi.com/1424-8220/23/12/5735

[53] AMD Xilinx Inc, “Power Design Manager (PDM),” 2024, accessed: Oct.
2024. [Online]. Available: https://www.amd.com/en/products/software/
adaptive-socs-and-fpgas/power-design-manager.html

https://www.deepsig.ai/datasets/
https://cyclostationary.blog/2020/09/24/deepsigs-2018-data-set-2018-01-osc-0001_1024x2m-h5-tar-gz/
https://cyclostationary.blog/2020/09/24/deepsigs-2018-data-set-2018-01-osc-0001_1024x2m-h5-tar-gz/
https://www.amd.com/en/products/adaptive-socs-and-fpgas/technologies/ai-engine.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/technologies/ai-engine.html
https://docs.amd.com/r/en-US/am020-versal-aie-ml
https://docs.amd.com/r/en-US/am009-versal-ai-engine
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1214/aoms/1177729586
https://www.mdpi.com/1424-8220/23/12/5735
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/power-design-manager.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/power-design-manager.html

	Introduction
	Background
	Spectral Correlation Density and the FAM Technique
	Decimation
	FAM method

	Deep-Learning in AMC and Dataset Strategy
	DNN-Based AMC
	Datasets

	Versal Architecture
	Knowledge Distillation

	Algorithmic Optimizations
	SCD Extraction using Customized FAM
	Knowledge Distillation in DNN
	Teacher–Student Network Pair

	FPGA Implementation
	System Overview
	FAM Implementation
	Demodulate Stage
	FFT2 Stage

	ResNet Implementation
	Vectorised 3x3 Convolution with mac_4x8_8x4()
	Mapping of a single BasicBlk

	Results
	Experimental Setup
	Data Preparation
	Teacher Network training
	Knowledge Distillation Settings
	FAM Implementation Settings

	Accuracy
	Utilization
	Performance

	Conclusion
	References

