
0018-9162/05/$20.00 © 2005 IEEE70 Computer

R E S E A R C H F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

CPE: A Parallel Library for
Financial Engineering
Applications

P arallel computing has emerged as a cost-
effective means of dealing with computa-
tionally intensive financial and scientific
problems. To effectively utilize this tech-
nology, developers need software that

reduces the complexity of the process as well as
tools to support integration of parallel and desk-
top machines.

The Clustertech parallel environment (CPE) is a
C++ library that facilitates development of large-
scale parallel applications, particularly financial
engineering applications. Written with performance
and portability in mind, CPE currently runs on the
Unix, Linux, and Windows operating systems.

CPE provides domain-specific object-oriented
libraries for solving partial/stochastic differential
equations using the finite-difference method and
Monte Carlo simulation. These libraries factor out
the common operations required for FD and MC
computations so that in most cases the user need
only provide the code required for the specific appli-
cation.

CPE hides parallel synchronization and commu-
nications, allowing the user to emulate conventional
serial programming; it also offers users better con-
trol of parallelization by overriding default methods.
The domain-specific libraries are built on top of a set
of high-performance parallel programming classes
that ensure efficient communications and control.

Although researchers have developed specialized
parallel libraries for solving partial differential equa-
tions,1 we are unaware of any other object-oriented

parallel libraries for financial engineering applica-
tions that offer CPE’s features.

Sophisticated users may elect to execute pro-
grams directly on the parallel platform, but most
commercial applications require integration of the
parallel routines with existing software on the user’s
desktop machine—for example, an Excel spread-
sheet, a Web-based interface, or a custom program.
CPE provides mechanisms to seamlessly call and
control parallel computations remotely from a
desktop machine and transfer data within and
between parallel machines and the desktop.

CPE introduces several abstractions to simplify
parallel application development. At the lowest
level, a Tx class and related drivers unify commu-
nications, easing the task of transporting complex
objects over different protocols. The MC imple-
mentation employs policies2 to provide flexible
control of the execution of these simulations. A dis-
tributed grid together with expression templates
facilitate the implementation of partial differential
equation solvers, allowing efficient manipulation
of entire parallel grids using simple operators.
Finally, remote execution enables the creation and
manipulation of parallel objects from a desktop
machine.

CPE ARCHITECTURE
As much as possible, CPE decouples paralleliza-

tion from the problem description. The libraries
support both serial and parallel execution from the
same source code so that in most cases users can

The Clustertech parallel environment is an object-oriented C++ library
that uses abstractions to simplify parallel programming for financial
engineering applications. The message passing interface ensures CPE’s
portability and performance over a wide range of parallel cluster and
symmetric multiprocessing machines.

Monk-Ping
Leong
Chi-Chiu
Cheung
Chin-Wang
Cheung
Polly P.M.
Wan
Ivan K.H.
Leung
Winnie M.M.
Yeung
Wing-Seung
Yuen
Kenneth S.K.
Chow
Cluster Technology
Ltd.

Kwong-Sak
Leung
Philip H.W.
Leong
The Chinese
University of
Hong Kong

debug a serial version of the program before test-
ing the same code as a parallel program. Debugging
is simpler because the serial versions run within a
single process.

CPE uses C++ templates extensively to support
arbitrary datatypes and to implement a policy
mechanism. It also employs expression templates3

where possible to minimize unnecessary object cre-
ation. To simplify the code required for transfer-
ring user-defined complex datatypes, CPE relies on
a metacompiler to generate ANSI C++ code, which
is compiled using a standard compiler.

The CPE architecture consists of three layers:

• The data abstraction and transportation core
layer provides the Tx class and transportation
drivers that facilitate communications among
parallel processes, desktop machines, and
databases via the message passing interface
(MPI), Extensible Markup Language (XML),
base64 encoding, and open database con-
nectivity (ODBC). This layer simplifies the
code associated with transferring complex
data among different types of processes and
machines.

• The parallel application layer provides the
domain-specific FD and MC libraries.

• The remote execution layer provides an inter-
face between the parallel computation and the
desktop machine. This layer introduces remote
parallel objects, which can encapsulate appli-
cations built using the domain-specific
libraries. Users can manipulate the handles of
these parallel objects on a desktop machine to
access applications residing on the parallel
platform.

The core layer uses standard MPI primitives for
communications and synchronization to ensure
portability and high performance. Developers can
either write applications to be launched from a shell
via the standard MPI mechanism or organize them
as remote parallel objects to be launched by CPE’s
remote execution module. In addition, the domain-
specific libraries and remote execution layer trans-
fer and marshal complex data objects via this layer.
Developers can also use this layer to construct other
applications outside these domains.

DATA OBJECT TRANSFER
Much of the code in a parallel program deals

with transferring data between coprocesses.
Libraries such as MPI do not directly support the
transfer of nonprimitive objects like Standard

Template Library (STL) containers and user-
defined structures. Manually manipulating
data inside all data structures places a heavy
burden on developers.

The CPE data abstraction and transporta-
tion layer offers a unified mechanism for
transferring objects via the Tx class; it pro-
vides a similar ConstTx class for read-only
objects.

Tx’s task is to describe the decomposition
of data objects down to primitive types. Tx
transportation drivers use existing libraries
such as MPI and libxml2 for data transfer
among parallel processes and marshaling to XML.
They use Tx’s description to automate MPI trans-
portation and marshaling.

Tx supports abstraction of STL containers—
including vector, deque, list, set, map, and string—
as well as nested combinations of such containers.
To take an extreme example, CPE can send a vec-
tor< map< string, list<double> > > via MPI in one
statement, as easily as sending a double. To sup-
port this feature, CPE uses compile-time template
metaprogramming.

CPE automatically generates code for describing
fields in a user-defined struct (or class) and template
struct with a metacompiler developed using
OpenC++.4 The CpeTx class modifier identifies
the classes that require such code generation. As an
example, for

CpeTx class Bermudan
{
public:

double initialPrice;
std::vector<double> exerciseTimes;
std::vector<double> strikePrices;

};

CPE generates a list of the member variable types—
a double and two vectors of doubles—and methods
to obtain the names and offsets of the member vari-
ables—namely, initialPrice, exerciseTimes, and
strikePrices. CPE also supports members that are
objects, multiple inheritance, and virtual inheri-
tance.

Using the Tx class, CPE can convert an object b1
of the Bermudan class to a document object model
(DOM) tree using the XML driver as follows:

Xml::toDomTree(tree, Tx(b1));

The availability of implicit constructors makes it
possible to omit the Tx() call.

October 2005 71

CPE uses
C++ templates
extensively to

support arbitrary
datatypes and to

implement a policy
mechanism.

72 Computer

The same structure can be broadcast via
MPI using

Communicator::world().broadcast(b1);

Because MPI supports only fixed-length
transfers, this broadcast must occur in two
stages: CPE transfers initialPrice and the two
vectors’ lengths in the first stage and the vec-
tors’ data in the second. It applies template

metaprogramming recursively at compile time to
automatically determine the optimal schedule for
such transfers.

To support the transfer of subsequences of
sequence containers, CPE introduces data access
patterns via the ContiguousPattern, VectorPattern,
and IndexedPattern classes. Specifying a pattern to
a Tx object’s constructor allows the transfer of
selected elements in the containers. For example, in
the code fragment

std::vector<double> vec(15);
Tx tx(vec, VectorPattern(3, 2, 5));

the VectorPattern constructor’s first argument is
the number of blocks the pattern contains, the sec-
ond is the number of elements in a block, and the
last is the number of elements between neighbor-
ing blocks, or the stride. The Tx object refers to
three blocks of elements, each block consists of two
elements, and successive blocks are five elements
apart. Therefore, the pattern represents the ele-
ments of vec with indexes 0, 1, 5, 6, 10, and 11.

MONTE CARLO SIMULATION
MC simulation is a numerical technique for solv-

ing problems that stochastic models describe by gen-
erating numerous samples, commonly known as
paths. Computation speed is a major barrier to
deploying MC simulations in many large and real-
time applications. The MC library in CPE facilitates
the parallelization of MC applications, freeing users
from dealing with these issues while maintaining
extensibility. The implementation works on hetero-
geneous clusters and uses dynamic load balancing.

MC library features
The MC library

• supports conventional MC simulations (using
pseudorandom numbers), quasi-MC simula-
tions (using low-discrepancy sequences),5 and
simulations based on a set of predefined sce-
narios;

• supports collection, consolidation, and report-
ing of cross-sample intermediate results dur-
ing the simulation;

• supports complex termination criteria with
compound logical and/or relations; and

• stores samples in memory for future reuse.

The MC library provides the Simulation abstract
base class and related classes that encapsulate a par-
allel simulation. To use the library, the user simply
codes the computation of a single sample via an
abstract method. The MC library can then handle
most other aspects associated with the paralleliza-
tion and load balancing of the MC simulation in a
manner transparent to the programmer.

Example
As a derivative pricing example, consider a two-

asset model with two lognormally distributed
stocks that evolve under the Black-Scholes sto-
chastic differential equation (SDE):6

dS1 = µ1S1dt + σ1S1dZ1

dS2 = µ2S2dt + σ2S2dZ2

E[dZ1dZ2] = ρ12dt

where µ, σ, and ρ are the drifts, volatility, and cor-
relation coefficient of the stocks, respectively.

The payoff of a European exchange option that
allows the owner to exchange one unit of S2 to S1

at maturity is max(S1 – S2, 0). The sample genera-
tion code can be derived from the SDE using the
Euler scheme:

bool computeOneSample(double& sample)
{

... /* draw dZ from RNG uniquely seeded in
each co-process */
for (t = 0; t < endT; t += dt) {

s1 += mu1 * s1 * dt + sigma1 * s1 * dZ[0];
s2 += mu2 * s2 * dt + sigma2 * s2 * dZ[1];

}
/* Compute option price at maturity. */
sample = (s1 > s2) ? (s1 – s2) : 0.0;
...

}

The MC library parallelizes the simulation by
controlling each coprocess to run sample genera-
tion, with intermittent communications to sched-
ule, coordinate, and load-balance the remaining
simulation. The Simulation class run method per-
forms the parallel MC simulation in a series of com-
puting and synchronization steps.

The MC library
in CPE facilitates

the parallelization
of MC applications.

In the computing step, the MC library calls
computeOneSample repeatedly and appends each
output sample to a localSamples list, a member vari-
able in each parallel coprocess. During synchro-
nization, the library coordinates coprocesses and
consolidates samples to produce statistics as well as
handles progress checking, reporting, and, option-
ally, user-defined actions. Users can keep the samples
in localSamples or remove them after consolidation
to release memory.

After synchronization, the MC library checks the
termination criterion to determine whether to ter-
minate or start another computing step. The MC
library is optimized to minimize both idle proces-
sor cycles and communications overhead.

Policies
Although MC simulations have much in common,

different applications require various methods to
perform sampling, consolidate statistics, and termi-
nate the simulation. The MC library implements
these as pluggable policies, which are template para-
meter types of the host class. The policies include

• sampling—for sample computation using dif-
ferent kinds of inputs or methods;

• consolidation—for consolidating samples to
statistics; and

• termination—for specifying the termination
criterion.

The MC library provides predefined policies to
cover common tasks. For example, a Simulation
class with double-precision floating-point sample
data and random sampling (no input argument to
the method required for computing a sample) that
consolidates mean and standard error statistics and
terminates when the standard error reaches a pre-
defined target is declared as Simulation <double,
Random, TrackMeanAndStdErr, TargetStdErr>.

In the European exchange option example, the
user’s program can obtain the price (mean of the
samples) and its accuracy (standard error of the
mean) directly from the consolidation policy.

A special consolidation template policy, And-
Then, lets users cascade consolidation policies. Two
special termination template policies, And and Or,
allow users to combine termination criteria with
logical relations. These policies can be nested to an
arbitrary number of levels.

The MC library also supports an Indexed sam-
pling policy that calls the user-defined sample com-
putation method bool computeIndexedSample
(IndexType index, double& sample) N times, each

time with a unique index value [0, 1, …,
N – 1]. To avoid unnecessary synchroniza-
tion, multiple coprocesses can handle the
same index, in which case the MC library
removes duplicates during synchronization.

The user’s program can use this policy to
implement quasi-MC simulations5 that replace
the random numbers in MC simulations with
a low-discrepancy sequence and use each lat-
tice point in the sequence exactly once.

In the European exchange option example, the
class that uses a multidimensional Niederreiter
sequence5 is Simulation<double, Indexed, Track-
MeanAndStdDev, CompleteAllIndices>. The sam-
ple computation method takes index as input and
uses it to obtain the lattice point in the Niederreiter
sequence:

bool computeIndexedSample(IndexType index,
double& sample)
{

std::vector<double> niedPoint;
seqGen.getElementAt(index, niedPoint);
// Use niedPoint to generate dZ and calculate
option price.
...

}

The user’s program obtains the i-th lattice point (a
vector) by calling the getElementAt method of the
seqGen sequence generator object. The Complete-
AllIndices policy terminates the simulation after it
has used all the indices.

The MC library provides another sampling policy,
Parameterized<ParamType>, that is a template itself
in which ParamType is the datatype of parameters
for computing samples. The user must supply an
array of sample parameters, denoted as [P0, P1, ...,
PN – 1] (each P is of the ParamType datatype), to the
simulation object. The method bool compute-
ParameterizedSample(const ParamType& param,
SampleType& sample) takes a ParamType parame-
ter as input and performs the sample computation.

This sampling policy is similar to the Indexed
sampling policy except that it uses a user-defined
type parameter (Pindex) rather than the integral value
index as input to the sample computation method.
It is especially useful in value-at-risk calculations
in historical simulations, in which ParamType is a
structure containing parameters describing the his-
torical scenarios.

FINITE-DIFFERENCE CALCULATION
Solving a partial differential equation requires

October 2005 73

The MC library
provides predefined

policies to cover
common tasks.

74 Computer

formulating a difference equation—the
updated value of each grid point as a func-
tion of the grid point and its neighbors at the
previous time step. CPE’s FD library provides
a multidimensional distributed array for rep-
resenting grids. The library spatially decom-
poses a grid into domains and binds each to
a parallel coprocess. The number of grid
points that a coprocess must handle decreases
as parallelism increases.

FD library features
The FD library centers on a Grid class. To

facilitate applying the difference equation on grid
points at a domain decomposition’s boundaries,
users can specify ghostzones of an arbitrary width
for a Grid-class object. A ghostzone is the exten-
sion of a domain in which the grid point values are
obtained from neighboring domains. Ghostzone
synchronization, the process of updating the val-
ues of grid points in ghostzones from other
coprocesses, occurs using the sync method.

The FD library’s automatic domain decomposi-
tion minimizes communications between co-
processes. The library applies a recursive algorithm
to enumerate all the ways a grid can be divided into
subgrids and then chooses the option with the
fewest grid points in the ghostzones.

The library assumes that, for multiple processor
machines, communication between processes run-
ning on the same node is more efficient. It binds
coprocesses to cluster nodes in a way that mini-
mizes internode communications.

The FD library supports Cartesian, cylindrical,
and spherical coordinate systems as well as both
periodic and nonperiodic boundaries.

Using C++ expression templates,3 users can write
C-like expressions such as A = B × C + D that
manipulate grid objects. In contrast to the straight-
forward object-oriented approach that creates
intermediate objects, expression templates offer
much higher efficiency.

Finally, the FD library directly supports standard
fixed and free boundary conditions.

Example
An example uses the CPE FD library to solve the

same two-factor European exchange option as in
the MC simulation example. The partial differen-
tial equation (PDE) formulation for any derivative
c of two underlying stocks S1 and S2 is

− ∂
∂

= ∂
∂ ∂==

∑∑c
t

S S
c

Sij
ji

i j i j
i

1
2 1

2

1

2 2
ρ σ σ

SS
S

c
S

rc
j i

i
i

–+ ∂
∂=

∑ µ1
1

2

The boundary condition for the PDE formulation
is

c(S1, 0, t) = S1

c(0, S2, t) = 0

The FD library discretizes the initial values on a
grid and uses a difference equation to evolve the
solution in time. It obtains two difference equations
by transforming the original equation using the iter-
ative Crank-Nicholson (ICN) scheme.7 The first
difference equation is shown in Figure 1a. The sec-
ond difference equation is similar to this example.

To implement this scheme, the user codes the
time-step propagation and boundary conditions.
CPE automatically determines the parallelization
scheme and handles ghostzone synchronization.

In Figure 1b, which shows the code expressing
the first difference equation, grid is a Grid-class
object whose constructor specifies a two-dimen-
sional Cartesian coordinate system and a ghostzone
of width 1 along each axis. This difference equa-
tion computes the grid values for the intermediate
time step (t + 1/2, denoted by the index Th) from the
previous time step (t, denoted by the index Tp).

The inner method specifies that the difference
equation applies only to the nonboundary grid
points. The shift method facilitates the access of
neighboring grid points. For instance, shift(–1, 0)
corresponds to Gx–1,y in the difference equation.
As this example demonstrates, there is a direct
mapping between the difference equation and the
code. Looping is not required because the FD
library manipulates an entire grid object.

REMOTE EXECUTION
The CPE remote execution module ParaConnect

decouples front-end applications from back-end
parallel computation. Using ParaConnect, users
can invoke parallel computations on a cluster from
any machine on the same network or even over the
Internet.

ParaConnect is functionally similar to the com-
mon object request broker architecture (Corba);
the major difference is that it directly supports MPI-
based parallel execution. Developers can use
ParaConnect to design remote parallel objects that
hold state and data, which persist in the back-end
platform across multiple method invocations.
Handles in the front-end client reflect entities in the
back end and provide both blocking and non-
blocking APIs to control the remote execution.
Further, remote methods can push intermediate
results to the front end at any time.

CPE’s
FD library
provides a

multidimensional
distributed
array for

representing grids.

ParaConnect uses a driver-based approach for dif-
ferent remote access startup and MPI-process-
launching mechanisms. Currently available start-up
drivers support remote access using SSH, TCP, and
TCP/SSL. MPI execution drivers support MPICH
(www-unix.mcs.anl.gov/mpi/mpich/index.htm) and
LAM/MPI (www.lam-mpi.org) with or without the
Portable Batch System batch queue system.

The remote execution module uses the XML-RPC
protocol internally for requests and responses. In addi-
tion, it uses base64 encoding for efficiently embed-
ding data as it avoids the overhead associated with
generating and parsing full XML representations.

CPE also provides an interface that allows
remote parallel execution from a Microsoft Excel
spreadsheet. Users can use menus to set up inter-
faces to back-end objects without any program-
ming. They can also control configuration and

startup of remote execution, parallel object cre-
ation and destruction, and method invocation and
cancellation, all within Excel.

Moreover, changing the values of cells registered
as remote method inputs reinvokes the remote
methods, with the results going to spreadsheets
when they are available. The underlying imple-
mentation uses ActiveX Control and Visual Basic
for Application. Dynamic data exchange provides
nonblocking method invocation and pushing of
messages and output arguments.

EXPERIMENTAL RESULTS
We used the MC library in CPE to price several

interest-rate derivative products under a

• three-factor cross-currency Hull-White (HW3)
model,6 and

October 2005 75

Figure 1.
Finite-difference
calculation. (a) One
of two difference
equations obtained
via the iterative
Crank-Nicholson
scheme. (b) Code
expressing the
difference equation.

x y

t

x y
t

x y
t xG G Gt

x, , ,

+
= + −

1
2 1

2
∆

∆
σ

−

 −

+

−

2
2

2
2

1
2

x
y

y r
y

x

σ
∆

11

2
2

1,y
t x x

xG x
x

x
x

σ µ
∆ ∆

−

+ + ,

,

y
t x x

x y

G x
x

x
x

σ µ
∆ ∆

+

+

−

2
2

,1

2
2t y y

x yG y
y

y
y

σ µ
∆ ∆

 −

+ + 1

2
2t y y

G y
y

y
y

σ µ
∆ ∆

 +

 +

− − +, ,

ρ σ σxy x y
x y
t

x yx y
xy G4 1 1 1∆ ∆ ++ − + + −− −

, ,1 1 1 1 1
t

x y
t

x y
t

G G G

+

,x y

t
G

+)(

#define XC grid.coordinates(X)
#define YC grid.coordinates(Y)
#define sq(x) ((x) * (x))
...
grid[Th].inner() = 0.5 * (inner(

grid[Tp] + dt * (
grid[Tp] * (-(sq(sigmax)/sq(dx))*sq(XC) - (sq(sigmay)/sq(dy))*sq(YC) - r) +
0.5 * (grid[Tp].shift(-1,0) * (sq(sigmax)/sq(dx)*sq(XC) - mux/dx*XC) +

grid[Tp].shift(1,0) * (sq(sigmax)/sq(dx)*sq(XC) + mux/dx*XC) +
grid[Tp].shift(0,-1) * (sq(sigmay)/sq(dy)*sq(YC) - muy/dy*YC) +
grid[Tp].shift(0,1) * (sq(sigmay)/sq(dy)*sq(YC) + muy/dy*YC)) +

0.25*rhoxy*sigmax*sigmay*XC*YC/(deltax*deltay) * (
grid[Tp].shift(-1,-1) + grid[Tp].shift(1,1) -
grid[Tp].shift(-1,1) - grid[Tp].shift(1,-1))) +

grid[Tp], grid.ghostzone()));

(a)

(b)

76 Computer

• three-factor forward-rate model, also known
as the Brace-Gatarek-Musiela (BGM) model.8

Our studies benchmarked four applications on
a 32-node dual Intel Pentium Xeon Linux-based
cluster with a Gigabit Ethernet interconnect. Figure
2 shows the relative performance for different num-
bers of processors, with nearly linear scaling up to
64 processors.

We also used the FD library to price an interest-
rate product using the ICN scheme under an HW3
model and benchmarked this application using
both Gigabit Ethernet and low-latency Myrinet-
2000 interconnects to obtain the graph in Figure 3.
Because coprocesses must exchange ghostzone val-
ues every time step, a communications bottleneck
arises. As the figure shows, a low-latency inter-
connect, such as Myrinet, reduces the time
required for this data exchange, yielding better
scaling.

T he Clustertech parallel environment offers
unprecedented efficiency in developing finan-
cial engineering applications and porting them

to a wide range of parallel cluster and symmetric
multiprocessing machines. CPE’s object-oriented
approach facilitates information hiding as well as
code reuse. Templates enable the libraries to be
independent of data types, and expression tem-
plates minimize the creation of unnecessary objects.

The main difficulty in parallel programming is
managing data transfers. The Tx class provides a
convenient unifying concept for transporting com-
plex data structures over arbitrary protocols.
Using a metacompiler to automatically generate
interfacing code produces simplified code and
frees the programmer from dealing with low-level
issues.

In the MC library, users need only provide code
that describes the computation of a single sample;
in the FD library, a distributed array abstraction
can directly map difference equations to parallel
grid operations. In both cases, the library auto-
matically handles parallelization issues, and pro-
grammers only have to describe their computation’s
application-specific aspects.

The remote execution module provides an API
for developing desktop-based applications that use
a parallel machine. With the CPE remote execution
library, users can access the parallel machine, cre-
ate objects, invoke methods, and destroy objects
via handles.

Together these abstractions make the task of
developing parallel programs easier, leading to
improvements in both productivity and code reli-
ability. �

Acknowledgment
We gratefully acknowledge support from the

Hong Kong Innovation and Technology Commis-
sion (project no. UIM/68).

Figure 3. FD scaling graph for an HW3 application. The low-latency Myrinet
interconnect reduces the time required for coprocesses to exchange ghostzone
values, yielding better scaling.

0 10 20 30 40 50 60 70

10

20

30

40

50

60

Number of processors

Sp
ee

du
p

Myrinet-2000
Gigabit Ethernet

Figure 2. MC scaling graph for four applications (Gigabit Ethernet). The MC library
achieves nearly linear scaling up to 64 processors.

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

Number of processors

Sp
ee

du
p

HW3 European cross-currency swaption
HW3 Bermudan cross-currency swaption
BGM knock-out cap
BGM Bermudan swaption

References
1. G. Allen et al., “Solving Einstein’s Equations on

Supercomputers,” Computer, Dec. 1999, pp. 52-58.
2. A. Alexandrescu, Modern C++ Design: Generic Pro-

gramming and Design Patterns Applied, Addison-
Wesley Professional, 2001.

3. T. Veldhuizen, “Expression Templates,” C++ Report,
vol. 7, no. 5, 1995, pp. 26-31.

4. S. Chiba, “A Metaobject Protocol for C++,” Proc.
10th Ann. ACM Conf. Object-Oriented Program-
ming Systems, Languages, and Applications, ACM
Press, 1995, pp. 285-299.

5. H. Niederreiter, Random Number Generation and
Quasi-Monte Carlo Methods, Soc. for Industrial and
Applied Mathematics, 1992, p. 241.

6. J.C. Hull, Options, Futures and Other Derivatives,
5th ed., Prentice Hall, 2002.

7. B. Gustafsson, H-O. Kreiss, and J. Oliger, Time
Dependent Problems and Difference Methods, John
Wiley & Sons, 1996.

8. R. Rebonato, Interest-Rate Option Models: Under-
standing, Analysing and Using Models for Exotic Inter-
est-Rate Options, 2nd ed., John Wiley & Sons, 1998.

MMoonnkk--PPiinngg LLeeoonngg is a senior technology manager
at Cluster Technology Ltd. His research interests
include network security, parallel computing, and
field-programmable systems. Leong received a PhD
in computer science and engineering from the Chi-
nese University of Hong Kong. Contact him at
mpleong@clustertech.com.

CChhii--CChhiiuu CChheeuunngg is a project manager at Cluster
Technology Ltd. His research interests include par-
allel computing, distributed computing, and soft-
ware engineering. Cheung received an MPhil
in computer science and engineering from the Chi-
nese University of Hong Kong. Contact him at
cheungcc@clustertech.com.

CChhiinn--WWaanngg CChheeuunngg is an analyst programmer at
Cluster Technology Ltd. His research interests
include parallel computing, neural networks, and
financial engineering. Cheung received an MSc in
e-commerce technologies from the Chinese Uni-
versity of Hong Kong. Contact him at cwcheung@
clustertech.com.

PPoollllyy PP..MM.. WWaann is an analyst programmer at Clus-
ter Technology Ltd. Her research interests include
parallel computing and time series analysis. Wan
received an MPhil in computer science and engi-
neering from the Chinese University of Hong Kong.
Contact her at pmwan@clustertech.com.

IIvvaann KK..HH.. LLeeuunngg is an analyst programmer at Clus-
ter Technology Ltd. His research interests include
reconfigurable computing, cryptography, and par-
allel computing. Leung received an MPhil in com-
puter science and engineering from the Chinese
University of Hong Kong. Contact him at khleung@
clustertech.com.

WWiinnnniiee MM..MM.. YYeeuunngg is an analyst programmer at
Cluster Technology Ltd. Her research interests
include spatial database and parallel programming.
Yeung received an MMath in computer science
from the University of Waterloo. Contact her at
mmyeung@clustertech.com.

WWiinngg--SSeeuunngg YYuueenn is an analyst programmer at
Cluster Technology Ltd. Her research interests
include computer-aided design of VLSI circuits,
algorithms, and parallel computing. Yuen received
an MPhil in computer science and engineering from
the Chinese University of Hong Kong. Contact her
at wsyuen@clustertech.com.

KKeennnneetthh SS..KK.. CChhooww is the chief operating officer of
Cluster Technology Ltd. His research interests
include modeling of interest-rate derivatives and
quantitative strategies in fixed income, currencies,
and commodities. Chow received a PhD in physics
from Cornell University. Contact him at chowskei@
clustertech.com.

KKwwoonngg--SSaakk LLeeuunngg is a chair professor at the Chi-
nese University of Hong Kong. His research inter-
ests include knowledge engineering, bioinformatics,
and fuzzy logic applications. Leung received a PhD
in engineering from the University of London. He
is a senior member of the IEEE Computer Society
and a member of the ACM. Contact him at
ksleung@cse.cuhk.edu.hk.

PPhhiilliipp HH..WW.. LLeeoonngg is a professor at the Chinese
University of Hong Kong. His research interests
include reconfigurable computing, parallel com-
puting, and signal processing. Leong received a
PhD in engineering from the University of Sydney.
He is a senior member of the IEEE Computer Soci-
ety. Contact him at phwl@cse.cuhk.edu.hk.

October 2005 77

N o t a m e m b e r ?
J o i n o n l i n e t o d a y !

www.computer.org/join

