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Improving Carbon Nanotubes Sensor Time Response
and Responsivity Using Constant-Power Activation
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Abstract—For classical resistive-based signal transduction
methods, constant-power (CP) and constant-current (CC) activa-
tion methods have been utilized since the 1970s. However, since the
discovery of carbon nanotube (CNT) in 1991, not much has been
done in the past 20 years in terms of comparing how these trans-
duction methods affect CNT-based sensor output. In this paper, we
compare the responsivity, sensitivity, transient response, and in-
stantaneous power consumption of CNT sensors activated by CC
and CP modes. As an application example, multiwall CNTs were
functionalized with COOH groups and used as ethanol (alcohol)
vapor sensors. A CP control circuit has been built in order to test
the CNT-based ethanol vapor sensors. A commercial source meter
was used to activate the CNT sensors under CC mode. The CP con-
figuration was shown to be effective in minimizing the self-heating
effect, which is a significant factor that affects sensor performance,
especially for resistive-based sensors. Compared to CC mode, CP
mode of sensor activation demonstrated not only shorter transient
response time but also larger responsivity, especially when the in-
put activation power is low or ethanol concentration is relatively
high.

Index Terms—Alcohol vapor sensor, carbon nanotube (CNT)
sensors, constant-power (CP) activation, constant-current (CC) ac-
tivation, ethanol vapor detection.

I. INTRODUCTION

W ITHIN the last decade, carbon nanotube (CNT) sensors
have received considerable attention due to their mer-

its such as high surface-to-volume aspect ratio [1], and small
size of the sensing element required for a response [2]. Since
CNT electronic property is a strong function of its atomic struc-
ture, mechanical deformations or chemical doping can induce
significant changes in its conductance, which can be detected
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by electronic systems [3]. The capability of CNTs to serve as
chemical sensing elements has been proved worldwide (see [4]).
As an example of sensing application for CNT sensor, over the
last decade, many research groups have been focusing on the
gas adsorption mechanism of CNTs [5]–[8] as well as utilizing
CNT-based sensors to detect gases, such as CO2 [9], NO2 [10],
and ammonia gas [11], etc., CNT gas sensors offer significant
advantages over conventional electrical sensors in terms of sen-
sitivity and operating at a significantly lower temperature than
conventional metal–oxide-based sensors [12].

A. Activation of CNT Sensors

According to the different structures and properties of
the CNT, several sensor activation methods have been
adopted in applications, which include resistive, capacitive and
semiconductive.

Many of the resistive CNT gas sensors are based on randomly
aligned CNT films: some researchers grow CNTs on the sub-
strate [13], while others use CNT/polymer composite [14] as
sensing elements. Besides, the method of drop-casting aque-
ous solutions containing CNTs onto the substrate [15] has also
been used. For these resistive sensors, the change in the resis-
tance of the CNT device is utilized as the sensing principle.
Our lab has been investigating various resistive CNT sensors in
the past decade, such as ethanol [16], pressure [17], and flow
sensors [18].

CNT also stands out as a novel material for new breeds
of capacitors and has attracted many researchers’ attention
(see [19]–[21]). The “supercapacitors” made by CNTs ex-
hibit giant capacitances in comparison with those of ordinary
dielectric-based capacitors [2]. Snow et al. [22] constructed a
high-performance chemicapacitor by coating single-wall nan-
otubes (SWNTs) with chemoselective materials, and indicated
that the capacitance of SWNTs was highly sensitive to a broad
class of chemical vapors. However, capacitive sensors typically
require more complex circuitry to acquire sensor signal.

Moreover, SWNT-based transistors have demonstrated their
potential to detect gas molecules [23]. Despite their high sen-
sitivity [24], it is generally difficult to separate semiconduc-
tive SWNTs from metallic SWNTs and multiwall nanotubes
(MWNTs). Therefore, CNT transistors are not only complex
and costly in fabrication, but also suffer from the low sensor
yield.

B. Sensor Configuration

It is known that resistive-based sensors can be driven in dif-
ferent configurations, such as CC and CP. A CC system uses a
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fixed CC supply and has been widely deployed. Since the input
current is constant, electric power of the sensor would increase
proportionally to the increase of sensor resistance and further
lead to a higher operating temperature, which shortens sensor
life and increases zero drift [25]. This is even more critical for
CNT-based sensors due to the fact that CNT is a kind of ther-
mal sensitive sensing element, and therefore the instability of
operating power and the change of ambient temperature could
affect the sensor performance and jeopardize the sensor’s re-
liability. However, in the CP configuration, where a circuitry
continuously monitors the resistance of the reference and active
(sensing) elements and maintains a sensor’s activation power at
a certain value, sensor performance is stabilized and possibly
optimized since it is not affected by the surrounding tempera-
ture. In applications, CP circuit is desirable in various fields,
especially for thermal-based sensors [26], such as vacuum sen-
sors, ac power meters, flow sensors, and gas detection sensors
in order to compensate for sensor drifts caused by ambient tem-
perature drifts [27]. Some commercial gas sensor companies
even recommend their customers to use the products under CP
configuration to achieve best performance [28]. However, we
note here that compared with CC mode, CP operation usually
requires more complex circuit, which tends to induce extra noise
to the sensing system and raise the overall sensing system cost.

In order to study and compare CNT sensor performance un-
der these two activation configurations, we built a CP measur-
ing system specifically to power CNT sensors as commercially
available CP activation typically supplies too much power to a
sensing system. The performance of sensor response based on
this system is then compared to sensor response based on using
a commercially available CC source meter. As an example, CNT
sensors used for ethanol vapor detection were tested using these
two activation configurations and the results are reported in this
paper.

C. Our Previous Work

Our group has been studying CNT-based ethanol vapor sen-
sor since 2004 [29]. In our previous work, CNTs grafted with
several kinds of functional groups have been proven to be sen-
sitive toward ethanol molecules, and their potential to serve as
ethanol vapor sensor have been demonstrated. The functional
groups not only enhance the responsivity of the ethanol vapor
sensor, but also enable CNT sensors to achieve better selec-
tivity toward different variables. In addition, we also evaluated
different functional groups through both chemical and phys-
ical functionalization methods for the optimization of sensor
performance.

In this paper, we will focus on presenting the sensor response
results for ethanol vapor sensors based on functionalized CNTs
(f-CNTs) with COOH group fabricated by chemical oxidation.
These sensors were characterized using both CC and CP con-
figurations. We will present the comparison of the sensor re-
sponsivity, sensitivity, and time constant under different ethanol
concentration and operating power using these two measuring
configurations.

Fig. 1. Chemically f-CNTs with COOH groups.

II. FABRICATION OF F-CNT-BASED ETHANOL SENSORS

A. Fabrication of f-CNTs

In our experiments, commercially available MWNTs were
used for subsequent chemical oxidation and graft of functional
group (e.g., –COOH) along the sidewall and the tube ends of the
CNTs (see Fig. 1) in our laboratory. The CNTs were first puri-
fied, and then sonicated. Finally, after centrifugation, the func-
tionalized MWNTs were collected, washed, and re dispersed in
solvent for use. Details of the functionalization process of CNTs
are presented in [27].

B. Fabrication of Sensing Elements by Dielectrophoresis
(DEP) Manipulation

DEP manipulation was used to form CNT linkage between
microelectrodes [30], which were fabricated on the Si substrate
by conventional microphotolithographic process. During the
sensing element formation process, a droplet of f-CNT solution
(solvent) was transferred to the gap between a pair of Au mi-
croelectrodes, which were simultaneously excited by an ac bias
voltage. After a while, the solvent evaporated, leaving f-CNT
connection between the two electrode tips. Typically, the two-
probe room temperature resistance of the f-CNT-based sensing
element range from several tens of kilo-Ohms to several hun-
dreds of kilo-Ohms, depending on the concentration and volume
of the solution droplet.

C. Experimental Setup

For the purpose of electrical connection with the measuring
unit, the sensor chip was then fixed and wirebonded to a printed
circuit board (PCB), where several small holes were drilled for
the outlet of ethanol vapor. And then, a plastic cover was put on
top of the sensor chip. During the experiments, the ethanol vapor
is generated by directing a well-controlled flow of compressed
air into the mixed ethanol solution. For CC configuration, a
commercial source meter (Keithley 2400 Source Meter) was
employed to measure and collect the electrical signals of f-CNT
sensors. The experimental setup is illustrated in Fig. 2.

III. CHARACTERIZATION OF F-CNT-BASED SENSORS

A. I–V Characteristics

The I–V characteristic of a typical f-CNT-based sensor
is shown in Fig. 3. Compared to Ohm’s law expectation,
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Fig. 2. Experimental setup under constant current mode.

Fig. 3. I–V characteristic of different types of CNTs.

experimental results of f-CNTs for two cycles exhibited a lin-
ear I–V relationship at first, and self-heating effect starts at
around several tens of μA. Then, in the nonlinear region, the
resistance dropped as temperature is raised. During the alcohol
vapor sensing experiments reported in this paper, the operating
currents were well controlled under 10 μA, i.e., within the lin-
ear region of f-CNTs. Note that the figure also includes the I–V
characteristics of nonfunctionalized CNTs (i.e., bare MWNTs)
and electronic-grade CNTs (EG-CNTs)-based sensors, which
showed a similar I–V characteristics trend as f-CNTs, but they
were less susceptible to temperature change compared with f-
CNTs.

The power consumption (i.e., P = IV = I2R) of the f-CNT-
based ethanol sensors is typically around several μW. This ul-
tralow power consumption enables the sensor to pick up the
physical parameters with minimal thermal disturbance, which
is an indispensable property for sensing true measurands in mi-
croscale and nanoscale worlds.

B. Thermal Sensitivity

Temperature coefficient of resistance (TCR) of the f-CNTs
was tested to determine the temperature-dependency of their
resistance. Classically, the thermal sensitivity of a resistor can
be calculated as follows:

R = Rref [1 + α(T − Tref )] (1)

Fig. 4. TCR of different types of CNTs sensors.

Fig. 5. Stability of f-CNT-based ethanol vapor sensor.

where α represents the temperature coefficient of the f-CNT-
based sensors, R and Rref represent the resistance at a certain
temperature T and reference temperature Tref , respectively.

During the TCR test, an f-CNT-based sensor is exposed to a
temperature range of 20 ◦C to 80 ◦C at 5 ◦C increments. During
this period, humidity is controlled to be constant at 20% RH.
The resistance change of the sensors from our experiments is
recorded and shown in Fig. 4, which indicates a negative TCR
of approximately –0.206%. This is in accordance with the trend
of resistance dropping under relatively higher current in the I–V
characterization of the sensor. In addition, the TCR of several
other types of CNTs are also plotted in Fig. 4 for compari-
son, which include bare MWNTs, OH-MWNTs (i.e., function-
alized MWNTs with OH- groups) and EG-CNTs. For each CNT
sensor, at least two cycles of data were collected to prove its
repeatability.

C. Stability

Long-term stability is an essential factor to characterize a
sensor’s performance. In order to evaluate the reliability of
f-CNT-based sensors, a 6-h stability test was carried out and
the results are shown in Fig. 5. The experiment was con-
ducted in the open environment under room temperature, where
the fluctuation of ambient condition was unknown (i.e., there
could have been fluctuations in temperature and humidity in the
environment). However, the sensor resistance stayed fairly con-
stant during the whole process. The maximum resistance change
was 4.99% within 6 h utilizing the activating current of 10 μA.
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Fig. 6. Typical response of f-CNT-based ethanol vapor sensor.

IV. F-CNT SENSORS FOR ETHANOL VAPOR DETECTION

A. Typical Response

Upon exposure to the ethanol vapor, a sharp increase of the f-
CNT sensor resistance was observed. Fig. 6 shows the response
of a typical ethanol sensor toward different ethanol concentra-
tions, in which all four curves demonstrated a fast response
time. We also found that this change of resistance is reversible.
That is, after each measurement, the ethanol solution was with-
drawn and compressed air was blown onto the ethanol sensor
surface for several seconds, during which resistance dropped in-
stantly. Despite the small amplitude resistance fluctuations, the
decreasing resistance usually stopped at almost the same level
as its original value. However, in order to make sure that the
sensor has been reset to its initial condition, a high current, i.e.,
100–200 μA, was added to anneal the sensor for the purpose of
burning out all the ethanol molecules attached to the f-CNTs.

B. Selectivity

In order to evaluate the selectivity of the sensor, the responses
of a typical ethanol sensor toward dionized (DI) water, ethanol
vapor and compressed air were investigated. For the purpose of
comparison, the compressed air was kept at 102 kPa, which was
the same pressure as used to generate the ethanol vapor in our
experiments. Also, the volume of DI water and ethanol solution
was both 200 mL. The results of sensor performance toward
three media are shown in Fig. 7, where two trends are observed:
for DI water and 1 ppth ethanol vapor, the resistance increased,
while toward compressed air flow, on the contrary, the resistance
dropped. We also found that sensor showed larger response to-
ward the 1 ppth ethanol vapor than DI water. In summary, the
ethanol sensor demonstrated good selectivity in differentiating
these three media. We note here that air was blown on the
sensor surface to increase the conductivity of the CNTs (i.e., re-
setting the sensors to their initial resistance) after each detection
experiment.

C. Mechanism of Ethanol Sensor

The proposed mechanism of f-CNT-based ethanol vapor sen-
sor is that COOH group attached on the CNTs would interact
with the OH group of ethanol molecules in the ambient environ-

Fig. 7. Selectivity of f-CNT-based ethanol vapor sensor.

ment through hydrogen bonds, which results in the resistance
change of the ethanol vapor sensor. The main chemical reaction
is given as follows:

−COOH + OH− → −COO− + H2O.

This whole process is reversible if we anneal the sensor by
blowing compressed air onto the sensor and use relatively high
current to heat up the sensor to eliminate the residual molecules.

V. CP CONFIGURATION

A. CP Circuit for Ethanol Detection

As we presented previously, during the ethanol vapor detec-
tion under CC configuration, the sensor respond to the ethanol
vapor by a rising of resistance. However, this response would
also result in the increase of power dissipation, most of which
are in the form of heat. It is known that self-heating of a sensor
will introduce many problems such as larger noise level. The sit-
uation is even worse for f-CNT-based ethanol sensors, since the
heat generated would possibly burn out the ethanol molecules
that are already attached to the sensor surface, which in turn
leads to inaccurate measurements. Hence, in order to address
the problem and keep the power dissipated on CNT sensor con-
stant, a circuit for CP operation was built (see the inset of Fig. 8)
and utilized to achieve better sensor performance.

In this design, a voltage controlled current source (VCCS)
was implemented. The system was controlled by the MSP430
uP from TI. During measurement period, the gate voltage of M2
remains high and thus there is no current in this path. When the
voltage output at DAC12 increases, the output voltage of the
op-amp (V−) also increases. The system will eventually reach
a stable point when current through M2 stops increasing. The
relationship between Icnt and Vdac is represented in

Icnt = K × Vdac + C. (2)

The TI MSP430FG430 is a 16-bit high-end microcontroller for
digital multimeter of DAC and 16 channels ADC all in 12 bits
resolution, for analog design. An evaluation board from Soft-
Baugh (DG 439 V) powered by a 3 V battery was also interfaced
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Fig. 8. Circuit diagram: VCCS and MSP430 microcontroller (inset: photo of
the CP circuit).

to the VCCS circuit in this design. To reduce power consump-
tion, the uP will measure the CNTs sensor resistance and adjust
the DAC output four times per second. For rest of the time, the
uP will be in low power mode 3 (LPM3) which consumes less
than 3 μW according to the TI document. The program flow of
the MSP430 application is shown in Fig. 8.

This circuit setup has been used to measure the resistance of
CNT sensors under room temperature. During the measurement,
data are digitally displayed on an LCD, and resistance change
curve are shown on the computer simultaneously by compati-
ble software. In addition, the CP circuit enables the sensor to
perform under different power levels, ranging from 0.05 μw to
around 2 μw, which is convenient to investigate the relationship
between the sensor performance and operating power. We also
note that although self-heating can possibly affect the accuracy
of measurement, it can be utilized, on the other hand, to clean up
the residual ethanol molecules attached on the CNTs. Therefore,
the CP circuit also offers the function to anneal the sensor after
each cycle of measurement. To sum up, the main functions of
the CP circuit include CP operation, data collection, operating
power control, and sensor annealing.

Comparison experiments between CC and CP mode were
conducted. In the experimental setup of CP configuration, CP
circuit was employed to replace the source meter in the CC
mode. Other than that, all the experimental variables remained
the same for consistency.

B. Sensor Response Versus Power

In Fig. 9, sensor responses versus different power units un-
der four ethanol concentrations were investigated. The ethanol
vapor concentrations used were 100, 75, 50, and 25 ppth, respec-
tively. In Fig. 9, the solid lines and dashed lines represent the CP
and CC configurations, respectively. The trends in Fig. 9(a)–(d)
proved a decrease of response along with the increase of operat-
ing power, which implied that the f-CNT-based ethanol sensor
tended to perform better under lower operating power. In addi-

Fig. 9. Response versus operating power. Ethanol concentrations:
(a) 100 ppth; (b) 75 ppth; (c) 50 ppth; (d) 25 ppth.
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Fig. 10. Response comparison under different ethanol concentrations.

Fig. 11. Responsivity under different conditions.

tion, it is also clearly illustrated that the ethanol sensor exhibited
larger response under CP configuration rather than CC mode.
However, when the concentration of ethanol vapor was relatively
small, e.g., 25 ppth, two response curves almost overlapped, i.e.,
both configurations exhibit similar response. To sum up, com-
pared to CC configuration, the advantage of CP mode is more
obvious under two conditions: lower operating power or higher
ethanol vapor concentration.

C. Responsivity

Fig. 10 shows the comparison of four groups of measurements
specifying different conditions: CP_low, CC_low, CP_high,
and CC_high, where CP and CC stand for the constant-power
and constant-current configurations, respectively, while low and
high refer to the operating power of ∼0.05 and ∼1.8 μW, re-
spectively. For each specified condition, sensor responses under
different ethanol vapor concentrations are illustrated in the fig-
ure. The slope of fitting curves implies the sensor responsivity,
which is definedas follows:

Responsivity =
Response of the sensor

Alcohol vapor concentration
. (3)

Also, the responsivities of these four groups are compared in
Fig. 11, following the sequence:

CP low > CC low > CP high > CC high.

The largest responsivity was found in CP_low with the value of

Fig. 12. Noise comparison toward different ethanol concentrations.

0.2065%/ppth, followed by CC_low as 0.1414%/ppth. On the
other hand, CP_high and CC_high exhibited similar responsiv-
ities and both much smaller than CP_low. In accordance with
the conclusion we drew in the previous section, both CP_low
and CC_low proved better responsivity, with the previous one
achieved the highest value.

D. Noise

All sensors produce some output noise in addition to the out-
put signal [31]. Despite the large resistance change rate, noises
during measurements could disturb the true signal severely and
jeopardize the accuracy of the sensor. The resistance records of
these two different configurations before and after exposure to
ethanol vapor are compared in Fig. 12, where the ethanol con-
centrations were 25 and 100 ppth, respectively. For each cycle
of the experiment, the sensor resistance was first monitored for
around 57 s as reference. And then, the sensor was successively
exposed to ethanol vapor for around 20 s. From the figure, it is
clear that CP circuit proved much larger resistance fluctuation
toward different ethanol concentrations, both before and after
the exposure. The possible explanation is that CP circuit intro-
duced larger noise level than CC mode, especially under lower
operating power. It is reasonable because in the CC configura-
tion, the commercial source meter utilized provided better noise
reduction system than the CP circuit we built.

E. Sensitivity

Due to the existence of noise, the factor of responsivity alone
is not enough to judge the sensor performance. In this case, we
evaluated the sensitivity of the ethanol sensor, which is definedas
follows:

Sensitivity =
Noise

Responsivity
. (4)

According to this definition, the sensitivity of the sensor reflects
the smallest detectable ethanol vapor level, i.e., the smaller the
calculated value, the higher the sensitivity. Fig. 13 shows the
sensitivities of CNT sensor under four conditions; the results
are listed as follows:

CC low > CP low > CC high > CP high.
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Fig. 13. Sensitivity under different conditions.

Among the four specified conditions, CC_low exhibits the high-
est sensitivity as 2.366 ppth, followed by the similar sensitivity
of CP_low and CC_high. Compared with the responsivities in
Fig. 13, we found that although CP_low proved best responsiv-
ity. Its sensitivity, however, is not as good as CC_low. However,
the sensitivity could be potentially improved if we have better
control of the noise level, i.e., better noise reducing component
in the CP circuit.

F. Response Time

The time constant, which is the smaller the better, represents
the dynamic response of a sensor. During the experiments, the
time constants of both CC and CP configurations under different
ethanol concentrations have been extracted and compared. Typ-
ically, as shown in Fig. 14, sensors under CC mode exhibited
larger time constant, i.e., more response time was needed under
CC configuration. Also, in Fig. 15, we present the time constant
versus ethanol concentration under four different conditions:
CP_low, CC_low, CP_high, and CC_high (same representa-
tions as in Fig. 10). The results showed that for both operating
power, the sensor under CP mode proved its advantage of faster
response.

VI. SENSOR RESPONSE TOWARD LOW CONCENTRATIONS

Sensors that could detect low concentration ethanol are espe-
cially desirable for commercial applications (e.g., drank-driving
tests by police forces worldwide). For CNT-based ethanol sen-
sors, the responsivity of the sensor might vary from one sample
to another to some extent. Several samples were found to be
extremely sensitive and showed large responsivity toward even
lower concentration, i.e., below 25 ppth. Fig. 16 shows the result
of using an f-CNT-based sensor to detect ethanol vapor between
1 and 10 ppth. The two-probe room temperature resistance of
the sensor was around 300 kΩ. During the experiments, we
excited the sensor with a current of 0.05 μA, and the approx-
imate power consumption was 8 nW. Experimental data were
recorded by a commercial CC source meter. After annealing for
5 min, the sensor was exposed to ethanol vapor for 20 s for each
cycle of measurement, and then the sensor response was calcu-
lated. For each ethanol concentration (i.e., 1, 5, and 10 ppth),
two consecutive tests were carried out to ensure the repeatabil- Fig. 14. Time constants versus operating power. Ethanol concentrations:

(a) 100 ppth; (b) 75 ppth; (c) 50 ppth; (d) 25 ppth.
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Fig. 15. Time constant comparison under different ethanol concentrations.

Fig. 16. Response toward low ethanol vapor concentrations.

ity of the sensor and the values of these two measurements are
shown in Fig. 16. As illustrated, fitting curve matches the exper-
imental results pretty well and demonstrates good linearity of
the sensor. Hence, the capability of f-CNT sensors to detect low
ethanol concentration has been validated, which makes them
very promising for future commercial applications.

VII. CONCLUSION

This paper reports our work in comparing CC and CP-based
activation of CNT sensors. As an application example, MWC-
NTs were functionalized with COOH groups to serve as alcohol
vapor sensors. The sensors were activated with both CC and CP
modes, and their output response are reported and compared in
detail in this paper. The functionalized MWCNT (f-CNT) sen-
sors exhibit negative TCR and showed reproducible increase of
resistance upon exposure to increasing ethanol vapor concentra-
tions. Experimental results indicate that sensors achieved larger
responsivity and faster response time using the CP configuration
when compared with the conventional CC mode. Experimental
results also show that although f-CNT sensors performed bet-
ter under lower operating power (for both CC and CP modes),
extra noise was also introduced into the system and compro-
mise the sensitivity of the sensor, especially when operating
power was lower. Hence, we conclude that, compared to CC
activation, CP activation can be used for CNT-based sensors

to reduce transient response time, increase responsivity, and re-
duce power consumption. The sensitivity of the sensors can also
be improved if the inherent noise of a CP circuit system can be
reduced.
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