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ABSTRACT
General Matrix to Matrix multiplication (GEMM) is the cornerstone
for a wide gamut of applications in high performance computing
(HPC), scientific computing (SC) and more recently, deep learn-
ing. In this work, we present a customizable matrix multiplication
framework for the Intel HARPv2 CPU+FPGA platform that includes
support for both traditional single precision floating point and re-
duced precision workloads. Our framework supports arbitrary size
GEMMs and consists of two parts: (1) a simple application program-
ming interface (API) for easy configuration and integration into
existing software and (2) a highly customizable hardware template.
The API provides both compile and runtime options for controlling
key aspects of the hardware template including dynamic preci-
sion switching; interleaving and block size control; and fused deep
learning specific operations. The framework currently supports
single precision floating point (FP32), 16, 8, 4 and 2 bit Integer
and Fixed Point (INT16, INT8, INT4, INT2) and more exotic data
types for deep learning workloads: INT16xTernary, INT8xTernary,
BinaryxBinary.

We compare our implementation to the latest NVIDIA Pascal
GPU and evaluate the performance benefits provided by optimiza-
tions built into the hardware template. Using three neural networks
(AlexNet, VGGNet and ResNet) we illustrate that reduced precision
representations such as binary achieve the best performance, and
that the HARPv2 enables fine-grained partitioning of computations
over both the Xeon and FPGA. We observe up to 50x improvement
in execution time compared to single precision floating point, and
the runtime configuration options can improve the efficiency of
certain layers in AlexNet up to 4x achieving an overall 1.3x im-
provement over the entire network.

1 INTRODUCTION
High performance and scientific computing (HPC & SC) workloads
rely on the basic linear algebra (BLAS) [2] subroutines to perform
many of their most time intensive functions. BLAS libraries are
optimized for high performance and consist of three separate levels
with level 3 routines focused on matrix operations. The general
matrix to matrix multiplication (GEMM) level 3 routine is arguably
the most time intensive and widely used function in HPC and
SC. Hence when designing an accelerator for these applications,
targeting the GEMM routine often leads to the highest improvement
in performance.

In the past, architectures for accelerating these HPC and SC al-
gorithms have been developed for discrete FPGA or FPGAs with
embedded soft/hard processors, with all functions handled by the
FPGA fabric. Often resources which would be better allocated to
accelerating parts of the algorithm, such as GEMM, need to be
traded off to implement the other less compute intensive portions

of the algorithm. Recently, heterogeneous CPU+FPGA platforms
have been proposed as an alternative to discrete FPGAs. By close in-
tegration with a CPU, the FPGA’s resources can be better utilized to
optimize the most compute intensive parts of the application, while
less FPGA friendly functions are handled by the CPU. The Intel
HARPv2 [13] combines a 14 core Broadwell Xeon CPU and an Arria
10 GX1150 FPGA. It provides access to the standard x86 ecosys-
tem, coherent access to the CPU’s memory and high bandwidth to
the FPGA. In contrast to embedded heterogeneous platforms, the
Xeon is designed for high performance, giving the users flexibil-
ity to partition the heavy compute in a way which best suits the
FPGA and CPU. By using a heterogeneous CPU+FPGA platform
like HARPV2, the designer has freedom to explore architectures
that advantageously exploit collaboration between the FPGA and
CPU. Hence, better performance can be achieved via specialized
high speed accelerators that focus on the computational bottleneck,
and rely on a high performance CPU to handle the rest.

Deep learning is quickly becoming a disruptive technology with
state-of-the-art accuracy shown in applications such as computer
vision, autonomous driving, speech-to-text and artificial intelli-
gence. It is still a very active area of research with work focusing
on new topologies and reduced precision methods [4, 11, 18, 20,
21, 26, 26, 30]. While single precision floating point representation
is still used in training, it has been shown that reduced precision
representations all the way down to a single bit can be sufficient for
inference. Due to lack of native low precision support in CPUs and
GPUs, FPGAs are well positioned to take full advantage of exotic
data types supported by fine grained reconfigurable architecture. It
has been shown [3, 5] that GEMM plays a significant role in deep
learning.

Figure 1: The framework consists of an application programming
interface and hardware template. The high level API provides a
function call similar to those used in BLAS libraries. The low level
API is optional and allows the developer to configure certain aspects
of the hardware template at runtime.



This paper presents a customizable matrix multiplication frame-
work on Intel’s HARPv2, and an overview is shown in Fig. 1. It con-
sists of a highly configurable hardware template with a streamlined
software stack and runtime application programming interface
(API), which allow for a wide range of different precisions, various
core sizes and tunable runtime configurable parameters. We take
deep learning as a case study to evaluate performance and flexibility
of our framework. Various HW/SW co-design and heterogeneous
load balancing techniques are applied to achieve synergistic col-
laboration between the Xeon CPUs and FPGA. Specifically, the
contributions of this work are as follows:

• The first runtime configurable heterogeneous GEMM imple-
mentation which supports arbitrary matrix sizes and offers
a wide range of precision, blocking, fusing of operations,
buffering schemes and load balancing.

• A systolic GEMM template that allows runtime customiza-
tion of memory interleaving, offering performance improve-
ments of up to 2.7x on small matrices and 4x for certain
neural networks. In addition, it incorporates a scheme for
fusing operations so inline computation such as ReLU, Batch
Norm and Clipping can be done in FPGA hardware, mini-
mizing CPU overhead.

• A dynamic dot product, enabling mixed precision training
and binary inference which leverages the HARPv2 archi-
tecture, providing up to a 1.67x improvment over a 14 core
CPU.

• An evaluation of performance using popular deep neural
networks (AlexNet, VGGNet and ResNet) on the HARPv2
platform used for ILSVRC15[23], and a study on the effi-
ciency of the hardware template and its impact on deep
learning performance. The resulting binary implementation
is, to our knowledge, the fastest and most flexible reported
to date.

The rest of this paper is organized as follows. Sec. 2 focuses
on GEMM and neural networks. The API, hardware template and
HARPv2 specific details are presented in Sec. 3 and Sec. 4. The fused
operations and the dynamic dot product are presented in Sec. 5.
The results are presented in Sec. 6 and related work is discussed in
Sec. 7. Finally, conclusions are drawn in Sec. 8.

(a) GEMM
(b) A Fully Connected (FC) Layer

Figure 2: (a) Matrix layout for a GEMM. m and n are the leading
dimension and k is the common dimension. (b) Each neuron takes
in activations (ai ) from the previous set of neurons and performs
the dot product with its weights (wi ) to produce its output (vi ). By
batching inputs the collection of matrix-vector multiplications can
be expressed as a single matrix-matrix multiplication.

2 BACKGROUND
GEMM is a key function in many HPC and SC workloads and can
be expressed as Equ. 1.

C = alpha ∗ op(A) ∗ op(B) + beta ∗C (1)

Where A, B andC are the input and result matrices, alpha and beta
are scaling factors and op is a seperate function that performs a
matrix transpose if needed. The most computational intensive part
of the operation is the A ∗ B matrix multiplication. As illustrated in
Fig. 2a, matrices A and B share a dimension, k , called the common
dimension and another unrestricted dimensions m and n called
the leading dimensions. The output of the matrix multiplication is
accumulated with the C matrix and has dimension,m and n. For
each element in the result matrix a k-length dot product needs to
be performed. Hence the number of multiply accumulates (MACs)
can be generalized tom ∗n ∗k which in big-O notation is expressed
as O(n3).

2.1 Neural Networks
Neural networks (NNs) are a class of machine learning algorithms
that are described as a connected graph of basic compute nodes
called neurons. The fundamental compute in each neuron is a dot
product of the inputs, called activations, and a set of weights that
are unique to that particular neuron. In addition to the dot product,
an activation function (tanh, ReLU, sigmoid, etc.) is applied to the
output of each neuron. Equ. 2 shows the operation performed by
each neuron.

vo = f (
n∑
i=0

wi ∗ ai + b) (2)

As illustrated in Fig. 2b, a NN is layered such that the output from
one layer is passed to each neuron in a subsequent layer, these are
called fully connected (FC) layers. The operations for each neuron
in a layer can be combined such that the problem is described as a
matrix-vector multiplication. For large workloads, multiple inputs
are often batched together and the problem is expressed as a matrix-
matrix multiplication. Stacking multiple FC layers together creates
a multilayer perceptron (MLP).

Convolutional Neural Networks (CNNs) are a sub-class of NNs
designed for image recognition, classification, segmentation and ob-
ject detection. The main layer in a CNN is the convolution (CONV)
layer and is represented as a 3 dimensional block of neurons, of-
ten called a filter. Similar to an FC layer, each filter performs a
dot product followed by an activation function. The input into a
convolution layer is a collection of 2 dimensional input images (or
channels) called input feature maps (IFMs). These IFMs are fed into
a four dimensional filter array to produce another collection of
2 dimensional output images (or channels) called output feature
maps (OFMs). This process is repeated across the image for all filters
within the array.

When considering architectures for accelerating deep learning,
it is standard practice [3, 5, 19] to use GEMM for recurrent and MLP
neural networks given that batching is used across all topologies.
However, as presented in [17] three different methods are com-
monly used to perform a convolution: (1) GEMM, (2) Winograd and
(3) FFT. Reference [19] suggest that although convoluation specific
functions such as Winograd and FTT exist, GEMM still accounts for
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Table 1: Tunable Options

Parameters Type Options
Systolic Array Size (Sec. 4) C *Logic & Memory Limited
Precision (Sec. 4.1) C FP32, INT16, INT8, INT4, Ternary, Binary
Accumulator Width (Sec. 4.1) C *Logic & Memory Limited
Interleaving (Sec. 4.2) C&R *Memory Limited
Fused Ops (Sec. 5.1) C&R Scaling, Batch Norm, Clip, Rounding, ReLU

*Limited by the size of the systolic array and available hardware resources.
Features are controllable at compile (C) time, runtime(R) or both (C&R)

over 50% of the highest performing benchmark configurations. Fi-
nally, when considering typical data center workloads, [15] shows
that CNNs only account for 5% of the deep learning workloads
performed in their data center. Hence by targeting a GEMM for
accelerating deep learning we are pursuing an architecture that
provides the most benefit for a wide gamut of workloads.

2.2 Reduced Precision Networks
With significant research [9, 10, 20–22, 26, 30] indicating that 8 bit
or lower precision is sufficient for inference, dedicated hardware
such as the Google TPU [15] and the NVIDIA V100 GPU [8], which
are optimized for lower precisions have been reported. The ben-
efit of moving to a reduced precision format for neural network
computation lies in the efficiency of the multiply and accumulate
operations. By moving from single precision floating point to a 32
bit fixed point, normalization is removed and scaling is simplified
resulting in smaller hardware. Hence, the area and time complexity
is reduced for both the addition and multiplication, improving per-
formance but sacrificing dynamic range. Additionally, by lowering
the number of bits, B, in the representation, the area requirements
of the multiplication and addition generally reduce by factors of B2
and B respectively.

While our framework supports both 8 and 16 bit fixed point, we
offer a few additional representations aimed specifically at deep
learning acceleration. 8 bit activations and 2 bit weights (ternary),
4 bit fixed point and binary are available and provide optimizations
that are attractive for neural networks: (1) a smaller memory foot-
print compared to the traditional single precision floating point
and (2) the ability to replace the conventional multiply-accumulate
with more area efficient implementations.

3 API
The hardware template presented in Sec. 4 is implemented on the
Intel HARPv2 platform with an accompanying software stack and
API. As illustrated in Fig. 1, the API contains a high-level API for
easy integration and a low-level API for fine-grained control. To
maintain consistency with other GEMM implementations, the high
level API is modeled off other linear algebra libraries. Given Equ. 1
and previous BLAS libraries, the simplified GEMM signature for
the FP32 version is:
vo id gemm( t r a n s a , t r a n s b , i n t m, i n t n , i n t k , f l o a t

a lpha , f l o a t ∗ a , i n t lda , f l o a t ∗ b , i n t ldb , f l o a t
be ta , f l o a t ∗ c , i n t l d c ) ;

This signature is provided in a set of libraries that is easily com-
piled into the developers code base. For most projects this should
provide sufficient performance as optimizations are performed
within the function without interaction from the developer.

Tab. 1 presents a list of the current parameters tunable in the
GEMM implementation. Both the precision and accumulator width
are configurable at compile time when the systolic GEMM bitstream
is generated. If multiple precisions are required for a workload, the
API provides a single function for partial reconfiguration that al-
lows for fast precision switching. Post processing fused operations
such as value scaling, clipping, rounding and a few deep learning
specific operations such as ReLU and Batch Norm can be performed
while the results are transfered back to the system memory. These
post processing operations are enabled at compile time to be added
into the design and can be configured to be bypassed at runtime.
For precisions other than FP32, the developer can set the desired ac-
cumulator width at compile time, however this does affect memory
and logic resource utilization. Similarly, the developer has access to
the systolic array interleaving factors. These allow the developer
to make fine-grained adjustments to trade off bandwidth with com-
pute efficiency. Sec. 4.2 covers this in more detail. The maximum
interleaving level is set at compile time and is bounded by the num-
ber of memory resources available on the device. However the exact
level of interleaving (up to the set maximum) can be controlled at
runtime via the lower level APIs.

(a) Software and Hardware Stack (b) Intel HARPv2 Platform

Figure 3: (a) The CCIP, blue bitstream and AAL are provided by the
HARPv2 platform. (b) The blue bitstream communicates directly
with the Xeon andmakes memory requests to systemmemory. The
CCIP interface abstracts away the complexity of handling the three
links and provides a DMA like interface to the user.

3.1 Runtime Support
The API exposes various configurable parameters to the user-level
software. Applications running using our framework leverage the
Intel HARPv2 user mode runtime and kernel driver to set these
parameters. Intel HARPv2 comes with its own driver stack called
Intel Accelerator Abstraction Layer (Intel AAL). The integration of
runtime software with the hardware accelerator template is shown
in Fig. 3a. There are four key components in the integration.
t emp la t e <typename T1 , typename T2>
fpga_gemm<T1 , T2 > : : fpga_gemm (
u i n t 3 2 _ t a_rows , u n i t 3 2 _ t b_co l s , u n i t 3 2 _ t common ,
u i n t 3 2 _ t i _ a _ l e a d _ i n t e r l e a v e ,
u i n t 3 2 _ t i _ b _ l e a d _ i n t e r l e a v e ,
u i n t 3 2 _ t i _ f e e d e r _ i n t e r l e a v e ,
f l o a t i _ a l pha , f l o a t i _ b e t a , GEMM_MODE i_mode ) ;

3.1.1 Application API. The APIs are templated to support dif-
ferent precisions and modes. Depending upon the precision, the
number of elements packed into cacheline also changes. The low
level API is shown above. "a_rows" and "b_cols" refers to the num-
ber of rows and columns in A and B matrices respectively. The
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"common" parameter refers to the common dimension in both the
matrices. "i_alpha" and "i_beta" refer to the scaling parameters
and "i_mode" refers to the mode in which the hardware accelera-
tor template is set. "i_a_lead_interleave", "i_b_lead_interleave" and
"i_feeder_interleave" are the interleaving parameters. These param-
eters can be used by the runtime to control the memory interleaving
and improve the compute efficiency. Internally, the application API
uses the AAL user mode runtime to access and initialize the FPGA
device.

Switching precision during runtime is supported by the dynamic
configuration API. The API shown below requires precompiled
bitstreams and the AAL service which internally uses partial recon-
figuration to switch from one mode to the other.
i n t conf ig_afu_sgemm ( con s t char ∗ pathname ) {
gemmAAL< in t , i n t > hardware_ t emp la t e ;
ha rdware_ t emp la t e . setHW ( t r u e ) ;
r e t u r n hardware_ t emp la t e . configSGEMM ( pathname ) ; }

3.1.2 Intel AAL. The AAL layer provides the necessary run-
time services and API to access the FPGA device. The framework’s
API is built on top of AAL user-mode API’s and services. At a very
high level, AAL services can be briefly classified into two categories:

• AAL user-mode runtime: These are interfaces that abstract
the FPGA hardware via a service oriented model. Various ser-
vices in the AAL user-mode runtime can be aggregated to build
application specific services.

• AAL kernel-mode driver: These include interfaces for allo-
cation of Direct Memory Access (DMA) buffers with shared
addressing between the hardware accelerator template and
the users application. It provides interfaces to access Mem-
ory Mapped IO (MMIO) registers in the hardware template. It
also provides interfaces to perform partial reconfiguration on
the FPGA device. The dynamic reconfiguration API uses AAL
kernel-mode driver’s interface under the hood.

The AAL kernel mode driver utilizes Intel Blue Bitstream to
enumerate the device.

3.1.3 Intel Blue Bitstream (BBS). Intel BBS is the infrastruc-
ture shell component in the FPGA. It abstracts the UPI (Intel’s
Coherent link to the Xeon) and the PCIe links to provide a simple
load-store like interface called CCI-P to the user’s accelerator. Intel
BBS also handles partial reconfiguration and has the AAL kernel
visible MMIO registers. The AAL kernel driver uses these configu-
ration registers for FPGA device enumeration and initialization.

3.1.4 Heterogeneous Load Balancing. The hardware tem-
plate also supports heterogeneous load balancing. At runtime the
workload is partitioned across both the FPGA and CPU. In the case
of a GEMM, the A and B matrices are divided into sub blocks and
the computation is balanced across the two compute engines. This
is useful for particularly large workloads in which the majority of
the work is taken by the GEMM function.

4 HARDWARE TEMPLATE
The hardware template illustrated in Fig. 1 contains the systolic
GEMM, described below, and several modules handling: memory
interleaving, explored in Sec. 4.2, a fused operation scheme and dy-
namic dot product presented in Sec. 5. As illustrated in Fig. 4a, the

hardware template is a systolic array of processing elements (PEs),
each containing a dot product module and two memory buffers,
called the cache buffer and drain buffer. The systolic array operates
by iteratively processing chunks of the input matrices stored in
the feeders. There are two orthogonal feeders that connect to their
respective edges of the array. The design is fully pipelined, hence
each cycle data is fed into the grid through the feeders and propa-
gated along the appropriate rows and columns. The feeders are by
default double buffered to ensure that multiple read requests are
in-flight to saturate the system bandwidth and that compute stalls
due to insufficient memory are minimized. The data management
unit (DMU) is responsible for requesting the input data, filling the
feeders, draining out completed sections of the compute and gen-
erating write requests to the system memory. Within the systolic
array, input vectors are interleaved into each PE to take advantage
of data reuse and help meet the bandwidth requirements of the
system. Since the input is interleaved, a small cache within each
PE is necessary to store the partial results for accumulation later in
the computation.

(a) Systolic Array (b) Processing Element

Figure 4: The hardware template (a) The array size is configurable
with one limitation, the drain bus width must be ≤ 64 bytes. For
FP32 this limits the number of columns to j = 16. (b) This is a PE
for a given row (i) and column (j). The dot product data type is con-
figurable at compile time and is the only data dependent module in
the entire architecture.

The feeders are memory modules that manage the flow of data
into the array. Each feeder is by default double buffered such that
one buffer can be operated while the other is being filled. The
number of buffers is configurable at compile time and can be used
to alleviate issues related to periods of inconsistent bandwidth.

The drain is a large interconnect that flows data down the columns
of the systolic array. When the signal to drain is given, the ‘drain’
memories at the bottom of the array start to empty. Each column
acts as a large FIFO that produces a result every cycle.

4.1 Processing Element
The PE contains a dot product module with two memories, a par-
tial results ‘cache’ and completed results ‘drain’. Input vectors are
passed into each PE every cycle where the dot product is performed
and any partial results are accumulated. In cases where the dot
product is larger than the input vector length, the partial result is
stored in the cache which will be used later in the computation. If
the dot product length is smaller than the input vector length, or
more commonly the final partial input vectors have been passed in
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to the PE, the completed result is stored in the drain and is ready
to be taken out of the array. To ensure high throughput, reading
out the array, i.e. ‘draining’, can be performed while partial results
of the next chunk are produced and stored in the cache, as both
memories operate independently. The one exception is when a set
of complete results would be written into a non-empty drain. In
this case the computation is stalled until the drain is empty. The
array control signals for the computation stage are passed across
rows where as the control for the draining is passed across columns.
Each PE is responsible for passing data in a linear fashion along its
row and column. Additionally, each PE is fully pipelined such that
the result of a single dot product is produced every cycle.

Depending on the desired bit width, the dot product is either per-
formed in DSPs, constructed using logic resource or a combination
of both. The PE currently supports single precision floating point
(FP32), 16, 8, 4 and 2 bit Integer and Fixed Point (INT16, INT8, INT4,
INT2) and more exotic data types for deep learning workloads:
INT16xTernary, INT8xTernary, BinaryxBinary (BINxBIN).

For the integer and fixed point data types, the bit width of the
each stage of the adder tree in the dot product is increased by
one. Apart from FP32, the accumulator bit width is configurable
at compile time for all data types. After accumulation and before
storing into the ‘cache’ or ‘drain’, the results are truncated and
rounded. Currently stochastic rounding and round to nearest are
supported by the framework and are configurable at compile time.

4.2 Blocking and Interleaving
During GEMM each element in matrix A is used n times and each
element in matrix B is usedm times. Hence we can minimize the
required bandwidth by trying to store both A and B on chip and
reuse each element. However, the number of on chip memories
quickly becomes the limiting factor when dealing with larger ma-
trices. To handle larger matrix sizes both A and B are partitioned
into chunks and sent down in batches. This is usually referred to
as blocking and is a standard practice in GEMM implementation to
achieve high performance.

Figure 5: Interleaving Example: This shows a simplified example
of how the PE operates and the concept of interleaving.

Interleaving on the other hand, is an architecture specific op-
timization designed to enable data reuse on a fine-grained level.
It takes advantage of the data reuse in a GEMM and operates by
feeding the same vectors into the PEs in a specific order. Both the
leading dimension of matrices A and B,m and n respectively, have
independent interleaving factors that are controlled at both compile
and run time. Fig. 5 shows a simplified example of how interleaving
operates within our hardware template. The interleaving factors
for feeder A and B are 3 and 2 respectively. At t = 0 a0 and b0
are passed into the PE and the partial result is stored in the first
location in the cache. At t = 1 the pointer to memory location
a in incremented, b0 is reused and a1 is passed into the PE with
the partial result stored in the second location in the cache. This
continues on to t = 3 where the a memory pointer is reset back to
zero and the b memory pointer is updated, now a0 is reused and
b1 is passed into the PE, the partial result is stored in the fourth
location in the cache. At t = 6 the first column and row of A and B
respectively, have been processed and we move on to the second
row and column. Instead of accumulating zeros, the previous values
for t = 0 is added to the result of a3 and b2 and is stored back into
the first location. This process continues in a similar fashion for
t = 7, ..., 11 until all rows and columns have been processed.

Both blocking and interleaving are used together to improve per-
formance. The blocking size is determined by the interleaving factor
as well as the number of row and columns in the systolic array.
Initially the interleaving size was fixed at compile time. While the
systolic array would perform at near peak theoretical performance
for large matrices, for smaller matrix sizes there was a significant
decrease in performance. This is due to the fact that both matrix
A and B would need to be padded with zeros until they were a
multiple of the block size. We observed that by adding configurable
memory interleaving support at runtime, the performance signifi-
cantly improved as discussed later in Sec. 6.1.2. In most cases the
optimal interleaving size can be directly calculated using Equ. 3.

I = min
xL, ...,xH

modulo(DIM,x) (3)

where x is the range of different interleaving values supported by
the hardware core, and DIM is the leading dimension of either
the A or B input matrices. Hence the size of the blocks leading
dimension for A and B can be calculated using SA = IA ∗HWROW S
and SB = IB ∗ HWCOLS respectively.

Now, given the dot product size (SD ) and the length of the a
block’s common dimension (SC ), the number of cycles per block
can be calculated using the A and B interleaving sizes (IA and IB )
as illustrated in Equ. 4.

Cycles = IA ∗ IB ∗
SC
SD

(4)

Given the blocks sizes of A (SAxSC ), B (SBxSC ) and C (SAxSB ) and
Equ. 4, the read andwrite bandwidth requirements can be calculated
directly using Equ. 5

Bandwidth = f
Bytes(SASC + SBSC + SASB )

Cycles
(5)

where f is the operating frequency of the design and Bytes is the
number of bytes used to represent each element of A, B and C.
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5 DEEP LEARNING
This section discusses the deep learning specific optimization and
hardware template features available in our framework. Specifically,
we describe the fused operations and dynamic dot product modules
from Fig. 1.

5.1 Fused Operations
In the context of deep learning, often additional operations such as
the activation function or batch normalization are performed after
the FC or CONV layers.

(a) Fused Operations (b) Dynamic Dot Product Switch-
ing

Figure 6: (a) The post processing module is configurable at com-
pile time and runtime and provides key neural network func-
tions. (b) Dynamic dot product switching allows for greater micro-
architecture exploration and flexibility when designing for reduced
precision networks.

As presented in Fig. 6a, as the results are drained out of the
systolic array a post processing module can apply some basic oper-
ations. The post processing module contains a common interface
such that extra functions such as sigmoid, tanh or custom scaling
schemes can be added without modification to the systolic array.

5.2 Dynamic Dot Product
Training of neural networks on FPGA hardware has been challeng-
ing since typically the gradient update step needs to be performed
in higher precision. Recent work [18] has shown that through the
use of a novel quantization scheme, hardware friendly backproga-
tion is possible if a mixed precision FP32x(Binary/Ternary/Integer)
dot product can be performed. To support this we added the ability
to dynamically switch between dot product types during runtime.
Fig. 6b presents the necessary change to the PE. To illustrate the
advantages of this change we implemented a BINxBIN dot product
in DOT 1 and a FP32xFP32 dot product in DOT 2. With the addition
of dynamic dot product switching, both training and inference can
be supported on the FPGA.

For a typical layer in a state-of-the-art BNN [18] the FPGA per-
forms the BIN X BIN operations very efficiently, hence the CPU
can be freed during that time to perform other tasks in its pipeline.
Tab. 2 illustrates the required operations of the middle and end
portions for a binarized AlexNet. It shows that different layers can
be partitioned, for both forward and backward passes, across the
FPGA, CPU or using heterogenous load balancing (FPGA+CPU).
The RELU operation during the forward and backward pass can
be performed on the FPGA or CPU depending on which device
the result was calculated on. For the batch norm operation the for-
ward pass can be performed on the FPGA as it is a scale and shift
operation. At this time the hardware template does not support
the backward computation of batch norm or pool operations and
adding support is future work. To further support mixed precision,

Table 2: Mixed Precision Inference and Training

Layer Location Type
Forward Backward Forward Backward

... ... ... ... ...
conv FPGA FPGA+CPU BINxBIN FPxBIN
c&r FPGA N/A INT STE
relu FPGA FPGA+CPU INT FP
norm FPGA CPU FP FP
pool CPU CPU FP FP
... ... ... ... ...
fc CPU CPU FPxFP FPxFP
prob CPU CPU FP FP

For the standard configuration of a BNN, a mixed precision imple-
mentation on the Xeon+FPGA utilising the dynamic dot product
could operate in this manner. The straight through estimator (STE)
is used for the clipping and rounding (c&r) layer, hence no operation
is required on the backwards pass.

in the future we plan to include a hybrid 2-D systolic array with
mixed precision PEs between different rows or columns to alleviate
routing congestion due to multiplexing between DOT types.

6 RESULTS
The results are presented in two section, first we show the perfor-
mance of the GEMM for the various precisions and compare to
a NVIDIA Titan X Pascal GP102 GPU on 16nm process. We illus-
trate the benefit of memory interleaving on various matrix sizes
for three precision, FP32, INT16 and INT8. We present our result of
heterogeneous load balancing and the effect on the different parti-
tioning sizes across the FPGA and CPU. The second section focuses
on the deep learning workload. Results for three different binary
network topologies, (AlexNet [16], VGGnet [25] and ResNet [14])
are presented and are evaluated against the GPU. We illustrate the
impact of memory interleaving on AlexNet at various batch sizes
for FP32 and discuss further possible optimizations. Finally, we
investigate several possible mixed precision implementations on
our framework and evaluate their performance for both training
and inference. All FPGA results were gathered by measuring the
wall time of the function call for each configuration on the HARPv2
system.

Since the systolic array size is configurable at compile time, it
can be tailored to the resources available on the FPGA. In the case
of the HARPv2, all of the available area was used to implement
the hardware temples minus the area taken by the Intel BBS. For
FP32, this results in 160 PEs, with an array size of 10 rows and 16
columns, operating at 315Mhz. With the dot product size config-
ured to 8, this uses 1280 of the 1285 DSP available. Even thought
our measurements are performed on the HARPv2, the hardware
template, written in SystemVerilog, is only dependent on the CCI-P
interface and can be implemented on larger or smaller FPGAs.

6.1 GEMM
Fig. 7a presents the performance of the GEMM architecture pre-
sented in Sec. 4 on the Arria 10. Since a floating point addition
and multiplication is needed for all FP32 modes, all operations are
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Figure 7: GEMM MCP Performance. (a) shows the current peak performance of the framework for a few selected precisions. (b) gives the
GPU results for same precision selected in (a). (c) shows the current performance per watt for both the GPU and Arria 10 as well as *modified
Arria 10 results which normalize for process node. (d) & (e) illustrates the difference between the framework with (I) and without (D) memory
interleaving. (f) illustrates the load balancing results.

performed in the DSP. While it is possible to implement these oper-
ations in logic it quickly becomes very expensive and the design
is constrained by routing resource when increasing the array size.
Hence the performance is limited by the number of DSPs avail-
able on the chip. For FP32T (FP32xTernary) further optimizations
can be made by removing the multiplication and implementing a
simplified multiplexer unit.

For integer precisions we observe a better than linear scaling of
performance. As the bit width becomes smaller, the dot product
is a good fit for the FPGA architecture. INT16 doubles the FP32
performance since each DSP can perform two multiplications and
two additions. The hardware template does support using logic
resources when implementing a larger array. However specifically
for INT16, the multiplication utilization and routing resources be-
come a significant issue and only result in a small improvement
in the peak tera-operations per second (TOPs). Since the DSP ar-
chitecture does not natively support 8 bit operations, doubling the
performance is achieved by using a dot product built out of both
DSP and logic elements. For INT8 and INT4, extra rows are added
to the array since there is available logic resources to implement
the math operations. Moving to INT8T (INT8xTernary) provides
a performance per watt improvement over INT8 since: (1) each
multiplication is replaced by a multiplexer (2) with the removal of
the multiplication, the accumulator bit width can be reduced. The
BIN GEMM is implemented completely in logic and uses an XOR
and lookup-table based dot product.

6.1.1 GPU Comparison. GPUs are known for their linear alge-
bra performance as shown in Fig. 7b, reported performance being
from previous studies [18, 21]. Compared to the Arria 10, the GPU
has higher raw performance for all cases apart from the binary
GEMM. Considering power, the FPGA shows superior performance
for binary and 4 bit integer which are not a good fit for the GPU
architecture. However considering that the GPU is at a newer pro-
cesses node than the FPGA, TSMC 16nm and 20nm respectively, we
have plotted a normalized Arria 10 result of the same design and
frequency but cutting power by 60% as per [7]. In the normalized
case, the FPGA out performs the GPU especially for the binary
GEMM.

6.1.2 Memory Interleaving. Efficiency is calculated by compar-
ing the measured TOPs to the theoretical maximum value for a
given design. The theoretical TOPs is calculated by simply taking
the number of compute units and multiplying by the frequency,
disregarding any time for data transfer. Fig. 7d and Fig. 7e illustrate
the efficiency of the array at different matrix sizes as well as the
improvement of the memory interleaving optimization. The sizes
tested were square matrices of the x axis labels, i.e., for 256 the A,
B and C matrices are all 256x256.

For the smallest matrix size, 256, we can see that for the unop-
timized designs (D) the efficiency for FP32, INT16 and INT8 are
all below 20%. With runtime configurable memory interleaving (I),
presented in Sec. 4.2, we see a 2.7x improvement in efficiency for
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the smaller matrix sizes. In some cases even with memory inter-
leaving the efficiency of the design is quite low. Usually the data
transfer of the next chunk in the input matrix is hidden during
the computation of previous chunk. For smaller matrix sizes, the
number of chunks are small and hence the transfer cost cannot be
amortized by the compute. Additionally, the initial transfer time
for the first chucks of A and B as well as the transfer of C account
for the majority of the measured execution time. This issue can be
resolved by staging multiple GEMMs such that transfer of the A, B
and C chunks overlap with the compute from the previous GEMM.
This is similar to how larger single GEMMs are performed. For ma-
trix sizes past 512, the efficiency for all precision is above 80% and
becomes 90% past 1024 where it quickly reaches peak performance.
For square matrix size 4096 the effectiveness of memory interleav-
ing has been diminished, however as discussed later in Sec. 6.2.2,
non-square matrix sizes still see significant improvements.

6.1.3 Heterogeneous Load Balancing. Fig. 7f presents the perfor-
mance of the FP32 GEMM when load balancing is performed over
the FPGA and a 14 core Xeon CPU. Peak performance is achieved
as the work split approaches 60% on the FPGA and 40% on the
CPU. This is consistent for most block sizes apart from 20480. In
this case, the whole compute is performed on either the CPU or
the FPGA. Interestingly, for this particular workload the optimal
block size is 4096, showing that a finer-grained partitioning of the
problem performs better than coarse-grained sizes such as 10240.
This illustrates that the CPU and FPGA working in tandem can
achieve a 1.6x improvement in performance over a 14 core only
implementation.

Table 3: Network Performance

Device FPGA GPU
TOPs GOPS/W IPS IPS/W TOPS GOPs/W IPS IPS/W

AlexNet 31.54 657.27 1610 33.54 37.60 568.09 1626 25.02
VGGNet 31.18 649.67 114 2.39 35.85 522.59 121 1.78

6.2 Neural Network Evaluation
In this section we extend on previous work presented in [1] and
apply our customizable GEMM framework to three deep learning
workloads: AlexNet [16], VGGnet [25] and ResNet [14]. While the
GEMM targets many different precisions, we specifically target
binary neural networks since: (1) from Fig. 7a, this clearly offers the
best performance over a GPU and (2) recent work [18] has shown
that implementations can achieve high accuracy even for binary
weight and activation networks. Additionally, we provide a study
on the effectiveness of memory interleaving on layer efficiency
for the AlexNet topology running in FP32. Finally, we present a
mixed precision training and inference scheme targeted at leverage
heterogeneity and the dynamic dot product module

The evaluation was performed on both the CONV and FC lay-
ers for inference with the standard mini-batch size used for each
topology. The total network performance and Images per Second
(IPS) is calculated based on the weighted average of the layers op-
eration contribution to the overall network. A runtime breakdown
of each topology was collected using the 14 core Xeon Broadwell
CPU running Caffe with Intel MKL2017.

6.2.1 Binary Network Performance. As shown in Fig. 7a, Fig. 7b
and Fig. 7c the FPGA and GPU achieve 40.77 TOPs and 41.01 TOPs
for the binary GEMM respectively, which is within 99% of their
theoretical peak performance. Compared to the GPU, the FPGA
achieved 849.38 GOPs per Watt which results in a 1.44x improve-
ment in energy efficiency over the GPU at 585.86 GOPs per Watt.

As illustrated in Tab. 3, the FPGA achieves 83% and 86% of the
GPU raw performance for AlexNet and VGGNet. However in terms
of energy efficiency (GOPs/Watt) the FPGA surpasses the GPU
by 1.15x and 1.23x for AlexNet and VGGnet respectively. When
extrapolating to Images per Second (IPS) the difference in network
performance is less stark with the FPGA achieving 99% and 94%
of the GPUs IPS for AlexNet and VGGNet respectively. Hence,
the FPGA shows better Images per Second per Watt compared
to the GPU for both AlexNet and VGGNet resulting in a 1.34x
improvement for both topologies.

For ResNet-34 the FPGA only achieves 70% of the GPU perfor-
mance at 23.47 and 33.34 TOPs respectively. However it is on par
for energy efficiency at 489.05 GOPs/Watt for the FPGA and 485.68
GOPs/Watt for the GPU, only showing a 1.03x improvement. This
drop in FPGA performance compared to AlexNet can be under-
stood by examining the layer breakdown presented in Fig. 8a. The
GPU out performs the FPGA for the first three layer sets which
contribute 50% of the total operations. While increasing the batch
size can alleviate some of this discrepancy, this is undesirable since
it can affect training rate and total execution time.

If we examine specifically the first layer, the FPGA achieves
7.88 TOPs, which is only 19% of the measured peak performance
presented in Fig. 7a. Themain cause of this inefficiency is introduced
by the padded zeros in the common dimension of the input matrices.
As future work we are planning to enable runtime configurable
memory interleaving for the common dimensions of the matrices.
This should result in significant performance improvements since
the majority of the padded zero computations will be avoided.

6.2.2 Effect of Memory Interleaving on AlexNet. Fig. 8b and
Fig. 8c show the performance of the first five convolutional layer
in AlexNet for FP32. Different batch sizes ranging from 1 to 64 il-
lustrate the performance improvement that is provided by memory
interleaving. For a batch size of 1, A and B are long-skinny/short-fat
matrices. Hence with fine control of the interleaving we can see
1.8x and 1.6x improvement for the first two layers, while for layer
3,4 and 5 the improvement is over 3x and up to 4x. For a batch
sizes of 4, 16 and 64, the A and B matrices are becoming increas-
ingly square. Hence we don’t see the same level of improvement,
however it is achieving near peak performance. The improvement
for the first layer is more significant than the other since the first
layer has the worst long-skinny/short-fat matrix sizes. However it is
clear that memory interleaving significantly improves the efficiency,
achieving a 1.3x up to 4x improvement.

6.2.3 Dynamic Dot Product. As discussed in Sec. 5.2, mixed
precision GEMMs are needed to handle both the forward and back-
wards pass. Typically, the first convolution and last fully connected
layers are performed at full precision while the inner layers are
performed at lower precision [18]. As shown in Tab. 2, during the
backward pass, the gradients are computed using single precision
floating point hence the operation is a FP32xBIN GEMM. While
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Figure 8: (a) Binarized ResNet layer performance. (b) & (c) Breakdown of static design (D) vs configurable interleaving (I) for different batch
sizes on AlexNet at FP32 precision.

our framework contains an API for switching between different
precisions, Sec. 3.1, the latency is determined by the partial recon-
figuration (PR) time. In the cases where the PR latency is too high,
a dynamic dot product may be more appropriate.

By examining the breakdown for binarized AlexNet, similar
to Tab. 2, we designed three FPGA implementations, two with
dynamic dot product, targeting different portions of the topology:
(1) a single BINxBIN, (2) a BINxBIN and FPxFP, (2H) a version
of (2) that performs the FPxFP GEMM utilizing heterogeneous
load balancing and finally (3) a BINxBIN and FPxBIN. All other
layer operations not supported are assumed to be implemented
in software on all cores of the Xeon. Implementation (1) and (2)
were synthesized for the HARPv2 whereas (3) was extrapolated
using the results of (2) and the analysis from Sec. 6.1 Additionally,
(2) is able to perform the FPxBIN operations by representing the
BIN values as floating point. Given that inference and training take
421ms and 892ms respectively, implementation (1) accelerates the
BINxBIN operations which account for 272ms of the execution time
(all in the forward pass). This corresponds to 65% and 30% of the
total interference and training time respectively. (2) accelerates the
most layers with the BINxBIN and FPxFP operations accounting for
327ms (77%) and 735ms (82%) of the total execution time. Finally,
(3) accelerates the BINxBIN and FPxBIN operations accounting
for 272ms (65%) and 593ms (66%) of inference and training time
respectively.

Table 4: Implementation Peak Performance

Impl. BINxBIN FPxFP FPxBIN Forward Backward Total
(TOPs) (TFLOPs) (TFLOPs) (ms) (ms) (ms)

SW - - - 421 471 892 (1x)
(1) 40.77 0 0 158 (F) 471 (C) 630 (1.41x)
(2) 25.4 0.8 0.8 164 (F) 537 (F) 702 (1.23x)
(3) 25.4 0 0.88 165 (F) 502 (F) 668 (1.33x)
(2H) 25.4 1.4 1.4 163 (F+C) 369 (F+C) 533 (1.67x)

Where possible, the operation was performed on the FPGA (F), the 14 core
CPU (C) or using heterogeneous load balancing (F+C).

As illustrated in Tab. 4, for pure inference, implementation (1)
achieves the best results, reporting the fastest forward execution
time. However for training, implementation (2H) and (3) show a
greater speedup, achieving 1.67x and 1.41x improvement over a
software only implementation. Implementations (2), (3) and (2H) use
the dynamic dot product, hence the BINxBIN performance suffers

since a smaller systolic array size is used to accommodate the extra
routing resources. Although implementation (2) implements all
operations on the FPGA, this reduces the amount of hardware
that can be dedicated to the bottlenecks, resulting in the lowest
speed, 1.23x. The CPU+FPGA implementations (1), (3) and (2H)
show that the best overall performance is achieved by leveraging
the CPU and specializing the implementations for only the most
profitable parts of the algorithm, or by utilizing heterogeneous
load balancing. Compared to other CPU+FPGA platforms the same
network performance would not be achieved since these are often
SoC type CPU that have relatively low FLOPS compared to the
Xeon CPU.

7 RELATEDWORK
7.1 FPGA Comparison
Compared to other work, our hardware template in the BINxBIN
configuration achieve the highest peak TOPs, MOPs / LE and the
second highest GOPs / Watt. We appreciate that comparing across
different devices and manufacturers is difficult and try to ensure
that accurate comparisons are made. While the results reported in
[26] are for an older process node, [11] shows their performance on
a device of similar size and process node as our own. It is expected
that [26] should achieve better energy efficiency since the device
is targeted at low power SOC applications, while ours is a data
center target device. One key advantage of our hardware template
is that it provides several other data types and customizations that
benefit applications outside of deep learning. Additionally, with
the Xeon CPU able to provide high floating point compute power,
any changes to the underlying neural network algorithms, such as
those presented in [18]"" can be supported without changes to the
hardware architecture.

7.2 Existing accelerators on Xeon+FPGA
As the Xeon+FPGA platform continues to gain popularity there has
been prior work that studied acceleration on this platform, such
as [28, 29]. [29] studied CNN with math optimization (e.g., FFT
transformation). [28] studied irregular pointer chasing applications
(i.e., not neural networks). Heterogeneous CPU-Accelerator plat-
forms are quickly becoming pervasive throughout computational
systems and clusters. With the fast adoption of machine learning
and deep learning in business, the computation requirements of
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Table 5: Previous Work

[26] [11] [21] Our Work
Platform Zynq z7045 Kintex US KU115 Arria 10 GX1150 Arria 10 GX1150
Logic Elements (LEs) 350K 1,451K 1,150K 1,150K
Power (W) 11.3 41 - 48
TOPs (Peak) 11.612 14.8 25 40.77
MOPs / LE 33.17 10.19 - 35.45
GOPs / Watt 1027.68 360.97 - 849.38

’-’ indicates that the particular numbers were not provided.

cloud and local distributed system is increasing at an exponential
rate.

Several studies [6, 24, 27] have focused on key workloads to
better understand the requirements of these algorithms and their
performance on CPU+FPGA systems. [6] provides a quantitative
analysis of a QPI based CPU+FGPA system compared to a PCI-E
based CPU+FPGA system. Key differences between the two plat-
forms such as different memory models and peak bandwidth were
highlighted and a decision tree based flowchart was provided as a
guide to assist developers when choosing a platform.

Our work is different in that we present a customizable matrix
multiplication framework that is tailored for the HARPv2. Our hard-
ware template provides a range of different precision and options
that are configurable both at runtime and compile time. By using
our simple API the hardware template can be connected easily to
user applications and existing frameworks.

7.3 Existing NN FPGA accelerators
Previous work has been done on NN accelerators [4, 12, 20, 21, 26,
30] and our work differs in these key areas. We studied a flexible
hardware template where the CPU and FPGA work in tandem to
accelerate only the functions well suited to each device. Previous
work has mainly focused on inference while we examined potential
mixed precision implementations that accelerate both inference
and training. Training is more complex than inference, as it requires
more variety of operations.We showed that an "All-FPGA approach"
may yield sub-optimal performance when compared to a tailored or
heterogeneous approach. We can handle training of NNs because
we rely on Xeon CPU which allows us to leverage existing standard
x86 software ecosystems.

8 CONCLUSION
We have presented a customizable matrix multiplication framework
that includes a simple software API and a hardware template for de-
signing custom GEMM accelerators on the HARPv2. We illustrated
that in deep learning workloads, the HARPv2 is able to stay com-
petitive with a high performance discrete GPU and offered insight
into some of the issues faced when designing for this system. In
terms of energy efficiency the FPGA was either on par or exceeded
what the GPU could offer in the case of binary neural networks.
We evaluated several potential heterogeneous implementations for
the HARPv2 and showed that system specific implementations de-
signed to target the most profitable portions of the algorithm for
each device results in better performance.
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