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Abstract

Computer arithmetic is a specialist field of study, and it
is very difficult for designers to choose the most efficient
method for implementing a given algorithm due to the large
number of design choices available. In this paper, an object
oriented arithmetic library is presented which can be used
to simulate and generate designs which use fixed, floating,
logarithmic and hybrid number representations. The ad-
vantages of this approach are that a user can explore trade-
offs concerning precision, accuracy and speed from single
high level description. Furthermore, users need not be in-
timately familiar with the implementation details of the un-
derlying libraries, thus allowing users to develop systems
employing advanced computer arithmetic without detailed
knowledge of its implementation. The application of this li-
brary to a coprocessor which implements the force pipeline
for an N-body solver is described.

1 Introduction

To date, field programmable gate arrays (FPGAs) have
successfully been applied to speed up the computation of
many fixed point problems in fields such as signal process-
ing, pattern matching and cryptography. However, few sci-
entific applications employing floating point or other num-
ber representations have been reported. We believe that this
was due to limited FPGA resources restricting the amount
of parallelism which can be obtained and the lack of high
level computer aided design (CAD) tools and libraries to
help in the design process.

Recent improvements in FPGA density have addressed
the first issue to a certain extent. In order to address the
second issue, a design methodology in which the arithmetic
is generalized to be of arbitrary precision and representa-
tion is proposed. In this paper, a C++ based library, called
the Computer Arithmetic Synthesis Tools (CAST), which
supports arbitrary precision fixed, floating and logarithmic

number systems is first described and then the application
of this methodology to the N-body problem is given.

Although a wealth of knowledge about computer arith-
metic exists, in practice the vast majority of custom comput-
ing machines (CCM) are made using the bit parallel two’s
complement representation. On current devices, it is pos-
sible to fit tens to hundreds of low precision floating point
units on a single device and designs could possibly be made
more efficient using floating point or other representations.
Design productivity and the lack of standard numerical li-
braries to support different number representations appear
to obstacles for the development of large scale scientific
CCMs.

Module generators are able to generate customized de-
signs from their input parameters, for example, the Xil-
inx LogiCore library for FPGAs [5] provides highly opti-
mized libraries for the fixed point multiplication, multiply-
accumulate, division and CORDIC operations and flexible
floating point module generators have been developed [14].
In such libraries, there is usually little flexibility in the nu-
merical representation which is usually fixed or floating
point and there is no convenient way of using these blocks
from a high level language apart from generating the com-
ponent and then instantiating them as an element in the de-
sign.

PamDC [23] was one of the first module generators
which allowed programmed generation of circuits from
C++ and a recent extension, PAM-Blox II [18] has been re-
ported. The underlying design of CAST was inspired by
JHDL [11] in which circuits are treated as objects. Ob-
ject oriented features of the C++ programming language are
used to perform simulation and generation of synthesizable
VHDL code by direct execution of the program. On top of
this environment, a module library which provides a com-
puter arithmetic scheme that is independent of numerical
representation, number format and operators is available.
The underlying circuit description is a structural one built
up from primitive elements.

The N-body problem is computationally intensive and



involves a large number of arithmetic operations on num-
bers with large dynamic range. This together with the fact
that relatively low precision is required makes it a good
candidate for hardware acceleration. The most well known
family of application specific integrate circuit (ASIC) based
CCMs for the gravitational N-body problem is the GRAPE
(GRAvitational PipE) computer [16]. GRAPE-4 was a
winner of the IEEE Gordon Bell Prize in 1995 and 1996
and GRAPE-6 a winner in 1999, 2000 and 2001. Pro-
grammable FPGA based implementations of GRAPE, i.e.
AHA Grape [13] and PROGRAPE-1 [9] have also been re-
ported. Using the CAST tool, an FPGA based processor for
the gravitational N-body problem similar to GRAPE, with
the additional advantages of being flexible in the choice of
arithmetic system and precision, was developed.

The contributions of this paper are as follows:

• The CAST tool takes a single structural description
of the computation to be performed and can generate
many different implementations with differing area,
precision and performance requirements. This allows
tradeoffs between the different designs to be quantified
much more easily than with previous approaches.

• A module generator in which the arithmetic system is
allowed to vary is presented. This has the advantages
of facilitating better exploration of the design space,
improving designer productivity through reuse and al-
lowing for the encapsulation of the design details of
the arithmetic system in libraries so that designers are
able to apply them without detailed knowledge of the
implementation.

• Although custom computing machines have been pro-
posed for scientific applications, FPGA devices have
only recently become large enough for practical scien-
tific applications. The application of this methodology
to the design of a force pipeline for the N-body prob-
lem demonstrates the flexibility of the approach to an
important scientific problem and allows tradeoffs be-
tween area, precision and speed to be made in a quan-
titative manner.

The remainder of the paper is organized as follows. In
Section 2, a description of the CAST system is described.
In Section 3, the N-body problem is defined and the imple-
mentation of an FPGA based coprocessor for this problem
is presented. Implementation results for the arithmetic li-
brary and N-body coprocessor are given in Section 4 and
conclusions are drawn in Section 5.
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Figure 1. Example circuit and the object hier-
archy.

2 Computer Arithmetic Synthesis Tool
(CAST)

2.1 Framework

Two libraries are used in CAST. One is a utility library
which is responsible for simulation and rendering of the cir-
cuits. The other is a primitive module library which consists
of logic gates, adders, multiplexers, registers, etc. These can
be connected together to form arbitrary designs and a circuit
is modeled as a graph of interconnected objects. An exam-
ple of a design to compute y = ax+b is given in Figure 1. In
this example, the testbench module tb includes three prim-
itive modules: my mul, my dff and my add. A component
booker, also shown in the figure, is responsible for logging
the creation of all primitives. In the object hierarchy, the
composite module tb is called by the top level CAST sys-
tem and is the parent of all three submodules. When the
parent is to be simulated/rendered, all underlying children
are simulated/rendered automatically.

2.2 Simulation and VHDL Generation

Two methods are used to simulate a circuit: sim clk()
for registering values at clock edge; and sim eva() for
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the combinational parts of the circuit. For primitive mod-
ules, the sim eva() method is a set of expressions relat-
ing the outputs to the inputs. The sim eva() method in
a composite module calls sim eva() of the submodules
iteratively according to dependencies derived from the in-
terconnection graph. When sim eva() returns, the circuit
is in a stable state and the value of any intermediate signal
can be examined.

The simulation function of the CAST system helps de-
signers to debug logic at a software level in the early stages
of development. For primitive modules, it is the library de-
signer’s duty to ensure the simulation behaves the same as
that of the generated VHDL circuit. CAST will ensure the
consistency between the simulation and implementation for
designs formed from an interconnection of primitives. Writ-
ing a testbench is also easier since the stimuli can be created
using standard C++ functions.

The following example creates the adder object of Fig-
ure 1, perform a simulation and generate a VHDL descrip-
tion and testbench. ”my add” will be the instance name of
the adder and the ports A, B and S will be generated auto-
matically.

// create adder
my_add=new Add_n("my_add",2*n);
// connect I/O
connect(my_mul->P, my_add->A);
connect(my_dff->Q, my_add->B);
...
// simulate 1 clock cycle
tb.sim_clk();
// print out result
sim_result(add->S);
// generate VHDL (including testbench)
tb.gen();

When a module is created, the constructor first saves a lo-
cal copy of the configuration, e.g. the adder width 2n. Then
the circuit() method is called to construct the circuit.
Finally, the current object is registered to its parent.

To generate the VHDL code for a circuit, the gen()
method is used. In this method, the I/O ports are first cre-
ated, and then the components, their instances and intercon-
nections are generated in a manner which avoids forward
references.

2.3 Representation

In this subsection, a brief review of the fixed, floating
and logarithmic number representations is presented. More
detailed descriptions can be found in computer arithmetic
textbooks such as Koren [12], Flynn [24, 8], Parhami [21]
or Ercegovac [17].

Unsigned integers are used to represent the nonnegative
integers. An N -bit unsigned integer has a range [0, 2N − 1]
and can be described in binary form, with u i being the i’th
binary digit:

U = (uN−1uN−2 . . . 0), ui ∈ {0, 1}.

This represents the number

U =
N−1∑
i=0

ui2i.

The two’s complement representation is the most widely
used scheme for integers. The representation is similar to
the unsigned integers except that the most significant bit has
a weighting of −2N−1. A two’s complement integer X of
different N can be represented in binary form, with x i the
i’th binary digit as

X = (xN−1xN−2 . . . 0), xi ∈ {0, 1}.

X has a range of [−2N−1, 2N−1 − 1] and represents

X = −xN−12N−1 +
N−2∑
i=0

xi2i

The two’s complement integer representation can be
generalized to represent fractional numbers by scaling. A
two’s complement fraction is represented as a pair (N, F )I ,
where N is the wordlength, F is the fractional wordlength
and the subscript I shows that it is an integer representation.
The most significant N −F bits of the number represent the
integer part and the remaining F bits are the fractional part
of the number

Y = (
integer︷ ︸︸ ︷

aN−1 . . . aF

fraction︷ ︸︸ ︷
aF−1 . . . a0).

This corresponds to a scaling of the two’s complement in-
teger representation by the factor S = 2−F and the two’s
complement fraction number Y represents

Y = 2−F × (−xN−12N−1 +
N−2∑
i=0

xi2i)

Note that the two’s complement fraction (N, 0)I corre-
sponds to the two’s complement integer case and (N, N)I
has a range of [−1, 1).

Floating point numbers are an approximation to the real
numbers and offer wider dynamic range than fixed point
numbers, at the expense of reduced precision and larger im-
plementation complexity and area. In the IEEE 754 stan-
dard [2] format, three fields are used to represent a floating
point number and it can be represented as the pair (N, F )F
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where N is the total wordlength, F is the wordlength of
the significand (also known as the mantissa) and the sub-
script F shows that the pair represents a floating point num-
ber. The most significant bit is a sign bit A, the following
J(= N − F − 1) bits, bi encode the exponent field B and
the remaining F bits ci encode the mantissa field C

Z = (
A︷︸︸︷
a0

B︷ ︸︸ ︷
bJ−1 . . . b0

C︷ ︸︸ ︷
cF−1 . . . b0).

A represents the sign S where

S =
{

+1 if a0 = 0
−1 if a0 = 1

The unsigned integers B and C are encoded representa-
tions of the exponent and mantissa respectively. The ex-
ponent E, is stored in a biased representation with E =
B − (2J−1 − 1). For normalized numbers, B �= 0 and the
significand is represented by M = 1 + C × 2−F . This is a
two’s complement fraction (F + 1, F )I with the most sig-
nificant bit being implicitly set to 1. If B = 0, it is called
a denormalized number, and there is no implicit 1 in the
(F, F )I fraction.

The number represented is given by

Z =

⎧⎪⎪⎨
⎪⎪⎩

S × 2E × M if (0 < B < 2J − 1)
S × 2E × (M − 1) if (B = 0)
S ×∞ if (B = 2J − 1 and C = 0)
NaN if B = 2J − 1 and C �= 0).

The logarithmic number system (LNS) is a special case
of floating point in which the mantissa is always 1 (i.e. only
the sign and exponent fields are used). It has the advantages
of simplified implementation at the expense of reduced pre-
cision. For an N bit LNS number, (N, F )L, the most sig-
nificant bit is a zero flag, Z . Z is zero if the number is zero
(since there is no log of zero), otherwise set. The next most
significant bit is used for a sign bit and the rest of the num-
ber is the base 2 logarithm of the magnitude of the number
to be represented in (N−2, F )I two’s complement fraction
format. If E is the value of this two’s complement fraction
and S is defined as for floating point, then

L =
{

0 if Z = 0
L = S × 2E if Z = 1

2.4 Arithmetic Operator Library

CAST was designed to be extensible with a view that
it can be used to support many different number systems,
arithmetic operators and implementation schemes. In the
current prototype, the fixed point, floating point and LNS
number systems can be used and the operators supported

are addition, subtraction, multiplication and x−3/2, those
being required for the N-body problem.

The implementation of the +, − and × operators for the
fixed point system follow the standard two’s complement
integer methods. A standard ripple carry adder/subtractor
using the fast carry chain was used for addition. Different
addition schemes such as carry select and carry lookahead
for large wordlengths can be integrated into the CAST sys-
tem by overriding the gen() function of this operator.

The input/output format and precision of the addi-
tion/subtraction fixed point operators are the same and no
pre/post-processing is required. In the case of multipli-
cation of two (N, F )I two’s complement fractions, an
(2N, 2F )I result is obtained. In CAST, the operators de-
fault to using the same format for inputs and outputs and
so in order to convert the result back to (N, F )I format, it
must be scaled by 2−F and the least significant N bits used.

The floating point operators are implemented in a man-
ner similar to the IEEE 754 standard [2] except that not a
number (NaN) and denormalized numbers are not imple-
mented. The round-to-nearest mode is used for all opera-
tions and the size of exponent and fraction can be parame-
terized.

The floating point adder accepts two inputs f1 and f2
and returns the sum in the same format. The implementa-
tion is pipelined with a latency of 3 cycles. In the first cy-
cle, f1 and f2 are swapped if the exponent of f1 is smaller
than that of f2, and the difference between the exponents
of f1 and f2 are calculated. In the second cycle, the signif-
icands are aligned. the intermediate sum is computed and
the position of the leading one is determined using a prior-
ity encoder. In the final cycle, the result is normalized and
rounded and the exponent corrected to produce the output.

The floating point multiplier accepts floating point
operand f1 and f2 and return the product of operand in
the same format as the inputs. In the first cycle, the sign bit
is calculated and the intermediate exponent and product are
also computed. In the second cycle, the intermediate result
is normalized. In the third cycle, the result is rounded to
produce the output.

The LNS implementation used in CAST is based on the
open source code of the Aremaire project [7]. The LNS
operations accept and produce numbers in the format de-
scribed in Section 2.3. The multiplication in LNS is per-
formed by summing the two exponents and setting the zero
flag appropriately. The sign bit is computed as the XOR
of the sign bits of the two inputs as in the floating point
case. The LNS addition of X = log2(x) and Y = log2(y),
ADD l, is computed by making use of the following iden-
tity [12]:

Z = log2(x ± y) = log2 (x(1 ± y/x))
= log2(x) + log2(1 ± 2log2(y/x))
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Figure 2. Simplified datapath of the LNS addi-
tion operation, ADD l.

= X + log2(1 ± 2Y −X)

The implementation uses Y − X to index a lookup table
which generates log2(1 ± 2Y −X), and this table is con-
structed in Xilinx devices using distributed 16 × 1 LUT
RAM rather than BlockRAM. When the y input is nega-
tive, a subtraction must be performed and thus the ADD l
module must include tables for both 1 + 2 log2(Y −X) and
1 − 2log2(Y −X). Figure 2 shows a block diagram of the
datapath for the LNS addition operation. In the actual im-
plementation, extra swapping logic is included for the case
that Y − X is negative. To perform a subtraction, the sign
bit of the second input is inverted prior to being passed to
the addition module.

A class implementing the Symmetric Table Addition
Method (STAM) [22], which can approximate any twice
differentiable function is available to construct operators
such as x−3/2 [10]. STAM offers very good flexibility,
however, the tables can become large if high accuracy is re-
quired. The datapath of the STAM implementation is shown
in Figure 3. The input number is divided in several seg-
ments which are used as indices into the lookup tables. The
outputs of these tables are summed and rounded to form the
final result. The STAM algorithm requires large lookup ta-
bles if accurate function approximation is desired. These
tables were implemented using the 18 Kbit BlockRAMs
available in Xilinx Virtex-II FPGAs.

Computing the function x−3/2 in LNS is done using shift
and add operations to multiply the LNS number by -1.5.
The fixed point implementation is computed directly using
STAM. For floating point, STAM can only be directly ap-
plied to the significand part of the number. If the number is
represented by x = (1.f) × 2E where f is the fraction and
E is the exponent, the floating point case can be handled
using [10]:

f(x) = x−3/2 = ((1.f)× 2E)−3/2 = (1.f)−3/2 × 2−3E/2

Figure 3. STAM datapath.

A fixed point STAM module for x−3/2 is used to calcu-
late (1.f)−3/2. If the exponent E is even, multiplication by
2−3E/2 can be achieved by simply multiplying the input’s
exponent by −3E/2. If E is odd, x−3/2 can be rewritten
as: (1.f)−3/2 × 2−(�−3E/2�+1) × 2−1/2. In [10], a floating
point multiplication was used to handle the exponent of the
odd exponent case. In the current design, a fixed point mul-
tiplier, as shown in Figure 4, was used to optionally multi-
ply by 2−1/2 and the 2−(�−3E/2�+E0 term (where E0 is the
least significant bit of E) is added to the exponent. The new
scheme results in a more compact circuit and eliminates the
need for a normalization step before floating point multi-
plication. To improve throughput, pipeline registers were
inserted and a 3 clock cycle latency introduced.

A set of modules for converting between number sys-
tems was also developed. When converting from floating
to fixed point number systems, a shift amount is computed
from the exponent. The fractional part (and the implicit
‘1’ of the significand) will be shifted according to the shift
amount. The final result should be two’s complemented if
the sign bit is set. When converting from fixed to floating
point, the absolute value of the number is passed to a pri-
ority encoder to find the position of the most significant set
bit. Then the number is shifted to form the significand and
the exponent calculated. For conversion from LNS to the
floating point system, the significand, 2frac(LNS), where
frac(LNS) is the fractional part of the LNS number, is
computed using a lookup table. The integer part of the LNS
goes to the exponent after addition of the bias. In conver-
sion from floating point to LNS, the integer part of the LNS
is formed by subtracting the bias from the exponent. The
fractional part of the LNS is computed by a lookup table of
the log2() function.

For all three number systems, operators may cause over-
flow/underflow. In the current hardware implementation,
these special cases are not handled.
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2.5 Unified Arithmetic Operator Class

A class of general arithmetic operators was developed.
After the description of a circuit is constructed, the library
provides an easy way to change the configuration of arith-
metic operators in the circuit. Configuration of an operator
includes the number system, the number format and latency
allowed. This information is supplied as parameters when
the object is created. For example, to use an 8-bit exponent
and 23-bit fraction floating point adder with 3 clock cycle
latency, the module is created as:

ADD_f("my_add", this, 8, 23, 3);

The operator interface for different number systems is
unified in a single class: CAST ADD, CAST MUL, etc. The
class includes operators from the parameterized fixed point,
floating point and LNS libraries. As an example, the fol-
lowing code segment creates an LNS adder:

CAST_ADD("my_add", this, 8, 23, LNS);

Table 2.5 is a summary of the available arithmetic op-
erators for the different number systems as well as the at-
tributes bounded to these operators.

A latency parameter may be used to select different im-
plementations. User can query the latency of any object
using the delay() method. When different operators for
different number systems and/or precision are used, their
latency may change e.g. fixed and floating multipliers may
have different latencies. When assembling a datapath, the
user is responsible for matching the latency of the operators
by inserting delay elements.

The unified operator class thus provides a consistent in-
terface to the arithmetic library and encapsulates the inter-
nal details of their semantics and implementation in a man-
ner that one can use the library with minimal knowledge
about its implementation.

In the future, we would like to increase the usefulness of
the arithmetic library in CAST by adding more number rep-
resentations (e.g. redundant and residue number systems),
arithmetic schemes (e.g. online arithmetic, division, square
root etc), and incorporate existing libraries (e.g. the Xilinx
LogiCore library, the UCLA Astra library for online arith-
metic [6] and the floating point module generator in [14])
into its framework.

3 The N-body Problem

3.1 Description

A wide range of physical systems can be studied by mod-
eling them as an N-Body problem. The N-Body problem
is extensively used in various fields of science such as as-
trophysics [16] and molecular biology [19] In the N-body
problem, particles are modeled as points in space and the
evolution of the system of N particles is computed by solv-
ing a differential equation of the form:

d2x
dt2

=
N∑

j=1

F(xi,xj) (1)

where F(xi,xj) represents the force between particles i
and j and is application dependent.

N-Body problems are solved using numerical integration
in which the majority of the computation time is spent cal-
culating F(xi,xj). Since the force calculation part is ex-
pensive and at the same time has a rather simple algorithm,
the problem can benefit from hardware acceleration.

In the future, we intend to integrate the FPGA-based co-
processor with the NEMO stellar dynamic toolkit [1] which
contains an implementation of Aarseth’s nbody0 code.
Aarseth’s algorithm [3] uses the Adams-Bashforth-Moulton
(ABM) predictor-corrector scheme to solve the gravita-
tional N-body problem with time complexity O(N 2). We
also intend to use the hierarchical timestep algorithm [15]
which reduces the amount of data transferred between the
host and FPGA. In the algorithm, the positions of the par-
ticles are advanced in discrete timesteps. The length of
timesteps are different for each particle and are dynamically
adjusted for each particle according to how fast the force
acting on a particle changes. A small timestep is needed to
resolve a rapid change. In each timestep, the predicted po-
sitions of all the particles are computed. The forces acting
each of the particles that are to be updated in the current
timestep are then evaluated. Using the computed forces,
the corrector equation is applied to those particles to update
their positions. The process is then repeated to move the
simulation forward in time.
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Table 1. Summary of arithmetic operators available in the current CAST system.
ADD SUB MULT x−3/2

Fixed Pt. ADD n() SUB n() MUL n() POWM15 n()
width width width width, segments, guard bits

Float Pt. ADD f() SUB f() MUL f() POWM15 f()
exp, frac exp, frac exp, frac exp, frac, segments, guard bits

LNS ADD l() SUB l() MUL l() POWM15 l()
int, frac int, frac int, frac int, frac

Unified CAST ADD n() CAST SUB n() CAST MULT n() CAST POWM15 n()
a, b, ns a, b, ns a, b, ns a, b, ns

Key - segments, guard bits: from configuration file according to width. exp, frac: width of exponent and fraction. int, frac:
width of integer part and fractional part of exponent. ns: number system selection. a: width of fixed point, exp of floating
point, int of LNS. b: frac of floating point, frac of LNS.

3.2 Coprocessor Implementation

An FPGA based coprocessor handling the force calcula-
tion part of the algorithm was built. The arithmetic core of
the processor was generated from a C++ description using
the CAST system. Since the accuracy requirement for dif-
ferent simulation runs can differ greatly and depends on the
source data and the nature of problem being solved, being
able to experiment with different wordlength and arithmetic
systems facilitates better exploration of the design space.

The processor was design to work together with a host
computer, which runs the NEMO N-body simulation code
mentioned in the previous subsection. The host computer
handles all computation except the force calculation. Parti-
cle positions are sent to the coprocessor board from a host
processor through the board’s interface. The coprocessor
computes the force acting on a particle, i using Equation 2
where xi and xj are the position vectors of particles i and j
respectively, rij = |xi −xj | and ε is the softening constant.

F(xi,xj) =
N∑

j=1

xi − xj

(r2
ij + ε2)

3
2

(2)

The architecture of the implementation is shown in Fig-
ure 5. The main components are the control, particle mem-
ory and the force pipeline. The particle memory stores the
predicted position of all particles while the force pipeline
calculates the force acting one particle. In each timestep,
the predicted particle positions are written to the particle
memory by the host. For each particle i that is to be ad-
vanced in that timestep, the corresponding index is sent to
the coprocessor. The corresponding particle position is then
read from the particle memory and stored in a register. The
force pipeline then begins the calculation as the positions
of all j particles are retrieved and fed to the pipeline. The
host polls the coprocessor to check if the calculation has
completed and then reads the result from the coprocessor.
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Figure 5. Top level block diagram showing the
architecture of the coprocessor.

The force pipeline is the most critical part of the design.
The speed of the pipeline directly affects the performance
of the system. Figure 6 shows the datapath of the force
pipeline. It is a fairly straightforward implementation of
Equation 2 and is generated by the CAST system.

Although our implementation is similar in architecture
to that of GRAPE-3 [16, 4], three features were not imple-
mented in our design. Firstly, all the particles in GRAPE
can be of different mass whereas our implementation as-
sumes they are of the same mass. Secondly, GRAPE-3 cal-
culates the gravitational potential as well as the gravitational
force. In our integration algorithm, gravitational potential
was not used and hence not implemented. Finally, GRAPE-
3 has a neighbor function flag which is raised when two
particles are closer than a certain amount.
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4 Results

In this section, results showing the resource utilization
and performance of the individual operators in the CAST
library, along with the precision and performance of the N-
body coprocessor are presented. All of the results were
simulated using both the CAST system in C++ and Syn-
opsys VSS for verifying the generated VHDL. The target
device was a Xilinx Virtex-II XC2V1000FG456-5 for all
cases except those which required more than the 40 block
RAMs available on that device. For those cases, namely
the fixed and floating point implementations with a fraction
size greater than or equal to 22, results for an XC2V4000-
FF1152-5 are reported. Performance measurements are
based on the reports from the Xilinx ISE 5.2i development
tools.

4.1 Arithmetic Library

Three quantities were used to evaluate the performance
of the operators: the maximum frequency as reported by the
Xilinx tools, the logic resource utilization and the Block-
RAM memory utilization.

The exponent wordlength of the floating point imple-
mentation and the integer part of the LNS system were fixed
to be 8 bits in width. This configuration is similar to the
IEEE 754 single precision standard and can operate without
overflow in our simulations. For all 3 number systems, the
SUB operations has similar performance to the ADD opera-
tion so they are not shown in the figure.
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Figure 7. Memory usage of ADD, MUL and x−3/2

(number of Virtex-II 18-Kbit BlockRAMs).

The number of BlockRAM memory resources required
for the x−3/2 operator are plotted in Figure 7. This is deter-
mined by the memory requirements of the STAM tables for
both fixed and floating point implementations. As can be
seen in the figure, since the floating point implementation
uses the fixed point STAM for its significand, the memory
requirements are identical. For the LNS implementations,
x−3/2 can be computed by multiplying by -1.5 and no mem-
ory resources were used.

The operating frequency and logic utilization are plot-
ted against the number of fractional bits for different oper-
ators and number systems in Figures 8 and 9 respectively.
These tables can be used to compare different implementa-
tions, precisions and numbering systems in the CAST arith-
metic library, allowing a quantitative assessment of which
approach is most suitable for a given application. Note
that the LNS library [7] has a maximum LNS fractional
wordlength of 13-bits and this limitation is carried over to
CAST.

4.2 N-body Coprocessor

Using the CAST system, implementations of the N-body
coprocessor with different fractional wordlengths using the
fixed point, floating point and LNS number systems were
made. The exponent wordlength of the floating point im-
plementation and the integer part of the LNS system were
fixed to be 8 bits in width.

In order to show the ability of CAST to deal with several
number systems, an implementation, similar to GRAPE-
3 [20] was built. In this hybrid format, a similar config-
uration as GRAPE-3 was used and thus a (20, 10)I fixed
point format was used to represent the position vectors of
the particles and for calculating the difference between the
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position vectors. The difference was then converted to a
(15, 6)L bit LNS format, which was used for all subsequent
operations in calculating the partial force. The partial force
was converted to a (28, 28)I fixed point format which was
accumulated to obtain the sum in Equation 2.

The implementations were simulated using the CAST
system to evaluate their accuracy. To compare the preci-
sion of various implementations, the relative mean squared
error Sr(s), introduced in [4], was used. The relative mean
square error measures the error in force calculation between
a pair of particles and is defined as:

Sr(f) =
|̂f − f |2

f2
(3)

where f is the force computed by the hardware coprocessor
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Figure 10. Area comparison of N-body imple-
mentations.

and f̂ is the reference value computed using IEEE double
precision floating-point arithmetic. Since the relative mean
square error depends on the distance between the 2 parti-
cles, pairs of particles with varying distance r was generated
(ε = 0) and the error computed. The resulting error func-
tion

√
Sr(s) was plotted against r to obtain the error curves

of Figure 12. The average error curve for GRAPE-3 [16, 4]
is also shown for comparison. The fixed point implemen-
tation suffered from overflow for small r and underflow for
large r due to insufficient dynamic range for this problem
leading to large errors. Thus we do not consider fixed point
to be a good representation for this problem.

A comparison of the area utilization for different numer-
ical representations and fractional wordlengths is given in
Figure 10. As expected, fixed point has the smallest area
requirements. The LNS system has smaller area than float-
ing point up to 8 bits, after which floating point is smaller,
the main area overhead for the LNS lying in the addition
operation which requires a large number of slices for large
fraction sizes. The hybrid implementation has area between
fixed and floating.

The reported maximum clock frequency for the different
schemes is given in Figure 11. The fixed point implemen-
tation has the highest operating frequency and the floating
point implementation is the slowest. The LNS and hybrid
implementations achieve operating frequencies between the
two.

If comparable accuracy to GRAPE-3 for the entire input
range is desired, as mentioned earlier, the fixed point im-
plementation is not suitable. This leaves the floating point
(21, 12)F , LNS (21, 11)L and hybrid implementations as
candidates. By comparing their area and frequency require-
ments in Figures 10 and 11, it can be seen that the hybrid
implementation offers a smaller area and higher frequency
than the other two candidates. Thus, for the N-body ex-
ample presented, based on considerations of precision, and
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body implementations.

circuit area, the hybrid implementation appears to be the
most suitable implementation scheme for the Xilinx Virtex-
II XC2V1000FG456-5 device chosen. If, for example, a
different device such as a Virtex device which does not have
dedicated multipliers, were to be used, the tradeoffs may be
different, and the same methodology could be used to aid in
making the best choice.

5 Conclusion

A design methodology in which the arithmetic is gen-
eralized to be of arbitrary precision and representation was
proposed and a C++ based tool called CAST to aid in its im-
plementation was described. CAST allows details concern-
ing the simulation and implementation of number systems
and operators to be captured within its framework. Users
are then able to produce implementations and explore trade-
offs in area, speed and precision without requiring a detailed
understanding of the internal implementations. CAST en-
ables more efficient exploration of the design space to be
conducted, reduces design time and reduces the amount of
computer arithmetic expertise required to develop a system
using a supported number representation.

The CAST system was applied to the problem of design-
ing a coprocessor to compute the solution of the N-body
problem. From a structural description of the computa-
tion to be performed, a large number of different designs
were simulated in C++ and the corresponding VHDL code
rendered, each implementation having different tradeoffs in
precision, area and speed. By constraining the design to
be of a certain precision, it was possible to determine the
smallest fractional wordlength which could meet the accu-
racy criteria for the fixed point, floating point, LNS and hy-
brid implementations. A comparison of area and frequency
suggested that the hybrid implementation was the best solu-
tion. Different constraints on precision, area and speed may

Figure 12. Quantization error for force calcu-
lation in the N-body problem.
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lead to different choices, easily identified from the graphs
obtained.
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