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Abstract—Computational cost presents a barrier in the ap-
plication of machine learning algorithms to large-scale real-
time learning problems. Kernel adaptive filters (KAFs) have low
computational cost with the ability to learn online and are hence
favoured for such applications. Unfortunately, dependencies of
the outputs on the weight updates prohibit pipelining.

This paper introduces a combination of parallel execution
and conditional forwarding, called braiding, which overcomes
dependencies by expressing the output as a combination of the
earlier state and other examples in the pipeline.

To demonstrate its utility, braiding is applied to the imple-
mentation of classification, regression and novelty detection algo-
rithms based on the Naive Online regularised Risk Minimization
Algorithm (NORMA). Fixed point, open source implementations
are described which can achieve data rates of around 130
MSamples/s with a latency of 10 to 13 clock cycles. This
constitutes a two orders of magnitude increase in throughput
and one order of magnitude decrease in latency compared to a
single core CPU implementation.

I. INTRODUCTION

In recent years, there has been an exponential rise in the
amount of data being acquired and generated. Attempting to ex-
tract useful information from the complex relationships present
in such data has led to an increasing interest in machine learning.
Some algorithms, such as support vector machines (SVM) [1],
random forests (RF) [2], Gaussian processes (GP) [1] and neural
networks [3], have demonstrated consistently good performance
on various datasets [4]. However, their computational cost
prevents their application to problems which require high
throughput or low latency training. Examples include channel
equalisation and machine prognostics [5], [6], [7].

In online and streaming applications, not all of the data
is available a priori. As such, the model deduced by a
machine learning algorithm must be updated as new data
becomes available. Kernel adaptive filters (KAFs) [8] are a
class of online, non-linear learning algorithms with substantially
reduced computational requirements for an online setting. The
reduction is achieved by finding a closed form solution to a
model update step based on the previous model and a new
data example. Unfortunately, the recursive nature of the update
step creates a dependency which can limit the data rates of
hardware implementations.

In this paper, we propose a hardware architecture for the
implementation of the well-known Naive Online regularised
Risk Minimization Algorithm (NORMA) [9], a KAF capable of
regression, classification and novelty detection. The architecture

features a fully pipelined datapath, with parallel execution
and conditional forwarding to overcome all data hazards
whilst incurring minimal increase in the number of arithmetic
operations. A technique called braiding, is introduced in which:
(1) all partial results are computed in parallel; (2) when the
information regarding which should be included becomes
available, an appropriate select signal is generated; and (3)
a multiplexer selects the appropriate partial sum to add to
the full sum. A related approach for the least mean square
algorithm which employs correction terms has been proposed
in [10].

The contributions of this paper are as follows:
• The braiding technique which addresses data dependencies

in sliding window based recursive algorithms.
• An open source, fixed point, fully pipelined implemen-

tation of NORMA which can learn a single non-linear
predictive model at very high data rates. Using differ-
ent loss functions, classification, regression and novelty
detection are implemented.

• A comparison of the performance of different implementa-
tions of NORMA on reconfigurable computing platforms
and a central processing unit (CPU). To the best of our
knowledge, this has higher throughput and lower latency
than any previously reported implementation of NORMA.

The paper is organised as follows: Section II describes
NORMA and summarises previous works; Section III describes
our proposed architecture and introduces the braiding concept;
Section IV describes the performance of our implementation
and makes a comparison with a single core CPU and a
previously reported design; finally, conclusions are drawn in
Section V.

II. BACKGROUND

In this section, NORMA [9] is described along with a brief
introduction to kernel methods and a review of prior works.

A. Kernel Methods

Kernel methods are a popular class of machine learning
algorithms which are capable of modelling any continuous
function with arbitrary accuracy [11]. Given a set of training
pairs, {xi, yi}, where xi ∈ Rm is the input vector and y ∈ R is
the output, target or label. In general, the goal of kernel methods
is to create a function (or model), f(x), which can accurately
predict y, given x. Kernel methods create f(x) through a978-1-4673-9091-0/15/$31.00 c©2015 IEEE



kernel function, κ : Rm×Rm → R, and the following learned
parameters:
• a dictionary, D, a subset of input vectors; and
• a vector of weights, α. One weight is required for each

entry in the dictionary.
Using the dictionary and weights, f(x), is defined as follows:

f(x) =

D∑
i=1

αiκ(x, di) , (1)

where D is the number of entries in the dictionary, αi is
the ith element of α and di is the ith entry of D. Their
ability to learn a model is due to the kernel function, κ(xi, xj),
which computes the inner product between xi and xj after
applying a mapping function, φ : Rm → F, to xi and xj ,
i.e. κ(xi, xj) = φ(xi)

Tφ(xj). This is often referred to as the
kernel trick [1].

Some common kernel functions include:
• the linear kernel, κ(xi, xj) = xTi xj ;
• the Gaussian kernel, κ(xi, xj) = e−γ‖xi−xj‖22 ; and
• the polynomial kernel, κ(xi, xj) = (xTi xj + c)b.

where γ, b and c are parameters chosen to suit the given
problem. In this work, we use the Gaussian kernel due it being
a universal approximator [11].

Several algorithms, such as SVM and kernel recursive least
squares (KRLS), have been proposed to find D and α. However,
the computational complexity of SVM (O(n3)) [1] and KRLS
(O(n2)) [12] are not scalable for use in high frequency, real-
time applications.

B. NORMA

NORMA is an O(n) stochastic approximation of the SVM
[9]. It is an online algorithm which can be applied to
classification, regression or novelty detection. NORMA is
based on the concept of minimizing the instantaneous risk
of predictive error by taking a step in that direction given by:

ft+1 = ft − ηt∂fRinst,λ[f, xt+1, yt+1]
∣∣∣
f=ft

(2)

where ft is the function, f , at time t, η is the step size, ∂ is
the partial derivative operator and Rinst,λ is the instantaneous
risk function. Equation 2 is then expressed in terms of a
loss function, l(ft(xt), yt), to penalize misclassifications or
predictions of the function given by:

ft+1 = (1− ηλ)ft − ηtl′(ft(xt+1), yt)κ(xt+1, ·) . (3)

Depending on the application, a suitable loss function can be
provided to achieve a specific goal. For example, in this paper:

l(f(x) + b, y) = max(0, ρ− y(f(x) + b))− νρ (4)
l(f(x)) = max(0, ρ− f(x))− νρ (5)

l(f(x), y) = max(0, |y − f(x)| − ε) + νε (6)

where η, λ, ν ∈ R are parameters, are used for classification (4),
novelty detection (5), and regression (6). It would be trivial to
extend this work to other loss functions.

Reference [9] provides a complete derivation of equations
2 and 3. In this paper the factor decaying the weights of ft
or (1− ηλ) in equation 3 is defined as the forgetting factor Ω.
Differentiating the loss functions then substituting them into
equation 3 leads to the following update expressions:

(αi, αt, b, ρ) =

{
(Ωαi, 0, b, ρ+ ην) if y(f(x) + b) ≥ ρ
(Ωαi, ηy, b+ ηy, ρ− η(1− ν)) otherwise

(7)

(αi, αt, ρ) =

{
(Ωαi, 0, ρ+ ην) if f(x) ≥ ρ
(Ωαi, η, ρ− η(1− ν)) otherwise

(8)

(αi, αt, ε) =

{
(Ωαi, 0, ε− ην) if |y − f(x)| ≤ ε
(Ωαi, δη, ε+ η(1− ν)) otherwise

(9)

where δ = sign(y − f(x)), Ω ≤ 1 and f(x) =
∑
αiκ(x, di).

Equations 7, 8 and 9 are the update expressions for classification
(NORMAc), novelty detection (NORMAn) and regression
(NORMAr) respectively. The expression determining the
constant value Ω with respect to other parameters varies for
the application. For the classification and novelty detection
loss functions in this paper Ω = 1 − η whereas Ω = 1 − λη
for regression. In this paper Ω is used for simplicity to be
consistent for all applications to refer to the value that decays
the weights.

NORMA is used with truncation, commonly known as a
sliding window, in which D is updated according to

[d1, · · · dD]→ [xt, d1, · · · dD−1] (10)

The examples retained by the function f(x) are called support
vectors for machine learning techniques such as support vector
machines (SVM) but are more commonly referred to as the
dictionary in the KAF literature. The example i in the dictionary
is referred to di in this paper. The corresponding weights are
referred to as αi as defined in equations 7, 8 and 9. One
significant observation in this work is that after the computation
of f(x), the update of the weights is a scalar multiplied by a
vector while rest of the update expression consists of trivial
scalar expressions easily implemented in hardware.

C. Related Work

FPGA-based implementations of KAFs have previously
been proposed to achieve higher throughput, lower latency
or decreased power usage. Matsubara et al. [10] described
an implementation of the least mean square (LMS) algorithm
which computed a solution ignoring data hazards, and then
applied correction terms. A soft vector processor optimised
for implementation of the KRLS algorithm was reported by
Pang et al. [13], this having the advantage that different
KAFs can be implemented with only software changes. Ren et
al. [14] implemented a simpler algorithm, quantized kernel
least mean squares (QKLMS) [15], which has many similarities
to NORMA. Their approach computed the update sequentially,
leading to small area, however the design described in our
paper has 50× higher throughput.



The highest throughput KAF architecture reported to date
is an implementation of kernel normalized least mean squares
(KNLMS)[16]. The design presented achieves a lower through-
put however does not require multiple parallel problems. This
allows application beyond parameter search or parallel problem
domains.

III. ARCHITECTURE

The pipelined hardware architecture of NORMA is based
on three properties of its formulation:

1) NORMA is a sliding window algorithm
2) each iteration, the weights decrease by a multiplicative

factor (αi → Ωαi); and
3) the computational cost of the update is small compared

to the evaluation of the decision function ft(xt+1).

The first property allows the decision function to be expressed
as a combination of the examples currently in the pipeline, xi,
and a previous dictionary, D̂. The second provides a simple
relationship to update the weights for the final dictionary
reducing the computation to be completed each clock cycle. The
third is necessary as it determines the critical path and hence
the effectiveness of pipelining as one update is computed each
clock cycle for a fully pipelined design. By using braiding,

ft(xt+1) =
D∑
i=1

αiκ(xt+1, di) can be rewritten for a single

pipeline stage as a function of the dictionary in the previous
clock cycle (D̂):

ft(xt+1) =

D−1∑
i=1

Ωαiκ(xt+1, d̂i) (11)

q

{
+

{
0 if xt is not added
αxt

κ(xt+1, xt) otherwise

+

D−q∑
i=D

Ωαiκ(xt+1, d̂i)

where q is 1 if xt is added to the dictionary and 0 otherwise,
Ω is the forgetting factor, D is the size of the dictionary and
xt is the example ahead in the pipeline. When the example
xt is added, the sliding window shifts to include this new
example and discards the oldest example in the dictionary; this
is represented by the third term in equation 11. If xt is not
added, the dictionary remains unchanged.

Figure 1 shows a hardware datapath which implements
equation 11. The multiplexer chooses whether to add xt to
the dictionary, or discard it so that the oldest dictionary entry
can now be merged into the sum. This design is analogous
to braiding as the core of the sliding window has either
κ(xt+1, xt) or αiκ(xt+1, d̂i) braided into it each clock cycle.
It can be expanded to an arbitrarily pipelined implementation
as expressed in equation 12.

κ(xt+1, xt)
D−1∑
i=1

αiκ(xt+1, d̂i) αDκ(xt+1, dD)

ft(xt+1)

αxt Ω Ω

+ +

Mux

Fig. 1. Hardware representation of equation 11

ft(xt+1) =

D−p∑
i=1

Ωpαiκ(xt+1, d̂i) (12)

q



+

{
0 if xt+1−p is not added
Ωp−1αxt+1−p

κ(xt+1, xt+1−p) otherwise

+

{
0 if xt+2−p is not added
Ωp−2αxt+2−p

κ(xt+1, xt+2−p) otherwise
...

+

{
0 if xt is not added
αxt

κ(xt+1, xt) otherwise

+

D−q∑
i=D−p+1

Ωpαiκ(xt+1, d̂i)

In this case q is the number of examples in the pipeline
added to the dictionary, p is the number of pipeline stages and
d̂i are examples in the dictionary at time t− p. The first term
is the portion of the decision function that depends on recent
examples in the sliding window such that in p cycles time they
are guaranteed to still be in the dictionary and hence must be
used in the computation of ft(xt+1). The dependence of the
decision function on the examples currently in the pipeline
is expressed in the second component. Using the shift of q,
the final term in equation 12 sums the contributions from the
uncertain portion of the dictionary.

For a hardware implementation, the computation of ft(xt+1)
is separated into two sections. The first is the computation of
the kernel function, κ(xt+1, d̂i). This involves D + p parallel
kernel evaluation blocks to compute this function for each of
the examples in the dictionary and pipeline.

Following this is a multiplication and sum of αiκi. This
completes the computation of ft(xt+1) which is then passed to
the update section to determine if the example is to be added.
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D∑
i=1

αimi (s cycles)

Compute αt
(1 cycle)

Pi
pe

lin
e

(p
cy

cl
es

)

Fig. 2. The pipelined calculation

A. Pipelining

Figure 2 shows a high level view of the proposed pipeline
for the online training of the NORMA algorithm implementing
equation 12. This pipeline assumes that D > p = k+s+1 using
the notation for p, k, s defined in Figure 2. This is reasonable
because the number of cycles for a single kernel evaluation, k,
depends only on the number of features and, using a method
such as an adder tree, s, scales as O(log2(D)). The three
stages of the pipeline vary greatly in terms of the hardware
requirements for their implementation. The kernel evaluation
scales as O(F (D + p)) where F is the number of features,
followed by the summation stage which is O(D) additions and
multiplications. The final stage that computes the update is
O(1) in hardware and time. However, as the update must take
place in a single cycle to avoid data hazards, this final stage
is the critical path restricting the clock frequency.

The kernel evaluation must begin by calculating κ(xt+1, ·)
with the dictionary entries and all the examples in the pipeline
as any of them could be needed in the computation of
ft(xt+1). As xt+1 progresses along the pipeline, the possible
combinations are constrained, either discarding the example
at the final stage of the pipeline or the oldest example in the
dictionary each clock cycle. Hence, each stage of the pipeline
in the kernel evaluation contains one less example than the
previous. After k cycles, this will result in D+p−k = D+s+1
values to propagate to the summation stage. These scalar values
that are the result of the kernel evaluation are given the label
of zi for the pipelined examples and vi for the dictionary
examples.

The kernel evaluation stage outputs D+ s+ 1 scalar values
which are the results of evaluating the kernel function of an
example with the current dictionary and the s+ 1 examples
ahead in the pipeline. As shown in Figure 2, this is followed by
the summation stage of

∑
αizi +

∑
αivi where zi is defined

as the result of the kernel evaluation for pipelined examples
and vi for the dictionary entries. In terms of equation 12, zi
are the evaluations of the kernel function for terms within the q
bracket and vi are all other kernel evaluations. The summation
stage does not use all values of zi and vi, discarding one each
cycle as in equation 12. Additionally, for the examples ahead
in the pipeline, the values of αi have yet to be calculated. This

zp · · · · · · zk+2 zk+1 SumL

SumLzk+2zp · · · zk+3

...

SumLzp−1zp

α Ω

Mux

+

Fig. 3. The pipeline for SumL

requires the summation to be split into sum left (SUML =∑
αizi) and sum right (SUMR =

∑
αivi).

SUML is the summation of terms ahead in the pipeline
shown in Figure 3 or the q terms in equation 12. This diagram
shows the cumulative sum spread over s − 1 cycles to first
multiply the kernel evaluation with freshly computed α values
and then added it to a running total of SUML which is
initialized to 0 for the first cycle. Ω is the forgetting factor
which is multiplied into the sum each clock cycle. The ‘Mux’
in Figure 3 and in all other figures in this paper refer to a
multiplexor with two inputs and the control line connected
to the decision of whether or not to add an example to the
dictionary. SUML finishes with two remaining z values and
the sum giving a total of three output values into the final stage
of the sum. The forgetting factor is multiplied into SUML

each clock cycle.
SUMR differs from SUML as all the α values are readily

available from the current dictionary. In the first stage the
value wi = αivi is calculated for all examples followed by
a pipelined adder tree to sum wi. However, all wi values
cannot be summed immediately as some may be evicted from
the dictionary and hence give the incorrect result for SUMR.
Under the assumption that the oldest example is removed, the
examples in the dictionary that have an index less than D−s−1
or the examples that are ‘young enough’ are guaranteed to be
in the final sum and therefore can be added in parallel. The
other wi values above this threshold index are questionable
as they are in range of being shifted out of the dictionary by
the sliding window. As they cannot be immediately added into
SUMR they are braided into the sum each clock cycle when
it is determined that it is impossible for that dictionary entry
to be shifted out before the calculation ft(xt+1) completes.

The term braiding is used to describe this structure as each
clock cycle another term is combined into the sum analogous



v1 v2 v3 v4 v5 v6 v7 v8 v9

sum1 sum2 sum3 w6or7 w7or8 w8or9

SUMR wD−1 wD

α1 α2 α3 α4 α5 α6 α7 α8 α9

+ + +

Mux

Mux Mux Mux

+ +

+

Mux Mux Mux

Fig. 4. An example 3 stage pipelined braiding sum

to a hair or rope braid. Figure 4 shows an example of SUMR

for a dictionary size of 9 with 3 pipeline stages. v1 to v5 are
the ‘young enough’ examples as within the next 4 clock cycles
they are certainly a component in the computation of ft(xt+1).
These examples are also referred to as the core of the sliding
window in this paper. v6 to v9 are uncertain as in 4 clock
cycles they could all be removed if all the pipelined examples
are added. In the first stage in the figure if an example at the
end of the pipeline is added v9 is discarded from the dictionary
leaving three uncertain examples. Conversely, if it is not added
then example v6 is braided into the sum also leaving three
uncertain examples. These are passed along to the next stage
while the others are summed in an adder tree with braiding
until only two unbraided examples remain.

The final stage of the summation combines SUML (=∑
αizi) and SUMR (=

∑
αivi) and the computation of

α is shown in Figure 5. In Figure 4 the forgetting factor
was temporarily ignored. Instead it is computed separately
over s − 1 clock cycles so when SUML and SUMR are
combined, this value of Ωs−1 is used to compensate as∑

Ωs−1αi · vi = Ωs−1
∑
αi · vi. Furthermore, to account

for an additional cycle, Ω is applied once more so the factor
becomes Ωs. SUMR and SUML are then combined and the
remaining task is to incorporate a single dictionary entry (wD)
and pipeline example (zp) in the sum. In the final cycle, the
value of ft(xt+1) can be computed. This is passed into the
block α(ft(xt+1)) which computes the weight α based on
the application. α is then forwarded to the stages in Figure 5
and to the calculation of SUML. During the calcuation of α,
whether to add an example to the dictionary or not must be
determined. The result of this decision is passed to the select
lines of all the multiplexers on the next clock cycle.

zp zp−1 SumL SumR wD−1 wD

zp Sum wD

α

Mux

α Ωs

Ωs

Ω

Ωs Ωs

+

+

++

Mux

α Ω Ω

+

Compute αt

+

To all MuxTo all α in SUML

Fig. 5. Data path of the last stage of sum and the update computation

B. Fixed Point

To reduce hardware usage and latency on the critical path
involving computing the update, the implementation uses fixed
point arithmetic.

As the weights and output of the kernel evaluation are tightly
bounded to be scalar values less than a magnitude of 1, the
impact of fixed point on the accuracy of the algorithm should
not be severe if sufficient precision is used. The update step
of NORMA is examined to assess the impact of a fixed point
implementation with 12 fractional bits. It is characterized by an
initial value η multiplied by the forgetting factor Ω each clock
cycle. Under the assumption that all examples are added leads
to the maximum value of the oldest dictionary weight being
ηΩD−1. Replacing Ω with 1− η for classification and novelty
detection [9] leads to the calculation of η = 1

D to obtain the
maximum value for the last dictionary entry. This results in
1
D (1− 1

D )D−1 which for 12 fractional bits and D = 200 is 7.55
212 .

The more realistic assumption that half the examples are added
further reduces this to 2.77

212 . Using fixed point multiplication
with truncation erodes this further demonstrating that the use of
fixed point can restrict the effective dictionary size of NORMA
when insufficient precision is used. A brute force search for
the maximum dictionary for each possible fractional width
(fw) was performed under the assumption that every example
is added. From these results the expression D ≤ 3 ∗ 2

fw−3
2

approximates the maximum size of the dictionary when using
fixed point. There is little point in having a larger dictionary
than this as all older dictionary entries will have a weight



Fig. 6. Approximation error of a 16 value lookup table

of zero. In reality, the size of the dictionary should be much
smaller than this bound as η likely will not be optimal for the
dictionary size and the assumption that all examples are added
is strong. To achieve reasonable utilization from the dictionary
it should be quite a bit smaller than this bound.

Without loss of generality, the Gaussian kernel, κ(xi, xj) =

e−γ‖xi−xj‖22 , was implemented in our design since it is a
commonly used kernel. Our fixed point implementation uses
the property that ebx = 2ax for a given b [17]. The value of
ax is split into an integer and fractional component, giving
2ax = 2int(ax)2frac(ax) where −1 ≤ frac(ax) ≤ 0. Using
the restriction that ax ≤ 0 for the Gaussian kernel allows the
value of 2frac(ax) to be calculated using a lookup table with
linear interpolation between −1 and 0. 2ax is then obtained by
bit shifting this result with the integer component. This allows
the exponentiation to be computed in 5 operations or a couple
of clock cycles while the calculation of ‖x− y‖22 depends on
the size of the adder tree constrained by the number of features
used. Figure 6 shows the error associated with using this
method. The two traces represent linear interpolation computed
in floating point and fixed point with fractional width of 12.
For a 16 value lookup table and 12 fractional bits, the error
only affects the least significant one or two bits.

IV. RESULTS AND DISCUSSION

The proposed architecture was implemented using CHISEL
[18] with an open source implementation available at github.
com/da-steve101/chisel-pipelined-olk.git. A modified Kernlab
implementation of NORMA for use with the caret package
to obtain the baseline floating point learning performance of
NORMA on various datasets. A C implementation of NORMA
was created to measure the speed of a CPU implementation for
comparison. This is also available in our repository. All other
datasets and scripts used to obtain the results in this paper are
available in the repository with instructions in the README.
The code was synthesised for a Xilinx Virtex-7 XC7VX485T-
2FFG1761C on a VC707 development board with speed grade

TABLE I
PERFORMANCE OF NORMAn FOR F = 8 AND LOOKUP TABLE = 16

POINTS ON A VIRTEX 7

D = 16 32 64 128 200
Fixed 8.10

DSPs (/2800) 309 514 911 1679 2556
Freq (MHz) 133.0 137.8 137.4 131.0 127.3

Latency (clocks) 10 11 12 12 13
Slices (/75900) 4615 8194 14663 29113 46443

Fixed 8.16
DSPs (/2800) 595 988 1749 2800 *

Freq (MHz) 115.2 114.1 93.2 98.2 *
Latency (clocks) 10 11 12 12 *

Slices (/75900) 6188 11622 20512 58889 *
Fixed 8.22

DSPs (/2800) 1236 2056 * * *
Freq (MHz) 101.2 97.29 * * *

Latency (clocks) 10 11 * * *
Slices (/75900) 10971 18976 * * *

Fixed 8.28
DSPs (/2800) 1236 2056 * * *

Freq (MHz) 97.2 89.8 * * *
Latency (clocks) 10 11 * * *

Slices (/75900) 13819 23931 * * *

2.
The resource usage and clock frequency was obtained for a

varying dictionary size with F = 8 features for the NORMAn
application are summarised in Table I. This table shows the
growth in resource usage with dictionary size and fixed point
precision. From this table it is clear that the number of
DSP’s is the bottleneck for this architecture. This is because
approximately D ∗ (F + 1) multiplications are required for the
kernel evaluation. The number of DSP’s used also grows with
the bitwidth as the full result can no longer be computed in a
single DSP for more than 18 bits. An increasing fixed point
bitwidth also results in a longer delay in the multiplication
stage, reducing the maximum clock frequency also shown in
the table.

Tables II, III and IV compare fixed point implementations
with the Kernlab R implementation [19] as a floating point
reference. The caret package [20] facilitated this comparison,
and parameters for the floating point implementation were
chosen using a parameter search with 10 fold cross validation
[21]. Training was conducted using the H and Area Under the
Receiver Operating Characteristic Curve (AUC) measures for
classification and novelty detection, and the L1 and L2 error
for regression. The AUC and H measures were chosen as they
provide a better overview of the classifier or novelty detector
than accuracy [22]. Both AUC and H measures are used as
there is a lack of consensus on which should be used [23].
An optimal classifier has AUC = 1 and H = 1 whereas a
classifier that randomly guesses should have an AUC = 0.5
and H = 0. The fixed point implementation was then tested
using the same parameters found with the floating point cross
validation to assess its impact. A lookup table with 16 points
as shown in Figure 6 was also used unless otherwise stated.
In Tables II, III and IV, iw denotes the integer width that
was used. This was determined by finding the minimum value



TABLE II
RESULTS FOR NORMAc IN FIXED VS FLOATING POINT

Dataset Artificial (iw = 7) Satellite (iw = 8)
Measure AUC H AUC H

Floating NORMAc 0.893 0.550 0.995 0.947
Fixed 18 bits 0.618 0.108 0.673 0.145
Fixed 24 bits 0.745 0.255 0.996 0.922
Fixed 30 bits 0.899 0.579 0.998 0.954
Fixed 36 bits 0.903 0.586 0.997 0.959

TABLE III
RESULTS FOR NORMAn IN FIXED VS FLOATING POINT

Dataset Artificial (iw = 8) Satellite (iw = 8)
Measure AUC H AUC H

Floating NORMAn 0.641 0.140 0.836 0.358
Fixed 18 bits 0.664 0.174 0.5 0
Fixed 24 bits 0.658 0.162 0.503 0.130
Fixed 30 bits 0.658 0.162 0.800 0.295
Fixed 36 bits 0.658 0.162 0.825 0.348

before overflow occurs.
The datasets chosen to benchmark for classification and

novelty detection were an artificial dataset generated using
sklearn.make classification [24] and the mlbench dataset
Satellite [25]. The parameters chosen for the artificial dataset
were n samples = 1000, n features = 8, n informative = 4,
n redundant = 2 and random state = 101. For the Satellite
dataset, the multiclass problem was simplified to a two class
problem by taking the largest class out and combining the
others. The novelty detector for this dataset trains on one of
the classes in the artificial dataset and for the satellite dataset
it trains on the combined classes to detect the ‘anomalous’
red soil class. The regression datasets were an artificial
dataset generated using sklearn.make regression and the UCI
Combined Cycle Power Plant dataset from [26]. The parameters
chosen for the artificial dataset were n samples = 1000,
n features = 8, n informative = 6 and random state = 101.
All the datasets were then partitioned into a test and training
set using the createDataPartition function in caret with an
80% split. The preprocessing functionality in caret was then
used to center and scale the datasets using the training set with
the exception of the artificial classification dataset. These four
datasets are available from our github repository, together with
four parameters files which enable the results to be reproduced.

The results in Tables III and IV show that the use of fixed
point does not have an impact on the learning performance
of the algorithm for bitwidths greater than 18 bits. The

TABLE IV
RESULTS FOR NORMAr IN FIXED VS FLOATING POINT

Dataset Artificial (iw = 6) Combined Cycle Power
Plant Dataset (iw = 6)

Measure L1 L2 L1 L2
Floating NORMAr 0.773 0.934 0.700 0.697

Fixed 18 bits 0.760 0.899 0.637 0.621
Fixed 24 bits 0.776 0.939 0.666 0.643
Fixed 30 bits 0.777 0.943 0.653 0.628
Fixed 36 bits 0.777 0.943 0.653 0.628

TABLE V
SINGLE CORE CPU LEARNING PERFORMANCE WITH F=8 COMPARED WITH

NORMAn USING 8.10 FIXED POINT

D = 16 32 64 128 200
Freq (MHz) 2.83 1.51 0.77 0.38 0.25

Latency/example (ns) 353.2 660.9 1293.2 2625.2 4025.8
FPGA Speedup (×) 47.0 91.3 178.44 344.7 509.2

Latency Reduction (×) 4.69 8.296 14.87 28.7 39.2

TABLE VI
IMPACT OF GAUSSIAN KERNEL APPROXIMATION (7.29 ON ARTIFICIAL TWO

CLASS)

Table Size 1 2 4 8 16
AUC 0.907 0.906 0.904 0.903 0.903

H 0.588 0.590 0.586 0.586 0.586

cases in which fixed point actually improves the learning
performance of the algorithm are attributed to noise in the
results. For classification Table II shows that using fixed point
with insufficient precision does have a detremental impact on
the results which is the expected case for general datasets.
For implementations with similar fractional width precision to
IEEE 754 (24 bits) there is no noticable difference between
fixed and floating point implementations.

As the fixed point increases in precision the learning
performance is expected to improve. This is a trade off with
the amount of hardware used hence affecting the maximum
dictionary size as shown in Table I. Due to fixed point changing
the nature of the algorithm, performing the cross validation in
fixed point may achieve better results than a cross validation
in floating point.

Table I shows the resource usage and clock frequency
for NORMA with novelty detection in fixed point. Novelty
detection has a shorter critical path in the update step compared
to classification and regression resulting in a reduction in
clock frequency of around 10-15 MHz compared to the other
applications. The resource usage is however very similar as
the majority of the calculation is the same.

Table V shows the results for a single core C implementation
of NORMAn compiled using gcc 4.9.2 with ‘-O3’ and run
on an Intel i7-4510U @ 2.00GHz compared with the results
in Table I for the 18 bit fixed point implementation. It is
noted that, by increasing the number of features used (F), the
speedup of the FPGA implementation improves dramatically as
all additional features are calculated in parallel with minimal
impact on the clock frequency. However, this increases the
amount of hardware needed for the implementation hence
restricting the dictionary size.

Table VI shows the effectiveness of the Gaussian kernel
approximation. There is no noticable difference in learning
performance on the artificial two class dataset even when there
is a single line from 0 to −1 that is shifted for integer powers.
It is suggested by the authors that, due to the fixed initial
value of the weights, NORMA is insensitive to the accuracy
of the kernel function. The impact on other algorithms will be
investigated in future work.

The NORMA implementation in this paper can be compared



to the implementation of a KRLS vector processor designed
for low latency machine learning [13]. While KRLS based
algorithms have been shown to have superior learning per-
formance to NORMA [27] the latency in the online learning
is about two orders of magnitude lower with three orders
of magnitude increase in throughput for the implementation
described in this paper. Compared to the approach in [14],
which reports a sample rate of 2.4 MHz, braiding provides
a 50× increase in throughput. The algorithms are similar
enough that a direct comparision is meaningful as the braiding
technique could be applied to QKLMS. A high throughput
pipelined implementation of KNLMS is described in [16]
achieved by time multiplexing multiple problems. For a single
problem or dataset the throughput of this architecture is much
higher. Braiding relies on properties of NORMA that present
in other algorithms such as [28] and hence could be applied
there as well.

V. CONCLUSION

A novel braiding technique for sliding window algorithms
was presented. Our study showed that when applied to a fixed-
point implementation of NORMA, extremely low latency and
high throughput can be achieved with similar learning ability
to a floating-point implementation. NORMA was chosen as
an example application for braiding as it allows the flexibility
to implement classification, regression and novelty detection
algorithms.

In this work, the same fixed point wordlength was used
throughout each design. A more efficient scheme could vary
the precision along the datapath to achieve similar accuracy
with smaller wordlengths. Implementations of NORMA with
multiple FPGAs could enable larger dictionary sizes. Finally,
the braiding scheme described relies on properties of NORMA
which are present in other algorithms. Generalisation to these
problems would also be promising candidates for further
research. This work has been made open source and the results
reproducible, with a desire that others make improvements and
utilise it in real-world machine learning problems.
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