1999 IEEE TENCON

MSL16A: An Asynchronous Forth Microprocessor

P.K. Tsang, C.C. Cheung, K.H. Leung, T.K Lee, P.H.W. Leong
Department of Computer Science and Engineering
The Chinese University of Hong Kong ,
{pktsang, ccheung2, khleung, tonylee, phwl}Qcse.cuhk.edu.hk

Abstract

A 16-bit Forth microprocessor, MSL16 [7], was de-
veloped for embedded applications as the design of-
fers good code density, easily developed software de-
velopment tools, high performance, and small area.
A delay-insensitive re-implementation of the proces-
sor has been developed to explore the potentials of
asynchronous logic for low-power applications and to
demonstrate the feasibility and practicability of using
asynchronous circuits in embedded applications. This
paper. describes the asynchronous clone of MSLI6.
The implementation and performance evaluation of it
is also presented. The design will be fabricated using
AMI 1.2p CMOS double layer metal process in 3Q99.

1 Introduction

Many embedded applications employ a coprocessor
today and a microprocessor which has desirable fea-
tures like good performance, high code density, small
area, and good development tools is eminently suited
for such applications. We have developed an archi-
tecture to directly execute the Forth language called
MSL16 [7] (which stands for minimal instruction,
small and low power 16-bit microprocessor) which
was optimized for embedded applications. It utilizes
a stack architecture with each instruction occupying
only 4 bits, leading to a small instruction set, simple
datapath and control, and high code density.

Forth is a (stack based) portable integrated pro-
gramming environment, operating system and pro-
gramming language having code density typically
higher than that of C or assembly language, and is
well suited to DSP, real-time and embedded applica-
tions. A Forth system is typically built upon a small
number of primitives, and the higher level routines call
the lower level primitives to implement the rest of the
system. The system (which bundles the operating sys-
tem and compiler) is very simple and can be ported
in a matter of several weeks, compared to man—years
of development effort for a reasonable C compiler.

0-7803-5739-6/99/$10.00C) 1999 IEEE.

Recent research has demonstrated that asyn-
chronous circuits techniques have matured and im-
plementations of asynchronous processors have been
reported [9, 15, 10, 12, 1, 11, 2, 14]. The asyn-
chronous re-implementation of the microprocessor,
called MSL16A , has been developed to investigate
the potential advantages that asynchronous designs
may enjoy, namely average-case performance instead
of worst-case performance and low power consump- °
tion. MSL16A was also developed to demonstrate the
feasibility and practicability of using asynchronous cir-
cuits in embedded applications.

The paper is organized as follows. Section 2 givesa
brief description of the architecture of MSL16A. The
design methodology and circuit style used in design-
ing MSL16A, which were an original application of
Alain Martin’s method, and its implemenatation are
described in Section 3. Evaluation results including
the chip layout are presented in Section 4. Finally,
section 5 concludes the paper.

2 Architecture

" MSL16 is a dual stack machine with 16 bit data
and memory buses. The data stack is used for variable
storage and parameter passing while the return stack
is used to hold return addresses. The data and return
stacks are implemented internally which allows them
to be accessed in parallel with instruction fetches on
the memory bus. A two stage FETCH/EXECUTE
pipeline is employed. The execution speed of MSL16A
is high because of its simple instruction set and a short
critical delay path.

All instructions are encoded with 4 bits except the
CALL instruction. A single instruction fetch gener-
ally obtains 4 instructions which will reduce the effect
of pipeline starvation on system performance. Hence,
the use of a slower memory will not have a significant
impact on performance. The data stack and return
stack are both 32 x 16 bits in size. A study has shown
that a stack depth of 32 is sufficient for most reason-

able programs [5]. The instruction format used for

-1079 -

MSL16 is shown in Figure 1.

[1 | CALL ADDRESS I

15 1211 87

L FIRST J SECOND THIRD I FOURTH
sLot sLoT sLoT

N

0 opcode<8 any 4-bit instruction
{restricted set of 4-bit instruction)

Figure 1: Instruction format for MSL16

The instruction set of MSL16 is given in Table 1. If
the most significant bit of the instruction register(IR)
is set, it is a CALL instruction and the remaining 15
bits form the subroutine address. Moreover, if LIT
appears in the first or second slot of IR, its operand
will be the least significant byte of IR. Hence, to load
a 16-bit literal into the T register, two successive LITs
followed by an XOR are required.

The datapath of MSL16A, which is modified from
its synchronous counterpart, is shown in Figure 2.

Opcode | Instruction | Action

0 NOP no operation

1 AND T <= T AND DS, pop DS

2 XOR T < T XOR DS, pop DS

3 + T « T + DS, pop DS

4 0= T <= -1 if (T=0) else
T<«0

5 LIT : push T to DS and,
if LPC = 0, T<=LSB(IR)&”00000000”
if LPC = 1, T<="00000000" &LSB(IR)
if LPC = 3, T<=processor status word

6 2/ T&T/2

7 - T < DS — T, pop DS

8 DUP push T to DS

9 DROP pop DS to T

10- GOTO Jump to Tif T#0, pop DSto T

11 R> push T to DS, pop RS to T

12 >R push T to RS, pop DS to T

13 Q LOAD mem[T] to T

14 ! STORE T to mem[ds]

15 SWAP Swap T with DS

MSB=1 | CALL PUSH PC to RS, jump to IR

Table 1: The MSL16 instruction set

3 Design Methodology and Implemen-
tation

The asynchronous circuits we use are called quasi
delay-insensitive(QDI) circuits which do not use any
assumption on delays in operators and wires [8]. The
asynchronous control logic was designed by using
CAST? while the datapath components were realized

LCaltech Asynchronous Synthesis Tools

Q—Km

Figure 2: The datapath of MSL16A

by hand.

The processor is implemented based on Martin’s
Synthesis Method [8]. It is first described by a high
level sequential program which is a non-terminating
loop containing the FETCH and EXECUTE stages of
the pipeline. The sequential program is then decom-
posed into a set of concurrent processes, which com-
municate and synchronize with each other, based on
Hoare’s CSP (Communicating Sequential Processes)
model [4]. This method relies on the time-honored
“divide-and-conquer” principle. All datapath ele-
ments are accompanied by a small control circuit,
obeying the four-phase (return-to-zero) protocol, for
synchronization of request and acknowledge signals.

Data are all dual-rail encoded within the processor
core. Only one out of two rails is raised at each active
phase of the four-phase protocol. All control circuits
are generated and verified with CAST, a set of in-
house tools for synthesis of asynchronous circuits by
Caltech, while all other elements are created by hand
with Magic and logically verified by IRSIM.

As data are dual-rail encoded within the processor
core, NAND gates (as shown in Figure 2) can be used
, instead of using tri-state buffers, to save area along
all 16-bit data buses. Moreover, Dual-rail to single-
rail and single-rail to dual-rail converters [12] are used
to interface with the outside world with bundled data
encoding to allocate extra pins for testing. Figure 3
shows the gate-level descriptions of the converters.

3.1 ALU

A simple delay-insensitive ALU which delivers
comparable performance to more sophisiticated syn-

- 1080 -

i0_0 Strobe i
i0_1
10
i1_1

ko_1

;

i

k0_0
T Ki_1
00

ol k1_0

Strobe

Figure 3: Dual-rail to single-rail and single-rail to
dual-rail converters

chronous counterparts was designed. The asyn-
chronous nature of the unit takes advantages of best-
and average-case performance while allowing worst
case operations to take longer time to complete, thus
giving a higher average throughput. The set of func-
tions provided by the ALU consists of basic logic oper-
ations, arithmetic shift, addition and subtraction. A
Quick-Decision Zero-Checker based on [6] was imple-
mented for the condition test of a conditional branch.

Addition, or subtraction, is the most time consum-
ing function as all logical operations are performed in
a bitwise fashion while worst case addition may require
communications across all 16 full adders. However, a
study by Manchester University [3] suggests that the
mean carry propagation length is about 4.4 bits for 32-
bit operands. As long carry chains are relatively rare,
our adder has no special fast logic and performs addi-
tion with a chain of 16 full adders to deliver ”typical”
performance at a smaller size.

3.2 Stack

The stack is pointer based and the pointer is im-
plemented as an internal bit variable within the stack
control circuit. Only the top element will be active
while others just idly waiting for their neighbours to
pass the pointer to them. The top element will send
a request signal (pointer passing) to the next element,
asking it to become active (top of stack) and wait for
its acknowledge signal, after a stack operation. All
other stack elements are not involved in any commu-
nication and stay completely idle, conserving power.

4 Results

Each sub-system has been extensively simulated
with HSPICE and performance estimates for the ALU
and the stack are shown in Table 2 and Table 3. In
all cases, these results come from a 5V power supply.
All PFETSs are 8\ x 2\ and NFETs are 4 x 2\ except
some of them are sized for better performance. = All

measurements are based on HSPICE(98.2) on a AMI
1.2 CMOS double layer metal process, using MOSIS
parametric test results of run N81Y. The chip will be
fabricated in 3Q99. The longest carry chain in a "typ-
ical” addition is assumed to be 4 bits. Similar work
on asynchronous ALU can be found in [3].

operation | Delay(ns) | Power(mW) | Power-Delay-Product(pJ)
XOR 2.596 45.741 118.741
AND 2.605 43.341 112.903
2/ 3.130 50.358 157.621
0= 7.019 48.078 337.459
+(typ.) 17.746 24.543 . 435.540
+(worst) 42.343 14.995 634.888

Table 2: Performance of the ALU

The performance of the stack is critical as almost
all instructions push/pop data to/from the stack. The
speed, power consumption and Power-Delay product
of the stack are listed in Table 3. We expect the aver-
age processing rate to be 33 MIPS, because on average
the EXECUTE stage delay is less than 30ns (assuming
the memory is fast enough). As stack and ALU op-
erations are the most data-intensive operations in the
processor, the estimated power consumption is below
200mW at full speed.

Push Pop
Delay(ns) 11.8377 6.205
Power(mW) 19.24 12.38
Power-Delay 227.747 76.793
Product(pJ)

Table 3: Performance of the stack

The chip layout is shown in Figure 4. All pro-
cessor components (including bonding pads) are in-
tegrated in 4.335mm x 4.671mm (20.249mm?) which
is much smaller than both the TITAC-2 chip [14]
and the ASPRO-216 [13] if both of them are scaled
to the same technology. The TITAC-2 chip was
a 32-bit microprocessor which was fabricated using
0.5u4 CMOS standard cell technology and it occu-
pied 12.15mmx12.15mm. Similarly, ASPRO-216 was
a QDI 16-bit RISC microprocessor targeted on a 0.254
five layer metal CMOS technology and it occupied
about 4mm?.

5 Conclusion

MSL16 was targeted for embedded applications as
it offers good code density, high performance at a
small area. This paper presented an asynchronous
re-implementation of MSL16, called MSL16A which
is a QDI Forth microprocessor developed based on
Martin’s Synthesis Method [8]. The estimated perfor-
mance, power consumption and chip area show that

-1081 -

9]

[10]

(11

Figure 4: MSL16A chip image [12]

this re-implementation is promising. Furthermore, the [13]
synchronous implementation (on silicon) will also be
realized to compare the benefits of synchronous and

asynchronous design methodology in detail. [14]

Acknowledgements
The authors are greatful to Alain Martin and his (15]

group for proving use of the Caltech Asynchronous
Synthesis Tools.

References

[1] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods. AMULET1: A micropipelined ARM. In Proceedings
IEEE Computer Conference (COMPCON), pages 476-485,
March 1994.

[2] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and
N. C. Paver. AMULET2e: An asynchronous embedded con-
troller. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 290-299.
IEEE Computer Society Press, April 1997.

[3] Jim D. Garside. A CMOS VLSI implementation of an asyn-
chronous ALU. In S. Furber and M. Edwards, editors, Asyn-
chronous Design Methodologies, volume A-28 of IFIP Trans-
actions, pages 181-207. Elsevier Science Publishers, 1993.

4] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM, 21(8):666—677, August 1978.

5

Philip Koopman. Why stack machines? Computer Architec-
ture News, 21(1), March 1993.

[6] Tak Kwan Lee. A General Approach to Performance Analy-
sts and Optimization of Asynchronous Circuits. PhD thesis,
California Institute of Technology, 1995. Technical report CS-
TR-95-07.

(7] P. H. W. Leong, P. K. Tsang, and T. K. Lee. A FPGA based
Forth microprocessor. In Kenneth L. Pocek and Jeffrey Arnold,
editors, IEEE Symposium on FPGAs for Custom Computing
Machines, pages 254-255, Los Alamitos, CA, April 1998. IEEE
Computer Society Press. .

(8

Alain J. Martin. Programming in VLSI: From communicat-
ing processes to delay-insensitive circuits. In C. A. R. Hoare,
editor, Developments in Concurrency and Communication,

-1082 -

UT Year of Programming Series, pages 1-64. Addison-Wesley,
1990. ’

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic,
and Pieter J. Hazewindus. The design of an asynchronous
microprocessor. In Charles L. Seitz, editor, Advanced Research
in VLSI, pages 351-373. MIT Press, 1989.

Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nys-
troem, Paul Penzes, Robert Southworth, and Uri Cummings.
The design of an asynchronous MIPS R3000 microprocessor. In
Advanced Research in VLSI, pages 164-181, September 1997.

Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt.
ECSTAC: A fast asynchronous microprocessor. In Asyn-
chronous Design Methodologies, pages 180-189. IEEE Com-
puter Society Press, May 1995.

Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masashi
Kuwako, and Akihiro Takamura. TITAC: Design of a quasi-
delay-insensitive microprocessor. IEEE Design & Test of
Computers, 11(2):50-63, 1994.

M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: A
standard-cell QDI 16-bit RISC asynchronous microprocessor.
In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 22-31, 1998.

Akihiro Takamura, Masashi Kuwako, Masashi Imai, Taro Fu-
jit, Motokazu Ozawa, Izumi Fukasaku, Yoichiro Ueno, and
Takashi Nanya. TITAC-2: An asynchronous 32-bit micropro-
cessor based on scalable-delay-insensitive model. In Proc. In-
ternational Conf. Computer Design (ICCD), pages 288-294,
October 1997. ’

José A. Tierno, Alain J. Martin, Drazen Borkovic, and
Tak Kwan Lee. A 100-MIPS GaAs asynchronous microproces-
sor. IEEE Design & Test of Computers, 11(2):43-49, 1994.

