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Abstract - This paper describes system level issues 

encountered in a high performance implementation of a 
Rijndael encryption core on a memory-slot based reconfigurable 
computing platform called Pilchard. The Rijndael algorithm 
was adopted in 2000 by the US National Institute of Standards 
and Technology (NIST) as the Advanced Encryption Standard 
(AES). 
 
In the implementation of Rijndael, changing the number of 
unrolled rounds in the encryption core can affect the 
performance of the system. It is shown that for the design 
presented, the highest performance of 755 Mbit/sec was 
achieved by implementing a core with a single round. Although 
it is relatively easy to implement a high performance core on an 
FPGA, due to I/O bottlenecks, achieving high system level 
performance is more difficult. In order to optimize the 
performance of the host/FPGA interface, special instructions 
from the Intel Pentium III streaming SIMD extensions (SSE) 
along with write-combining memory operations were used. 
These features enabled the measured throughput of the AES 
core to reach 445 Mbit/sec which, although still slower than the 
AES core, was double that of an unoptimized interface. 

1. INTRODUCTION 

In September 1997 the National Institute of Standards and 
Technology (NIST) issued a request for possible candidates 
for a new Advanced Encryption Standard (AES) to replace 
the existing Data Encryption Standard (DES). In October 
2000, Rijndael was selected to be the AES and will be used 
officially by U.S. Government organizations. 

Although previous hardware implementations of the 
Rijndael algorithm have been reported with performance up 
to 7 Gb/s (reviewed in Section II), we are not aware of any 
reports of system level implementations which address issues 
of how a host can supply data at such a high rate. The main 
objective of this work was to explore system level issues 
associated with implementing an FPGA-based Rijndael 
encryption engine on a low-cost memory slot based 
reconfigurable platform [7] connected to a low-end PC.  

The main contributions of this paper are as follows: 
• The actual system level throughput of a high 

performance Rijndael encryption system was 
measured, reported and optimized. This 
implementation was optimized for small area rather 
than maximum speed since, as will be shown later, the 
performance of our system is limited by the speed of 
the host computer to FPGA interface rather than the 
speed of the Rijndael core. 

• Comparisons of different degrees of unrolling for a 
Rijndael core were made to better understand possible 
tradeoffs between area and throughput in the core. 

• It was shown that the transfer rate of a memory-slot 
based FPGA board such as Pilchard can be 
significantly improved by using a write-combining 
memory mode along with Intel Pentium III streaming 
SIMD extension (SSE) instructions. 

 
The rest of this paper is organized as follows: in Section II, 

a review of previous work on software and hardware 
implementations of Rijndael is given. The Rijndael algorithm 
is described in Section III. In Section IV, the FPGA Rijndael 
core implemented in this work is described. In Section V, an 
unrolled design is presented. In Section VI, methods to 
improve transfer efficiency between the PC and FPGA are 
introduced by explaining different memory modes on the 
Pentium along with a brief description of the MMX and SSE 
instruction sets are given. Results are presented in Section 
VII and conclusions are drawn in Section VIII. 

2. PREVIOUS WORK 

Since the Rijndael algorithm made its appearance at the 
first AES Candidate Conference (AES1) in August 1998, 
many implementations of the algorithm have been reported. 
The fastest known software implementation of Rijndael was 
developed by Brian Gladman [2]. On a 933 MHz Pentium III 
processor, his 128-bit key design achieved a throughput of 
325 Mbits/sec, the 192-bit key design reached 275 Mbits/sec 
and the 256-bit key design ran at 236 Mbits/sec.  

An implementation of an electronic codebook (ECB) mode 
128-bit key encryption core on a Xilinx Virtex-E XCV812E-
8-BG560 device by McLoone and McCanny had a 
throughput of 7 Gbits/sec [3]. The same authors also made an 
implementation which could perform both encryption and 
decryption which was reported to have a throughput of 3239 
Mbits/sec on a Xilinx Virtex-E XCV3200E-CG1156-8 device 
[3]. A partially unrolled design by Elbirt, Yip, Chetwynd and 
Paar on the Virtex XCV1000-BG560 FPGA achieved 1937.9 
Mbits/sec [4]. A T-Box implementation of the Rijndael 
encryption was reported to give 750 Mbits/sec on an Altera 
APEX 1K400-1 by Fischer and Drutarovsky [5]. More 
previous work can be found at the NIST website on AES 
(http://www.nist.gov/aes).  

3. RIJNDAEL ALGORITHM 

Rijndael is an iterated block cipher which supports variable 
block length and key length. Both lengths can be 
independently specified as 128, 192 or 256 bits. Rijndael has 
a variable number of iterations: 10, 12 and 14 for key lengths 
of 128, 192 and 256 respectively. In this work, a 128 bit 



 

  

block and key length are assumed, although the design could 
be adapted without difficulty to other block and key lengths. 
Note that the AES standard specifies a 128 bit block.  

In this section a brief description of the Rijndael algorithm 
is given. A more detailed description of the Rijndael 
algorithm can be found on the NIST website 
(http://www.nist.gov/aes/rijndael). 

State, Cipher Key and Number of Iterations 

Transformations in Rijndael operate on an intermediate 
result, called the State. The State can be pictured as a 
rectangular array of bytes.  This array has 4 rows. The 
number of columns is denoted by Nb and is equal to the block 
length divided by 32. Transformations in Rijndael treat the 
AES standard 128-bit data block as a 4 column rectangular 
array of 4-byte vectors. A 128-bit plaintext has 16 bytes (B0, 
B1, B2, …, B14, B15) and it is interpreted as a State.  

The cipher key is also considered to be a rectangular array 
with four rows, the number of column Nk being the key 
length divided by 32. The number of rounds are denoted by 
Nr and depends on the values Nb and Nk. For 128 bit blocks, 
Nb=4, Nk=4 and Nr = 10. 

128-bit Key Rijndael Encryption 

The 128-bit key Rijndael encryption algorithm consists of 
an initial data/key addition, then 9 round transformations 
followed by a final round.  

The Key Schedule expands the key entering the cipher so 
that a different round key is created for each iteration, as 
shown in Fig. 3.1 below.  

 
 

Round Transformation 

The Rijndael round transformation consists of four 
different operations. They are a ByteSub Transformation, a 
ShiftRow Transformation, a MixColumn Transformation and 
a Round Key Addition. In pseudocode, a round transformation 
is: 

 
 Round(State, RoundKey) { 
  ByteSub(State); 
  ShiftRow(State); 
  MixColumn(State); 
  AddRoundKey(State, RoundKey); 
 } 
 

The final round is similar to a round except that it does not 
have the MixColumn(State) transformation: 

 FinalRound(State, RoundKey) { 
  ByteSub(State); 
  ShiftRow(State); 
  AddRoundKey(State, RoundKey); 
 } 
 
The ByteSub Transformation is a byte substitution operated 

on each of the State bytes independently. The lookup table 
for substitution, i.e. the S-Box, is constructed by finding the 
multiplicative inverse of each byte in GF(28). An affine 
transformation is then applied, which inverses multiplying the 
result by a matrix and adding to the hexadecimal number 
‘63’. The inverse of ByteSub is a byte substitution using the 
inverse table.  

The ShiftRow Transformation shifts the rows of the State 
cyclically by a row dependent amount. Row 0 is not shifted. 
Row 1 is shifted over C1 bytes, row 2 over C2 bytes and row 
3 over C3 bytes where for Nb=4,  C1, C2 and C3 are 1, 2 and 
3 respectively. The inverse of ShiftRow is a cyclic shift of the 
3 bottom rows over Nb – C1, Nb – C2, and Nb – C3 bytes 
respectively so that the byte at position j in row i moves to 
position (j + Nb – Ci) mod Nb.  

The MixColumn Transformation operates on the columns 
of the State. Each column is considered as a polynomial over 
GF(28) and multiplied modulo x4 + 1 with a fixed polynomial 
c(x), where, c(x) = ‘03’x3 + ‘01’ x2 + ‘01’x + ‘02’. The 
inverse of MixColumn is similar to MixColumn. Every 
column is transformed by multiplying it with, instead of c(x), 
a specific polynomial d(x), where d(x) = ‘0B’x3 + ‘0D’ x2 + 
‘09’x + ‘0E’ 

In Round Key addition, a Round Key is applied to the State 
by a simple bitwise EXOR operation. The Round Key is 
derived from the Cipher Key by means of the key schedule 
operation, which would be described in detail later. The 
length of Round Key is equal to the block length Nb. 
AddRoundKey is its own inverse. This means when a State is 
EXORed with a round key to give a new State, the original 
State can be recovered by EXORing the new State with the 
same round key. 

Key Schedule 

The Round Keys, Ki, are derived from the Cipher Key by 
means of the Key Schedule and are different for each round 
number. The Key Schedule consists of two parts: Key 
Expansion and Round Key Selection. 

Key Expansion is a process of expanding the Cipher Key 
into a linear array of 4-byte words. The length of this array is 
determined by the length of data block Nb, multiplied by the 
number of rounds Nr plus 1, i.e., Nb * (Nr + 1). Thus for Nb=4 
and Nr=10, the length is 44. 

Key Expansion starts with the original key being the first 
Nk words, say, W0 to W3 for Nk = 4. Then W0 to W3 are 
expanded to generate the next 4 words, W4 to W7. W8 to W11 

are expanded from W4 to W7 as shown in Fig. 3.2. The 
iterations continue until the final 4 words W41 to W43 are 
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P: Plaintext; K: Key; C: Ciphertext

Fig. 3.1 Illustration of 128-bit Key Rijndael Encryption Algorithm 



 

  

generated. Each word Wi is the EXOR of the previous word 
Wi-1 with the word 4 positions earlier, i.e. Wi-4. Additional 
operations are performed prior to expansion in word Wi when 
i is the precessor of multiples of 4. Such words need to 
undergo the ByteSub, ByteRot and RCons transformations. 
The ByteSub transformation is the same as described in the 
Round Transformation where individual bytes in the word are 
replaced according to S-Box. The ByteRot transformation is 
simply a rotation of bytes in a word from (x0, x1, x2, x3) to 
(x1, x2, x3, x0). The RCons transformation produces output 
which is the EXOR result of the input with a predetermined 
constant. The predetermined constant is dependent on the 
round number of the current key. 

 
 
 
 
 
 
 
 
 
 
 
 

The Round Key Ki is selected from the expanded key for 
W[Nb * i] to W[Nb * (i + 1)]. A 10-round design requires 11 
round keys (44 words). Round Key 0 is W0 to W3 and is used 
in the initial “Data/Key Addition” as shown in Fig. 3.1. 
Round key 1 is W4 to W7 and used in round 1, round key 2 is 
W8 to W11 and used in round 2 and so on. Finally, round key 
10, W40 to W43, is used in the final round.  

4.  FPGA-BASED IMPLEMENTATION 

The Rijndael algorithm can be implemented using a 
looping structure where data is iteratively passed through a 
round transformation. Several architectural options were 
considered. The term Iterative Looping is used for the case 
where the core consists of only one round implemented as a 
single combinatorial logic block and the cipher must iterate 
up to the total number of rounds to perform an encryption. 
This approach has a low register-register delay but requires a 
larger number of clock cycles to perform an encryption. In 
this section, an Iterative Looping design is described. 

Development Environment 

The FPGA device used for the Rijndael implementation 
was a Xilinx Virtex-E XCV1000-6. It is composed of a 64 x 
96 array of lookup table based Configurable Logic Blocks 
(CLBs), each of which acts as a 4-bit element comprised of 
two 2-bit slices for a total of 12288 CLB slices. In addition, 
the Virtex-E FPGA Series provides dedicated blocks of on-
chip, dual-read/write port synchronous RAM, with 4096 
memory cells, known as Block SelectRAMs (BRAMs). Each 
port of the BRAM can be independently configured as a 

read/write port, a read port, a write port, and can also be 
configured to a specific data width.  

The Pilchard board [7] used for interfacing the FPGA with 
a host personal computer (PC) uses the PC’s DIMM memory 
slot. The DIMM interface offers higher bandwidth, simpler 
interface and lower latency than a traditional PCI interface. 
From earlier measurements with Pilchard [7], the read/write 
transfer rate of Pilchard using an “Uncacheable” memory 
type and “movq” instructions was 35 MB/sec (280 Mbit/sec). 
The “Uncacheable” memory type guarantees that all reads 
and writes would appear on the system bus in the same order 
as the program. Compared with the read/write transfer rate of 
40 Mbit/sec offered by traditional PCI bus (without DMA), 
Pilchard can provide a higher transfer rate and thus a higher 
System Throughput. As a result, the Pilchard based Rijndael 
encryption on Pilchard can attain higher data rates than a 
similar implementation on traditional PCI bus interface. 

Rijndael Encryption Core Design 

The major components of the Rijndael Core are the 
Control Unit, the Round Transformation Unit and the Key 
Schedule Unit, as shown in Fig. 4.1. 

 

 

 
The Control Unit is a Finite State Machine (FSM) that 

controls other components of the core. Recalling the 0th round 
is an EXOR operation between the plaintext and the key, the 
Round Transformation accepts this result as its input. It 
receives the round key from the Key Schedule Unit, in which 
the round key are generated in the same clock cycle as the 
round transformation. After 11 cycles the Control Unit will 
signal that an encryption has been completed and ciphertext 
will be output. 

In the Round Transformation Unit and Key Schedule Unit, 
operations defined in Section III are performed respectively. 
The ByteSub transformation employed in both the Round 
Transformation and Key Schedule was implemented as a 
look-up table (LUT). Since State bytes were operated on 
individually, each Rijndael round for a 128-bit block required 
sixteen 256 x 8 bit LUTs. In the Key Schedule, LUTs were 
also used when words were passed through the S-Box. A 
single BRAM could be configured into two S-Boxes, hence, 
eight BRAMs were used in each round. For the Key 
Schedule, since Round Keys were computed on-the-fly, two 
BRAMs were dedicated to Round Key generation. As a 
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Figure 4.1 Overview of Rijndael Encryption Core 



 

  

result, ten BRAMs were required for the Iterative Looping 
architecture. 

ShiftRow in the Round Transformation and ByteRot in the 
Key Schedule require similar operations. They are both 
simply hardwired as no logic is involved. The MixColumn 
transformation is a matrix multiplication operation. Since the 
values in the square matrices are constant elements, this 
multiplication can be replaced by several EXOR operations 
that are simple to implement in the FPGA. Indeed, the 
operation 

Y = 03 �  X,   for X, Y in GF(28) 
is implemented as below: 
 
y7 = x7 EXOR x6 
y6 = x6 EXOR x5 
y5 = x5 EXOR x4 
y4 = x7 EXOR x4 EXOR x3 

y3 = x7 EXOR x3 EXOR x2 
y2 = x2 EXOR x1 
y1 = x7 EXOR x1 EXOR x0 
y0 = x7 EXOR x0 

 
Also, the operation 
Y = 02 �  X,   for X, Y in GF(28) 
 
is implemented as below: 
 
y7 = x6 
y6 = x5 
y5 = x4 
y4 = x7 EXOR x3 

y3 = x7 EXOR x2 
y2 = x1 
y1 = x7 EXOR x0 
y0 = x7 

 

I/O Buffer Design 

From Fig. 4.1, it can be observed that an input buffer and 
output buffer were included in the design. Both of them were 
composed of 16 BRAMs and can store 512 128-bit data 
blocks. When a data block is written to Pilchard, it is placed 
in the input buffer which is configured as a circular buffer 
with separate read and write counters. As long as these two 
counters do not equal each other, the Control Unit can signal 
the Rijndael core to continue encryption. This process stops 
when all the data in the input buffer were read, thus 
implementing a first-in-first-out (FIFO) buffer. The writing 
and reading within the same RAM from two ports without 
conflict was supported by the dual port property of the 
BRAM. This feature increased the efficiency of the interface 
since transfers from the PC can be overlapped with 
computation in the Rijndael core. 

Each ciphertext generated was stored in the output buffer. 
There was no flag to indicate the buffer is full and thus the 
software was responsible for reading the output buffer as 
soon as the ciphertext was ready. Similar to the input buffer, 
the Rijndael core could write data to the output buffer even 
when data was being read from the buffer.  

5. UNROLLED DESIGN 

Loop Unrolling is where n rounds are implemented as a 
combinatorial logic block. This method requires smaller 
number of clock cycles to perform an encryption, but results 
in a higher register-to-register delay, resulting in a lower 
clock frequency. The Rijndael core was implemented with 

different degrees of unrolling to compare the performance. 
Unrolling of degree one is the same as Iterative Looping. 
Unrolling of higher degree requires more hardware resources 
but reduces the number of cycles used to perform an 
encryption. It also introduces larger register-to-register delay, 
thus results in lower clock frequency.  

In the Iterative Looping implementation of Rijndael 
described in the previous section, there were 11 rounds of 
iteration. The first round was an EXOR operation between 
plaintext and the key and was different from the other 10 
rounds. As a result, only 10 rounds can be unrolled. In order 
that cycles have similar critical paths, the degree of unrolling 
must be divisible by 10. Hence, the possible degrees are 1, 2, 
5 and 10. 
 

 
Figure 5.1 shows the flow of data in an unrolled design. 

The rectangular blocks represent one combinatorial round 
implemented in hardware. When the unrolling degree is one 
(Unrolled-1), only one round of iteration is implemented in 
hardware. Intermediate ciphertext is passed through the same 
hardware 10 times to perform one Rijndael encryption. When 
unrolled degree is two (Unrolled-2), two rounds of iteration 
are implemented in hardware. Ciphertext is passed through 
the same hardware 5 times to perform one Rijndael 
encryption. In an Unrolled-10 design, all the rounds are 
implemented and no iteration is required. 

6. TRANSFER OPTIMIZATION 

Pilchard, utilizing a DIMM memory slot in a PC, is treated 
as a memory device by the computer. Movement of data 
between Pilchard and CPU is identical to that between the 
real memory and the CPU. The efficiency of data transfers 
between memory and CPU depends on both the memory 
mode and the instruction set. The original Pilchard design 
used the MMX instructions in the Pentium processor to 
perform 64 bit transfer operations [7]. In this section, 
memory modes and the SSE instruction set are briefly 
reviewed. 

Memory Mode 

In Intel processors Memory Type Range Registers 
(MTRRs) are used to control processor access to memory. 
Different memory modes have different properties. Some 
common modes are Uncacheable, Write-combining, Write-
through and Write-back. In this work, their properties were 

Fig. 5.1 Unrolled Designs 



 

  

explored and the Rijndael system was tested using these 
memory modes.  

According to IA-32 Intel Architecture Software 
Developers’ Manual, there is no caching of system memory 
locations in Uncacheable mode. All reads and writes appear 
are executed in program order. There is no speculative 
memory access. This type of cache-control is useful for 
memory-mapped I/O devices. It is the default memory mode 
used in Pilchard but can be overridden by programming the 
MTRRs. 

Similar to Uncacheable mode, the Write-Combining mode 
does not cache system locations. There are speculative reads, 
which involves reading the contents of target address as well 
as that of nearby addresses. It enhances performance when 
contents of continuous address are to be read. Writes may be 
delayed and combined in the write combining buffer until the 
next occurrence of a serializing event. This control 
mechanism greatly reduces memory accesses and can be used 
in application where order of writes is unimportant. 

In Write-through mode, writes and reads of system 
memory locations are cached. There are also speculative 
reads. Writes are written to a cache line and through to 
system memory. Write combining is allowed. This type of 
cache control is appropriate when there are devices on the 
system bus that access system memory, but do not perform 
snooping of memory accesses. It enforces coherency between 
caches in the processors and system memory. 

Similar to Write-through mode, there is caching of writes 
and reads of system memory locations, speculative read and 
write-combining in Write-back mode. The write-back 
memory mode reduces bus traffic by eliminating unnecessary 
writes to system memory. Writes to a cache line are 
accumulated in the cache. The modified cache lines are 
written to system memory when a write-back operation is 
performed. Write-back operations are triggered when cache 
lines need to be deallocated, such as when new caches are 
being allocated in a cache that is already full. They are also 
triggered by the mechanisms used to maintain cache 
consistency. This type of cache control provides best 
performance, but it requires all devices that access system 
memory on the system bus be able to snoop memory accesses 
to insure system memory and cache coherency. 

The normal memory in a PC is set as Write-back, which 
gives best performance. However this memory type is not 
applicable to the Rijndael system. In normal memory, data 
retrieved from memory is exactly the same value that was 
written. As a result, caching can reduce access to memory. In 
the case of Pilchard, encryption is to be performed as a side 
effect of a memory access. Caching will eliminate necessary 
writes to Pilchard. When the user issues a read operation to 
get the ciphertext, the original plaintext which is not 
encrypted will be returned to user from the cache. Therefore 
both Write-through and Write-back type which cache read 
and write operations cannot be applied to the Rijndael 
system. 

The Rijndael core was tested using Uncacheable and 
Write-Combining modes. Write-combining gives better 

performance because it combines write operations and 
performed speculative reads. The Rijndael core reads a buffer 
of input data and outputs a buffer of ciphertext for each 
encryption, so speculative reads will be correct if done after 
the whole output buffer is filled. The performance of the two 
memory types will be presented in detail in the “Results” 
section.. 

MMX Technology 

In 1997 MMX Technology was launched by Intel to 
increase their processor’s power to process multimedia 
application. MMX Technology introduces several new 
instructions based on a technique known as Single 
Instruction, Multiple Data (SIMD). SIMD means that a single 
instruction operates on multiple pieces of data in parallel. 
This allows programmers to pack several small chunks of 
data into a 64-bit register and then use a single instruction to 
command the CPU to perform a specific operation on each of 
those data elements. The MMX state consists of eight 64-bit 
registers (MM0 through MM7). Among all MMX instruction 
categories, only data transfer instructions were used. The 
MMX registers have two access modes, 64-bit access and 32-
bit access. To transfer 128-bit data block, 64-bit access mode 
requires two memory accesses and 32-bit access mode 
requires four. Therefore the former was used to obtain better 
performance.  

In this work, the instruction Move Quadword (movq) was 
used to transfer 64 bit data between memory and MMX 
registers, or among MMX registers.  

SSE Technology 

In 1999 when the Pentium III processor was launched, the 
most important enhancement was 70 unique instructions, 
called Streaming SIMD Extensions. Similar to MMX 
Technology, the Streaming SIMD Extensions use single-
instruction, multiple-data (SIMD) capability to manipulate 
multiple pieces of data in parallel. Moreover, SSE improves 
performance by streamlining cache and memory access. The 
new instructions enable applications to pre-fetch specific data 
into the L2 cache from main memory. By doing so, 
applications can sidestep costly cache misses that can waste 
as many as 50 processor clock cycles while the system goes 
out to main memory after checking the L2 cache store. In 
addition, pre-fetching hides memory latency by allowing the 
system to perform pre-fetches even as data is being read into 
the processor. The SSE extensions introduced 8 new 128-bit 
XMM registers (XMM0 through XMM7) and 70 new 
instructions to the instruction set.  

In this project, instructions for cache control were used to 
transfer data between Pilchard and the CPU. In particular, the 
Move Unaligned Four Packed Single-FP (movups) and Move 
Aligned Four Packed Single-FP Non Temporal (movntps) 
instructions were used. Both commands move four packed 
Single-FP from an XMM register directly to a location in 
memory. Movntps will bypass the cache hierarchy. These two 
commands were used to move data between an XMM register 



 

  

and a memory location, adapting the MMX-based technique 
described in [10] to use the SSE instructions and registers.  

7.  RESULTS 

In this section, resource utilization and throughput of 
different unrolled designs are presented and the performance 
of our Rijndael implementation for different memory modes 
is compared. All results presented in this section were 
obtained using timing analysis and implementation reports 
generated by Xilinx Foundation Series 3.1i software. 

Core Implementation 

Figure 7.1 shows the increase in resource utilization as the 
degree of unrolling is increased. Note that the relationship is 
linear. For the Unrolled-10 case, the design was too large to 
fit on our target XCV1000 chip, but a mapping report could 
still be generated. For this case, no timing report could be 
generated so the performance of that design is not reported. 
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As can be seen in Figure 7.2, as the degree of unrolling is 

increased, more combinatorial delays are introduced, 
resulting in a lower maximum frequency.  

Figure 7.3 shows the throughput of each design. Although 
Unrolled-1 required 11 cycles to produce the ciphertext, it 
yielded the highest throughput amongst all the designs. 

Unrolled-2 and Unrolled-5 had similar throughput as the 
reduced number of cycles of Unrolled-5 was balanced by a 
reduction in operating frequency. Therefore, the Unrolled-1 
implementation of the Rijndael algorithm achieves the 
highest throughput using the least amount of FPGA 
resources. 
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The maximum core frequency was 65 MHz. Since each 

round was finished in one clock cycle, 11 clock cycles were 
needed in a 128-bit key design. As a result, the throughput of 
the Rijndael core was 755 Mbit/sec. Throughput calculated 
by other researches is listed below in Table 7.1. 

 
 Type Device Area 

(CLB)  
Throughput 

(Mbit/sec) 

Gaj [8] IL XCV1000BG560-6 2902 331.5 
Dandalis [9] IL XCV1000 5673 353.0 
the authors IL XCV1000HQ240-6 702 755.1 
Elbirt [4] P XCV1000BG560-4 10992 1937.9 
McLoone [3] P XCV3200EBG560-8 7576 3239.0 

McLoone [3] P XCV812EBG560-8 2222 6956.0 

 
[KEY] 
IL = Iterative Looping 
P = Pipelining 
 
 
In Table 7.1 the throughput of this design is compared with 

other implementations. The authors’ implementation was 
faster than that of Gaj’s work because Gaj also implemented 
the decryptor in the chip. The author’s design was also faster 
than a software implementation by Brian Gladman, which 
achieved 325 Mbit/sec on a 933MHz Pentium III processor. 
Pipelined designs have much higher performance than 
iterative designs. However, they cannot be used to implement 
feedback modes of operation such as cipher block chaining 
(CBC) in which a block is EXORed with the ciphertext of the 
previous block before being encrypted, creating a data 
dependency. CBC mode offers better security since the same 
plaintext is mapped to different a ciphertext depending on its 
context. 

Fig. 7.1 Relationship between Slice Utilization and Degree of Unrolling 
 

Fig. 7.2 Relationship between Core Frequency and Degree of Unrolling 
 

Fig. 7.3 Relationship between Throughput and  
Degree of Unrolling (with BRAM) 

Table 7.1 Comparison of 128-bit Rijndael Encryption Implementations. 

 



 

  

System Throughput 

This throughput of the Rijndael core presented in the 
previous subsection was calculated from the maximum 
frequency specified in the timing analysis report. It is merely 
the highest speed of the encryptor core and is different to the 
System Throughout which takes I/O and software overheads 
into account. 

The System Throughput of the Rijndael core on Pilchard 
was measured by encrypting data from a host PC. The testing 
environment was consisted of an Asus CUSL2 motherboard 
(Intel 815EP chipset) with 933MHz Pentium III processor 
and a Pilchard board. 

When the software test program was started, all data blocks 
were are loaded into memory. Next, the initial time was 
recorded and data blocks were written to Pilchard. After 
filling the whole input buffer of the Rijndael core, the 
program read a buffer of ciphertext from Pilchard. Once the 
reading of the ciphertext was completed, the finish time was 
recorded and the time elapsed calculated. System Throughput 
was calculated by dividing the size of the data transfer by the 
time elapsed and was expressed in Mbit/sec. 

The host processing interface was first implemented with 
MMX instructions. MMX Technology uses MMX registers 
which are 64 bits wide. This enables the transfer of 64-bit 
data between Pilchard and the PC. Plaintext of different block 
sizes was tested to give an average result as illustrated in Fig. 
7.4 below. 
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The System Throughput was approximately 210 Mbit/sec 
for data sizes from 1.5KB to 23KB. This throughput was 
much lower than that of the Rijndael encryption core and 
comparatively closed to Pilchard‘s read/write transfer rate in 
Uncacheable memory mode, which was 298 Mbit/sec. 
System Throughput was bottlenecked by the transfer rate of 
Pilchard in Uncacheable mode.  

In order to improve transfer rate of Pilchard, the Write-
combining memory mode was used. In addition, SSE 
instructions were used to read data from Pilchard to CPU to 
compare performance of MMX and SSE Technology. Two 
data blocks with size 1.5KB and 15KB were tested. The 
resulted System Throughput was depicted in the following 
graphs. 
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It can be observed from Figure 7.5 that in Uncacheable 
memory mode, MMX instruction and SSE instruction gave 
similar throughput of 210 Mbit/sec for small file sizes. 
However SSE instructions gave higher throughput for larger 
transfers whereas throughput remains the same for the MMX 
case.  

In Write-combining memory mode, for both file sizes, 
MMX instructions had higher throughput than in 
Uncacheable mode. SSE instructions had much higher 
throughput, achieving 319 Mbit/sec in Uncacheable mode 
and 455 Mbit/sec in Write-combining mode.  

From Figures 7.5 and 7.6, it can be seen that data transfer 
is always faster in Write-combining mode than in 
Uncacheable mode and that SSE instructions have generally 
higher performance than MMX instructions. The difference is 
larger for large data sizes. 

From this test, it could be deduced that configuring 
Pilchard in Write-combining memory mode using SSE 
instruction yields the highest throughput. As a result, this 
configuration was used to produce Figure 7.7 which 
compares the SSE plus write combining mode with the 
original MMX plus uncacheable mode for different block 
sizes. 

 

Fig. 7.5 System Throughput in different memory range, plain text size 1.5KB 

Fig. 7.6 System Throughput in different memory mode, plain text size 15KB 

Fig. 7.4 Throughput of Rijndael Algorithm on Pilchard using MMX instruction 
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From Figure 7.7, it can be observed that throughput 
increases with the size of the data block. When data block 
size was larger than 400 128-bit values, throughput saturates 
at around 450 Mbit/sec. This was very close to the transfer 
rate of Pilchard in Write-combining mode, which is 483 
Mbit/sec. This was also the highest system throughput 
achieved by this project and is significantly faster than the 
280 Mbit/sec achieved by our previous DES implementation 
using Pilchard which employed MMX instructions and the 
uncacheable memory mode [7]. Note that this figure is still 
lower than throughput of Rijndael encryption core of 755 
Mbit/sec and hence remains the bottleneck in our system. 

8. CONCLUSIONS 

The aim of this project was to develop a high performance 
system for data encryption using the Rijndael algorithm. An 
FPGA-based Rijndael core operating at a maximum 
frequency of 64 MHz was implemented. It was shown that 
placing a single round and iterating over the rounds 
(unrolling with a degree of one) gave higher throughput than 
unrolled implementations which complete in fewer cycles. 
Unrolling with degree one has the added advantage of 
requiring the least hardware resources. 

To improve the system throughput of Rijndael encryption, 
which was bottlenecked by PC to FPGA transfers at 280 
Mbit/sec, the Intel Pentium MMX and SSE technologies were 
compared. By using SSE instructions together with the write-
combing memory mode, the measured system throughput was 
increased from 280 Mbit/sec to 450 Mbit/sec. 
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