

A System Level Implementation of Rijndael on a Memory-slot based FPGA Card

Dennis Ka Yau Tong, Pui Sze Lo, Kin Hong Lee, Philip H.W. Leong

{kytong, pslo, khlee, phwl}@cse.cuhk.edu.hk
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, NT, Hong Kong.

Abstract - This paper describes system level issues

encountered in a high performance implementation of a
Rijndael encryption core on a memory-slot based reconfigurable
computing platform called Pilchard. The Rijndael algorithm
was adopted in 2000 by the US National Institute of Standards
and Technology (NIST) as the Advanced Encryption Standard
(AES).

In the implementation of Rijndael, changing the number of
unrolled rounds in the encryption core can affect the
performance of the system. It is shown that for the design
presented, the highest performance of 755 Mbit/sec was
achieved by implementing a core with a single round. Although
it is relatively easy to implement a high performance core on an
FPGA, due to I/O bottlenecks, achieving high system level
performance is more difficult. In order to optimize the
performance of the host/FPGA interface, special instructions
from the Intel Pentium III streaming SIMD extensions (SSE)
along with write-combining memory operations were used.
These features enabled the measured throughput of the AES
core to reach 445 Mbit/sec which, although still slower than the
AES core, was double that of an unoptimized interface.

1. INTRODUCTION

In September 1997 the National Institute of Standards and
Technology (NIST) issued a request for possible candidates
for a new Advanced Encryption Standard (AES) to replace
the existing Data Encryption Standard (DES). In October
2000, Rijndael was selected to be the AES and will be used
officially by U.S. Government organizations.

Although previous hardware implementations of the
Rijndael algorithm have been reported with performance up
to 7 Gb/s (reviewed in Section II), we are not aware of any
reports of system level implementations which address issues
of how a host can supply data at such a high rate. The main
objective of this work was to explore system level issues
associated with implementing an FPGA-based Rijndael
encryption engine on a low-cost memory slot based
reconfigurable platform [7] connected to a low-end PC.

The main contributions of this paper are as follows:
• The actual system level throughput of a high

performance Rijndael encryption system was
measured, reported and optimized. This
implementation was optimized for small area rather
than maximum speed since, as will be shown later, the
performance of our system is limited by the speed of
the host computer to FPGA interface rather than the
speed of the Rijndael core.

• Comparisons of different degrees of unrolling for a
Rijndael core were made to better understand possible
tradeoffs between area and throughput in the core.

• It was shown that the transfer rate of a memory-slot
based FPGA board such as Pilchard can be
significantly improved by using a write-combining
memory mode along with Intel Pentium III streaming
SIMD extension (SSE) instructions.

The rest of this paper is organized as follows: in Section II,

a review of previous work on software and hardware
implementations of Rijndael is given. The Rijndael algorithm
is described in Section III. In Section IV, the FPGA Rijndael
core implemented in this work is described. In Section V, an
unrolled design is presented. In Section VI, methods to
improve transfer efficiency between the PC and FPGA are
introduced by explaining different memory modes on the
Pentium along with a brief description of the MMX and SSE
instruction sets are given. Results are presented in Section
VII and conclusions are drawn in Section VIII.

2. PREVIOUS WORK

Since the Rijndael algorithm made its appearance at the
first AES Candidate Conference (AES1) in August 1998,
many implementations of the algorithm have been reported.
The fastest known software implementation of Rijndael was
developed by Brian Gladman [2]. On a 933 MHz Pentium III
processor, his 128-bit key design achieved a throughput of
325 Mbits/sec, the 192-bit key design reached 275 Mbits/sec
and the 256-bit key design ran at 236 Mbits/sec.

An implementation of an electronic codebook (ECB) mode
128-bit key encryption core on a Xilinx Virtex-E XCV812E-
8-BG560 device by McLoone and McCanny had a
throughput of 7 Gbits/sec [3]. The same authors also made an
implementation which could perform both encryption and
decryption which was reported to have a throughput of 3239
Mbits/sec on a Xilinx Virtex-E XCV3200E-CG1156-8 device
[3]. A partially unrolled design by Elbirt, Yip, Chetwynd and
Paar on the Virtex XCV1000-BG560 FPGA achieved 1937.9
Mbits/sec [4]. A T-Box implementation of the Rijndael
encryption was reported to give 750 Mbits/sec on an Altera
APEX 1K400-1 by Fischer and Drutarovsky [5]. More
previous work can be found at the NIST website on AES
(http://www.nist.gov/aes).

3. RIJNDAEL ALGORITHM

Rijndael is an iterated block cipher which supports variable
block length and key length. Both lengths can be
independently specified as 128, 192 or 256 bits. Rijndael has
a variable number of iterations: 10, 12 and 14 for key lengths
of 128, 192 and 256 respectively. In this work, a 128 bit

block and key length are assumed, although the design could
be adapted without difficulty to other block and key lengths.
Note that the AES standard specifies a 128 bit block.

In this section a brief description of the Rijndael algorithm
is given. A more detailed description of the Rijndael
algorithm can be found on the NIST website
(http://www.nist.gov/aes/rijndael).

State, Cipher Key and Number of Iterations

Transformations in Rijndael operate on an intermediate
result, called the State. The State can be pictured as a
rectangular array of bytes. This array has 4 rows. The
number of columns is denoted by Nb and is equal to the block
length divided by 32. Transformations in Rijndael treat the
AES standard 128-bit data block as a 4 column rectangular
array of 4-byte vectors. A 128-bit plaintext has 16 bytes (B0,
B1, B2, …, B14, B15) and it is interpreted as a State.

The cipher key is also considered to be a rectangular array
with four rows, the number of column Nk being the key
length divided by 32. The number of rounds are denoted by
Nr and depends on the values Nb and Nk. For 128 bit blocks,
Nb=4, Nk=4 and Nr = 10.

128-bit Key Rijndael Encryption

The 128-bit key Rijndael encryption algorithm consists of
an initial data/key addition, then 9 round transformations
followed by a final round.

The Key Schedule expands the key entering the cipher so
that a different round key is created for each iteration, as
shown in Fig. 3.1 below.

Round Transformation

The Rijndael round transformation consists of four
different operations. They are a ByteSub Transformation, a
ShiftRow Transformation, a MixColumn Transformation and
a Round Key Addition. In pseudocode, a round transformation
is:

 Round(State, RoundKey) {
 ByteSub(State);
 ShiftRow(State);
 MixColumn(State);
 AddRoundKey(State, RoundKey);
 }

The final round is similar to a round except that it does not
have the MixColumn(State) transformation:

 FinalRound(State, RoundKey) {
 ByteSub(State);
 ShiftRow(State);
 AddRoundKey(State, RoundKey);
 }

The ByteSub Transformation is a byte substitution operated

on each of the State bytes independently. The lookup table
for substitution, i.e. the S-Box, is constructed by finding the
multiplicative inverse of each byte in GF(28). An affine
transformation is then applied, which inverses multiplying the
result by a matrix and adding to the hexadecimal number
‘63’. The inverse of ByteSub is a byte substitution using the
inverse table.

The ShiftRow Transformation shifts the rows of the State
cyclically by a row dependent amount. Row 0 is not shifted.
Row 1 is shifted over C1 bytes, row 2 over C2 bytes and row
3 over C3 bytes where for Nb=4, C1, C2 and C3 are 1, 2 and
3 respectively. The inverse of ShiftRow is a cyclic shift of the
3 bottom rows over Nb – C1, Nb – C2, and Nb – C3 bytes
respectively so that the byte at position j in row i moves to
position (j + Nb – Ci) mod Nb.

The MixColumn Transformation operates on the columns
of the State. Each column is considered as a polynomial over
GF(28) and multiplied modulo x4 + 1 with a fixed polynomial
c(x), where, c(x) = ‘03’x3 + ‘01’ x2 + ‘01’x + ‘02’. The
inverse of MixColumn is similar to MixColumn. Every
column is transformed by multiplying it with, instead of c(x),
a specific polynomial d(x), where d(x) = ‘0B’x3 + ‘0D’ x2 +
‘09’x + ‘0E’

In Round Key addition, a Round Key is applied to the State
by a simple bitwise EXOR operation. The Round Key is
derived from the Cipher Key by means of the key schedule
operation, which would be described in detail later. The
length of Round Key is equal to the block length Nb.
AddRoundKey is its own inverse. This means when a State is
EXORed with a round key to give a new State, the original
State can be recovered by EXORing the new State with the
same round key.

Key Schedule

The Round Keys, Ki, are derived from the Cipher Key by
means of the Key Schedule and are different for each round
number. The Key Schedule consists of two parts: Key
Expansion and Round Key Selection.

Key Expansion is a process of expanding the Cipher Key
into a linear array of 4-byte words. The length of this array is
determined by the length of data block Nb, multiplied by the
number of rounds Nr plus 1, i.e., Nb * (Nr + 1). Thus for Nb=4
and Nr=10, the length is 44.

Key Expansion starts with the original key being the first
Nk words, say, W0 to W3 for Nk = 4. Then W0 to W3 are
expanded to generate the next 4 words, W4 to W7. W8 to W11

are expanded from W4 to W7 as shown in Fig. 3.2. The
iterations continue until the final 4 words W41 to W43 are

P

K

Key
Schedule

Data/Key
Addition

Rnd
1

Rnd
2

Rnd
9

FinalR
nd

P: Plaintext; K: Key; C: Ciphertext

Fig. 3.1 Illustration of 128-bit Key Rijndael Encryption Algorithm

generated. Each word Wi is the EXOR of the previous word
Wi-1 with the word 4 positions earlier, i.e. Wi-4. Additional
operations are performed prior to expansion in word Wi when
i is the precessor of multiples of 4. Such words need to
undergo the ByteSub, ByteRot and RCons transformations.
The ByteSub transformation is the same as described in the
Round Transformation where individual bytes in the word are
replaced according to S-Box. The ByteRot transformation is
simply a rotation of bytes in a word from (x0, x1, x2, x3) to
(x1, x2, x3, x0). The RCons transformation produces output
which is the EXOR result of the input with a predetermined
constant. The predetermined constant is dependent on the
round number of the current key.

The Round Key Ki is selected from the expanded key for
W[Nb * i] to W[Nb * (i + 1)]. A 10-round design requires 11
round keys (44 words). Round Key 0 is W0 to W3 and is used
in the initial “Data/Key Addition” as shown in Fig. 3.1.
Round key 1 is W4 to W7 and used in round 1, round key 2 is
W8 to W11 and used in round 2 and so on. Finally, round key
10, W40 to W43, is used in the final round.

4. FPGA-BASED IMPLEMENTATION

The Rijndael algorithm can be implemented using a
looping structure where data is iteratively passed through a
round transformation. Several architectural options were
considered. The term Iterative Looping is used for the case
where the core consists of only one round implemented as a
single combinatorial logic block and the cipher must iterate
up to the total number of rounds to perform an encryption.
This approach has a low register-register delay but requires a
larger number of clock cycles to perform an encryption. In
this section, an Iterative Looping design is described.

Development Environment

The FPGA device used for the Rijndael implementation
was a Xilinx Virtex-E XCV1000-6. It is composed of a 64 x
96 array of lookup table based Configurable Logic Blocks
(CLBs), each of which acts as a 4-bit element comprised of
two 2-bit slices for a total of 12288 CLB slices. In addition,
the Virtex-E FPGA Series provides dedicated blocks of on-
chip, dual-read/write port synchronous RAM, with 4096
memory cells, known as Block SelectRAMs (BRAMs). Each
port of the BRAM can be independently configured as a

read/write port, a read port, a write port, and can also be
configured to a specific data width.

The Pilchard board [7] used for interfacing the FPGA with
a host personal computer (PC) uses the PC’s DIMM memory
slot. The DIMM interface offers higher bandwidth, simpler
interface and lower latency than a traditional PCI interface.
From earlier measurements with Pilchard [7], the read/write
transfer rate of Pilchard using an “Uncacheable” memory
type and “movq” instructions was 35 MB/sec (280 Mbit/sec).
The “Uncacheable” memory type guarantees that all reads
and writes would appear on the system bus in the same order
as the program. Compared with the read/write transfer rate of
40 Mbit/sec offered by traditional PCI bus (without DMA),
Pilchard can provide a higher transfer rate and thus a higher
System Throughput. As a result, the Pilchard based Rijndael
encryption on Pilchard can attain higher data rates than a
similar implementation on traditional PCI bus interface.

Rijndael Encryption Core Design

The major components of the Rijndael Core are the
Control Unit, the Round Transformation Unit and the Key
Schedule Unit, as shown in Fig. 4.1.

The Control Unit is a Finite State Machine (FSM) that

controls other components of the core. Recalling the 0th round
is an EXOR operation between the plaintext and the key, the
Round Transformation accepts this result as its input. It
receives the round key from the Key Schedule Unit, in which
the round key are generated in the same clock cycle as the
round transformation. After 11 cycles the Control Unit will
signal that an encryption has been completed and ciphertext
will be output.

In the Round Transformation Unit and Key Schedule Unit,
operations defined in Section III are performed respectively.
The ByteSub transformation employed in both the Round
Transformation and Key Schedule was implemented as a
look-up table (LUT). Since State bytes were operated on
individually, each Rijndael round for a 128-bit block required
sixteen 256 x 8 bit LUTs. In the Key Schedule, LUTs were
also used when words were passed through the S-Box. A
single BRAM could be configured into two S-Boxes, hence,
eight BRAMs were used in each round. For the Key
Schedule, since Round Keys were computed on-the-fly, two
BRAMs were dedicated to Round Key generation. As a

Wi-4

Wi-3

Wi-2

Wi-1

W

Byte Byte RC+
i MOD 4 = 0

4 (Nr + 1) ≥ i ≥ 4

i MOD 4 ≠ 0

+

Fig. 3.2 Key Expansion Algorithm

Figure 4.1 Overview of Rijndael Encryption Core

result, ten BRAMs were required for the Iterative Looping
architecture.

ShiftRow in the Round Transformation and ByteRot in the
Key Schedule require similar operations. They are both
simply hardwired as no logic is involved. The MixColumn
transformation is a matrix multiplication operation. Since the
values in the square matrices are constant elements, this
multiplication can be replaced by several EXOR operations
that are simple to implement in the FPGA. Indeed, the
operation

Y = 03 � X, for X, Y in GF(28)
is implemented as below:

y7 = x7 EXOR x6
y6 = x6 EXOR x5
y5 = x5 EXOR x4
y4 = x7 EXOR x4 EXOR x3

y3 = x7 EXOR x3 EXOR x2
y2 = x2 EXOR x1
y1 = x7 EXOR x1 EXOR x0
y0 = x7 EXOR x0

Also, the operation
Y = 02 � X, for X, Y in GF(28)

is implemented as below:

y7 = x6
y6 = x5
y5 = x4
y4 = x7 EXOR x3

y3 = x7 EXOR x2
y2 = x1
y1 = x7 EXOR x0
y0 = x7

I/O Buffer Design

From Fig. 4.1, it can be observed that an input buffer and
output buffer were included in the design. Both of them were
composed of 16 BRAMs and can store 512 128-bit data
blocks. When a data block is written to Pilchard, it is placed
in the input buffer which is configured as a circular buffer
with separate read and write counters. As long as these two
counters do not equal each other, the Control Unit can signal
the Rijndael core to continue encryption. This process stops
when all the data in the input buffer were read, thus
implementing a first-in-first-out (FIFO) buffer. The writing
and reading within the same RAM from two ports without
conflict was supported by the dual port property of the
BRAM. This feature increased the efficiency of the interface
since transfers from the PC can be overlapped with
computation in the Rijndael core.

Each ciphertext generated was stored in the output buffer.
There was no flag to indicate the buffer is full and thus the
software was responsible for reading the output buffer as
soon as the ciphertext was ready. Similar to the input buffer,
the Rijndael core could write data to the output buffer even
when data was being read from the buffer.

5. UNROLLED DESIGN

Loop Unrolling is where n rounds are implemented as a
combinatorial logic block. This method requires smaller
number of clock cycles to perform an encryption, but results
in a higher register-to-register delay, resulting in a lower
clock frequency. The Rijndael core was implemented with

different degrees of unrolling to compare the performance.
Unrolling of degree one is the same as Iterative Looping.
Unrolling of higher degree requires more hardware resources
but reduces the number of cycles used to perform an
encryption. It also introduces larger register-to-register delay,
thus results in lower clock frequency.

In the Iterative Looping implementation of Rijndael
described in the previous section, there were 11 rounds of
iteration. The first round was an EXOR operation between
plaintext and the key and was different from the other 10
rounds. As a result, only 10 rounds can be unrolled. In order
that cycles have similar critical paths, the degree of unrolling
must be divisible by 10. Hence, the possible degrees are 1, 2,
5 and 10.

Figure 5.1 shows the flow of data in an unrolled design.

The rectangular blocks represent one combinatorial round
implemented in hardware. When the unrolling degree is one
(Unrolled-1), only one round of iteration is implemented in
hardware. Intermediate ciphertext is passed through the same
hardware 10 times to perform one Rijndael encryption. When
unrolled degree is two (Unrolled-2), two rounds of iteration
are implemented in hardware. Ciphertext is passed through
the same hardware 5 times to perform one Rijndael
encryption. In an Unrolled-10 design, all the rounds are
implemented and no iteration is required.

6. TRANSFER OPTIMIZATION

Pilchard, utilizing a DIMM memory slot in a PC, is treated
as a memory device by the computer. Movement of data
between Pilchard and CPU is identical to that between the
real memory and the CPU. The efficiency of data transfers
between memory and CPU depends on both the memory
mode and the instruction set. The original Pilchard design
used the MMX instructions in the Pentium processor to
perform 64 bit transfer operations [7]. In this section,
memory modes and the SSE instruction set are briefly
reviewed.

Memory Mode

In Intel processors Memory Type Range Registers
(MTRRs) are used to control processor access to memory.
Different memory modes have different properties. Some
common modes are Uncacheable, Write-combining, Write-
through and Write-back. In this work, their properties were

Fig. 5.1 Unrolled Designs

explored and the Rijndael system was tested using these
memory modes.

According to IA-32 Intel Architecture Software
Developers’ Manual, there is no caching of system memory
locations in Uncacheable mode. All reads and writes appear
are executed in program order. There is no speculative
memory access. This type of cache-control is useful for
memory-mapped I/O devices. It is the default memory mode
used in Pilchard but can be overridden by programming the
MTRRs.

Similar to Uncacheable mode, the Write-Combining mode
does not cache system locations. There are speculative reads,
which involves reading the contents of target address as well
as that of nearby addresses. It enhances performance when
contents of continuous address are to be read. Writes may be
delayed and combined in the write combining buffer until the
next occurrence of a serializing event. This control
mechanism greatly reduces memory accesses and can be used
in application where order of writes is unimportant.

In Write-through mode, writes and reads of system
memory locations are cached. There are also speculative
reads. Writes are written to a cache line and through to
system memory. Write combining is allowed. This type of
cache control is appropriate when there are devices on the
system bus that access system memory, but do not perform
snooping of memory accesses. It enforces coherency between
caches in the processors and system memory.

Similar to Write-through mode, there is caching of writes
and reads of system memory locations, speculative read and
write-combining in Write-back mode. The write-back
memory mode reduces bus traffic by eliminating unnecessary
writes to system memory. Writes to a cache line are
accumulated in the cache. The modified cache lines are
written to system memory when a write-back operation is
performed. Write-back operations are triggered when cache
lines need to be deallocated, such as when new caches are
being allocated in a cache that is already full. They are also
triggered by the mechanisms used to maintain cache
consistency. This type of cache control provides best
performance, but it requires all devices that access system
memory on the system bus be able to snoop memory accesses
to insure system memory and cache coherency.

The normal memory in a PC is set as Write-back, which
gives best performance. However this memory type is not
applicable to the Rijndael system. In normal memory, data
retrieved from memory is exactly the same value that was
written. As a result, caching can reduce access to memory. In
the case of Pilchard, encryption is to be performed as a side
effect of a memory access. Caching will eliminate necessary
writes to Pilchard. When the user issues a read operation to
get the ciphertext, the original plaintext which is not
encrypted will be returned to user from the cache. Therefore
both Write-through and Write-back type which cache read
and write operations cannot be applied to the Rijndael
system.

The Rijndael core was tested using Uncacheable and
Write-Combining modes. Write-combining gives better

performance because it combines write operations and
performed speculative reads. The Rijndael core reads a buffer
of input data and outputs a buffer of ciphertext for each
encryption, so speculative reads will be correct if done after
the whole output buffer is filled. The performance of the two
memory types will be presented in detail in the “Results”
section..

MMX Technology

In 1997 MMX Technology was launched by Intel to
increase their processor’s power to process multimedia
application. MMX Technology introduces several new
instructions based on a technique known as Single
Instruction, Multiple Data (SIMD). SIMD means that a single
instruction operates on multiple pieces of data in parallel.
This allows programmers to pack several small chunks of
data into a 64-bit register and then use a single instruction to
command the CPU to perform a specific operation on each of
those data elements. The MMX state consists of eight 64-bit
registers (MM0 through MM7). Among all MMX instruction
categories, only data transfer instructions were used. The
MMX registers have two access modes, 64-bit access and 32-
bit access. To transfer 128-bit data block, 64-bit access mode
requires two memory accesses and 32-bit access mode
requires four. Therefore the former was used to obtain better
performance.

In this work, the instruction Move Quadword (movq) was
used to transfer 64 bit data between memory and MMX
registers, or among MMX registers.

SSE Technology

In 1999 when the Pentium III processor was launched, the
most important enhancement was 70 unique instructions,
called Streaming SIMD Extensions. Similar to MMX
Technology, the Streaming SIMD Extensions use single-
instruction, multiple-data (SIMD) capability to manipulate
multiple pieces of data in parallel. Moreover, SSE improves
performance by streamlining cache and memory access. The
new instructions enable applications to pre-fetch specific data
into the L2 cache from main memory. By doing so,
applications can sidestep costly cache misses that can waste
as many as 50 processor clock cycles while the system goes
out to main memory after checking the L2 cache store. In
addition, pre-fetching hides memory latency by allowing the
system to perform pre-fetches even as data is being read into
the processor. The SSE extensions introduced 8 new 128-bit
XMM registers (XMM0 through XMM7) and 70 new
instructions to the instruction set.

In this project, instructions for cache control were used to
transfer data between Pilchard and the CPU. In particular, the
Move Unaligned Four Packed Single-FP (movups) and Move
Aligned Four Packed Single-FP Non Temporal (movntps)
instructions were used. Both commands move four packed
Single-FP from an XMM register directly to a location in
memory. Movntps will bypass the cache hierarchy. These two
commands were used to move data between an XMM register

and a memory location, adapting the MMX-based technique
described in [10] to use the SSE instructions and registers.

7. RESULTS

In this section, resource utilization and throughput of
different unrolled designs are presented and the performance
of our Rijndael implementation for different memory modes
is compared. All results presented in this section were
obtained using timing analysis and implementation reports
generated by Xilinx Foundation Series 3.1i software.

Core Implementation

Figure 7.1 shows the increase in resource utilization as the
degree of unrolling is increased. Note that the relationship is
linear. For the Unrolled-10 case, the design was too large to
fit on our target XCV1000 chip, but a mapping report could
still be generated. For this case, no timing report could be
generated so the performance of that design is not reported.

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

Degree of Unrolling

P
er

ce
nt

ag
e

of
 S

lic
es

 U
se

d

64.89

29.24

9.65

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

Degree of Unrolling

C
or

e
F

re
qu

en
cy

 (
M

H
z)

As can be seen in Figure 7.2, as the degree of unrolling is

increased, more combinatorial delays are introduced,
resulting in a lower maximum frequency.

Figure 7.3 shows the throughput of each design. Although
Unrolled-1 required 11 cycles to produce the ciphertext, it
yielded the highest throughput amongst all the designs.

Unrolled-2 and Unrolled-5 had similar throughput as the
reduced number of cycles of Unrolled-5 was balanced by a
reduction in operating frequency. Therefore, the Unrolled-1
implementation of the Rijndael algorithm achieves the
highest throughput using the least amount of FPGA
resources.

755.12

617.6
623.79

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6

Degree of Unrolling

T
hr

o
ug

h
pu

t
(M

bi
t/

se
c)

The maximum core frequency was 65 MHz. Since each

round was finished in one clock cycle, 11 clock cycles were
needed in a 128-bit key design. As a result, the throughput of
the Rijndael core was 755 Mbit/sec. Throughput calculated
by other researches is listed below in Table 7.1.

 Type Device Area

(CLB)
Throughput

(Mbit/sec)

Gaj [8] IL XCV1000BG560-6 2902 331.5
Dandalis [9] IL XCV1000 5673 353.0
the authors IL XCV1000HQ240-6 702 755.1
Elbirt [4] P XCV1000BG560-4 10992 1937.9
McLoone [3] P XCV3200EBG560-8 7576 3239.0

McLoone [3] P XCV812EBG560-8 2222 6956.0

[KEY]
IL = Iterative Looping
P = Pipelining

In Table 7.1 the throughput of this design is compared with

other implementations. The authors’ implementation was
faster than that of Gaj’s work because Gaj also implemented
the decryptor in the chip. The author’s design was also faster
than a software implementation by Brian Gladman, which
achieved 325 Mbit/sec on a 933MHz Pentium III processor.
Pipelined designs have much higher performance than
iterative designs. However, they cannot be used to implement
feedback modes of operation such as cipher block chaining
(CBC) in which a block is EXORed with the ciphertext of the
previous block before being encrypted, creating a data
dependency. CBC mode offers better security since the same
plaintext is mapped to different a ciphertext depending on its
context.

Fig. 7.1 Relationship between Slice Utilization and Degree of Unrolling

Fig. 7.2 Relationship between Core Frequency and Degree of Unrolling

Fig. 7.3 Relationship between Throughput and
Degree of Unrolling (with BRAM)

Table 7.1 Comparison of 128-bit Rijndael Encryption Implementations.

System Throughput

This throughput of the Rijndael core presented in the
previous subsection was calculated from the maximum
frequency specified in the timing analysis report. It is merely
the highest speed of the encryptor core and is different to the
System Throughout which takes I/O and software overheads
into account.

The System Throughput of the Rijndael core on Pilchard
was measured by encrypting data from a host PC. The testing
environment was consisted of an Asus CUSL2 motherboard
(Intel 815EP chipset) with 933MHz Pentium III processor
and a Pilchard board.

When the software test program was started, all data blocks
were are loaded into memory. Next, the initial time was
recorded and data blocks were written to Pilchard. After
filling the whole input buffer of the Rijndael core, the
program read a buffer of ciphertext from Pilchard. Once the
reading of the ciphertext was completed, the finish time was
recorded and the time elapsed calculated. System Throughput
was calculated by dividing the size of the data transfer by the
time elapsed and was expressed in Mbit/sec.

The host processing interface was first implemented with
MMX instructions. MMX Technology uses MMX registers
which are 64 bits wide. This enables the transfer of 64-bit
data between Pilchard and the PC. Plaintext of different block
sizes was tested to give an average result as illustrated in Fig.
7.4 below.

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600

Number of 128-bit Data Block

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

The System Throughput was approximately 210 Mbit/sec
for data sizes from 1.5KB to 23KB. This throughput was
much lower than that of the Rijndael encryption core and
comparatively closed to Pilchard‘s read/write transfer rate in
Uncacheable memory mode, which was 298 Mbit/sec.
System Throughput was bottlenecked by the transfer rate of
Pilchard in Uncacheable mode.

In order to improve transfer rate of Pilchard, the Write-
combining memory mode was used. In addition, SSE
instructions were used to read data from Pilchard to CPU to
compare performance of MMX and SSE Technology. Two
data blocks with size 1.5KB and 15KB were tested. The
resulted System Throughput was depicted in the following
graphs.

2 1 2 .6 5 2 1 6 .0 0

3 1 9 .4 1

2 1 0 .7 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

U n c a c h ea ble W r it e - c o m bin in g

T
hr

ou
gh

pu
t (

M
bi

t/
se

c)

M M X SSE

2 3 3 .7 3

2 1 5 .3 3

2 5 9 . 9 6

4 5 5 .2 2

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

U n c ac h e a b le W rit e -c o m b in in g

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

M M X SS E

It can be observed from Figure 7.5 that in Uncacheable
memory mode, MMX instruction and SSE instruction gave
similar throughput of 210 Mbit/sec for small file sizes.
However SSE instructions gave higher throughput for larger
transfers whereas throughput remains the same for the MMX
case.

In Write-combining memory mode, for both file sizes,
MMX instructions had higher throughput than in
Uncacheable mode. SSE instructions had much higher
throughput, achieving 319 Mbit/sec in Uncacheable mode
and 455 Mbit/sec in Write-combining mode.

From Figures 7.5 and 7.6, it can be seen that data transfer
is always faster in Write-combining mode than in
Uncacheable mode and that SSE instructions have generally
higher performance than MMX instructions. The difference is
larger for large data sizes.

From this test, it could be deduced that configuring
Pilchard in Write-combining memory mode using SSE
instruction yields the highest throughput. As a result, this
configuration was used to produce Figure 7.7 which
compares the SSE plus write combining mode with the
original MMX plus uncacheable mode for different block
sizes.

Fig. 7.5 System Throughput in different memory range, plain text size 1.5KB

Fig. 7.6 System Throughput in different memory mode, plain text size 15KB

Fig. 7.4 Throughput of Rijndael Algorithm on Pilchard using MMX instruction

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600

Numbe r of 128-bit Da ta Bloc k

S S E in Writ e -combining MMX in Unc a che a ble

From Figure 7.7, it can be observed that throughput
increases with the size of the data block. When data block
size was larger than 400 128-bit values, throughput saturates
at around 450 Mbit/sec. This was very close to the transfer
rate of Pilchard in Write-combining mode, which is 483
Mbit/sec. This was also the highest system throughput
achieved by this project and is significantly faster than the
280 Mbit/sec achieved by our previous DES implementation
using Pilchard which employed MMX instructions and the
uncacheable memory mode [7]. Note that this figure is still
lower than throughput of Rijndael encryption core of 755
Mbit/sec and hence remains the bottleneck in our system.

8. CONCLUSIONS

The aim of this project was to develop a high performance
system for data encryption using the Rijndael algorithm. An
FPGA-based Rijndael core operating at a maximum
frequency of 64 MHz was implemented. It was shown that
placing a single round and iterating over the rounds
(unrolling with a degree of one) gave higher throughput than
unrolled implementations which complete in fewer cycles.
Unrolling with degree one has the added advantage of
requiring the least hardware resources.

To improve the system throughput of Rijndael encryption,
which was bottlenecked by PC to FPGA transfers at 280
Mbit/sec, the Intel Pentium MMX and SSE technologies were
compared. By using SSE instructions together with the write-
combing memory mode, the measured system throughput was
increased from 280 Mbit/sec to 450 Mbit/sec.

REFERENCES

[1] B.Schnier: Applied Cryptography. New York, New York, USA: John
Wiley & Sons Inc., 2nd ed., 1996.

[2] B. Gladman: The AES Algorithm (Rijndael) in C and C++: URL:
http://fp.gladman.plus.com/crytography_technology/rijndael/index.ht
m, 2001.

[3] M. McLoone, J.V McCanny: High Performance Single-Chip FPGA
Rijndael Algorithm Implementations, CHES 2001, pp. 65-76.

[4] A.J. Elbert, E. Yip, B. Chetwynd, C. Paar: An FPGA Implementation
and Performance Evaluation of the AES Block Cipher Candidate
Algorithm Finalists, IEEE Transactions on VLSI, August 2001, vol. 9,
no. 4, pp. 545-557.

[5] V. Fischer, M. Drutarovsky: Two Methods of Rijndael
Implementation in Reconfigurable Hardware, CHES 2001, pp. 77-92.

[6] J. Daemen, V. Rijnmen: The Rijndael Block Cipher AES Proposal,
Document version 2, September 03, 1999 (available from
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf).

[7] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M.
Kwok, M. Y. Wong, K. H. Lee: Pilchard - A Reconfigurable
Computer Platform with Memory Slot Interface, FCCM 2001 (to
appear).

[8] K. Gaj, P. Chodowiec: Comparison of the Hardware Performance of
the AES Candidates using Reconfigurable Hardware: The Third
Advanced Encryption Standard Candidate Conference, April 13-14,
2000, New York, USA.

[9] A. Dandalis, V. K. Prasanna, J. D. P. Rolim: A Comparative Study of
Performance of AES Candidates Using FPGAs: The Third Advanced
Encryption Standard Candidate Conference, April 13-14, 2000, New
York, USA.

[10] SGI, “Optimizing CPU to Memory Accesseson the SGI Visual
Workstations 320 and 540”,
http://www.sgi.com/developers/technology/irix/resources/-
asc_cpu.html

Fig. 7.7 System Throughput of Rijndael (SSE+WC vs MMX+uncacheable)

