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The design of an auto-associative memory based on a spiking neural
network is described. Delays rather than binary values are used to rep-
resent signals and coincidence is used to perform pattern matching. A
complete implementation of the memory on a single FPGA is
presented.

Introduction: In this Letter, the design and implementation of a biolo-
gically-inspired auto-associative memory, which uses the massive
logic resources available in an FPGA to model axonal delay elements
(DEs), are presented. As illustrated in Fig. 1, the system learns a
certain input pattern through a training process. When a partial input
pattern is applied, the complete version of the training pattern is
retrieved and a sustained replay effected.
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Fig. 1 Auto-associative memory

Architecture: We define a pattern as a sequence of pulses. We refer to
the pulses as spikes and each spike has width tspike. The sequence of
pulses is represented by a vector of k elements {x0, x1, . . ., xk21}, with
each xi representing the time between a reference signal and the rising
edge of each pulse [1]. The spiking neural network (SNN) model con-
sists of k neurons. Each neuron contains a coincidence detector driven
by a subset of the other k 2 1 neurons. The input spikes to a neuron’s
coincidence detector are referred to as the context spikes for the given
neuron [2]. The training pattern is treated with wrap-around in the
time domain, i.e. the last spike precedes the first spike. If each coin-
cidence detector receives c context spikes, then a total of k × c program-
mable delay lines are required, as is illustrated in Fig. 2 for the case k ¼
4, c ¼ 2.
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Fig. 2 Network configuration of four-input SNN-based auto-associative
memory with two contexts

Information, i.e. patterns, is stored via programmable delay lines that
interconnect the neurons. As shown in Fig. 3, each programmable delay
line consists of a cascade of m DEs, where m is determined by the
maximum possible delay, dmax. The delay of each DE can be set as
dlong or dshort through the configuration of the control multiplexer
(mux). The long delay is an interconnection of 15 logic elements
(LEs) while the short delay is a direct connection of a single wire.
The total delay of an m-DE delay line, dline, must satisfy mdshort ≤
dline ≤ mdlong. Using the programmable delay lines, the SNN is config-
ured as a feedback network that drives the recurrent activation of the
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stored spike pattern. The feedback connection from a neuron to a
delay line introduces an additional delay of dfeedback. The total delay
imposed on a spike, dtotal, is therefore dline + dfeedback. The coincidence
detector of each neuron is implemented using an AND gate followed by
a D flip-flop (see Fig. 3). The pulse width of each output spike is set to
tspike using a fixed delay element that resets the flip-flop.
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Fig. 3 Detailed architecture of programmable delay lines and output neuron

The training algorithm for the SNN is described in the pseudo code
below and consists of two steps: establishing the correct context
neuron interconnection and setting the correct delays for the program-
mable delay lines:

1. For each Ni spike in the pattern,
† Identify a set of preceding context spikes Nj that triggers Ni

† Make a connection from each context spike neuron Nj to Ni neuron
2. For each context spike Nj of Ni spike,

† Adapt the delay of Nj spike such that it coincides with Ni spike.
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Fig. 4 Amount of delay against different mux configurations
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Fig. 5 Recall of pattern {1, 0, 4, 2} captured on oscilloscope

Voltage 5 V/div.
Time 10 ns/div.

Results: Twelve simple patterns were tested and correct operation was
achieved in all instances both in simulation and in hardware. For
example, for the pattern {1, 0, 4, 2} shown in Fig. 1, each spike has a
6 ns pulse width and the period of the pattern is 5 unit intervals, or
30 ns. For the N0 spike in this pattern, the algorithm makes a 3 connec-
tion from each of the preceding context spike neurons N1 and N2 to the
target neuron N0 through appropriate configurations of the context
muxes. The algorithm then calculates the delay between the two
spikes, i.e. dtotal, and determines the delay mux configuration, sdly, for
achieving this delay. The value of dtotal against sdly was determined
from simulation, and the plot is shown in Fig. 4. The context spikes
N1 and N2 were delayed by 6 ns (sdly ¼ 0) and 12 ns (sdly ¼ 1), respect-
ively, to achieve coincidence and cause triggering of the N0 spike. The
recall of the pattern can be successfully triggered from a partial repres-
entation, e.g. {x0, x1} ¼ {1, 0}. Fig. 5 shows the recall of a pattern
captured on an oscilloscope. Note that N3 spike was triggered first in
response to the input of its context spikes x0 and x1.
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The auto-associative memory was implemented and tested on an
Altera Cyclone II EP2C35 family FPGA, which consists of 33 216
LEs, with 16 LEs per logic array block (LAB). A 400 MHz PLL-
clocked counter and a set of registers are used to capture the timing of
the input pattern. A Nios II soft-processor runs the training algorithm,
reads the spike timings from the registers, and applies appropriate
mux configurations for context neurons connections and delay settings.
The auto-associative memory operates asynchronously. The entire
system utilises 8% (2764/33 216) of the total LEs available on the
FPGA, while the SNN takes up less than 1% (328/33 216). This
implementation was intended to demonstrate the feasibility of the
design and the capacity can be expanded by replicating the SNN for
multiple pattern storage. With the availability of high-density FPGAs
such as Stratix IV with 820k LEs, approximately 2500 patterns could
be stored.

Conclusion: An FPGA implementation of a compact auto-associative
memory is presented. The SNN uses only combinational logic and no
sequential clocking elements; it has the potential to process patterns at
very high speed and low latency, and could potentially be used for
ultra-high performance digital processing designs.
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