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Abstract

Machine learning (ML) has proven highly effective in analyzing data, making decisions,
and solving complex problems, particularly when deriving explicit mathematical models is
difficult. Field-Programmable Gate Arrays (FPGAs) offer a powerful hardware platform
for executing ML tasks at the edge, where rapid decision-making and responsiveness are
crucial. However, deploying ML methods on customized FPGA hardware for real-time
applications involves navigating the trade-offs between latency, accuracy, and flexibility, all
while managing the constraints of on-chip resources and memory. The research is centered on
three primary objectives: (1) enhancing the accuracy of ML accelerators in an area-efficient
manner, (2) integrating these accelerators into a unified system-on-chip (SoC) architecture,
and (3) designing adaptable partial blocks within the SoC to respond to varying environmental
conditions.

At the circuit level, this thesis introduces LUTEnsemble, a specialized LUT-based archi-
tecture optimized for rapid and accurate deep neural network (DNN) inference on FPGAs.
This architecture addresses the significant scaling challenges inherent in traditional LUT-based
DNN approaches, where LUT resource requirements increase exponentially with the num-
ber of inputs. By integrating multiple PolyLUT sub-neurons with adder tree structures and
forming an ensemble of sparsely connected sub-nets, LUTEnsemble enhances both neuron
connectivity and scalability. In comparison to state-of-the-art solutions, LUTEnsemble es-
tablishes new benchmarks for accuracy, latency, and resource efficiency in LUT-based DNN
inference on FPGAs.

The system-level discussion centers on the application of FPGA-based neural networks
for qubit state measurements in trapped-ion quantum information processing. This thesis
examines how the LUTEnsemble and Vision Transformer (ViT) architectures effectively tackle
the challenges of achieving both low latency and high accuracy in this context. Significant
reductions in system latency are achieved through optimized buffering and interface design
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between the electron-multiplying charge-coupled device (EMCCD) camera and the FPGA.
The resulting total detection latency for one- and three-qubit tests on the FPGA demonstrated
a reduction of 119x and 94 x, respectively, compared to the GPU baseline system.

Finally, this thesis explores strategies to enhance the composability of FPGA-based
SoCs. A flexible computing framework for FPGA streaming ensemble anomaly detection
(fSEAD) tasks is proposed. This framework utilizes multiple partially reconfigurable blocks,
known as pblocks, interconnected via an AXI switch. This architecture supports the dynamic
composition of these blocks at runtime, enabling the merging and combining of results to
form an ensemble. Experimental validation on the PYNQ platform, comparing fSEAD
(with ensembles of three sub-detectors: Loda, RS-Hash, and xStream) to an equivalent CPU
implementation across four public datasets, achieved speed-ups ranging from 3x to 8.

This work contributes to the field by advancing FPGA-based ML design across circuit,
system, and tool levels, offering novel solutions for real-time, resource-constrained, and

reconfigurable applications on edge hardware.
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CHAPTER 1

Introduction

1.1 Motivation and Aims

Machine learning (ML) has emerged as a powerful tool for analyzing data, making decisions,
and solving complex problems across a wide range of domains. Moreover, the growing
demand for real-time data processing in applications such as financial trading systems [3],
communication signal processing [4, 5], autonomous robotic agents [6, 7], data analysis in
physics [8], and real-time anomaly detection [9, 10] has driven the deployment of ML models
directly on edge devices. In these areas, real-time data processing is crucial to enable rapid

decision-making and responsiveness.

Integrating advanced ML capabilities into edge devices often requires significant modific-
ations to existing infrastructure and systems, which adds complexity and increases costs.
This challenge underscores the need for more efficient hardware solutions. In recent years,
general-purpose accelerators, particularly Graphical Processing Units (GPUs), have been
extensively used to enhance workload performance. Additionally, there has been growing
interest in hardware specifically tailored for specialized ML applications. In this context,
Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (AS-
ICs) are widely utilized to optimize ML computations and accelerate inferencing at the edge

(see Figure 1.1).

Among mainstream edge ML hardware, FPGAs stand out for their energy efficiency, low
system latency, and greater hardware reconfigurability compared to CPUs and GPUs, as

well as lower development costs than ASICs. However, achieving optimal performance on
1
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FIGURE 1.1: (a) A trade-off between different hardware architectures: CPU,
GPU, FPGA, and ASIC. (b) Data are from Market Research Report (Ref. [11])

model-1

model-2 ——> Predictions

model-3

FIGURE 1.2: Ensemble Technique

customized ML tasks with FPGAs poses significant challenges. These include the limited
on-chip resources, memory constraints, and the static nature of many FPGA designs, all of

which must be carefully balanced when implementing edge ML models on this hardware.

In designing ML accelerators, achieving high accuracy while managing resource constraints
is a primary objective. Ensemble methods, which combine multiple weak sub-models into a
more accurate overall decision, are frequently employed to address this challenge [12, 13] (see
Figure 1.2). These methods not only improve accuracy but also provide scalability, allowing
for the integration of an arbitrary number of sub-models depending on available resources

and performance requirements.

Integrating ML accelerators with other functional blocks in FPGA-based systems adds
further complexity. Effective interaction with external interfaces and peripherals—such

as memory, sensors, or communication modules—is crucial for real-time data processing and

2
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FIGURE 1.3: Thesis structure.

environmental interaction. Although modern GPUs offer higher computational capacity, a
well-designed FPGA can outperform a GPU in edge tasks by directly accessing data from

peripherals and minimizing buffering delays that often impede CPU and GPU performance.

Additionally, most FPGA-based ML systems are static, which limits their adaptability to
evolving requirements. Partial reconfiguration addresses this issue by allowing specific re-
gions of the FPGA to be reprogrammed without affecting the entire system, thereby enhancing
hardware reuse and adaptability. This capability underscores the need for designing compos-
able hardware that can dynamically reconfigure to meet varying operational demands and

adapt to the evolving needs of complex, real-time systems.

1.2 Contributions

This thesis emphasizes specialized optimization at the circuit, system, and tool level to
meet the unique demands of implementing ML-aided tasks on FPGAs. A summary of each

contribution is encapsulated in Figure 1.3.

First, to achieve both fast and accurate deep neural network (DNN) inference, we introduce a

LUT-based neuron architecture for FPGAs, named LUTEnsemble. Traditional LUT-based
3



DNNSs often sacrifice accuracy to achieve ultra-low latency due to the extreme sparsity needed
to keep them within manageable sizes. LUTEnsemble overcomes this challenge to enhance
accuracy by integrating multiple PolyLUT [14] sub-neurons using an adder tree structure and
assembling them into an ensemble with sparsely connected sub-networks. To the best of our
knowledge, for similar accuracy, LUTEnsemble produces the best-reported FPGA latency and
area trade-off on the benchmarks tested. Additionally, it provides the advantage of improved

uncertainty estimation accuracy.

Next, we address a specific application: qubit state measurements in trapped-ion quantum
information processing. This thesis investigates how FPGAs and integrated neural networks
can solve challenges in this field by delivering low latency while maintaining high accuracy.
Two acceleration approaches are explored: the previously mentioned LUTEnsemble and a new
Vision Transformer, designed using high-level synthesis (HLS). These accelerators are tailored
for low-latency and high-accuracy solutions, respectively. To handle system latency with an
electron-multiplying charge-coupled device (EMCCD) camera as the sensor peripheral, we
establish a direct interface between the FPGA and the EMCCD camera, eliminating buffering
and interface overheads. This setup results in a total detection latency reduction of 119x and
94 x for one- and three-qubit tests compared to the GPU baseline system, which relies on the

peripheral component interconnect express (PCle) for data movement.

Finally, this thesis explores strategies to enhance the composability and scalability of FPGA-
based SoCs. We introduce a flexible computing framework for FPGA streaming ensemble
anomaly detection (fSEAD) tasks. It incorporates multiple partially reconfigurable regions,
called pblocks, each assigned a specific function. These pblocks are interconnected via an AXI
switch, enabling arbitrary composition and merging of results at runtime to optimize FPGA
resource utilization and accuracy. Leveraging reconfigurable Dynamic Function eXchange
(DFX), the detector can adapt to evolving environmental conditions. We validate this approach
on PYNQ [15] by comparing fSEAD with an equivalent CPU implementation across four

public datasets, achieving speed-ups ranging from 3x to 8.



1.3 Thesis Structure

The main contributions of this thesis have been previously published in the following refer-

€nces:

e [1] Binglei Lou, Richard Rademacher, David Boland, and Philip Leong. "PolyLUT-
Add: FPGA-based LUT Inference with Wide Inputs", 34th International Conference
on Field-Programmable Logic and Applications (FPL), 2024.

e [2] Binglei Lou, David Boland, and Philip Leong. "fSEAD: A Composable FPGA-
Based Streaming Ensemble Anomaly Detection Library." ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 2023.
The thesis structure for each chapter is given below:

e Chapter 2 provides background on (1) machine learning: neural networks, anomaly
detection, and ensemble methods, (2) FPGA design workflows, and (3) FPGA-aided
machine learning on quantum computers.

e Chapter 3 describes a hardware design for a fast and accurate lookup table-based
DNN implementation (Ref. [1]).

e Chapter 4 proposes a low latency FPGA control system for real-time machine
learning-based qubit detection in trapped-ion quantum computing.

e Chapter 5 investigates approaches to enhance the composability and scalability of
FPGA-based hardware design (Ref. [2]).

e Chapter 6 conclude this thesis.



CHAPTER 2

Background

This chapter provides a brief background on machine learning and its hardware implementa-
tion. It begins with a discussion of the theory and descriptions of neural networks, anomaly
detection, and ensemble methods. Following this, the chapter explores the mainstream work-
flow of deploying machine learning on FPGAs. Finally, it delves into the background and
motivation for using FPGA-aided applications in physics experiments, specifically focusing

on real-time machine learning-based qubit detection in trapped-ion quantum computing.

The chapter is organized as follows: In Section 2.1, neural networks and anomaly detection
are presented as two representative methods in the machine learning category. Additionally,
ensemble methods are introduced as a model augmentation technique to enhance the per-
formance of both neural networks and anomaly detection tasks. In Section 2.2, the workflow
of deploying machine learning on FPGAs is discussed, with the tool of dynamic partial
reconfiguration discussed as a special case. In Section 2.3, the background of trapped-ion
quantum computing and the significant role FPGAs can play in its qubit detection process
are briefly introduced as a concrete application. This section highlights how FPGA-based
machine learning solutions can meet the low-latency and high-accuracy requirements of this

task.



2.1 Machine Learning

2.1.1 Neural Network

This section briefly describes the background of two well-known deep neural network struc-
tures. First, the Multilayer Perceptron (MLP) is introduced as a dense neural network. It
was chosen because it is the simplest universal approximator, i.e., it can approximate any
continuous function [16]. Then, we introduce Vision Transformers (ViTs), which are designed
to process structured grid data such as images. ViTs rely on the self-attention mechanism
from transformer models, which were originally developed for natural language processing
(NLP) tasks [17]. ViTs divide an image into patches and treat each patch as a ‘token’, sim-
ilar to words in a sentence. Through layers of self-attention, ViTs can model long-range
dependencies and global context, leading to state-of-the-art performance on various image

recognition benchmarks [18, 19].

Multilayer Perceptron (MLP)

Given the simplicity of the MLP, both inference and training processes are covered. This
section details the Forward and Backward passes, corresponding to neural network inference
and training phase respectively, and the Stochastic Gradient Descent (SGD) is discussed as

the training optimizer.
Forward path:

Figure 2.1 shows an example of an MLP structure with the colors green, orange, and blue
representing the input layer, hidden layers, and output layer, respectively. The MLP has a
total of L layers. Each layer implements the vector function ! : RM — RN+t (N is the
inputs number of the [** layer). We denote the weights for the ['* layer as w! € RN+ XN,
and the bias b! € R¥i+1, The result of the linear transformation of /*" layer is described by
z! € RM+1 and a! € RN+t is the result of the non-linear transformation applied to z'. To

process the computation, it multiplies the activation inputs of the previous vector a'~! by
7
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FIGURE 2.1: The block diagram of MLP.

the trained weights for the layer w', adding a bias b, and passing the result z' through a

non-linear activation function o.

Specially, for an input a” = x, the first layer is computed as z! = w'x + b'. The final output,

y, is equal to z”. The forward path is given as Eq. (2.1) to Eq. (2.4).

a’ =x (2.1

z' = wla™t + b (2.2)
a' = o (2) (2.3)

y =zt (2.4)

Backward path:

The weights w'! and biases b’ form model parameters @ that are updated during the training

process, i.e., 0 = {{w'}, {b'}}. These can be found using gradient descent-based algorithms,
8



with stochastic gradient descent (SGD) being commonly used one [20, 21]. The back-
propagation algorithm computes the error/activation gradient (i.e., the derivative of the cost
function with respect to backward activations), using the chain rule from the last to the first
layer [22]. This can be achieved through outer products of the weight gradient and forward
activations to avoid iterative calculations of intermediate terms when deriving the weight

gradient. The process is described mathematically in Eq. (2.5) to Eq. (2.8).

5" = Va.Coo' (z") (2.5)
5l — ((Wl+1)T5l+1> @OJ (Zl) (26)
oC

= 5 (2.7)
oC
Sl = a1y (2.8)

Computation of the gradient of the output layer 5%, requires the element-wise multiplication
(®) of the partial derivatives of the cost function C with respect to the output activation
(VaC = 0C/dal), and o’ (z"), as given in Eq. (2.5). To back-propagate this to the I" layer,
we multiply the transpose of the relevant weight matrix w'*! by the gradient 6'*!, and then
compute its Hadamard product with ¢’(z!), as shown in Eq. (2.6). This is repeated for all
layers of the network. Finally, Eq. (2.7) and Eq. (2.8) give the partial derivatives with respect
to the weights and biases 9C/0w' and C/0b! from §' and a'~!.

Training Optimization:

A comprehensive discussion of various neural network optimizers can be found in Ref. [23].
This section introduces stochastic gradient descent as an example of an optimizer. SGD
estimates the overall gradient using a randomly chosen mini-batch. To enhance the conver-
gence speed of SGD, one of the most popular optimization mechanisms—momentum—is
introduced as well [24]. Here, we discuss the same momentum scheme as implemented in

PyTorch [25].



The SGD algorithm begins by randomly selecting m training inputs (m refers to batch size
here and is usually small). We label these random training inputs as X, Xo, ..., X,,, and
refer to them as a mini-batch of training data. For a given layer-/, the weights and biases are
updated according to Eq. (2.11) and Eq. (2.12), where w;; and w; represent current and
previous weight respectively, I is the learning rate, vy, ., and vy, , represents the current
‘velocity’ vectors for weights an biases, computed by Eq. (2.9) and Eq. (2.10). The partial
derivatives of the cost function with respect to the weights and biases for mini-batches of

training inputs are averaged to compute the relevant velocity.

1 <~ ICx,

Vi, = vl 4 — as (2.9)
tom i Owy
1 = OCx;,

Vb =BVt > b (2.10)

j=1
wh, =wl—Irx vivéﬂ (2.11)
bl =bl—Irxvi, (2.12)

t+1

Vision Transformer (ViT)

Vision Transformer is a promising neural network for computer vision that is based on
Transformers. After the general Transformer architecture was introduced in 2017 [17], it
gained widespread attention and has become one of the most promising neural network
architectures in the field of Natural Language Processing. The Transformer tries to capture
relationships between different words of a text to be analyzed. The ViT architecture, where
images are processed without the need for convolution layers, was proposed in 2019 [18] and
later empirically evaluated [19]. ViTs capture the relationships between different portions of an
image by breaking down input images into a collection of patches that, once transformed into
vectors, are seen as words in a normal Transformer. In recent years, the Transformer model
has demonstrated superior performance and greater efficiency compared to Convolutional
Neural Networks (CNNs) and residual network (ResNet)-based CNNs in image classification

tasks [26]. For instance, according to Ref. [19], ViT models pre-trained on the JFT-300M
10
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FIGURE 2.2: Block diagram of ViT.

dataset outperform ResNet-based baselines on all tested datasets (e.g., ImageNet, CIFAR-100,
and CIFAR-10, etc.), while taking substantially less computational resources to pre-train. The
test accuracies for model ‘“ViT-H/14” versus ‘ResNet152x4’ are reported as follows: 88.55%
vs. 87.54% on ImageNet, 94.55% vs. 93.51% on CIFAR-100, and 99.50% vs. 99.37% on
CIFAR-10.

In what follows, we detail the working principle and architecture of the ViT, whose block
diagram is illustrated in Figure 2.2. The 2D input image of size x € R”*W is first reshaped
into a sequence of flattened 2D patches x, € RV*P *, where (H,W) is the resolution of
the original image and (P, P) is the resolution of each image patch. N = HW/P? is the
resulting number of patches and also serves as the effective input sequence length for the
Transformer. As formulated in Eq. (2.13), we use x;; € RF 2, n = 1,2,.., N to represent
N independent patches. The flattened patches are then sent to a single feed-forward layer

RPQXD

that contains an embedding matrix E € , where D is a constant latent vector size

throughout all subsequent Transformer layers. A learnable embedding 28 = Xass 18 alsO
11



attached to the sequence of embedded patches to integrate global information from the image
for the final classification task. For a general zfggjf , layer corresponds to the layer index, and
index corresponds to the index of the inside component. Finally, the standard learnable 1D
position embedding, E,,, € RY*+D*P is added to the patch embedding to retain positional
information. The resulting sequence of embedding vectors z, serves as an input to the

following Transformer block.

Each Transformer consists of three major processing elements: Layer Norm (LN), Multi-

headed Self-Attention (MSA), and multi-layer perceptron '. Additionally, blocks within the

Transformer have connections to one another (see Eq. (2.14) and Eq. (2.15)). The final MLP

block, also referred to as the MLP head, corresponds to the transformer’s output. Categorical

labels are provided by a softmax function: o (x;) = e*/ (g:l e”i), which provides a probability
iz

distribution indicating the likelihood that the predicted oatput belongs to each target label.

20 = [Xetass: XoE; 2E; -+ ;xVE] + E,,,,,E € RF*P E,,, e RVFDXD (2.13)
) =MSA (LN (z_))) + 2.1 (2.14)

z; = MLP (LN (z))) + Z/; (2.15)

y = LN (z}) (2.16)

Output = softmax(yW, +b, )  (2.17)

The MSA comprises several self-attention (SA) blocks, concatenate, and linear layers (see
Figure 2.3(a)). The SA is at the heart of the Transformer and is composed of linear layers,
matrix multiplication and a softmax function (see Figure 2.3(b)). The SA is formulated in
Eq. (2.18) and Eq. (2.19), where @), K, and V correspond to queries, keys, and values

respectively. For standard SA, head;, Q;, K;,V; € RWHDXD gre calculated using matrix

IThis MLP notation inside ViT is different from the standard MLP discussed in Section 2.1.1. It contains
three layers: an LN, Linear, and a Gaussian Error Linear Unit (GELU [27]) non-linearity, which is unformulated

in this chapter for simplicity. The LN is formulated as LN (x;) = %(17\/%‘“) + 3; where i, is the mean of the

input vector x, 0320 is the variance of the input vector z, € is a small value to avoid division by zero, and ~y; and 3;
are the i trainable scaling and shifting parameters respectively.

12
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FIGURE 2.3: Block diagram of multi-headed self-attention in (a) and self-
attention in (b).

multiplications of an input sequence z € RW+Y*P with weight matrices W g;, Wi, Wy; €
RP*P (see Eq. (2.18)). The Attention function is defined in Eq. (2.19), where d is the
dimension of the queries/keys/values. It is also important to note that multiple blocks
of SA, referred to as heads, can be used together. This allows for each head to attend
to information relating to a different hidden characteristic that refers to MSA. The MSA,
illustrated in Figure 2.3(a), is an extension of SA in which H parallel heads are operated and
project their concatenated outputs. The MSA is defined in Eq. (2.20) and Eq. (2.21), where
W, € REXDxD,

Qi = Zlfleiu Ki=2_1Wg;, Vi=2_1Wy; (2.18)
T
Attention(Q), K, V') = softmax \%4 (2.19)
(@ ) ( Ja )
head; = Attention(Q;, K;, V;) (2.20)
MSA(z;_;) = Concat(head,, ..., heady ) Wo (2.21)
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Finally, the output of the L-th transformer layer, z;,, is processed to produce the final output.
The class token y is usually used for this purpose in classification tasks, where W,, € RP*,

b, € R¥ are learnable parameters, and K is the number of classes.

2.1.2 Anomaly Detection

Anomaly detection is a key machine learning task, which refers to the automatic identification
of unforeseen or abnormal samples embedded in a large amount of normal data. It can be
used for diverse applications, including fault detection in surveillance systems and financial

transactions, network security, aircraft, or potential risks in health data [28, 29].

Figure 2.4 and Figure 2.5 demonstrate two different anomaly detection scenarios. The top
side of Figure 2.4 is a time series where anomalies occur where the amplitude is notably
higher. The bottom part shows a running anomaly score, with the bars in red indicating an
anomalous region of the time series. In Figure 2.5, the normal data are shown in blue, with

the outliers being in brown.
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FIGURE 2.4: Anomaly Detec- FIGURE 2.5: Anomaly De-
tion Case-1. tection Case-2.

From the data processing perspective, we distinguish between static and streaming anomaly
detection types. Static detectors usually operate on a relatively large batch of data before
performing information extraction and feature analysis to identify rare items, events, or
observations from the general distribution of a population. Representative methods include

k-Nearest Neighbors (kNN) [30], Local Outlier Factor (LOF) [31], and Principal Component
14



Analysis (PCA) [32]; for a more comprehensive collection of static methods, we refer the
reader to the SUOD [33]. While batch processing can lead to high throughput and accuracy,
it is unsuitable for systems requiring real-time performance since the computing resource

requirements and latency increase with batch size.

In contrast, streaming methods only store and process a window of recent instances [29,
34]. This is more amenable to achieving accurate anomaly scores under limited memory,
processing, and time constraints. Moreover, the algorithms are designed to facilitate more
lightweight and potentially real-time implementations. A group of algorithms that support
streaming anomaly detection processing includes, but is not limited to, ensemble-centric
methods [35, 36, 37], tree-based methods [38, 39, 40], kernel-methods [29], as well as neural

network-based solutions such auto-encoders [41] and adversarial models [42].

Real-time anomaly detection is critical in applications where timely identification of unusual
patterns is essential for preventing failures and ensuring security. FPGAs are particularly

well-suited for this task due to their low latency and ability to handle high data throughput.

2.1.3 Ensemble Techniques

Ensembles are a class of methods that combine weak sub-models to collectively form a
more accurate decision by utilizing diversity in the sub-models [12, 13]. Each sub-model
in an ensemble can be data-independent and structure-identical. The first feature makes
it naturally amendable for parallel processing, while the latter provides the flexibility to
assemble arbitrary numbers of sub-models into an ensemble according to the computational
resources and desired accuracy. The ensemble method can boost performance for both neural

networks and anomaly detection.

Example: Neural Network

The ensemble has been shown to be able to boost predictive performance, e.g., classification

accuracy on ImageNet dataset [43] and Kaggle contests [44]. The neural network-based
15



ensemble is further investigated in Ref. [45] with deep ensemble proposed. Taking im-
age classification as an example, Figure 2.6 shows an inference implementation of deep
ensemble with an ensemble size of £. The training process (omitted in this figure) initial-
izes the training parameter 6, of each sub-net randomly, and the data points are also randomly
shuffled to generate ensemble diversity. In inference, I copies of a single image are fed into &
feedforward passes, each of which predicts the probabilities of a class. Finally, these are com-

bined via averaging to produce the predicted probabilities p(y|z) = E~* Zle po. (ylx, 0.).

E feedforwards 2
K @ —— E

8

FIGURE 2.6: Diagram of the deep ensemble neural network. This ex-
ample improves diversity using £ independent feedforward passes of the same
input. The final prediction is estimated by combining £ predictions on the
output.

Each ensemble member can be trained in parallel without interaction, making this approach
suitable for distributed and parallel computing. The major limitation, however, lies in the
requirement for multiple feedforward passes, leading to an amplified number of computation
delays and memory storage. Additionally, ensuring diversity among the individual neural
networks within the ensemble poses another challenge. While random initialization and
shuffling can help introduce diversity, they may not always be adequate, especially in complex

datasets where subtle patterns may require nuanced representations.

An efficient solution to the above-mentioned multiple feedforward passes problem is the
multi-input multi-output (MIMO) architecture [46]. This achieves the advant-
ages of ensemble methods with minimal computational overhead. A MIMO ensemble allows a
single model to accommodate multiple sub-networks, with each being independently trained.
This enhances model robustness with minimal additional computational requirements. Follow-
ing the same application, Figure 2.7 shows an MIMO with an ensemble size /' = 2. The main

challenge in MIMO ensembles is achieving diversity, e.g., its performance diminished when
16
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FIGURE 2.7: Diagram of MIMO ensemble neural network. E is set to 2 in

this case; diversity among this ensemble is guaranteed from 2 compact sparse
sub-models inside the single feedforward pass.

E > 2. This necessitates carefully designed augmentation techniques and structural optimiza-
tions. For instance, Ref. [47] proposed mixed sample data augmentations—particularly with
rectangular CutMix patches—enhancing results by making subnetworks stronger and more
diverse. Ref. [48] proposes the addition of an early-exits ensemble to the MIMO architecture
with inferred depth-wise weightings to produce multiple predictions for the same input, giving

a more diverse ensemble.

Example: Anomaly Detection

An example of applying ensemble to anomaly detection is illustrated in Figure 2.8, which
demonstrates an architecture for streaming ensemble anomaly detectors (SEADs), where each
sub-detector inside SEAD takes a stream of input data and produces a stream of transformed
outputs which indicate the anomaly scores. Averaging is used to compute the final score from
all sub-detectors, or a threshold can be applied to translate this averaged score to a Labels
(anomaly or no anomaly). While a simple ensemble could be multiple instances of the same

detector, a more powerful ensemble will utilize different detectors.

An easy-to-use scalable library allows one to explore the performance of ensembles, many of
which have been developed. Examples of anomaly detection packages include: ELKI Data
Mining [49] and RapidMiner [50] in Java; Outliers [51] in R; SUOD [33], PyOD [52] and
PySAD [34] in Python. Aside from their differences in programming languages, different

libraries are also tailored to different kinds of anomaly detection, e.g., PySAD focuses in
17
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FIGURE 2.8: Sample Architecture for SEAD Methods.

particular on a framework of streaming anomaly detections in Python, whereas only static

approaches can be accessed by SUOD and PyOD.

In addition to supporting comprehensive detectors, the libraries provide the ability to combine
the output of these models in different ways beyond simply taking the average or maximum
across all the base models. A software toolkit combo [53] contains more than 15 model
combination methods in Python, including basic generic and global methods (like Averaging,
Maximization, Weighted Averaging, Feature Bagging ezc. [54, 55, 56]) and dynamic selec-
tion/combination models (such as DCS [57] and LSCP [58] etc.). Developers can implement

particular combination techniques according to specific system requirements.

2.2 FPGA Design Workflows

Table 2.1 provides a comparison between CPUs, GPUs, and FPGAs [59, 60, 61]. CPUs were
originally designed as the processing unit for general-purpose computing tasks, focusing
on sequential operations and versatility. GPUs, on the other hand, were initially intended
for rendering graphics and images. Over time, they have evolved into powerful parallel
processing units and become a popular choice for deep neural networks, thanks to their high
performance for data-parallel computations. Although they have specialized architectures,

they are supported by standardized tools and libraries like CUDA and OpenCL.

While FPGA architectures were not initially designed with machine learning as a primary

focus, well-designed FPGA hardware offers significant advantages in energy efficiency,
18



TABLE 2.1: Pros and Cons of CPU, GPU and FPGA

Hardware | Speed | Developemnt Proficiency | Energy Efficiency | Hardware Flexibility
CPU low high medium X
GPU high high low X
FPGA high low high v

latency, and flexibility for specialized machine learning applications. However, FPGAs still
lag behind general-purpose hardware like GPUs and CPUs in terms of programming ease.
This section reviews the mainstream FPGA programming workflow, highlighting its evolution

from low-level to high-level design abstractions over time.

Register-Transfer Level (RTL) languages like VHDL and Verilog were the norm in the early
stages. Despite their precise control over hardware, these languages demanded substantial
expertise and were time-consuming, which led to the development of High-level synthesis
(HLS) tools. HLS tools, such as AMD/Xilinx Vivado HLS [62], emerged as a solution,
enabling FPGA designs to be written in higher-level languages like C/C++. Intel also provides
tools similar to Vivado HLS, such as the Intel HLS Compiler [63], which supports high-
level synthesis using C++ to generate optimized hardware description code. Building on
the HLS platform, the hlsdml framework offers a promising approach to bridge the gap
between machine learning software frameworks and FPGA HLS tools [64]. hls4dml enables
developers to train machine learning models in Python using popular libraries like TensorFlow
or PyTorch and then automatically generate synthesizable HLS code. This development marks
a significant step towards democratizing FPGA programming, making it more accessible
to a broader audience. MATLAB HDL Coder [65] provides similar functionality, allowing
MATLAB code to be directly converted to VHDL or Verilog, thereby streamlining the FPGA
programming process. OpenCL [66], a parallel programming framework, has been widely
adopted for FPGA programming, particularly for accelerating compute-intensive applications.
Many FPGA vendors offer OpenCL support, such as Xilinx’s SDAccel and Intel’s OpenCL
SDK.

To further simplify FPGA programming, several new frameworks and tools have emerged,
each focusing on enhancing FPGA-based applications through advanced design method-

ologies. QKeras [67] and QPyTorch [68] are not FPGA-specific but are useful training
19



frameworks designed for quantizing neural networks. QKeras targets the Keras framework,
while QPyTorch is tailored for PyTorch. These tools enable developers to train neural net-
works with reduced bit precision, optimizing them for FPGA acceleration. Complementing
these efforts, Brevitas [69] serves as a versatile PyTorch library focused on training neural
networks with arbitrary bit-widths. It offers flexibility in quantization schemes and enables
developers to explore various precision levels to balance between model accuracy and resource

utilization on FPGAs.

On the other hand, FINN [70] is a framework for designing FPGA accelerators based on
binarized neural networks. By leveraging binary quantization, FINN significantly reduces
model size and computational complexity, making it well-suited for resource-constrained
FPGA deployments. Similarly, DNNBuilder [71] is an automated tool for building high-
performance DNN hardware accelerators on FPGAs. It bridges the gap between fast DNN
software construction and slow hardware implementation through novel techniques such as
high-quality RTL components, fine-grained pipeline architecture, and column-based cache
schemes. DNNBuilder enhances throughput, reduces latency, and optimizes FPGA resource

utilization, demonstrating significant performance improvements on various DNNs.

These tools provide a comprehensive suite for designing and optimizing machine learning for

FPGA deployment.

2.2.1 Special Case: Dynamic Partial Reconfiguration

FPGA technology provides the flexibility to modify a hardware implementation without
re-fabrication. Partial reconfiguration (PR) takes this flexibility a step further, allowing
dynamic changes to an active design. This requires implementing static logic and multiple
Reconfigurable Partitions (RPs) with various Reconfigurable Modules (RMs). The RP is the
level of hierarchy within which different RMs can be implemented, and an RM is the netlist
or HDL description that is implemented within an RP. Generally, multiple RMs with the same
interface exist for a specific RP. Dynamic Function eXchange refers to a Xilinx tool flow that

achieves the partial reconfiguration [72, 73].
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Figure 2.9 illustrates the basic premise of partial reconfiguration. The grey area of the FPGA
block represents static logic, and the blocks marked as Reconfig Block ‘A’ and Reconfig
Block ‘B’ represent the RPs. The functionality implemented in Reconfig Block ‘A’ can be
modified by downloading one of several partial BIT files: Al.bit, A2.bit, or A3.bit; similarly,
the functions implemented in Reconfig Block ‘B’ can be modified by one of B1.bit to B4.bit.

Dynamic partial reconfiguration (DPR) on FPGAs has been used for numerous FPGA ap-
plications, including video processing [74] and cognitive radio [75]. For FPGA-based neural
network implementation, DPR can also play a significant role. One approach involves splitting
the NN into chunks consisting of a few layers, which are then executed separately using
DPR to upload and process the next chunk. This approach minimizes the resource usage of
the accelerator [76]. Another study used the same hardware resources for each convolution
layer for lower area consumption, which was executed sequentially. However, the classifier
throughput was significantly affected by the DPR overhead [77]. DPR can also be used in
low-power applications by adjusting power consumption according to the power level of
the battery [78]. Ref. [79] use DPR to select convolutional filters based on class datasets to
improve classification performance, although changing the kernel filter size at run time may

be inefficient using DPR [80].

Overall, DPR has emerged as a versatile technique for optimizing FPGA-based applications,
with its effectiveness depending on the specific problem and design choices. Further research is
needed to understand better the trade-offs involved and identify the most effective approaches

for each use case.
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2.3 FPGA aided Machine Learning on Quantum Computers

Machine Learning is increasingly used in physics experiments to enable powerful repres-
entation abilities in data processing and analysis [81, 82, 83, 84, 85]. Figure 2.10 gives an
example of ML-aided qubit detection in a trapped ion system. FPGA plays a critical role in
accelerating this system through hardware-optimized ML implementation and an efficient
image capture interface between ML and its peripherals, such as an Electron-Multiplying

Charge-Coupled Device (EMCCD) camera in this context.

Following the example in Figure 2.10, this section is introduced with three parts: trapped ion,

qubit measurement, and machine learning solutions.

: |"I| image qubit
<.E| ia— —_— i P in i | ——
° Cameralink capture; detection result: 011

Trapped lons EMCCD FPGA

FIGURE 2.10: Example of FPGA-aided Qubit Detection in Tapped-Ion. The
photons scattered by the ions are collected and magnified by optical elements
and directed toward an EMCCD camera. These images are then transmitted to
an FPGA via the Cameralink protocol [86]. The FPGA processes the images
in real time, and an embedded classifier determines the qubit states.

2.3.1 Trapped-Ion

Trapped ions are one of the leading platforms for quantum information processing. It leverages
the unique properties of ions—atoms with an electric charge due to the loss or gain of

electrons—which are confined using electric and magnetic fields.

The fundamental unit of quantum information is the ‘quantum bit’, or ‘qubit’, which is the
quantum mechanical analog of the classical ‘bit’. Qubits are encoded in the electronic states

of the trapped ions and may exist in two distinct quantum states, labeled |0) and |1).

Before experiments, the qubit is initialized into a known state |0). After quantum compu-

tations, the state of the qubit is measured using state-dependent fluorescence. Detailed in
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FIGURE 2.11: Electronic level structure of "*Yb*. The 369.5 nm transition
is used for Doppler cooling to near the motional ground state and for qubit
measurement. The state is measured by detecting photons from scattering
from the separate lasers on this wavelength. The 2.5} /2 hyperfine splitting (12.6
GHz) defines two measurable qubit states: bright and dark. Quantum gate
operations are performed using an off-resonant 355 nm optical transition (not
shown).

Figure 2.11, the target experiment ion of this thesis is illuminated with a 369.5 nm detection
laser beam that drives the |*S; 5, F = 1) to |*Py )5, F = 0) transition (see Figure 2.11). The ion
will interact with the detection beam and fluoresce if the qubit is in the |1) state. However, if
the qubit is in the |0) state, the ion will not fluoresce since the detection beam is off-resonant.

Therefore, the qubit’s state can be inferred from the number of emitted photons.

2.3.2 Qubit Measurement

Qubit state measurements are an integral part of quantum information processing. Quantum
systems are highly susceptible to errors from decoherence [87, 88], and the error correction
system must detect and correct them before they propagate and accumulate above a certain
threshold. This is a key ingredient to realizing a fault-tolerant quantum computer [89, 90]
and involves error syndrome measurements of qubits followed by in-sequence, conditional
corrective operations. For these strategies to be effective, the underlying qubit state meas-
urements must be accurate to ensure the correct identification of errors and rapid enough
to outpace the decoherence times of qubits. Another driver for fast qubit detection is that

classification latency should be minimized so as not to limit the quantum computer’s total
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clock speed. This requirement imposes two challenges for qubit measurement per single-shot

operation: high fidelity and low latency.

TABLE 2.2: Related works with reported qubit detection latency

Reference Ton-trap Experiment Measurement Detector readout latency* detection latency Total latency
Myerson et al. [91] Ca™ PMT Maximum Likelihood - 145 ps
Halama et al. [92] Be't EM-CCD Thresholding 2ms 400 ps
Burrell et al. [93] Ca® EM-CCD Thresholding - 400 ps
Pino et al. [94] Yb — Ba Q-CCD Thresholding - 120 ps 133.35 ms
Jeong et al. [85] Yb™ EM-CCD ResNet*

x: The readout latency includes frame grabber latency and cameralink data movement latency.
*: No latency aspect reported for the ResNet-based solution.

In the literature, a reasonable qubit detection latency is at the microsecond (y.s) level, while the
coherence time could be the second (s) level [95, 96]. Table 2.2 presents the qubit detection
latency in modern trap-ion computers with different, where 120-400 ps were reported for
different setups. In particular, Ref. [94] also reported the total time of 133.35 ms for an ‘N=6

QV Circuit’ example, with qubit detection consumes 120 ps.

In this thesis, fluorescence from ions is collected onto an EMCCD camera [97] which converts
the photons into a digital signal (see Figure 2.12). This camera has a Wx H =512x 512
‘image area’, where each pixel has a single photon sensitivity. The EMCCD operates by
Frame Transfer, so images captured on the exposed sensor are transferred to a storage area by
moving rows of pixel charges downwards. To read out an image, rows of charges are shifted
vertically into a readout register and then shifted horizontally into an amplifier and an analog

to digital converter (ADC) [97, 98].

After gathering the digital-format fluorescence information, the following classification aims
to determine the most likely state of an ion. A common classification method uses thresholding
(e.g., Ref. [92, 93, 94]), in which the total number of photons collected during a measurement
is compared to a pre-optimized threshold (see Figure 2.13). Classification on EMCCD
cameras using thresholding is achieved by defining regions of interest (ROI) around each ion,
in which pixels are summed together, and only the total photon count is recorded [99, 100].

However, the fidelity worsens due to cross-talk between ROIs (see Figure 2.14).
24



A=
H image data

2

Objective

storage data

readout register
369.5nm

seves multiplcation register Amp  ADC

FIGURE 2.12: Detection of photons emitted by ions with an EMCCD camera.
Fluorescence at 369.5 nm from a string of ions is collected using an objective
lens and focused onto an EMCCD’s active sensor area. Frame Transfer allows
the image to be transferred to a storage area before being amplified and
converted to a digital signal through an ADC.
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FIGURE 2.13: Histogram of thresholding method. In the training process,
We process histograms for the dark (shown in blue) and bright images (shown
in orange), and determine an optimal threshold that maximizes the fidelity.
Afterward, a measurement is processed by calculating the total number of
photon counts in the image and comparing it to the pre-calculated threshold,
and it’s unavoidable that some samples will be misclassified.

2.3.3 Machine Learning aided Solutions

In recent years, machine learning has been applied to various applications in quantum com-
puting, showing promising results and opening up new avenues for exploration and develop-
ment [81, 82, 83, 84]. For instance, Ref. [81] leverages control theory and machine learning
to predict and suppress qubit decoherence. It introduces a time-division-multiplexed approach

and predictive feedback, significantly improving qubit phase stability. Moreover, various
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FIGURE 2.14: An example of simulated 2-ion crosstalk with 2-D resolution.

The integrated pixel brightness along the y-direction (black dots) is fitted with

a Gaussian function (red line). One can see an overlap between the signals,

demonstrating visible cross-talk between the two ions.
machine learning algorithms for state estimation and forward prediction of qubit dynamics
under non-Markovian dephasing are analyzed in [82] where the autoregressive Kalman Filter
approach outperforms its Fourier-based counterpart, underscoring the importance of algorithm
choice in qubit state prediction. In the field of trapped-ions, a neural network was employed
to reduce excess micromotion, thereby enhancing the ion’s coherence time [83]. Machine
learning for computer vision has also been applied to trapped ions. Several neural networks
for computer vision, such as time-stamped neural network (TSNN) and recurrent neural
network (RNN), were used to improve ion state classification [84]. Particularly for the qubit
detection task, Jeong et al. [85] applies a residual network based CNN model to improve
4-qubit state measurements using an EMCCD and achieves a fidelity error reduction of ~50%
compared to the maximum likelihood method [101] (shown in Table 2.2). However, their
analysis was done offline and did not consider latency. This limits its suitability for fast

quantum error correction.

2.3.4 Summary

To enhance the precision of qubit analysis in an EMCCD-based detection system, integrating
machine learning techniques for 2D image classification can fully leverage the improved

spatial resolution provided by EMCCD technology. The neural network models (MLP and
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ViT) and ensemble techniques discussed in Section 2.1 are utilized as the 2D-image classifier
in the following chapters of this thesis. These approaches show significant promise for
advancing qubit detection accuracy. However, to achieve effective real-time qubit detection,
both the image readout process and the subsequent ML-based detection algorithm must meet
stringent latency requirements. For example, modern trapped ion systems report readout
latencies of approximately 2 ms and detection latencies between 120 and 400 ps. However,
as will be discussed in Chapter 4, our commercial off-the-shelf (COTS) GPU-based testbed
(NVIDIA GeForce RTX 2080 Ti) exhibits a total latency of 212-215 ms, with a ViT-based
data analysis latency of 2.8-2.9 ms, and the remainder attributed to readout latency. This

performance is not comparable to modern trapped ions.

We propose that an FPGA-based ML solution, as illustrated in Figure 2.10, has the potential
to meet the high fidelity and low latency requirements necessary for qubit measurement and
single-shot operation. However, this system design presents several challenges. Firstly, the
ML accelerator must be optimized to be fast and accurate on the target FPGA. Secondly,
readout latency should be addressed by interfacing the EMCCD directly to the FPGA’s
onboard cameralink interface, eliminating buffering and interface overheads. This allows the
ML accelerator to process the data from the EMCCD efficiently. Additionally, scalability
and composability are also essential in balancing the trade-offs between latency, area, and

detection accuracy in dynamic system environments.
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CHAPTER 3

Fast and Accurate Look-up Table based Neural Networks

This chapter describes an FPGA implementation of neural networks based on the lookup table
(LUT). It investigates how to improve the connectivity of LUT-based FPGA inference in a
scalable way, therefore enhancing performance. The presentation is based on the background
given on neural networks and ensemble in Chapter 2 and expands on two related works:
PolyLUT-Add [1] (published in FPL2024) and LUTEnsemble. This chapter primarily focuses
on LUTEnsemble, which includes comprehensive approaches to enhancing LUT-based FPGA
neural networks. PolyLUT-Add, introduced as a preliminary study and special case of

LUTEnsemble, illustrates the contribution of wider inputs for higher connectivity.

Deep neural networks (DNNs) have been shown to provide powerful feature extraction and
regression capabilities and are widely employed across a spectrum of applications, including
image classification for autonomous driving [6], data analysis in particle physics [8], and

network intrusion detection for cybersecurity [9]. Field-Programmable Gate Arrays (FPGAs)

p(dog)=98%
registers * * * l

DATAT—D_‘ LUT r’:D_‘ LUT r’:D_‘ LUT ;:D" LUT h
CLK

FIGURE 3.1: An example of LUT-based DNN on an image classification task.
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provide a unique implementation platform for deploying DNNs, with significant advantages

over other technologies, particularly in real-time inference tasks.

Lookup Table (LUT) based DNNs use the primitive elements of FPGAs to achieve high
area efficiency and ultra-low latency (an example is shown as Figure 3.1) Compared with
Binary Neural Networks (BNNs [102]), which utilize 1-bit quantization to replace multipliers
with simple XNOR gates, LUT-based neurons further optimize FPGA resource utilization by
using LUTs as direct inference operators that can implement arbitrary Boolean functions. Ex-
amples of accelerators published using this approach include LUTNet [103], LogicNets [104],
NullaNet [105], PolyLUT [14] and NeuraLUT [106].

Even though LUT-based DNNs offer ultra-low latency for various benchmarks, e.g., 20 ns
inference latency is achievable [14], they suffer from low accuracy due to being constrained
to having extremely sparse connectivity. This is due to the exponential scaling of LUT usage
with the number of inputs, restricting LUT-based DNNs to architectures with small fan-in.
Denoting the fan-in to be I’ and the wordlength of each input as (3, this requires O(2°F)
LUTs for each output bit. Referring to Figure 3.2(a), if the fan-in is increased A x this would

become (24, an exponential increase.

To address this problem and significantly improve accuracy, this chapter introduces LUTEnsemble,

an extension of the PolyLUT framework [1] with multi-level optimizations.

First, for each neuron computation, we combine A copies of PolyLUT sub-neurons via an
arbitrary adder tree structure to increase neuron fan-in. PolyLUT-Add, a special case of this
LUTEnsemble contribution, combines A copies of PolyLUT sub-neurons via a single A-input
adder to increase neuron fan-in, as demonstrated in Figure 3.2(b). This approach has LUT
demand O(A x 2°F 4 2403+ with an extra bit used for each sub-neuron intermediate output

to avoid overflow.

Second, we incorporate E sub-nets with random initial connectivity patterns to form an
ensemble. Ensembles are a class of methods that combine weak sub-models to form an
improved model by utilizing diversity [12, 13]. As LUT-based DNN sub-nets have inherent
diversity, the accuracy, and scalability can be further improved.
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FIGURE 3.2: Comparison between PolyLUT and PolyLUT-Add. (a) For AF’
inputs, PolyLUT requires O(24%F) LUTs. (b) PolyLUT-Add uses A sub-
neurons each with F inputs requiring O(A x 2°F) LUTs and the adder box
requires a lookup table with O(24(5+1)) LUTs. Only A € {2, 3} are supported
since larger values (A > 4) would lead the adder box to be an area and latency
bottleneck.

Lastly, for datasets with strong spatial correlation, e.g., image classification, we propose a
customized Mixer feature mask layer. This approach improves networks with extreme sparsity

and has a marginal area and latency overhead.

The contributions of this work can be summarized as:

e At the algorithmic level, we introduce LUTEnsemble that: (1) Applies a Mixer
layer to the input, serving to increase the receptive field; (2) combines A PolyLUT
sub-neurons using an adder tree to form an adder tree neuron; (3) incorporates £
sub-nets with random connectivity to the output of the Mixer layer, forming an

ensemble.
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e We further test the hypothesis that LUTEnsemble has the added advantage of im-
proving uncertainty estimation accuracy. Our results show that LUTEnsemble
significantly outperforms PolyLUT and PolyLUT-Add in terms of negative log-
likelihood on MNIST data and on out-of-distribution (OOD) data by quantifying the
accuracy of an MNIST-trained network on the NotMNIST dataset.

e To the best of our knowledge, for similar accuracy, LUTEnsemble and PolyLUT-Add
produce the best-reported FPGA latency and area trade-off on the tested benchmarks.
The PolyLUT-Add is open-sourced for reproducible research. Source code and data

to reproduce our results are available from Github .

3.1 Related Work

TABLE 3.1: Related Work of LUT-based DNN Methods

Method, (year) Sparsity LUT representation

LUTNet [103], (2019) pruning of high-precision model logic expansion from XNOR
NullaNet [105], (2019) lossy truth table sampling linear + activation neurons
LogicNets [104], (2020) a prior fixed sparsity linear + activation neurons
PolyLUT [14], (2023) a prior fixed sparsity multivariate polynomials + activation neurons
NeuraLUT [106], (2024) a prior fixed sparsity nonlinear sub-networks

Wang et al. introduced LUTNet, the first FPGA inference scheme optimized for LUTs [103].
It pruned a high-precision trained network and subsequently performed logic expansion to
map the network operations onto k-input LUTs, thereby leveraging the strengths of FPGA
architectures. LogicNets [104] and NullaNet [105] adopted a different approach by quantizing
the inputs and outputs of each neuron and encapsulating the neuron’s computation (i.e.,
densely connected linear and activation functions) in a truth table. This method enumerated
all possible combinations of a neuron’s inputs and determined the corresponding outputs
based on the neuron’s weights and biases. By replacing popcount operations with Boolean
expressions, significant computational savings were made. For a DNN model with total L
layers, each implementing the transfer function F! : RM — R¥w+1 (NN is the number of
neurons in the /" layer). As illustrated in Figure 3.3, a maximum of F inputs are randomly

selected from N; nodes of [ layer to connect to each neuron of the (I + 1)th layer. This

1PolyLUT—Add: https://github.com/bingleilou/PolyLUT-Add
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FIGURE 3.3: Illustration of the LUT-based DNN inference scheme used in
LogicNets, PolyLUT, and NeuraLUT.

forms a sparse connection between the layers that can be directly implemented using LUTs in
an FPGA. Additionally, the bit width of each neuron is quantized as 3. Therefore, the transfer
function mapping an input vector [z, x1, . . ., Zr_1] to the output node 7, can be implemented
using SF inputs in hardware, and hence requires O(2°F) LUTs. The constraint F' < N,
is applied to limit the size of the lookup table, but this usually results in a degradation of

accuracy.

To improve the accuracy of LogicNets, several works are proposed and can be split into two
categories: (1) improve the representation ability of each LUT. (2) improve the fan-in of each
neuron. PolyLUT [14] and NeuraLUT [106] proposed by Andronic et al. utilize the former
approach. Specifically, PolyLUT enhanced accuracy and reduced the number of required
layers by introducing piecewise polynomial functions. NeuraLUT maps entire sub-nets to a
single LUT, enabling a deeper NN and better accuracy. As the sub-nets are absorbed within
the LUT, the NN topology and precision within a partition do not affect the number of entries
in the lookup tables generated. In contrast, the proposed PolyLUT-Add in this chapter can be
categorized in the latter approach, addressing the fan-in bottleneck of LUT-based DNNs with

an extension of PolyLUT (see Figure 3.2(b)).
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To further optimize LUT-based DNN at the algorithmic level, the ensemble method shows
good potential to boost performance in a scalable manner. Ensembles are a model augment-
ation technique to enhance the performance of machine learning tasks, e.g., classification
accuracy on the ImageNet [43] dataset and Kaggle contests [107] can be improved using
ensembles. The neural network-based ensemble is further investigated in Ref. [45] with
deep ensemble proposed. As discussed in Chapter 2.1.3, while traditional ensembles
rely on carefully designed parameter initialization and training procedures to extend diversity
between sub-nets, LUT-based DNNs have a natural diversity as each sub-net can be randomly

initialized with different, sparse connectivity.

3.2 Design
3.2.1 Addtree Architecture

1 sub-neuron

Hy 1

P——

1> sub-neuron

1> sub-neuron

s A-1 last-stage
P —

1> sub-neuron

> A 1%-stage

FIGURE 3.4: A single adder tree incorporating A PolyLUT sub-neurons.

As illustrated in Figure 3.4, the adder tree structure introduced in LUTEnsemble builds on
the PolyLUT-Add concept (see Figure 3.2(b)) to achieve better scalability with larger A and
to prevent exponential growth. The lookup table in each layer can be implemented either
as a single combinatorial module or in a pipelined manner. Various pipeline strategies can
be employed based on specific requirements (see Figure 3.5). Any of the registers can be

removed to map multiple layers as combinational logic in a cascade.
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FIGURE 3.5: The dashed boxes represent pipeline registers.

3.2.2 Ensemble

In LUTEnsemble, an ensemble is built based on the deep ensemble approach [45] and
extended to support model connectivity pattern C which enhances its diversity, i.e., each
sub-net can be randomly initialized with different sparse connectivity. Figure 3.6 illustrates
the ensemble. Furthermore, Algorithm 1 describes the LUTEnsemble Training and Inference
process. For DNN training, random initialization of C and distinct random shuffling of the
training data points were deployed to increase diversity. The ensemble can be considered a

uniformly weighted mixture model that combines F individual predictions.

In practice, the sparsity pattern is controlled by using different random seeds. For example,
with an ensemble size of 3, the seed configurations could be set as (base seed, base seed + 1,

base seed + 2).

While some randomly generated sparsity patterns may perform poorly, strategically selecting
sparsity patterns could provide additional benefits beyond purely random selection. This

optimization is left for future work.

3.2.3 Mixer Feature Mask Layer

For image-related applications, high degrees of sparsity (e.g., a fan-in = 6 in PolyLUT [14])
can result in significant information loss. To address this issue, we introduce a Mixer layer to
improve connectivity from inputs to subsequent layers. As shown in Figure 3.7, the Mixer

layer involves two main steps: feature masking and computation.

The Mixer layer does not change the input dimension. Given an input vector X = [x1, Z2, ..., Tn,],

a feature mask selects M out of /Vy inputs. For the output node y;, ¢ = 1,2, ..., Ny, this results
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Algorithm 1 Training and Inference procedure for LUTEnsemble with Ensemble Size of £
Input: A neural network initializing a connectivity pattern (C) and parameter distribution ()
over the ensemble (E), i.e., pcg(y|x)
Initialize {C,, 0., train_loader,}E_, randomly
Initialize test_loader
Training Procedure:
fore =11 E do
Sample data point n. from train_loader,
Train e sub-net with n,
Minimize the loss function £,
end
Inference Procedure:
The input data from test_loader is fed into each sub-net and combines the predictions

p(y’I) =FE! ZeEzl Pbec. 6. (y‘x>cea ‘96)

in a masked feature vector x; containing M selected input samples. The feature mask selection
is illustrated in Algorithm 2. It operates by selecting the corresponding pixel and neighboring
spatial pixels, ensuring comprehensive spatial information transmission. For instance, for
output node y;, ; is always selected in its mask vector x;. The rest of the M — 1 neighboring
pixels around z; are selected in a way that incorporates randomness, enhancing the robustness
of the feature selection. In the example of Figure 3.7, the masks selected for output nodes ¥,

/ / :
and y9 are X| = [x1, T2, T, x7| and X}y = [X15, T19, T20, T24] TESPEctively.
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FIGURE 3.7: Block diagram of a Mixer Layer. As illustrated, for an output
y; (11 and y19 are shown in orange), it takes M = 4 inputs around x; (shown
in orange and gray), consistent with the structure depicted in Figure 3.6
and includes a random feature mask (in blue) and trainable weighted sum
computation (in green) for training. Following training, the Mixer layer is
absorbed into LUTEnsemble nodes.

Subsequently, a weight matrix W € RYo*M jg applied to compute the output vector y. Each
element y; of the output vector y is computed as a weighted sum of the masked features:
y; = W,;x,. The matrix W is initialized to 1/M to ensure uniform importance at the start. It
is also trainable, allowing for optimization throughout the learning process. We expect that
while keeping the fan-in ' of the subsequent layer unchanged, each neuron will be able to

receive input information from a broader receptive field.

We observe that the Mixer layer process is similar to and inspired by the operation of the 2-D
convolutional layer in the convolutional neural networks (CNNs) with stride=1 [26]. The
difference is that the kernel-size constrained area of a convolutional layer is a regular 2D
rectangle. In contrast, the fan-in of the Mixer is arbitrary and randomly selected from the
surrounding area, providing greater flexibility. Additionally, the weights of the convolutional
layer are shared, whereas the weights of the Mixer are independent, allowing each node to

have a customized weight allocation. Finally, a key difference is that the node selection in the
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Algorithm 2 FeatureMask-2D

Input: Input size: Ny, Mixer fan-in: M, seed, 2D image size (height,width)

Output: mask: x},7 =1,2,..., Ny

Set random seed for each sub-net of an ensemble

Function get_neighbors (h, w, radius) :

Initialize neighbors as an empty list

for dh <+ —radius to radius do

for dw < —radius to radius do

nh < h+dh

nw < w + dw

if 0 < nh < height and 0 < nw < width then
| Append (nh, nw) to neighbors

end

end

end
return neighbors
for : < 1 to Ny do
(h, w) «+ divmod(, width)
radius < 1
X, < get_neighbors(h, w, radius)
while len(x;) < M — 1 do
radius < radius + 1
X, < get_neighbors(h, w, radius)
end
if len(x]) > M — 1 then
| x| < random(x], M — 1)
end
Append (h, w) to X,

end
return x’

Mixer layer does not involve padding, ensuring that the processing of edge nodes does not

exceed the boundaries.

The Mixer layer is designed specifically for image-type inputs. Similar solutions for datasets

lacking a well-defined notion of neighborhood are left for future work.
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3.2.4 System Toolflow

Figure 3.8 illustrates the tool flow. Like PolyLLUT, the training is conducted offline using
PyTorch [25], after which the resulting weights are utilized to construct the LUT for each
neuron. These LUTs are then used to produce Register Transfer Level (RTL) files in Verilog,
capturing the Boolean expressions derived from the neurons. The RTL is generated through
a module generator built on standard Python FILE operations. The final step involves
synthesizing the LUT-based DNN design onto hardware using the AMD/Xilinx Vivado
tool [108].

By integrating Brevitas [69] with PyTorch, we enable quantization-aware training of DNNss.
First, we adapted the network implementation to accept arbitrary A, £, M and F, 3, D as
hyper-parameters. After training, the model’s weights are converted into lookup tables. This
conversion process starts by using the quantized states from the trained model to determine
the input data range for each neuron. For every neuron, we generate all possible input
combinations based on 3, F', and M. These combinations are then processed by their
respective computational units to produce the corresponding outputs. The input-output pairs
are finally compiled to form the values for the lookup table. For the truth-table implementation,
the (* rom_style = "distributed" *) directive is utilized in the RTL to instruct

the tool to infer the LUT ROMs.

3.3 Results

3.3.1 Datasets

The datasets used to evaluate the proposed LUTEnsemble and its PolyLUT-Add special case

are shown as follows:

(1) Handwritten Digit Recognition: In timing-critical sectors such as autonomous

vehicles, healthcare and medical imaging, and real-time object tracking, low-latency
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FIGURE 3.8: Tool flow of LUTEnsemble. It is inherited from the open-source
PolyLUT toolflow [14]. We show the modified elements in red.

is crucial. These applications underscore the necessity for swift and accurate decision-
making, where even minimal delays can have significant repercussions. Unfortu-
nately, there is no public dataset specialized for low-latency image classification
tasks so the MNIST [109] is utilized to compare our work with other LUT-based
DNNs. MNIST is a dataset for handwritten digit recognition tasks with 28 x 28
pixels as input and 10 classes as outputs.

(2) Jet Substructure Classification: Real-time decision-making is often important for
physics experiments such as the CERN Large Hadron Collider (LHC). Jet Substruc-
ture Classification (JSC) is one of its applications that requires high-throughput data
processing. Prior works [110, 8, 111, 112] employed neural networks on FPGA for
this task to provide real-time inference capabilities. We also use the JSC dataset for-
mulated from Ref. [8] to evaluate our work, with the dataset having 16 substructure
properties as input and 5 types of jets as outputs. FPGA-based classification in this
task must be pipelined to manage a data rate of 40 MHz while ensuring the response

latency remains under microsecond.
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TABLE 3.2: Model setups used to evaluate different datasets.

Dataset Model name Neurons per layer B F D A
MNIST HDR 256, 100, 100, 100, 100,10 2 6 1,2 2,3

Jet Substructure ~ JSC-XL! 128, 64, 64, 64,5 5 3 1,2 2
Jet Substructure JSC-M Lite 64,32,5 3 4 1,2 2,3

UNSW-NB15  NID Lite? 686, 147, 98, 49, 1 35 1 2

1: Remarks: g; =7, F; =2
2: Remarks: 8, =1, F; =7

(3) Network Intrusion Detection: In the field of cybersecurity, the swift detection and
mitigation of network threats are important for the preservation of digital infrastruc-
ture integrity (e.g., fiber-optic throughput can reach 940 Mbps). Prior works have
used FPGAs to accelerate DNNs, enabling real-time Network Intrusion Detection
Systems (NIDS) with high accuracy and enabling privacy on edge devices [14, 104,
113]. The UNSW-NB15 dataset [114] was used as the benchmark for our evaluation

process. It has 49 input features and binary classification (bad or normal).

The aforementioned datasets were used for evaluations of the PolyLUT [14]. The UNSW
dataset [114] used to test PolyLUT and PolyLUT-Add was omitted in experiments for
NeuraLUT [106] as well as LUTEnsemble because its training convergence is very sensitive

to the initial random seed.

3.3.2 Experimental Setup

As a foundation for our experiments and to ensure consistency in evaluation, our setup closely
follows the PolyLUT [14]. Table 3.2 lists its neural network configurations for three datasets.
Using AdamW as the optimizer [25], we trained the smaller models/datasets: (JSC-M Lite,
NID Lite) for 1000 epochs, and used 500 epochs for (JSC-XL and HDR). The mini-batch
size is set to 1024 and 128 for (JSC-XL and JSC-M Lite, NID-Lite) and MNIST, respectively.

For hardware evaluation, we target the xcvu9p—-£f1gb2104-2-1 FPGA part as done in
LogicNets, PolyLUT, and NeuralLUT. Also, the projects are compiled using Vivado 2020.1

with Flow_PerfOptimized_high settings and are configured to perform synthesis in
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the Out—of-Context (O0OC) mode. Default values were used as the Place & Route settings

for our experiments.

3.3.3 Evaluation of PolyLUT-Add

To evaluate the performance of the wider input enabled by the additional adder layer, we use

PolyLUT-Add as a special case with a single-stage adder tree in this section.

Based on the setup in Table 3.2, our newly introduced A is setto A € {2, 3} for models (HDR
and JSC-M Lite) with small truth table (2°7), and A = 2 is used for JSC-XL. The polynomial
degree D = 1 and D = 2 correspond to linear and quadratic representations, respectively.
We utilize D € {1, 2} to evaluate the performance of PolyLUT-Add. We comment the case
A = lisidentical to PolyLUT, and A = 1, D = 1 corresponds to LogicNets. We also note
that the training convergence of the UNSW dataset is sensitive to the initial random seed, and
hence, multiple trials were necessary before a result with good accuracy was achieved. As an

exception, we therefore apply A = 2 and D = 1 to evaluate the NID Lite model.

PolyLUT-Add vs. Deeper and Wider PolyLUT (small D)

We first present results comparing PolyLUT-Add with PolyLUT in configurations with the

same polynomial degree. Three configurations were tested:

(1) Original PolyLUT: This serves as the baseline network.

(2) PolyLUT-Deeper: This explores the impact of increasing network depth. We denote
the depth factor as . Then D x the number of layers is applied to models in Table 3.2.
For example, for JSC-M Lite, if D = 2, the hidden layer is doubled, meaning the
neurons per layer becomes (64,64,32,32,5).

(3) PolyLUT-Wider: This examines the impact of a wider network model. We denote
the width factor as W. Then Wx the number of neurons per layer are applied to
models in Table 3.2. Once again, for JSC-M Lite, if W = 2, the neurons per layer

becomes (128,64,5).
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Figure 3.9 shows the accuracy of the configurations with parameter settings detailed in

Table 3.2. PolyLUT-Add achieves the highest accuracy against all baselines on all datasets

for both the linear (D = 1) and non-linear (D = 2) cases.
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FIGURE 3.9: Accuracy results on different models.

Wide(W) and Add(A) to denote “PolyLUT-Deeper”, “PolyLUT-Wider” and
“PolyLUT-Add” respectively.

Optimizing for Accuracy

We use Deep(D),

In terms of accuracy and hardware, Table 3.3 shows that for A = 2, PolyLUT-Add achieved

accuracy improvements of 2.7%, 0.6% and 2.3% over PolyLUT on the MNIST, Jet Substruc-

ture classification and Network Intrusion Detection benchmarks respectively. However, this

required a 2-3x increase in LUT size. We also evaluate the performance of simply increasing
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TABLE 3.3: Comparison of accuracy and hardware results (post-synthesis)
between PolyLUT and PolyLUT-Add (D = 1, W = 1). The Verilog Gen-
eration time was measured on a desktop with Intel(R) Core(TM) 17-10700F
@2.9GHz and 64GB memory.

Models Degree Model Fan-in Ace(%)t Lookul.) table LUT FF F_max Latency | RTL Gen.
D (F x A) entries | (% of 1182240) (% of 2364480) (MHz) (cycles) (hours)
12
PolyLUT 6 93.8 2 ‘ 343 0.12 378 6 1.40
. 10 96.1 212 % 256 — —
912 96
PolyLUT-Add 6x2 96.5 2 ‘ X 2+ ;( 12.69 0.12 378 6 3.00
HDR 6x3 96.6 212 % 3429 20.67 0.12 378 6 4.40
512
PolyLUT 6 95.4 2 ‘ 6.62 0.12 378 6 1.40
2 10 97.3 212 x 256 - -
912 6
PolyLUT-Add 6x2 97.1 2 . X 2+ 2( 19.78 0.07 378 6 3.00
6x3 97.6 212 x 3 +2° 31.36 0.07 378 6 4.50
15
PolyLUT 3 74.5 2 ’ 19.55 0.07 235 5 2.10
1 5 74.9 215 % 1024 — —
ISCXL PolyLUT-Add 3x2 75.1 215 % 2 4212 50.10 0.07 235 5 5.17
- 15 3
PolyLUT 3 74.9 2 37.40 0.07 235 5 2.30
2 5 75.2 215 x 1024 — —
PolyLUT-Add 3x2 75.3 215 x 2 4212 89.60 0.07 235 5 5.24
4 1. 212 . .01 44 3 .1
PolyLUT 71.6 0.97 0.0 646 0.16
. 7 72.1 212 % 512 — —
. 12 8 . . 3 .35
PolyLUT-Add 4x2 72.2 21 X 2+21 2.62 0.01 488 0.3
. 4x3 72.3 212 % 3 4212 4.33 0.01 363 3 0.63
JSC-MLite 4 20 | 22 151 0.01 568 3 0.16
PolyLUT ’ ’ ’ : ’
) 6 72.5 212 % 512 — -
12 8
PolyLUT-Add 4x2 72.5 2 ‘ X 2 +2 ‘ 429 0.01 440 3 0.34
4x3 72.6 212 % 3 4212 6.57 0.01 373 3 0.64
. 215 . .1 2 4.
‘ PolyLUT 5 89.3 ’ 6.86 0.15 529 5 09
NID Lite 1 8 91.0 215 x 512 — —
PolyLUT-Add 5x2 91.6 215 % 2 428 2141 0.15 529 5 8.76

—: Data for very high fan-in settings has been omitted due to CUDA memory limitations on the GPU and
memory on the FPGA.

PolyLUT’s fan-in, . This has a lookup table consumption of 256-1024 x for similar accuracy,

showing that PolyLUT-Add can improve model accuracy without an excessive impact on

LUT size. Furthermore, it’s noteworthy that the RTL Generation time cost also correlates

with the lookup table size; it follows that a direct increase in fan-in would incur exponentially

higher RTL Generation time costs.

We conducted additional experiments with PolyLUT-Add using the setup in Table 3.4. This

utilizes lower F' compared with the PolyLUT setup in Table 3.2. A = 2 is used for all
models (which are denoted as “HDR-Add2”, “JSC-XL-Add2”, “JSC-M Lite-Add2”, “NID-
Add2”). We also reduced the layer sizes in the DNN model for the UNSW-NB15 dataset.

These configurations were found to reduce area whilst maintaining comparable accuracies.

Optimization of these parameters may further improve results for specific applications.
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TABLE 3.4: Model setups for smaller /' of PolyLUT-Add.

Dataset Model name Neurons per layer B F D A
MNIST HDR-Add2 256, 100, 100, 100, 100,10 2 4 3 2

Jet Substructure  JSC-XL-Add2! 128, 64, 64,64, 5 52 3 2
Jet Substructure JSC-M Lite-Add2 64,32,5 32 3 2
UNSW-NB15 NID-Add2? 100, 100, 50, 50, 1 2 3 1 2

1: Remarks: 8; =7, F; =1
2: Remarks: 8; =1, F; =6,06, =2, F,=7

TABLE 3.5: Comparison results with prior works. PolyLUT-Add uses smaller
F and D (see Table 3.4), whereas PolyLUT uses larger D, F' for accuracy.

Dataset Model Accuracy T LUT FF DSP  BRAM F_max(MHz)t  Latency(ns)}
PolyLUT-Add (HDR-Add2, D=3) 96 % 14810 2609 0 0 625 10
MNIST PolyLUT (HDR, D=4) [14] 96 % 70673 4681 0 0 378 16
FINN [70] 96 % 91131 - 0 5 200 310
hls4ml [64] 95% 260092 165513 0 0 200 190
PolyLUT-Add (JSC-XL-Add2, D=3) 75% 36484 1209 0 0 315 16
Jet Substructure PolyLUT (JSC-XL, D=4) [14] 75% 236541 2775 0 0 235 21
Duarte et al. [8] 75% 88797* 954 0 200 75
Fahim er al. [112] 76% 63251 4394 38 0 200 45
PolyLUT-Add (JSC-M Lite-Add2, D=3) 72% 895 189 0 0 750 4
Jet Substructure | PolyLUT (JSC-M Lite, D=6) [14] 72% 12436 773 0 0 646 5
LogicNets [104] 72% 37931 810 0 0 427 13
PolyLUT-Add (NID-Add2, D=1) 92% 1649 830 0 0 620 8
UNSW-NBLS PolyLUT (NID-Lite D=4) [14] 92% 3336 686 0 0 529 9
LogicNets [104] 91% 15949 1274 0 5 471 13
Murovic et al. [113] 92% 17990 0 0 0 55 18

x: Paper reports “LUT+FF”

Table 3.5 shows the results and comparisons with prior works. Notably, PolyLUT applied
D = 4 for HDR, JSC-XL and NID Lite models and D = 6 for the JSC-M Lite model,
while PolyLUT-Add used smaller D. For comparable accuracy, the proposed PolyLUT-Add
achieved a LUT reduction of 4.8 x, 6.5x, 13.9x and 2.0x for the MNIST, JCS-XL, JSC-M
Lite and UNSW-NB15 benchmarks respectively.

Finally, we studied latency with comparable accuracy. The removal of intermediate pipeline
registers between the sub-neuron layer and its subsequent adder layers, as shown in Figure 3.5,
was implemented to minimize the number of clock cycles. Compared with PolyLLUT, this ap-
proach achieved a 1.6, 1.3x, 1.2x, and 1.2 decrease for the four benchmarks, respectively.

These significant reductions are attributed to lower polynomial degree D, and lower F'.
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3.3.4 Evaluation of LUTEnsemble

This section evaluates the performance of LUTEnsemble with MNIST classification as a case
study. The model setup follows the PolyLUT work (see Table 3.2). Three configurations were

tested:

(1) PolyLUT: This is the baseline network [14] parameterized by the width factor W,
which serves to increase the number of activation units in each layer by the factor
W.

(2) PolyLUT-Add: This is the PolyLUT-Add network [1] (introduced in the previous
section) parameterized by the number of sub-neurons A.

(3) LUTEnsemble: This is configured with A = 4 (two-stage adder tree) and a smaller
fan-in of F' = 5 to control resource growth (the other models use F' = 6 as shown in

Table 3.2). This is parameterized by the ensemble size E.

Test Accuracy and Uncertainty Estimation Performance

Figure 3.10 first presents the trade-off between test error rate (1 - test accuracy) and the sum
of lookup table entries for three models with a polynomial degree of D = 2, while varying
hyper-parameters (W, A, E € {2,3,4}). Notably, LUTEnsemble achieves a more efficient
Pareto frontier compared to PolyLUT and PolyLUT-Add in terms of accuracy. Specifically,
PolyLUT-Add has significantly larger lookup table entries as A increases. The x-axis in
Figure 3.10 and the following Figure 3.11 represents the number of entries in the lookup
tables, which directly correlates with the area of the synthesized hardware and impacts
the timing closure after place-and-route. Therefore, it is used as an indicator of hardware

overhead.

In this chapter, negative log-likelihood (NLL) is introduced as an additional evaluation
metric. NLL is a common metric used for measuring the quality of in-domain uncertainty
of deep learning models [45]. NLL compares the predicted probability distribution and
the observed data, with lower values indicating better predictive uncertainty. DNNs often

struggle to accurately quantify predictive uncertainty despite good accuracy on supervised
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FIGURE 3.10: Results showing the trade-off between test error rate and the
sum of lookup table entries for D = 2. The lookup table entries on the x-axis
are the relative size compared to PolyLUT (HDR model in Table 3.2). The
black dashed lines depict the Pareto frontier.
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FIGURE 3.11: Results showing the trade-off between uncertainty (NLL) and
the sum of lookup table entries for D = 2. The lookup table entries on the
x-axis are the relative size compared to PolyLUT (HDR model of Table 3.2).
The black dashed lines depict the Pareto frontier.

learning benchmarks. This is crucial in many mission-critical applications such as autonomous

driving [115], medical diagnostics [116], and meteorological forecasting [117].

Figure 3.11 shows the results of several configurations of our networks comparing NLL

and lookup table entries. From the figure, it can be clearly seen that LUTEnsemble has an
improved Pareto frontier over the other models.
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We further assess the uncertainty of OOD samples from classes not encountered during
training. The networks are trained on its standard MNIST dataset train/test split. Besides
evaluating the network on the standard MNIST test set, we also test its performance on an
additional set comprising unknown classes—the test portion of the NotMNIST dataset .
Though the image dimensions in NotMNIST align with MNIST, its content significantly

differs, featuring alphabetic characters instead of digits.

We calculate the entropy of the probability distribution over the 10 classes of MNIST and
NotMNIST. Given the logits z = (21, 22, . . ., 210) from the neural network, we apply the
softmax function to obtain the class probabilities P(z;) = e* (Zjlil e* ). The entropy H is

then computed using the natural logarithm (Eq. (3.1)):

H(P)=— ZP(zi)ln P(z) (3.1)

Figure 3.12 gives the density plot of entropy values of networks tested on MNIST and
NotMNIST. While the ground truth for true entropy distribution is not accessible, it anticipates
that predictions for OOD samples will tend toward a uniform distribution, reflecting higher
entropy due to increased uncertainty. Conversely, for known classes, the predictive distribution
is expected to concentrate more on the actual targets, indicating lower entropy due to higher
certainty. For known classes in Figure 3.12, PolyLUT-Add and LUTEnsemble all exhibit
low entropy, aligning with expectations. For unknown classes, Figure 3.12(a) shows that the
LUTEnsemble effectively handles OOD samples with apparent higher entropy. However,
the OOD density peak of PolyLUT-Add in Figure 3.12(b) is still centered in the same area
as the known dataset, which incidents overconfident wrong prediction. Such overconfident
predictions, especially when incorrect, pose significant risks in practical applications involving

a mix of known and unknown classes.

2Accessed from: http://yaroslavvb.blogspot.co.uk/2011/09/notmnist—-dataset.
html
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FIGURE 3.12: Density plot of entropy values of networks trained on MNIST
and tested on MNIST (as the known dataset) and NotMNIST (as the out-of-
distribution dataset).

Mixer Layer Performance

The input features of the JSC and NID datasets have no spatial correlation. Then, the Mixer
is only tailored for image classification tasks and tested on the MNIST dataset. Table 3.6
shows the accuracy of PolyLUT and LUTEnsemble on D = 1 and D = 2 cases. The Mixer
fan-in M € {2, 3,4} are tested. The PolyLUT and LUTEnsemble models are tested on the
HDR model in Table 3.2. As an ablation study, we also set LUTEnsemble with A = 1 and

E € {2,3,4} to evaluate the Mixer layer’s performance on different ensemble sizes.

For the base PolyLUT, compared to the setup without a Mixer layer, an accuracy improvement
of 1.16% and 1.28% is achieved at the cost of only a 3.33% and 0.84% increase in lookup

table entries for D = 1 and D = 2 setups, respectively. Results in the ensemble setting also
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TABLE 3.6: Performance of Mixer layer. ‘Base’ denotes the original PolyLUT
and E € {2, 3,4} is configurated for LUTEnsemble models.

Accuracy with D=1 Accuracy with D=2
wioM M=2 M=3 M=4 | woM M=2 M=3 M=4
Base 93.76 9477 94.67 9495 | 9540 96.53 96.68 96.66

E2 9595 9627 96.57 96.60 | 97.24 9725 97.77 9791
E3 9649 9693 97.06 97.19 | 97.68 98.09 98.05 98.23
E4 96.92 97.07 9734 9747 | 97.87 9824 98.26 98.39

For M=2,3.4 the lookup table entries is increased by 0.21%, 0.84%, 3.33%; the latency
is increased by 1 clock cycle.

Models

TABLE 3.7: Model setups for LUTEnsemble.

Dataset Model name Neurons per layer g F D A E

MNIST HDR-A4E2M3' 256, 100, 100, 100, 100,10 2 3 3 4 2

Jet Substructure  JSC-HC-A4E2? 128, 64, 64, 64, 5 32 3 4 2

1: Remarks: M = 3, LUT in the last two layers (100,10) are combined in single pipeline registers.
2: Remarks: Binput = 9, Finput = 1, Ainpur = 1.

show an improvement in accuracy, which increases with the ensemble size. Moreover, as

expected, a higher M results in better accuracy in most cases.

Overall Comparison with Related Works

We conducted additional experiments with LUTEnsemble using the configuration in Table 3.7.
The frequency and the area are collected from the Vivado post Place & Route timing and
resource report. Latency is obtained by multiplying the depth of the model’s pipeline registers
by frequency. An adder tree structure with A = 4 (two-stage adder tree) and an ensemble
of I/ = 2 are used for all models. In particular, the Mixer fan-in M = 3 is applied to the
MNIST task. We donate the model names “HDR-A4E2M3” and “JSC-HC-A4E2” for MNIST
and Jet Substructure classification (high accuracy) benchmarks. Notably, even though this
LUTEnsemble model setup requires three combinational logic stages (one sub-neuron layer
and two adder layers) in the datapath as shown in Figure 3.4, they are implemented in the
same pipeline stage and do not introduce additional clock cycles. Moreover, to compensate
for the 1 extra clock cycle of the Mixer layer, the LUT logic in the last two layers (the last

hidden layer and the output layer) is also combined between the same pipeline registers.
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TABLE 3.8: Performance comparison with prior works.

Dataset Model Accuracy LUT FF DSP BRAM F_max(MHz)1 Latency(ns))
LUTEnsemble (HDR-A4E2M3, D=3) 98 % 26225 8319 0 0 468 13
PolyLUT-Add (HDR-Add2, D=3) [1] 96% 14810 2609 0 0 625 10
NeuraLUT (HDR-5L) [106] 96% 54798 3757 0 0 431 12

MNIST
PolyLUT (HDR, D=4) [14] 96% 70673 4681 0 0 378 16
FINN [70] 96% 91131 0 5 200 310
hls4ml [64] 95% 260092 165513 0 0 200 190
LUTEnsemble (JSC-HC-A4E2, D=3) 75% 18810 1906 0 0 450 11
PolyLUT-Add (JSC-XL-Add2, D=3) [1] 75% 36484 1209 0 0 315 16
NeuraLUT (JSC-5L) [106] 75% 92357 4885 0 0 368 14

Jet Substructure

PolyLUT (JSC-XL, D=4) [14] 75% 236541 2775 0 0 235 21
Duarte et al. [8] 75% 88797 954 0 200 75
Fahim ez al. [112] 76% 63251 4394 38 0 200 45

x: Paper reports “LUT+FF”

These configurations were found to reduce area while maintaining comparable accuracies.

Optimization of these parameters may further improve results for specific applications.

Table 3.8 shows the results and comparisons with prior works. Notably, PolyLUT applied
D = 4 for MNIST, Jet Substructure classification model; we maintain smaller D = 3, which

is the same as PolyLUT-Add.

In MNIST experiments, the proposed LUTEnsemble achieved 2% accuracy improvements
compared with related works, followed by a LUT reduction of 2.7 x and latency reduction
of 1.2x compared with PolyLUT. The increased flip-flop (FF) consumption is due to the
increased pipeline registers required by the higher fan-in policy, which is not the bottleneck

of the target FPGA, consuming only 0.35% of the total 2364480 FFs.

For similar accuracy on the Jet Substructure classification, LUTEnsemble achieves the
best balance between accuracy, LUT, and latency over others, in particular, compared with

PolyLLUT, a reduction of 12.6x and 1.9 decrease in LUT and latency, respectively.
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3.4 Summary

In this chapter, we introduce PolyLUT-Add and its enhancement, LUTEnsemble. PolyLUT-
Add first demonstrates enhanced neuron connectivity in PolyLUT by using an additional
lookup table block to combine A PolyLUT sub-neurons. It serves as a preliminary study
and a special case of LUTEnsemble, which includes more comprehensive optimizations.
These techniques mitigate scalability issues associated with conventional implementations

and significantly improve efficiency.

Specifically, we demonstrate that by utilizing a configuration of A = 2, PolyLUT-Add with
a lower polynomial degree D and fan-in [’ is sufficient to achieve comparable accuracy to
PolyLUT. On the MNIST, Jet Substructure Classification, and Network Intrusion Detection
benchmarks, PolyLUT-Add reduced LUT consumption by factors of 2.0-13.9 with a 1.2-1.6

times decrease in latency.

For LUTEnsemble, we further demonstrate that it achieves a LUT reduction of 2.7 times
and a 1.2 times decrease in latency for a 2% accuracy improvement on MNIST compared to
PolyLUT. For the Jet Substructure Classification, LUTEnsemble achieves similar accuracy
with a LUT reduction of 12.6 times and a 1.9 times decrease in latency. Finally, we show that
LUTEnsemble excels in uncertainty estimation, achieving superior negative log-likelihood

performance.
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CHAPTER 4

Low-latency Neural Network Qubit Detection System in Trapped-Ion

Quantum Computing

This chapter focuses on a practical application: qubit state measurements in trapped-ion
quantum information processing. It explores how FPGAs and integrated neural networks can
address the challenges in this field by achieving low latency while maintaining high accuracy.
The LUTEnsemble proposed in Chapter 3 is applied as a low-latency MLP solution, and a
Vision Transformer (ViT) DNN accelerator is proposed in this chapter for higher accuracy.

The content of this chapter builds upon the background of qubit detection in Chapter 2.

Quantum algorithms have the potential for new and highly efficient processing of large
data, including super-polynomial speedup of search [118], cryptography [119], and random
walk [120] problems, along with many others [121]. However, the implementation of the
apparatus itself is challenging [122]. Trapped ion quantum computers are one of several
promising platforms [123, 124], where in a typical blade-style Paul trap, individual atoms
are held in space by radio frequency(RF) electric fields [125]. When ionized, they behave
like hydrogenic atoms, with energy levels like those for Ytterbium shown in Figure 2.11. The
qubit state of each atom is the electronic sublevel of the valence electron. Tight confinement
of ions in the chain also experiences Coulomb repulsion, and exchange motional energy to

form the multi-qubit operations required to produce entangled states [126].

Qubit state measurements are an integral part of quantum information processing. With
trapped ions, this can be performed via a state-dependent fluorescence technique [123, 124].
A laser excites a transition and induces photon scattering if the qubit is in the |1) state;

however, the laser is off-resonant from any transition if the qubit is in state |0) and no photons
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are scattered. Measuring the number of photons registered on an Electron-Multiplying Charge-
Coupled Device (EMCCD) camera provides a way to determine the qubit state, and this

technique has the ability to spatially resolve multiple trapped ions [127, 99, 128].

However, quantum systems are highly susceptible to errors from decoherence [87, 88],
and the error correction system must detect and correct them before they propagate and
accumulate above a certain threshold. This is a key ingredient to realizing a fault-tolerant
quantum computer [89, 90] and involves error syndrome measurements of qubits followed
by in-sequence, conditional corrective operations. For these strategies to be effective, the
underlying qubit state measurements must be accurate to ensure the correct identification
of errors and rapid enough to outpace the decoherence times of qubits. Another reason for
driving fast qubit detection is that classification latency should be minimized so as not to limit

the quantum computer’s total clock speed.

This requirement imposes two challenges for qubit measurement per single-shot operation:

high fidelity and low latency.

Our study addresses these challenges by implementing the LUTEnsemble and Vision Trans-
former (ViT [18, 19]) on a customized FPGA. In the literature, a reasonable qubit detection
duration is at the microsecond (u.s) level, while the coherence time could extend to the second
(s) level [95, 96]. Table 4.1 presents the qubit detection latency in modern trapped-ion
computers, with reports ranging from 120-400 ps for different setups. In particular, Ref. [94]
reported a total time of 133.35 ms for an "N=6 QV Circuit’ example, with qubit detection

consuming 120 ps.

By utilizing the LUTEnsemble model as the qubit detection method, its mean measurement
fidelity (MMF) error on three-qubit (2.7%) demonstrates a 4.22 x improvement over threshold-
ing. The 24 ns achievable detection latency is ultra-low and more than sufficient for modern

detection latency, as reported in Table 4.1.

For a better-balanced trade-off between latency and fidelity, the ViT model was designed to
demonstrate further improved fidelity over thresholding, LUTEnsemble, and convolutional
neural network (CNN) approaches. For the three-qubit test, the mean measurement fidelity
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TABLE 4.1: Related works with reported qubit detection latency

Reference Ton-trap Experiment Measurement Detector readout latency* detection latency Total latency
Myerson et al. [91] Ca™ PMT Maximum Likelihood 145 us
Halama et al. [92] Be™ EM-CCD Threshold 2ms 400 ps
Burrell et al. [93] Ca® EM-CCD Threshold 400 ps
Pino et al. [94] Ybt — Ba® Q-CCD Threshold 120 ps 133.35 ms
Our work Ybt EM.CCD LUTEnsemb.le 1.25ms 24 ns
Threshold/ViT 1.25 ms 16-40 ps

x: The readout latency includes frame grabber latency and cameralink data movement latency.
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FIGURE 4.1: In the block diagram of ML-aided qubit detection in a trapped
ion system, photons scattered by the ions are collected and magnified by optical
elements before being directed toward an EMCCD camera. The resulting
images are transmitted to the acceleration hardware, such as an FPGA or GPU,
via the Cameralink protocol, with the GPU serving as the baseline. The right
bar chart illustrates the speedup of the ViT model achieved on a 3-qubit test.
The detailed implementation for FPGA and GPU are introduced in Figure 4.2
and Figure 4.10 respectively.

(MMEF) error (1.5%) is 7.60x, 1.80x, and 1.13 x lower than thresholding, LUTEnsemble and
CNN, respectively. Moreover, the number of parameters in the ViT is considerably smaller
than in the CNN. The proposed ViT-aided solution achieves a measured detection latency
of 16-40 us, which is comparable to modern trapped-ion systems. The following chapter
primarily focuses on ViT, with the LUTEnsemble discussed as a baseline in the experiment

section.
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Figure 4.1 shows the overview of this work with @ representing the proposed FPGA qubit
detection system on the ViT model and @ as its functionality-equivalent GPU baseline. The
1"1Yb™ ions are used in our trapped ion experiment, with its scattered photons collected by an
EMCCD camera. Given that the typical EMCCD cameras (e.g., Andor iXon 897 [97]) output
an image through the Cameralink protocol [86] and acts as a serializer, the FPGA detailed
in Figure 4.2 serves as an integrated System-on-chip (SoC), encapsulating a well-defined
workflow to (1) deserialize the image from cameralink, (2) process the image classification in
a ViT accelerator, (3) output results (qubit states) to the next stage. Specifically, (1) and (2)
are operated in a pipelined manner through an AXI-Stream (AXIS) bus [129] for efficient
data processing. A Low voltage Complementary Metal Oxide Semiconductor (LVCMOS)

Input/Output (IO) interface is used in step (3) to minimize output latency.

To the best of our knowledge, the work of Jeong et al. [85] is the closest to ours. It applied a
residual network (ResNet)-based CNN model to improve 4-qubit state measurements using
an EMCCD and achieved a fidelity error reduction of ~50% compared to the maximum
likelihood method [101]. Furthermore, their work demonstrated that a machine-learning
model can improve qubit detection accuracy on real experimental images. However, their
analysis was done offline and did not consider latency. This limits its suitability for fast
quantum error correction. This motivates us to extend their study in two ways: (a). use a
state-of-the-art ViT model to pursue further accuracy improvement; (b). integrate the qubit
detection system with a ViT accelerator on an FPGA for low-latency implementation in

real-time.

The main contributions of this chapter are:

e To the best of our knowledge, our work is the first machine learning-aided trapped-
ion detection system that is embedded in a low-latency FPGA control system and
uses 2D camera input images.

e We applied the LUTEnsemble proposed in Chapter 3 to provide an ultra-low latency
qubit detection solution and then proposed an innovative hardware-efficient ViT
architecture with a customizable accuracy-latency tradeoff facilitated by the hls4dml

framework.
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FIGURE 4.2: This figure demonstrates the framework of our qubit detec-
tion system. The camera is controlled by an ARTIQ system [130], with a
master Kasli controller [131] that communicates with sub-modules, such as
a DIO card, to trigger the camera and receive qubit detection results from
the Sundance FPGA. Kasli also carries a traditional qubit classifier based on
thresholding [132] inside it, which will serve as a baseline for traditional mod-
els in the subsequent experimental section for comparison with our proposed
ML scheme, which is implemented in the Sundance FPGA. By switching the
Selector to connect the camera to Sundance, the ion image is transferred from
the camera to FPGA through cameralink protocol, followed by the cameralink
deserializer to decode the data packet to the ViT model for real-time classifica-
tion. The FPGA is controlled by a PCle driver designed in Linux PC, and a
Xilinx Vivado [108] is used to load bitstream to the QSPI Flash on the FPGA
board.

e Using the synthetic dataset that closely resembles the statistics of experimented
data, the LUTEnsemble and ViT achieve accuracies that are 2.9-8.7% and 3.1-9.9%
greater than existing thresholding methods, respectively.

e Experimentally validated latency measurements of ViT solution show a substantial
speed-up; the total detection latency for one- and three-qubit tests on the FPGA
was 1.784+0.02 ms and 2.294+0.02 ms, a 119x and 94 x reduction over the GPU
baseline system (211.954+17.72 ms and 214.70+10.87 ms). Moreover, the ViT

latency accounts for only 0.89-1.53% of the total detection latency, so the bottleneck
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now lies in the EMCCD and transmission via Cameralink. Thus, this work could

help improve the performance of next-generation qubit detection systems.

4.1 Design

4.1.1 FPGA-based Control System

As depicted in Figure 4.2, the ion-trap experiment and the camera are controlled by an
Advanced Real-Time Infrastructure for Quantum Physics (ARTIQ) system, a leading control
system for quantum information experiments [130]. The ARTIQ hardware consists of a master
controller (Kasli [131]) that communicates with sub-modules, such as a Digital 10 (DIO)
card to trigger the camera and a frame-grabber card for image data transfer. A thresholding
method [132] is also implemented on the Kasli as a conventional qubit detection baseline. As
Kasli is not designed for large-scale computational tasks, and does not have sufficient logic
resources for the ML accelerator, an auxiliary Sundance FPGA board [133] is employed as

our cameralink interface and ViT implementation platform.

The EMCCD camera is configured prior to experiments. Trapped ion fluorescence captured
on this camera is sent to an FPGA through the Cameralink protocol, which has a low-latency
interface and simple protocol for rapid decoding of the data. [86]. Inside Sundance FPGA, a
Deserializer block, provided by Sundance [133], deserializes the Low Voltage Differential
Signalling (LVDS) inputs of the Cameralink interface. On the output side of the IP, the
reconstructed data after deserialization is composed of two parallel dataflows, achieved by an
AXIS Broadcaster [129]. The first dataflow connects the Cameralink Deserializer output to
Double Data Rate (DDR) memory for buffering of the captured images. The second dataflow
is connected to the ViT for real-time classification. To achieve the lowest latency transfer to

ARTIQ Kasli, we use a direct LVCMOS IO interface to send out the classification results.

Notably, programming the Cameralink Deserializer is necessary to configure the resolution
and Cameralink mode (Base, Medium, or Full) [86]. For easy-to-use programming, we

therefore design a Peripheral Component Interconnect express (PCle) Driver in a Linux PC
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FIGURE 4.3: This figure describes the flow chart of the proposed FPGA-
based qubit detection system. The steps with attached * symbolize that probe
signals are available in this step for latency measurements. The detailed
timing diagram of FVAL, LVAL, tx_done and vit_valid, vit_data
are illustraed in Figure 4.4. The FIFO structure is discussed in Figure 4.5

that passes configuration commands to the Cameralink Deserializer through a PCle interface
(see Figure 4.2). Moreover, we utilize an off-chip Quad serial peripheral interface (QSPI)
Flash chip to store the FPGA programming file (bitstream), thereby establishing a boot
sequence as follows: (a). the Linux PC powers up, (b). the FPGA automatically loads the
bitstream from the QSPI Flash, (c). the PC then detects and initializes the PCle peripheral,
and (d). the user can send control commands to configure the FPGA through our PCle driver.
The FPGA only needs to be reloaded with new bitstreams from Vivado via the joint test action
group (JTAG) interface when internal logic modifications are required, e.g., an updated ViT

accelerator.

4.1.2 Data Flow and Timing Measurements

Following the framework in Figure 4.2, the flow chart of the proposed FPGA qubit system
is shown in Figure 4.3. Kasli starts the camera with an external trigger, and then ions’
fluorescence is collected by the exposed sensor. The ‘Frame Transfer’ block transfers the

collected analog image to a digital format. The resolution of a single digital 2D-image is
58



FVAL Q ZZ

YV B
oATA Y XXX

tx_done
vit_valid |_|
vit_data X

FIGURE 4.4: Image readout and detection signal timing. We refer the reader
to Ref. [86] for a specialized description of the CameraLink Protocol. Here,
our focus is mainly on the relationships between FVAL, t x_done, and the
vit output, with other signal details being omitted for simplicity.
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FIGURE 4.5: FIFO of Cameralink Deserializer. It serves as a buffer to transfer
data from the cameralink interface domain (works in the pixel_c1k) to the
AXIS bus domain works in a different clock source: m_axis_aclk). The
wr_en and rd_en are ‘write enable’ and ‘read enable’ signals, respectively,
with full and empty indicating the FIFO’s capacity status.

defined as (H x W), where H and W are the height and width respectively, so (H x W)
pixels are streamed to the FPGA using the cameralink protocol. The Cameralink deserializer
on the FPGA receives the pixels sequentially via an internal first-in, first-out (FIFO) memory.
The FIFO implements a double-buffered streaming approach to ensure continuous data
flow for processing (H x W)-sized images. Specifically, by the time the final pixel of an
image is written into the FIFO’s read buffer, the preceding (H x W — 1) pixels have already
been seamlessly transferred from the FIFO’s send buffer into the internal cache of the ViT
accelerator, ensuring no delay in data availability for processing. Finally, after an entire image

is assembled in the ViT accelerator, it starts to process the classification computation, and
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FIGURE 4.6: Hardware optimization for each component inside of the ViT

when the computation is completed, its output is placed in vit_data and the vit_valid

signal is set to HIGH. This forms the interface with the Kasli controller.

A detailed timing diagram of the Cameralink image acquisition and ViT data output is given
in Figure 4.4, where Frame Valid (FVAL) is HIGH for a valid frame and Line Valid (LVAL) is
HIGH for a valid line. Both FVAL, LVAL, and DATA are provided by the EMCCD camera,
which acts as the master. The first rising edge of the FVAL signal represents the start of the
image data transmission to the FPGA. The t x_done is an internal status signal within the
Cameralink deserializer and is calculated by comparing the received pixel counter with the
predefined image resolution. A tx_done signal of HIGH indicates that the last pixel of an

image has been completely received and stored in the FIFO (as shown in Figure 4.5).

In order to evaluate the latency of the entire system, FVAL, tx_done, and vit_valid are
also connected to the FPGA’s output IO as debug signals so that their timing can be measured
on an external oscilloscope (steps that can be directly probed are highlighted with a * in

Figure 4.3).

Our qubit detection system is highly scalable due to a clear division between logical processing,

handled by ARTIQ, and hardware acceleration via the Sundance FPGA. Its modular design
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FIGURE 4.7: Resource-efficient matrix multiplication. The operation
in the example is Y = X-W, with user-defined reuse_factor,
block_factor is calculated by N_in X N_out/reuse_factor.

allows each component to function independently, enabling the optimization or replacement

of individual parts without affecting the system’s overall performance.

4.1.3 Vision Transformer Accelerator

Our proposed ViT model builds upon prior Transformer work by Ref. [134] for jet-tagging
physics experiments with various simplifications and optimizations that were added to make
it practical for the FPGAs. These simplifications are: (1) transformer size, i.e., the number of
transformer layers is reduced to 1, and self-attention latent dimensions are reduced from 128
to 16, (2) the original SiLU activation function was simplified to ReLLU to allow for easier

FPGA mapping, and (3) layer normalization is replaced by batch normalization.

We further upgrade this Transformer block to support our qubit detection vision task, that is,

turn it into a Vision Transformer as formulated in Chapter 2.

4.1.4 Implementation in Vivado HLS

In contrast to the standard approach of directly designing our ML model in a hardware
description language (HDL) such as VHDL or Verilog, high-level synthesis from an equivalent
C program was used. This approach has advantages for design productivity and verification.

The C program transforms from its equivalent PyTorch Python model using the Xilinx Vivado
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high-level synthesis (HLS) tool (v2020.1) [135] and then encapsulated into a single HDL
program intellectual property (IP) block. Post-synthesis verification between the generated
HDL program and the source C program is conducted to guarantee functional consistency.
Finally, this HDL IP then passes through Xilinx Vivado Design Suite (v2020.1) for system

integration and bitstream generation [108].

Deploying ViT on edge devices requires extended parallelism within the constraints of limited
resource usage. The implementation in Ref. [134] fully partitioned all matrix elements and
parallelized all for-loops. This approach is suitable for data center applications on large
FPGAs (an XCU250 FPGA) but overly aggressive for edge devices. We adopted a matrix
operation accelerator to achieve a favorable resource and latency tread-off on our Sundance

FPGA platform.

Figure 4.7 provides an example of our approach to parameterize the degree of parallelism
degree for the matrix-vector multiplication X - W =Y. First, the weights W of size (N _in,
N_out) are flattened in a column-major order to obtain a one-dimensional vector with length
N _in x N_out. Subsequently, the HLS ARRAY_ RESHAPE pragma is used in Xilinx Vivado
Tool [135] to reshape the matrix in a block factor mode, where the block_factor is calcu-
lated by dividing N_in X N_out by a user-defined reuse_factor (the reuse_factor
is illustrated in Figure 4.8 and should be chosen as a number that can be evenly divided [136]).
The reuse_factor ranges from 1 to N_in, hence the block_factor ranges from
N_in x N_out to N_out. After the block_factor division, the weights W become
independent storage units, and parallelism is achieved through the HLS UNROLL pragma. By
applying this approach, we can more effectively manage the trade-off between computational

latency and resource usage.

Figure 4.6 illustrates the ViT accelerator. We initially implemented the model using PyTorch
and trained the network on a graphics processing unit (GPU). The trained weights and biases
are converted to static arrays in C. These are then mapped to on-chip memory and placed
onto FPGA hardware via the HLS tool. The next stage of this design is the Windower,
which accepts pixel samples from the input AXI-stream interface and uses a shift register
to assemble a full image of past inputs to the next stage. Pipeline data transfer is adopted
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FIGURE 4.8: The reuse factor is denoted as R in this example, which de-
termines the level of parallel processing. (a). R = 1, the process is fully
parallelized, allowing all multiplication tasks to be carried out at once with
the greatest number of multipliers. (b). R = 2, L+ of the tasks are processed
simultaneously and half of the resources are time-division multiplexed. (c).
R = 4, 4 multipliers are time-division multiplexed, turning the computation
into sequential execution.

between the Windower and cameralink deserializer. The different layers of the ViT are shown
in different colors, corresponding to the type of parallelism employed in our implementation.
The Patches Embedding marked in red uses a pipelining scheme over the /N-sized patches.
The modules with high resource consumption and latency, marked in grey, all utilized an

arbitrary reuse_factor to allow their performance to be controlled.

4.2 Experimental Setup

4.2.1 Trap ion and EMCCD

The system is designed for a macroscopic radio-frequency Paul trap, using "' Yb™ as the
trapped ion set. This was chosen for its qubit properties and experimental ease-of-use [137].
In such an experiment, the |0) and |1) qubit states are encoded in the |*S; /5, F = 0) and

Sy /2, F = 1) energy levels of the valence electron, respectively (see Figure 2.11).

During experiments, the qubit is initialized into a known state |0). Following this, the qubit is

manipulated by driving transitions between the |0) and |1) states that are separated by 12.6
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GHz. In practice, this can be achieved by driving microwave or laser fields. Precise control of
the applied electromagnetic field’s parameters enables arbitrary operations on qubits, allowing

for single and multi-qubit gates that are necessary for quantum computations [125].

After computations, the state of the qubit is measured using state-dependent fluorescence by
scattering photons. The ion is illuminated with a 369.5 nm detection laser beam that drives the
Sy /2, F = 1) to |*Py 2, F = 0) transition (see Figure 2.11). If the qubit is in the |1) state, the
ion will interact with the detection beam and fluoresce. However, if the qubit is in the |0) state,
the ion scatters the minimal number of photons since the detection beam is far off-resonant.

The state of the qubit can, therefore, be inferred from the number of emitted photons.

In this work, an Andor 987 EMCCD camera [97] is employed to collect the fluorescence from
1"l'Yb™ ions and then converts the photons into a digital signal. The ARTIQ system controls

the EMCCD camera with a Kasli Controller v1.1 [130, 131].

4.2.2 Latency Measurement Setup

We compare latency performance using three different setups (see Figure 4.9):
(a). Thresholding implemented on Kasli.

(b). ViT implemented on FPGA.

(¢). ViT implemented on GPU.

In the baseline system, where the thresholding is an integral part of the physical trapped-ion
system, the EMCCD image is transferred to Kasli via Cameralink, and the frame-grabber
performs region-of-interest (ROI) summing. The total photon counts are then transferred to

the Kasli, which performs thresholding. Figure 2.13 explicit the thresholding methods.

In contrast, the proposed FPGA qubit detection system uses the Sundance SOLAR EXPRESS
120 (SE120) containing a Xilinx XCZU11EG chip on which the ViT accelerator is implemen-
ted. Images from the EMCCD camera are captured using a Cameralink FPGA Mezzanine

Card Module [133].
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FIGURE 4.9: This figure shows three different experiment setups. (a) is the
Thresholding method implemented on Kasli. (b) is our FPGA solution with
ViT as the classifier. (c) is the GPU solution; it employs 3 COTS cards with
the cameralink crab card to acquire cameralink images, a GPU for accelerating
ViT inference, and a COTS GPIO card for ViT label outputs. The cameralink
grab card and IO card are both PCle-rooted for low latency. These three COTS
are linked together through PC software: C program for cameralink grab and
IO cards, Python with Pytorch for ViT on GPU.

The accelerator platform in the machine learning domain can usually be either FPGA or GPU.
In order to fairly validate the latency speed-up of our proposed FPGA system, we also create

a GPU acceleration solution for the qubit detection task.

Commercial GPU products do not have a cameralink interface or a user-programable 10
interface. To allow the GPU to process image data from the EMCCD and send out classifica-
tion results to the Kasli controller in the lowest latency, we assembled the 3-card solution in

Figure 4.9 (c).

Figure 4.10 demonstrates the board’s setups and datapath in our GPU and FPGA experiments.
The GPU and FPGA tests are on the same PC mainboard for consistent evaluation; the

Cameralink Calble is either connected to the GPU or FPGA setups for independent tests.

We use a commercial off-the-shelf (COTS) card to receive cameralink images, PyTorch with
GPU for ML inference, and a COTS GPIO card for label outputs. Teledyne Dalsa Aquarius
Base CL x1 is used as the cameralink grab card [138], an NVIDIA GeForce RTX 2080 Ti GPU

is located in the middle, followed by the Advantech PCIE-1751-B card as the GPIO card [139].
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FIGURE 4.10: The GPU and FPGA solution are mounted in the same PC main
board through the PCle interface. The former employs 3 COTS cards with the
cameralink crab card to acquire cameralink images, a GPU for accelerating
ML inference, and a COTS GPIO card for ML label outputs. The dashed arrow
indicates the data flow. The Sundance FPGA is only powered and controlled
by the PC Mainboard; no data transmission is issued between them.

All three cards equip the PCle point-to-point host interface, which allows simultaneous image
acquisition, ML inference, and label output with little intervention from the host CPU. These
three cards are mounted in a host PC main board with Intel(R) Core(TM) i7-4790 @3.6GHz

and 16GB memory.
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FIGURE 4.11: Comparison of experimental and simulated single ion images.
Insets show an example of a simulated and experimental image of a single ion.
The simulated dataset is generated such that the resulting histograms closely
resemble the statistics of the experimental data.

4.2.3 Image dataset

The neural networks are trained and evaluated on a simulated dataset of ion images. Images
are generated in three steps. First, the ideal ion fluorescence is modeled by a Gaussian
distribution with standard deviation o, = o, = 0.4 pixels and an amplitude of 35. Second,
multiplicative Poissonian noise is added to the ion image with A = 0.5. Finally, Gaussian
background noise is added to the entire image with mean p;,, = 50 and standard deviation
opg = 20. As shown in Figure 4.11, all values above were chosen such that the statistics of
the resulting histograms in simulated data correspond to experimentally calibrated values.
We further verified that a Gaussian could approximate the spatial distribution of the ions’

fluorescence by investigating experimental images.

A close match between this approach to simulating experimental data alongside the error
reduction achieved by using an ML model on actual experimental images has been shown
in Ref. [85]. In this work, we focus on minimizing and measuring latency, with ML re-

training/testing on real images from a physical ion trap experiment left as future work.

Two datasets of 100,000 (a realistic size) images each are generated for 1 ion (10 x 10) and 3

ions (12 x 24). In the latter case, the ions are separated by 5 pixels, reflecting typical spacings
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in experiments. The simulated images are divided into training and testing datasets with a
ratio of 9:1. Moreover, the imager in the qubit detection system can collect a single image in

10 ms, which guarantees the collection of the dataset for such size practical.

4.2.4 ViT and LUTEnsemble Model configuration

The ViT classifier’s model size is (L = 1, H = 8, D = 16), where L is the number of
transformer layers, H is the heads number, and D is the self-attention latent dimensions. The
patch size is set to P = 5 for 1-qubit classification and P = 6 for 3-qubit classification. We
use a batch size of 128 and a learning rate {7 = 0.05 for the SGD optimiser [23] with a Cross
Entropy Loss as its loss function [23]. The ViT is trained and tested using Pytorch [23]. This
ViT and its set of hyper-parameters provided good detection performance while still producing
an efficient hardware implementation. Further optimization of these hyper-parameters may

result in an improved solution for specific system requirements.

With low-precision, fixed-point representation has shown its advantages over floating-point
computations in terms of operational complexity and latency due to the absence of complex
mantissa and exponent conversions [140], the ap_ fixed(N, I) type available in Vivado
HLS [135] is used for all non-integer operations in our ViT design. This format has integer
and fraction fields that use I and F’ bits, respectively, with N = I 4+ I, where [ determines
the range of numbers that can be represented and F' controls the precision. The reported

results were achieved using ap_ fixed(16,8) for ViT and CNN parameters.

We configure LUTEnsemble with the previously evaluated model setup (HDR-A4E2M3, D=3)
with the best accuracy and area performance for the MNIST classification task in Chapter 3

to the following qubit detection task evaluation.
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TABLE 4.2: Comparison of three detection models in accuracy and parameters

Ton Number  Module Error (%))  Parameters|
Threshold 3.7 -
1-Qubit LUTEnsemble 0.8 9212
(10 % 10) CNN 0.7 271666
ViT 0.6 6704
Threshold 114 -
3-Qubit LUTEnsemble 2.7 9296
(12 x 24) CNN 1.7 272056
ViT 1.5 7622

4.3 Results

4.3.1 Accuracy Comparison

In this section, we evaluate the accuracy achieved by our ViT model for 1- and 3-ion images.
Our ARTIQ system has an integral Thresholding model, which is also evaluated as a bench-
mark. We also introduce the ResNet-based CNN model as an ML solution benchmark, with
its effectiveness validated in Ref. [85]. For the edge-device task, we selected ResNet20-based
CNN (the smallest architecture variant of standard ResNet CNN) as our benchmark [141].

- 1 . .
F= o Zp (measured i|prepared i) 4.1)

The mean measurement fidelity (MMF) is employed as fidelity comparison, as defined in
Ref. [142], which is defined as Eq. (4.1) where n is the number of ions, and the summation
index ¢ spans across all possible combinations of n-qubit states. The measured 7 and prepared

1 represent predicted output from the qubit classifier and provided label, respectively. The

classification error is therefore calculated as (1 - F)

The MMF error for the 1-qubit and 3-qubit datasets obtained with thresholding, LUTEnsemble,
CNN, and ViT are reported in Table 4.2. We also report the number of trainable parameters
calculated from the count_parameters () function in PyTorch [23]. Parameters are not
reported for the thresholding method as it uses the histogram discrimination procedure [132].

For a 1-qubit, the classification error of machine learning techniques, LUTEnsemble, CNN,
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TABLE 4.3: FPGA resource consumptions constrained by the target clock
frequency: 250 MHz. Look-up-table (LUT), Digital Signal Processing (DSP)
Elements, Block RAM (BRAM), and Flip Flops (FF) are used to indicate the
main FPGA programmable logic resources. ViT implemented under 1-qubit
and 3-qubit sets consumes 4054 and 8797 clock cycles, respectively.

Module LUT DSP BRAM FF
Cameralink 1513 0 18 2097
Util 0.5% 0% 1.5% 0.35%
LUTEnsemble (1-Qubit) 25500 0 0 7275
ViT (1-Qubit) 69395 467 207 48113
Util 23% 15% 17% 8%
LUTEnsemble (3-Qubit) 26065 0 0 8860
ViT (3-Qubit) 152021 600 272 76568
Util 50% 20%  22% 12%

and ViT, is lower than the thresholding error by 2.9%, 3.0%, and 3.1%, respectively. The
number of parameters of ViT is smaller than that of CNN. In the 3-qubit scenario, the benefits
of the machine learning models become more apparent, as LUTEnsemble, CNN, and ViT
yield MMF errors that lower the threshold method by 8.7%, 9.7%, and 9.9%. The MMF error
of the ViT is 1.13x, 1.80x, and 7.6 x lower than CNN, LUTEnsemble, and thresholding,
respectively, with its parameters considerably smaller than CNN. Notably, the parameter
count of LUTEnsemble is not a strong directive metric for its model complexity since the

LUT-based DNN is also constrained by the lookup table size of each neuron.

4.3.2 Latency Comparison

The FPGA design is running on the m_axis_aclk (see Figure 4.5). Operating under a
frequency constraint of 250 MHz (4 ns), the resource consumption of synthesized hardware is
shown in Table. 4.3. Around 20% and 50% look-up-table (LUT) is consumed by 1-qubit and
3-qubit ViT and 4054 clock cycles (16.22 us) and 8797 clock cycles (35.19 pus) are utilized
respectively. The LUTEnsemble serves at a latency and area-tailored solution, with 6 clock

cycles (24 ns) and a smaller resource consumption achievable.

By integrating the generated FPGA hardware into the qubit detection system (see Figure 4.2),

the system’s latency is experimentally determined by measuring the duration between various
70



probed signals on an external oscilloscope. The EMCCD camera’s exposure time is set to
1 ms, and the image size is 10 x 10 and 12 x 24, representing 1- and 3-qubit detection,
respectively. The Cameralink transmission frequency is set to its maximum frequency of 17
MHz [97]. The camera is externally triggered by a signal originating from the ARTIQ system.
This signal also acts as the starting point for latency measurements. We individually measure
(FVAL, tx_done and vit_valid) by mapping them to an external IO pin. A 2.5 GHz
oscilloscope is used for dual-channel edge detection. The results in this section are achieved

from 20 times repeated tests.

e FVAL: Tepp(FVAL) — Tep(trigger)
e tx_done: Temp(tx_done) — Tep(trigger)

e vit_valid: Tep(vit_valid) — Tepi(trigger)

The Sundance FPGA supports customized interest-of-area crops from a full 512 x 512 image.
Then, the 10 x 10 and 12 x 24 area is cropped by the camera and then transmitted to the
FPGA-based ViT. In contrast, in the GPU test, the most fitted crop scales for the target
image size supported by the cameralink grab card (Teledyne Dalsa Aquarius Base CL x1) are
16 x 16 and 24 x 24, which is received firstly by the cameralink grab card and then further
cropped to 10 x 10 and 12 x 24 in Pytorch environment before sending to the ViT on GPU.
In light of this, our FPGA solution offers superior transmission efficiency for customized ROI
cropping compared to the GPU approach, supporting more optimized crops directly from a

full 512 x 512 image.

The results of the FPGA-based and GPU-based ViT latency measurements are shown in
Table. 4.4. The FVAL: 1.414+0.01ms is measured on our FPGA probed IO signal on different
image sizes from 10 x 10 to 512 x 512 which validates that this duration is independent of
the transferred image size and only determined by the cameralink protocol. Then, we safely
assume the GPU solution shares the same value as FPGA, as there is no accessible probed 10

on the GPU solution for direct measurement.

The t x_done measured on FPGA is conducted on target image sizes 10 x 10 and 12 x 24,

which is 1.75+0.01 ms and 2.2540.02 ms respectively, which indicates that this duration is
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TABLE 4.4: Latency measurement results of FPGA- and GPU-based qubit
detection system (Unit: ms). The mean and stand deviation are calculated from
20 times repeated tests. The FPGA-based ViT latency (0.016 ms and 0.035
ms) listed here is from the Vivado hardware report, which consumes fixed
clock cycles (4054 for 1-qubit and 8797 for 3-qubit) in repeated executions.
The internal tx_done signal is not accessible on the GPU solution. In
comparison, the FPGA system offers much lower latency and higher certainty
(lower standard deviation). FPGA system achieves 119x and 94 x speedup
than GPU solution for 1-qubit and 3-qubit test respectively with the ViT
accelerator on FPGA is 178 x and 84 x faster than that on GPU. Another
interesting part is that the ML accelerator on GPU only takes ~1.3% of the
entire qubit detection duration with ~98% latency consumed on the PCle-
rooted interface.

Platform FPGA GPU

Ion number 1-Qubit 3-Qubit 1-Qubit 3-Qubit
FVAL 1.41£0.01 1.41+0.01 1.41+0.01 1.4140.01
tx_done 1.75£0.01  2.2540.02 - -
vit_valid | 1.7840.02 2.29+0.02 | 211.95+17.72 214.70+10.87
ViT model 0.016 0.035 2.8540.13 2.9540.11
Util 0.89% 1.53% 1.34% 1.37%

corresponding to the actual transmitted image size. Unfortunately, the precise value for the

GPU solution is immeasurable because of the absence of probed t x_done signal.

The overall system latency indicated by vit_valid and separate ViT latency shows that
the FPGA system achieves 119 x and 94 x speedup than the GPU solution for 1-qubit and
3-qubit tests, respectively, with the ViT accelerator on FPGA 178 x and 84 x faster than that
on GPU.

Notably, the developer only has access to measure the ViT inference latency separately on
GPU through the t ime () function in the Python environment, the rest of latency (includes
PCle-rooted interface latency, data movement latency and operating system-related latency)
are summarily measured together. This transmission time is influenced by factors such as the
operating system’s workload and scheduling mechanism, hence this latency is in-deterministic

and shows a big deviation.

Using the 3-qubit results as an example, we also include a comparison with the baseline

methods (Thresholding on Kasli) in Figure 4.12.
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FIGURE 4.12: Latency Measurements from Testbed for 3-Qubit Detection.
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FIGURE 4.13: ILA Waveform over an entire 10 x 10 pixel image capture.

From these results, the ViT achieves latency comparable to the thresholding baseline. The
overall detection latency is dominated by the EMCCD camera’s frame period (0.41 ms) and
the Cameralink data streaming (840 ps). Further insights are gained by looking at the image
send step, which is the duration cost by moving data from the cameralink bus to the ViT
accelerator. For FPGA, it is almost parallel (only 1 pixel later) with the cameralink data
streaming thanks to the pipeline design (see Section. 4.1.3). In GPU implementation, it is
transferred in a serial model because the image send operation has to start until one single

image has been fully received from the cameralink card and transferred to memory.
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To analyze the logic behavior of the internal signals within the FPGA, we employed the
Integrated Logic Analyzer (ILA [143]) to record critical internal signals. With 1-qubit as
an example, Figure 4.13 shows the waveform obtained by ILA, captured in real-time at 250
MHz (AXIS clock: m_axis_clk), and reflects the actual data transmission. It can be seen
that, for a 10 x 10 image, FVAL remains HIGH until the full image is received, and LVAL
is valid during each line of data transmission. We only show single LVAL duration for clear
illustration purposes. The counter indicates the number of received pixels inside the ViT. It
accepts a new row of 10 pixels each time LVAL is valid until it successfully receives 100

pixels forming a complete image, after which it resets to HIGH.

The entire line reading operation only accounts for 1.54% of the interval between two LVALS.
This is because no matter how many pixels will be transmitted, there are always 512-pixel
time slots consumed per line [97]. This observation provides insight for future improvements;
that is, lower latencies could be achieved from other cameras with more efficient readout

modes.

4.4 Summary

This chapter presents a low-latency neural network-based qubit detection system and its
real-time FPGA implementation for trapped ion quantum information processing. First, we
use two machine learning models (ViT and LUTEnsemble) to infer the state of 2D images
and use a simulated dataset that closely resembles the statistics of experimental data. The
LUTEnsemble, tailored for latency and area optimization, shows improved one- and three-
qubit fidelities over thresholding [132] methods in an ultra-low latency (24 ns), significantly
surpassing modern trap-ion system requirements (120-400 ps). The ViT demonstrates better-
balanced latency and accuracy tread-off, which improved one- and three-qubit fidelities
over thresholding, LUTEnsemble and CNN [85]. On the three-qubit test, the MMF error
of the ViT is 1.13x, 1.80x, and 7.6 x lower than CNN, LUTEnsemble, and thresholding,

respectively, with its parameters considerably smaller than CNN. The ViT’s latency (16-35
74



() is comparable in modern trap-ions, making it an optimal solution for systems with more

available resources and a higher demand for detection accuracy.

Second, we reduce the entire system latency by integration with a cameralink interface and
acceleration of the ML model on an FPGA. We experimentally compare the latency of our
ViT solution with that of a GPU. As our approach is highly parallel, avoids transfers between
multiple cards, and minimizes buffering, total detection latency is two orders of magnitude

lower than the GPU.

Interestingly, as for the proposed FPGA system, the ViT’s latency only accounts for 0.89-
1.53% of the detection system’s latency. The bottleneck is currently the EMCCD camera’s
digitization of the image and transmission via Cameralink. Further reduction in latency will,

therefore, require an improved camera readout interface.

Future work will extend this architecture in two key directions. First, we will re-train the ViT
and LUTEnsemble using experimentally collected images, complete with all imperfections,

and then evaluate this FPGA-based qubit detection system in a physical trap-ion experiment.

Second, we will enhance the system’s scalability by introducing partial reconfiguration. The
current workflow relies on the PCle driver in a Linux PC to pass configuration commands
to the Cameralink Deserializer through a PCle interface (see Figure 4.2). Whenever the
ML accelerator is updated, a new bitstream must be loaded to refresh the FPGA logic. This
process requires rebooting the Linux PC to detect and initialize the PCle peripheral, which
can be inconvenient for tasks running on the same PC. We believe partial reconfiguration
could mitigate this inconvenience. Furthermore, this challenge has also motivated the general

composable framework design discussed in the following chapter.
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CHAPTER 5

fSEAD: Composable Hardware on FPGA SoC

Chapter 4 highlighted the inconvenience of updating partial functions within an FPGA, which
could require refreshing the entire bitstream or even rebooting the PC, leading to interruptions
in ongoing tasks. Inspired by this challenge, this chapter investigates approaches to enhance
the composability and scalability of FPGA-based SoCs to overcome these issues. A general
ensemble model implementation serves as the case study. To accomplish this, we investigate
a flexible computing architecture through the lens of FPGA streaming ensemble anomaly de-
tection (fSEAD) tasks. We propose a framework comprising multiple partially reconfigurable
blocks, termed pblocks, which are interconnected via an AXI switch and facilitate arbitrary
composition before merging and combining results at run-time to create an ensemble. We
validate this approach by comparing fSEAD to an equivalent CPU implementation across

four standard datasets, yielding speed-ups ranging from 3x to 8x.

The presentation of this chapter is based on background given on ensemble and anomaly

detection in Chapter 2 and expands on work previously published in [2].

Ensembles are a class of methods that pool weak detectors to form a more accurate combina-
tion [13]. Over a number of decades, they have proven to be an excellent methodology that
utilizes the diversity of weak detectors to reach a better overall decision than the individual

ones [12].

Anomaly detection is a key machine learning (ML) task and refers to the automatic identific-
ation of unforeseen or abnormal samples embedded in normal data [28, 29]. Applications
of anomaly detection include fault detection surveillance systems [144], fraud detection in

financial transactions [145], intrusion detection for network security [146], monitoring of

76



sensor readings in aircraft [147] and discovery of potential risks or medical problems in health

data with predictive maintenance [148].

When data is susceptible to concept drift [149], anomaly detectors can be utilized in a
streaming fashion, with the detector being updated in an online manner. Streaming techniques
store and process a window of recent instances. Streaming ensemble anomaly detectors
(SEADs) achieve high accuracy under limited memory, processing, and time constraints
because ensembles contribute high accuracy and robustness, and real-time processing is

enabled via streaming algorithms.

Existing anomaly detection libraries have been developed for CPUs. These include unsu-
pervised, supervised, heterogeneous approaches such as SUOD [33] and PyOD [52]. These
libraries provide a single, well-documented application programming interface (API), making
it easy to compare and compose different algorithms. In particular, PySAD introduces a
framework for streaming ADs in Python [34] with a common interface. Using the aforemen-
tioned AD libraries, a software-based model combination toolkit: combo was presented in
reference [53], allowing anomaly detectors to be combined in Python. CPU-based SEAD
libraries allow programmers to switch detector types or combine multiple detectors to boost

performance for specific scenarios.

Implementing customized anomaly detection algorithms in hardware is desirable to achieve
higher performance, lower power, and lower latency [150, 151, 10]. However, most designs
do not have the same flexibility or customizability as software-based approaches. This is one
of the main challenges for reconfigurable computing, and while we do not solve the problem,
we propose an approach with considerably more flexibility than conventional FPGA designs.
To the best of our knowledge, no composable FPGA implementations of ADs have been

published to date.

In this chapter, to enable AD on FPGA with higher flexibility and scalability, we propose
fSEAD, a composable and low latency FPGA-based SEAD library. fSEAD has two com-
ponents. The first is a high-level synthesis (HLS) based module generator that converts

three state-of-the-art SEAD algorithms (Loda [35], RS-Hash [36], and xStream [37]) into
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optimized sub-detector-level paralleled FPGA entities which store all parameters in on-chip
memory. The second component is a composable hardware framework that enables online
switching and dynamic data routing between IP cores at run-time through reconfigurable
Dynamic Function eXchange (DFX) and the arbitrary routable AXI4-Stream Switches. This
allows new functionality to be introduced to the design at run-time. Composability is gained
through the combination of coarse-grained reconfigurability of sub-detectors and switchability,
which facilitates their flexible interconnection. While run-time reconfiguration of the FPGA
introduces tens or hundreds of milliseconds in overhead for large FPGAs [152, 153], this is

not a concern for fSEAD as this is only done when fSEAD is idle.

The main contributions of this chapter are:

e The first FPGA-based ML system that allows complex and more powerful ADs to
be created from simple blocks without recompilation.

e The creation of hardware implementations for three streaming ensemble anomaly
detectors (Loda, RS-Hash, and xStream) and demonstration of how they can be
integrated within our framework. These implementations are created from an HLS-
based generator for FPGA instances, with a GCC-based alternative that creates
multi-threaded CPU versions for comparison. New detectors can be written in C and
Python and are easily integrated into this library.

e A composable framework that utilizes multiple reconfigurable regions connected
via two AXI switches. In the implementation, high frequency is achieved through
floorplanning pblocks surrounding the fSEAD infrastructure, minimizing routing
delay.

e We use PYNQ partial overlays invoked in Python for executing AD functions [15],
allowing an easy-to-use interface for composing and comparing different ADs.

e This research uses publicly available datasets and our design has been made open

source to facilitate reproducible research '.

'fSEAD: https://github.com/bingleilou/fSEAD.
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The remainder of the Chapter is organized as follows. We start in Section 5.1 with an
introduction of the SEAD background and a formal definition of the framework that we
deployed in the FPGA. In Section 5.2, we describe the design of the proposed fSEAD from
four aspects: Module Generator, DFX Tool Flow, Composable Infrastructure and its FPGA
Implementation. Then, the results of the experiment and performance are shown in Section 5.3.

Finally, Section 5.4 concludes the work.

5.1 Related Work

This section introduces anomaly detectors for streaming data, followed by the related work of
FPGA-based anomaly detection applications in this domain. Backgrounds of the ensemble

can be found in Chapter 2.

5.1.1 Streaming Anomaly Detection

Anomaly detection is a key machine learning (ML) task, which refers to the automatic
identification of unforeseen or abnormal samples embedded in a large amount of normal
data [28, 29]. From the perspective of processing data, we distinguish between two anomaly

detection types: static and streaming.

Static detectors usually operate on a relatively large batch of data before performing informa-
tion extraction and feature analysis to identify rare items, events, or observations from the
general distribution of a population. Representative methods include k-Nearest Neighbors
(kNN) [30], Local Outlier Factor (LOF) [31], and Principal Component Analysis (PCA) [32];
for a more comprehensive collection of static methods, we refer the reader to the SUOD [33].
While batch processing can lead to high throughput and accuracy, it is not suitable for systems
that require real-time performance since the computing resource requirements and latency

increase with batch size.

In contrast, streaming methods only store and process a window of recent instances [29,

34]. This is more amenable to achieving accurate anomaly scores under limited memory,
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TABLE 5.1: Block Diagram of SEAD Methods

Anomaly Blocks
Detectors | Projection Core Sliding-Window Score
Loda prj-loda | histogram IxW —logy(c/W)
RS-Hash | prj-rshash CMS wx W —log,(1 + min{cy,...,cw})
xStream | prj-xstream | CMS wx W —logy(1+ min {2'¢y, ..., 2% e })

' W: the length of the sliding-window.
2 w: the number of hash functions in the count-min sketch (CMS).
3 ¢: the count of histogram or hash code of CMS

processing, and time constraints. Moreover, the algorithms are designed to facilitate more
lightweight and potentially real-time implementations. A group of algorithms that support
streaming anomaly detection processing includes, but is not limited to, ensemble-centric
methods [35, 36, 37], tree-based methods [38, 39, 40], kernel-methods [29], as well as Neural

Network-based solutions such auto-encoders [41] and adversarial models [42].

In this work, we select a set of three state-of-the-art and representative anomaly detectors
for our HLS module generator: Loda (Light-weight Online Detector of Anomalies) [35],
RS-Hash [36], and xStream (Outlier Detection in Feature-Evolving Data Streams) [37]. These
are briefly explained below. We denote X = {Z;} as the input dataset and dimension d of
each sample, then 7; € R? is the ith input sample of the data stream, and R is the ensemble

size.

Loda is a projection-based histogram detector, RS-Hash uses a randomized subspace hashing
algorithm, and xStream is a density-based detector. Although the three techniques are based
on different principles, the algorithms can be expressed as a composition of the following
standardized blocks: Projection, Core, Sliding-window, and Score. Table 5.1 summarizes the

main functional blocks of these three SEAD methods.

The purpose of projection is to reduce the dimensionality of a set of points while retaining
the essence of the original data. Randomness between sub-detectors to improve diversity in
an ensemble is also introduced at this step. It is also the most computationally expensive
step. The core block is the cornerstone of each method: Loda is based on the histogram;

RS-Hash and xStream approaches make use of the count-min sketch (CMS) [154], in which
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Algorithm 3 Loda
Input: Streaming input signal X = 7; € R?; ensemble size R; data dimension d;
sliding-window length W.
Output: Streaming anomaly value Score.
#pragma HLS DATAFLOW
// @®WINDOWER:
for dim =1,2,...,ddo
\ A shift register to produce an entire sample: X with d features.
end
// @ENSEMBLE:
forr=1,2,...,Rdo
// @ PROJECTION:
for dim =1,2,...,ddo
#pragma HLS PIPELINE
prj_X < prj_X + X x loda_prj (random projection)
end
// @HISTOGRAM:
idz < (prj_X — loda_min)/(loda_max —loda_min)
v 4 sliding-window|idzx]
/l @SLIDING-WINDOW:
Update sliding-window.
/l ®SCORE:
score(r) < log, (v)

end
// @SCORE AVERAGING:

R
1
Score < 5 > score(r)
r=1
return Score

w pair-wise independent hash tables are used. These three methods all operate over a sliding-
window of the input data, which is received in a streaming fashion. The difference is that the
histogram-based Loda only uses a 1-row table as a sliding window, whereas the CMS-based
methods allow the sliding window with a w-row table (w > 1). The score block calculates

the negative log-likelihood, so the less likely a sample is, the higher the anomaly value.

Algorithm 3 to Algorithm 5 present the pseudo-code for Loda, RS-Hash, and xStream,
respectively. Algorithm 6 introduces the hash function, which is applied in RS-Hash and

xStream. Clearly, each function has the streaming input x and the streaming output Score.
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Algorithm 4 RS-Hash
Input: Streaming input signal X = 7; € R?; ensemble size R; data dimension d;
sliding-window length W; hash functions number in CMS: w.
Output: Streaming anomaly value Score.
#pragma HLS DATAFLOW
[/ @WINDOWER:
for dim =1,2,...,ddo
\ A shift register to produce an entire sample: X with d features.
end
// @ENSEMBLE:
forr=1,2,...,Rdo
// @ PROJECTION:
for dim =1,2,...,ddo
#pragma HLS PIPELINE
norm_X <« normalize X [dim] to the range of [0,1]
prj_X < (norm_X + rshash_alpha[r][dim])/rshash_f|r]
end
/l @HASH-FUNCTION:
for row =1,2,...,wdo
#pragma HLS UNROLL
prj_hash[row|[dim] < prj_X
hash_value[row] <— Jenkins(key = prj_hash[row],len = d, seed = row)
(see Algorithm 6 for details of Jenkins)
Urow <— sliding-window[hash_value[rowl]
/ @SLIDING-WINDOW:
Update sliding-window.

end

min_v <— min{vy, v, ..., Uy }
// ®SCORE:

score(r) < log, (min_v)

end
// @SCORE AVERAGING:

R
1
Score < & Z:l score(r)
r=
return Score

The ensemble can be divided into seven parts. The @ WINDOWER block uses a shift register
to assemble samples 2 € R! into an entire vector Z; = {z1, 7, ..., 74} € R?, @ENSEMBLE is
a big for loop with R independent iterations. Each iteration can be regarded as a sub-detector

with a unit of 1. Each sub-detector executes the functional modules of ® PROJECTION,
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Algorithm 5 xStream

Input: Streaming input signal X = 7; € R?; ensemble size R; data dimension d;
sliding-window length W; hash functions number in CMS: w; projection size: K.
Output: Streaming anomaly value Score.
#pragma HLS DATAFLOW
// @®WINDOWER:
for dim =1,2,...,ddo
\ A shift register to produce an entire sample: X with d features.
end
// @ENSEMBLE:
forr=1,2,...,Rdo
// @ PROJECTION:
for dim =1,2,...,ddo
#pragma HLS PIPELINE
fork=1,2,..., K do
#pragma HLS UNROLL
prj_XIk] < prj_X[k| + X[dim] * zstream_prj[dim][k]
end
end
// @HASH-FUNCTION:
for row =1,2,...,wdo
#pragma HLS UNROLL
prj_hash[row| < perbins(prj_X)
hash_valuelrow] <— Jenkins(key = prj_hash[row],len = K, seed = row)
(see Ref. [37] and Algorithm 6 for details of perbins and Jenkins)
Vrow <— sliding-window[hash_value[rowl]
// @SLIDING-WINDOW:
Update sliding-window.
SCOT€row < 1089 (Vo) + TOW

end
// ®SCORE:
score(r) <— min{scorey, scores, ..., score,}

end
// @SCORE AVERAGING:

R
1
Score < 5 > score(r)
r=1
return Score

OCORE (Histogram for Loda, and Hash Function for RS-Hash and xStream) ®SLIDING-
WINDOW and ®@SCORE sequentially. The execution of these modules is time-dependent, that

is, the start of the latter one must wait for the execution of the former to complete. Finally,
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Algorithm 6 Jenkins Hash Function
Input: The string: key, string length: [en and random seed: seed
Output: The hash code of input string.
hash <+ seed;
for:=1,2,... lendo
#pragma HLS PIPELINE
hash < hash + keyli]
hash < hash + (hash << 10)
hash < hash & (hash >> 6)
end
hash < hash + (hash << 3)
hash < hash & (hash >> 11)
hash < hash + (hash << 15)
hash_code < hash%MOD
return hash_code

@SCORE AVERAGING is used for producing the final ensemble anomaly score by averaging

the outputs of all sub-detectors.

The serial combination of these four blocks (@®®®) constitutes a base sub-detector. We
use R parallel executions of the base sub-detector with a different starting seed or hash and
average their scores to form an ensemble. For a CPU implementation, R sub-detectors are
processed sequentially. Details of HLS directives used in the pseudo-code are described in

Section 5.2.1.

5.1.2 FPGA-based Anomaly Detection Solutions

This section reviews other anomaly detection techniques and literature on FPGA-based
anomaly detection. A powerful class of anomaly detectors utilizes tree-based structures,
with examples including iForest [38], HS-Tree [40], and RS-Forest [39]. The Isolation
Forest (iForest) approach builds an ensemble of “Isolation Trees” (iTrees) for the dataset, and
anomalies are the points with shorter average path lengths on the iTrees. HS-trees are similar
to Isolation Forest, but decision rules within tree nodes are generated randomly. RS-Forest

takes a further step by using multiple fully randomized space trees to tackle the streaming
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detection problem from the density estimation aspect, which is more efficient as it leverages

the common operations shared by the prediction and model update processes.

Kernel methods and data-centered models have also been proposed as online anomaly detect-
ors. Support Vector Regression (SVR) with Gaussian kernel-based online novelty detection on
temporal sequences is presented by Ma et al. [29]. High-performance FPGA implementations
of online kernel methods were demonstrated in references [155, 156]. Based on static data-
centered LOF methods [31], an incremental LOF algorithm appropriate for detecting outliers
in data streams is proposed in [157], which provides equivalent detection performance as the
iterated static LOF algorithm while requiring significantly less computational time. Das et al.
proposed a system based on feature extraction and Principal Component Analysis (PCA) [150].
Their FPGA implementation could support data at over 20 Gbps. Pang et al. [155] present
a high-performance FPGA implementation that achieves improvements in execution time,
latency, and energy consumption by factors of 5, 5, and 12, respectively, over CPU and
digital signal processor (DSP) implementations for the online kernel method [29]. Hayashi
and Matsutani [151] offload the Local Outlier Factor (LOF) calculation to an FPGA-based
Network Interface Card for online anomaly filtering. This leads to throughput improvements

of up to 10x on the anomaly filtering over a software-based execution.

Neural Network models have also been proposed for streaming anomaly detection. Moss et
al. [10] introduce an FPGA accelerated Neural Network-based anomaly detector based on
an auto-encoder for processing of physical-layer radio-frequency (RF) signals. This design
processes continuous 200 MS/s complex inputs, producing anomaly classifications at the same
rate, with a latency of 105 ns, improving at least 4 orders of magnitude over a conventional

approach using a software-defined radio.

While there are published FPGA implementations of random forests [158, 159, 160], kernel
and neural network-based FPGA-based accelerators, these are all fully-customized hardware
designs for a specific algorithm. Moreover, they typically utilize most of the available
FPGA resources, meaning it is difficult to implement such detectors in a partial region of an
FPGA. The focus of this work is on the development of a flexible library. Unlike the many
comprehensive and easy-to-use anomaly detection libraries released on different software
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platforms [49, 50, 51, 33, 52, 34], we believe this is the first flexible FPGA library for anomaly

detection in the literature.

Although we are unaware of any publications describing runtime reconfigurable anomaly
detection libraries, dynamic reconfiguration on FPGAs has been used for other FPGA applic-
ations. The most similar to this work is Wilson, who proposed a real-time video processing
pipeline that utilizes the dynamic reconfigurable aspects of FPGA [74]. Their work used
11 reconfigurable regions, allowing for multiple custom run-time configurations, and they
adopted partial bitstreams with PYNQ overlays to ease software development. Our work is
different in that it uses AXI switches to dynamically switch anomaly detectors and model
combinations between reconfigurable regions and employs a flexible module generator to

create the regions themselves.

5.2 Design

This section provides a high-level description of the fSEAD system, followed by the mod-
ule generator for creating integrated anomaly detection IPs. Next, we introduce the DFX
workflow we abstracted to create a partial reconfiguration project in the Xilinx Vivado en-
vironment. We then describe the interconnection scheme, which provides a high degree of
flexibility and enables IP modules to be composed at run-time, allowing applications to be
efficiently accelerated without regeneration of bitstreams. Finally, the FPGA implementation

1s discussed.

The system framework is illustrated in Figure 5.1. It consists of four software and hardware
components. fSEAD_gen in the upper-left corner of Figure 5.1 is a Python-based module
generator. It takes parameterized function entities and produces Vivado HLS modules. The
lower-left corner of Figure 5.1 shows the interface for pblocks, which take streaming inputs
and produce streaming outputs. These then are encapsulated as multiple unique IPs and
wrapped within AXI streaming interfaces and an AXI-Lite controller. All parameters required
by the IP modules are stored in on-chip memory (OCM) for performance. The lower-right

sub-figure shows multiple pblock regions. Multiple sub-detector IPs are arranged in a spatially
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FIGURE 5.1: Overview of the fSEAD Framework.

parallel fashion within each pblock. Each pblock is implemented by many reconfigurable

modules (RMs) and can be customized at run-time.

5.2.1 Module Generator

The module generator allows customization of the underlying sub-detectors for latency

optimization and resource utilization exploration.

The fSEAD_gen module generator, written in Python, takes as inputs the anomaly detector
parameters, data type, precision, function description, target dataset, and testing set. It pro-
duces a standalone C program suitable for synthesis via HLS as output. The parameters, inter-
face, and optimization directives are all embedded in the C program. A compact sub-detector
C instance is formed by combining the ® PROJECTION, @CORE, ® SLIDING-WINDOW and
®SCORE parts of Algorithm 3-5. Arbitrary numbers of sub-detectors, specified by the user
to the module generator, are integrated parallel to form an ensemble. A self-verifying test
bench compares the program with golden results from the original Python description. Thus,
programming errors introduced by the generated ensemble program can be quickly identi-

fied in the simulation step. For synthesis, compiler directives such as DATAFLOW, ARRAY
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FIGURE 5.2: An Example of A Hash-based AD Hardware Structure in fSEAD.

PARTITION, UNROLL, and PIPELINE are used to aid the translation of the C description

to a spatially parallel RTL circuit.

In Algorithm 3 to Algorithm 5, we use the DATAFLOW pragma only in the top layer (line-1
of each algorithm) to enable task-level pipelining. This allows functions and loops to execute
concurrently and achieve sub-detector parallelism. UNROLL is used to create multiple in-
stances of the loop body in the RS-Hash and xStream algorithms to exploit spatial parallelism.
This enables all hash functions inside the CMS table (line-16 in Algorithm 4 and line-18
in Algorithm 5) to execute concurrently and similarly accelerates the projection of size K
for xStream (line-12 in Algorithm 5). PTPELINE reduces the initiation interval (//, the
number of clock cycles before the function can accept new input data) by allowing overlapped
execution of operations within a loop or function. It is used in the projection loop body of
all detectors (line-10 of Algorithms 3 to 5) and the for loop in the Jenkins hash function
(line-3 of Algorithm 6). /I = 1 is achieved in all the loop bodies with PIPELINE for our
implementation. The result of all these optimizations is a highly parallel design that balances

resource utilization and latency.
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fSEAD_gen currently supports three types of detectors with arbitrary ensemble sizes and
coefficients (Loda, RS-Hash, and xStream). All HLS directives are manually designed for
the target FPGA and then embedded in fSEAD_gen. fSEAD_gen can automatically generate
optimizations for different ensemble sizes, such as hyper-parameters and other configurations,
without modifying the existing HLS directives. However, developers maintain the flexibility
to adapt the current HLS directive to find more optimized solutions for a specific area-latency
trade-off requirement. New detectors can be written in C/Python and easily integrated using
existing detectors as examples. In this case, specific optimized HLS directives have to be

manually re-designed for new members to the fSEAD library.

Figure 5.2 shows an ensemble of hash-based detectors with a more complex hardware
implementation than Loda. For simplicity, this figure highlights the parallel sub-detectors
generated by the DATAFLOW pragma instead of the detailed circuits from the lower level
by PIPELINE and UNROLL pragmas. This represents the main acceleration of fSEAD:

task-level parallelism for sub-detectors operating concurrently.

Input data is streamed into the IP on the left interface and outputs the real-time anomaly score
on the right side. Input samples are windowed to assemble a batch with target dimension: d
(refer to @WINDOWER in Algorithm 4 and Algorithm 5). Computation of all the streams
occurs concurrently, before a final reduction step (refer to @ENSEMBLE, in Figure 5.2 this
1s averaging). Sub-detector level parallelism is achieved by applying the HLS DATAFLOW
directive on the top function. In this way, the maximum ensemble size is only limited by
resources available in the target FPGA. Inside each sub-detector, a small area and low latency
are the goals. We compute each row of a CMS table using independent hash functions in
parallel (refer to @HASH-FUNCTION). PARTITION directives are used to divide a large
RAM into smaller storage units, increasing the available parallelism of accesses. This is
advantageous because even with dual-port RAM, only one read and one write operation can
be completed in one clock period. Notably, since the usage of PARTITION significantly
affects the resource consumption of LUTs or FFs on FPGA, it is only used for a specific
dimension of the target array. This guarantees the functions of DATAFLOW, PIPELINE,

and UNROLL directives. All HLS directives above enable a balanced optimization inside an
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FIGURE 5.3: An Example of Xilinx Partial Reconfiguration Tool flow.

ensemble AD instance, which is independent of the partial-block-level model combination

scheme introduced in the following Section 5.2.3.

We constrain the ® PROJECTION module using PIPELINE instead of UNROLL inside each
sub-detector to avoid high resource cost with little throughput benefit. To compute the
logarithm required for the negative log-likelihood score of Table 5.1, a W -deep lookup table

with 32-bit representation is used for the window size of V.

5.2.2 DFX Tool Flow

DFX is an important tool to endow fSEAD with partial reconfigurability. Its customized
workflow for fSEAD is introduced in this section. Continuing on the basis of the example
in Figure 2.9. Figure 5.3 shows an example of how two reconfigurable areas are mapped to
Reconfigurable Partitions (RPs) using our tool flow. It should be noted that in addition to the

dynamic RMs for each Partial block (e.g., the RM-A1 to RM-A3 for RP-A and RM-B1 to
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RM-B4 for RP-B), a default RM can also be assigned for each pblock. The logic of the RM-
Default will be first active when the static.bit is downloaded, which brings it a recommended
way of setting the default RM to an empty logic to save power before this pblock is configured
by the dedicated RM of users.

In the last step (the lower left sub-figure) in Figure 5.3, we show that standalone FPGA or
Xilinx PYNQ platforms are able to support the fSEAD execution. In this example, we select
the PYNQ as the final execution platform. The bitstreams and a hardware hand-off (HWH)
file are used as overlays by PYNQ to automatically identify the Zynq system configuration

and IP, including static regions and partial blocks.

5.2.3 Composable Infrastructure

The Xilinx DFX tool [72] supports partial reconfiguration of RMs in an FPGA while the rest
of the device remains operational. There is no limitation in the number of RMs supported. In
fSEAD, each pblock is a unique RM configuration with its own BIT file. By downloading
the appropriate one, the hardware functionality can be customized at run-time. In summary,
pblocks are either (1) Ensembles of homogeneous sub-detectors implemented in a pblock and

(2) Combination modules that aggregate heterogeneous pblock output streams.

An AXI4 switch acts as a router and orchestrates data movements between pblocks. Inputs
can be routed from multiple input streams to any pblock, with outputs routed to remaining

pblocks and back to a host processor.

Figure 5.4 shows the composable topology proposed in fSEAD. The grey regions are pblocks.
Blue blocks symbolize Direct Memory Access (DMA) controllers for data transfer. Two
AXI4-Stream switches [161] enable dynamic routing from a Slave port to a Master port,
e.g., for switch-1, S1 in the lower left is the first Slave interface, and M14 in the lower
right symbolizes the 14th Master interface. Master and Slave interfaces are symmetric and
point-to-point, so Master output signals can connect directly to Slave input signals. Any
number of external modules can be daisy-chained together. The modules can be used for

many different tasks, such as buffering, data transformation, or routing. Multiple switches
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FIGURE 5.4: Composable Topology.

are used since each Xilinx AXI4-Stream Switch IP switch only supports a maximum of 16
Slave ports and 16 Master ports. The cascades of two or more switches allow an arbitrary
number of pblocks to be interconnected. The black lines depict AXI4-Stream connections,
and the red lines are AXI-Lite bus connections. These are connected and controlled by the

AXI14 Interconnect at the bottom.

In our prototype implementation, seven independent pblocks are available for implementing
anomaly detectors (shown as RP-1 to RP-7 in Figure 5.4. Each pblock has one AXI4-Stream
input connected to a fixed DMA and one output interface connected to a Slave port of AXI4-
Stream Switch-1. Multiple sub-detectors can be placed in a single pblock, each with different
parameter settings. For example, 35 Loda sub-detectors fit in a single pblock. The combo
pblocks at the top of Figure 5.4 are responsible for aggregation. Each is equipped with four

input ports and one output port, all connected to Switch-2.

Table 5.2 shows the currently supported combination methods implemented in fSEAD for
continuous (score) and discrete (label) targets. The label targets are ‘0’, meaning not an
anomaly, and ‘1’ for anomaly. General and global (GG) methods [58, 54, 55, 56] are
used by popular machine learning libraries such as scikit-learn [162], XGBoost [163] and

LightGBM [164] for aggregation of sub-detector class results. In fSEAD, for sub-detectors
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with continuous outputs, we implemented three representative GG methods, namely Averaging
(GG_A), Maximum (GG_M), and Weighted Average (GG_WA). To combine label outputs,
two commonly used approaches: or (a class is true if any sub-detector outputs true for that
label) and voting (the class with most votes is chosen as the output) are applied. In this work,
we always use averaging to combine anomaly scores and the or-gate technique to combine

labels. Of course, this can be customized by the user.

Routing through the AXI switches is configured via the AXI-Lite interface. A register is
used for each master-to-slave connection. After the registers have been configured, the
interconnection is determined. Unused master or slave interfaces are disabled. When a slave
interface is connected to multiple masters, only the lowest numbered one is used, e.g., if
both Master-1 and Master-3 are configured to connect to Slave-2, then Master-1 wins the
arbitration, and Master-3 is disabled. Thus, effectively, only one connection between each

master and slave is made.

Figure 5.5 shows four example configurations of our composable topology. Figure 5.5(a)
shows the simplest case where seven parallel Loda pblocks (each containing multiple sub-

detectors) are used to analyze seven different datasets. Each streaming channel implements a
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TABLE 5.2: Combination Methods for Scores and Labels

Output Combination Methods Equation

score Averaging combo = (scorey + scores + - -+ + scorey) /N

score Maximization combo = max(scorey, scorey, - -+, scorey)
N

score Weighted Average  combo = (wy * score; + wy * scores + -+ - + wy * scoren) /N, (> w; = 1)
i=1

label Or combo = (label |labely| - - - |label y)

label Voting combo = voting(labely, labely, - - - | labely)

unique and independent anomaly detection application. Switch-1 is configured to directly
route RP-1 to RP-7 to seven output DMA channels. This configuration only requires Switch-1,
so connections to Switch-2 and the combo pblocks are disabled. The case in Figure 5.5(b)
implements three independent anomaly detection applications. It exploits all pblocks and two
of the Switches. RP-1, RP-2, and RP-3 implement a Loda ensemble, and their outputs are
routed to the inputs of COMBOI1. The output is the final score, which is sent to the host via
DMA. The pblocks (RP-4, RP-5) and (RP-6, RP-7) generate RS-Hash and xStream ensembles
for two different datasets. Figure 5.5(c) is an example that only operates on a single dataset
and a single type of anomaly detector, namely Loda. It uses all the pblocks to implement a
maximally parallel, homogeneous ensemble. Finally, Figure 5.5(d) is similar to Figure 5.5(c)

but incorporates three different types of detectors: Loda, RS-Hash, and xStream.

The configurations are not limited to the four cases just described. By providing different pb-
locks and switch configurations, a multitude of customized anomaly detection functionalities

can be implemented in a run-time configurable manner.

5.2.4 FPGA Implementation

This section continues the example of Figure 5.5(c) as a concrete example to describe
physical implementation on a Zynq UltraScale+ ZCU111 Evaluation Board with XCZU28DR-
2FFVG1517E RFSoC FPGA.

Figure 5.6 and Figure 5.7 show the FPGA layout and placement, respectively. The floorplan
is based on two considerations: (1) Seven AD-pblocks occupy the main FPGA resources to

ensure that the fSEAD has sufficient resources to implement parallel ensembles and complex
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detectors. In comparison, the combo modules, switches, and DMA units are not resource-
intensive and are reflected in the layout; (2) Although long interconnections are needed
because of the distributed pblocks, this is alleviated through AXI bus-level pipelining [165].
This technique isolates the path between the master and slave with registers while maintaining
an AXI4 protocol-compliant pipeline stage. The register slice is implemented as a two-deep
FIFO buffer that supports bus communication without generating unnecessary idle cycles. It

serves to achieve timing closure by reducing the critical path.

We place Switch-1 (yellow) in the center of the FPGA with Switch-2 (orange) adjacent
since they two communicate directly with each other. Switch-1 is assigned a larger area
than Switch-2 as it connects to seven pblocks (in blue), while Switch-2 is smaller to prevent
blocking routes from RP-1 and RP-4 to Switch-1. As shown in Figure 5.6, the nearest routing
channel from RP-1 to Switch-1 is only a very narrow programmable slot (white line). The
three combo-pblocks (red) only connect to Switch-2. The floorplan for the above-mentioned

blocks is compact and sits in the middle layout of FPGA.

The seven AD-pblocks (in blue) occupy the remaining resources. It is important to note that
we did not issue placement area constraints for DMAs, AXI4-Interconnect, and the other static
components. Instead, we allow these components to be placed by the Vivado tool to minimize

routing delay. The spaces between the colored regions are available for any remaining static
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logic. Furthermore, during the Partial Reconfiguration process, the DFX Decoupler [72]

allows users to isolate the logic being configured until it is done and the new logic reset.

5.3 Results

The aforementioned techniques were implemented, and the results are presented in this
section. In Section 5.3.1, we introduce the development environment and test platform. In
Section 5.3.2, we demonstrate why larger ensembles with more sub-detectors are desirable
and how performance is boosted in terms of accuracy from the model combination. We
then discuss the resource use of the static regions and available resources in each of the
FPGA partial regions in Section 5.3.3. Furthermore, we show the performance gains of our
architecture over a CPU in Section 5.3.4. Finally, in Section 5.3.5, we analyze the performance

characteristics of partial reconfiguration and more general features of the fSEAD architecture.

5.3.1 Test Platform

We utilize the Xilinx Zynq UltraScale+ ZCU111 (xczu28dr-2ffvg1517e) board to evaluate the
fSEAD library. fSEAD_gen is used to generate three anomaly detectors (Loda, RS-Hash, and
xStream) with HLS and GCC targets used for FPGA and multi-threaded CPU implementation,
respectively. The HLS module is synthesized to RTL using the Xilinx Vivado HLS tool
(v2020.1) and then passed through Xilinx Vivado Design Suite (v2020.1). We then deploy the
architecture on the FPGA using the PYNQ framework. The GCC compiled versions of Loda,
RS-Hash, and xStream as CPU benchmarks are tested on desktop with Intel(R) Core(TM) 17-
10700F @2.9GHz and 64GB memory for performance comparisons. The g++ compiler uses
flags ‘-Wall —std=c++14 -g -O3’, with ‘-Ipthread’ applied for multi-threaded optimization. The
flag ‘-ftree-vectorize’ is turned on by default under ‘-O3’ to enable automatic vectorization

for further optimization.

The anomaly detection performance evaluation was conducted on four publically available
datasets: Cardio, Shuttle, HTTP-3, and SMTP-3, with their main attributes summarised in

Table 5.3. Cardio and Shuttle are also used in SUOD [33]. HTTP-3 and SMTP-3 were derived
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TABLE 5.3: Datasets

Datasets Sample Length Dimension Outliers %Outliers

Cardio 1831 21 176 9.61
Shuttle 49097 9 3511 7.15
SMTP-3 95156 3 30 0.03
HTTP-3 567498 3 2211 0.40

from the KDD-cup 99 [166] dataset and are 3 feature variants of the 41 feature full datasets,
first used in [40]. The sample number n varies from 1831 (Cardio) to 567498 (HTTP-3),
and the dimensionally ranges from 3 to 21. Cardio proportionally has the largest number of
anomalies (9.61%), and only 0.03% of samples in SMTP-3 were in the anomaly category.
In addition to the four datasets above, others are available, including those in the ODDS

Library [167], UCI repository [168], and DAMI Datasets [169] for future research.

Accordingly to the SEAD structure in Figure 2.8, the output scores of each detector are
first normalized to [0,1). A sample with a higher score indicates a higher probability that
this sample belongs to the anomaly category. Furthermore, with the anomaly percentage, or
named contamination rate that the users know in advance, a threshold can be determined to
translate anomaly scores to binarized anomaly labels. For example, if the threshold is 0.8,
then inputs with anomaly scores of 0.9 and 0.5 would be assigned to labels ‘1’ (anomaly)
and ‘0’ (normal), respectively. The standard metric used for evaluating anomaly detectors is
the Area Under the Curve (AUC) of the Receiver Operating Characteristics (ROC) curve. It
can be used for scores or labels and is described in detail in [170]. We adopt this metric to

analyze the accuracy of our implementations.

5.3.2 Sub-detectors and Ensemble Accuracy

We experimented to show the effectiveness of increasing the number of sub-detectors for each

of the three supported methods in fSEAD.

For different ensemble sizes, the AUC of detectors in fSEAD and the variance of AUC are
evaluated over 10 executions with different random seeds. The hyper-parameters were set

to the values in Table 5.4, these being chosen to give an accurate and efficient hardware
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TABLE 5.4: Hyper-Parameter Set for the Three Detectors

Detector window size Bins CMS-w CMS-MOD K

Loda 128 20 1 - -
RS-Hash 128 - 2 128 -
xStream 128 - 2 128 20
0.010 A
0.9 A —— Loda
o] RS-Hash
§ 0.8 § 0.005 4 —— XStream
=
0.7 A
T T T T T 0000 L T T T T T
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FIGURE 5.8: Ensemble Performance Measured on Dataset: Cardio.

implementation. We refer the reader to the relevant papers regarding selecting these hyper-

parameters [35, 36, 37].

Figure 5.8 shows ensemble sizes in the range [3, 200] for Loda, RS-Hash, and xStream
respectively. For simplicity, only the Cardio dataset is used to exhibit AUC performance.

Figure 5.8(a) represents the mean AUC, and sub-figure (b) shows the variance.

For all detectors, AUC increases with increasing ensemble size before converging to a
maximum; the AUC variance shows a decreasing trend before converging to a minimum.
This translates to increasing the number of sub-detectors, generally leading to a more reliable

result, which follows the underlying principle of ensembles [12, 13].

Furthermore, Table 5.5 shows results for different heterogeneous combinations of detectors
over our four benchmarks. The rows in this table are divided into two main parts, mean and
variance of the AUC, with the columns divided into AUC of Score and Label results. A, B,
and C in the second row indicate three detectors (Loda, RS-Hash, and xStream, respectively),
and the numbers indicate the number of pblocks used. The number of sub-detectors we use for
each A, B, and C pblock is 35, 25, and 20, respectively; details of this value will be described
in Section 5.3.3. For example, A7, B7, and C7 indicate all seven pblocks are utilized for

a single type of detector. The fourth one, C223, represents a combination of two pblocks
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TABLE 5.5: Model Combination Comparison

Score Label
A7 B7 c7 C223 | C232 | C322 | C331 | C313 | C133 | A7 B7 C7 | C223|C232|C322|C331|C313 | C133
cardio | 0.933 | 0.850 | 0.907 | 0.897 | 0.898 | 0.891 | 0.899 | 0.889 | 0.900 | 0.659 | 0.618 | 0.646 | 0.711 | 0.721 | 0.705 | 0.708 | 0.706 | 0.715
shuttle | 0.991 | 0.990 | 0.986 | 0.990 | 0.991 | 0.990 | 0.992 | 0.990 | 0.991 |0.927 | 0.950 [ 0.933 | 0.974 | 0.970 | 0.970 | 0.972 | 0.974 | 0.976
smtp3 | 0.847 | 0.856 | 0.834 | 0.848 | 0.849 | 0.848 | 0.851 | 0.851 | 0.850 | 0.743|0.717 | 0.500 | 0.757 | 0.755 | 0.770 | 0.767 | 0.765 | 0.737
http3 | 0.993 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.595 | 0.510 | 0.512 | 0.595 | 0.620 | 0.604 | 0.584 | 0.600 | 0.594
cardio | 0.04 0.2 0.05 0.07 | 0.06 | 009 | 006 | 023 | 0.05 | 0.13 | 0.14 | 0.09 | 0.05 | 0.15 | 0.14 | 0.15 | 0.31 | 0.21
Variance | shuttle | 0.005 | 0.000 | 0.092 | 0.001 | 0.002 | 0.001 | 0.000 | 0.002 | 0.001 | 0.41 | 0.06 | 3.04 | 0.03 | 0.07 | 0.06 | 0.01 | 0.03 | 0.02
(x107%) smtp3 | 0.01 0.05 1.75 0.08 | 0.03 0.06 | 0.04 | 0.04 | 0.02 | 0.62 |0.000 | 0.000 | 1.96 | 1.95 | 0.93 | 0.89 | 1.03 | 0.71
http3 | 0.0011 | 0.0001 | 0.0003 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 5.01 | 0.13 | 0.12 | 8.32 | 7.76 | 546 | 3.0 | 2.46 | 4.82

AUC | Model

Mean

assigned to Loda, two pblocks for RS-Hash, and the last three pblocks occupied by xStream.
We note that this experiment did not cover all possible combinations. However, the goal of
this work is to provide a hardware framework that supports arbitrary model combinations;
how to get the best combination scheme for a given benchmark is dataset-dependent and

beyond the scope of this work. The best results for each dataset are in bold.

For the Cardio dataset, Table 5.5 shows that Loda always achieves the best Score AUC mean
(0.933) and lower variance (0.00004) than RS-Hash, xStream or any listed combination
strategy. However, in the label test, all combined labels can get a higher AUC than any single

detector, albeit with higher variance.

In general, it can be seen that Loda, RS-Hash, and xStream perform differently for different
datasets, and there is no single "best" detector or "ideal" combination. Combined strategies
are not always superior to a single detector. However, a combined detector typically yields
more reliable performance. For labels, the combined detector always returns a higher AUC.
We believe this is because if any detector indicates an anomaly, the combined result is also
an anomaly. This reduces the possibility of missing an anomaly and introducing a higher
variance. We believe the strong dataset dependence coupled with the difficulty of finding
the best combination of sub-detectors justifies the need to create a runtime reconfigurable

framework that can support multiple detectors and multiple instances of each detector.

5.3.3 Pblock Assignment and FPGA Implementation

Table 5.6 shows a breakdown of resource utilization for the blocks in Figure 5.6. RP-1 to

RP-7 account for most of the FPGA resources and are used for sub-detector implementation.
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TABLE 5.6: Resource Partition of FPGA Blocks

Blocks LUT DSP BRAM FF

RP-1 6.73% 4.49% 6.67% 6.73%
RP-2 857% 7.54% 8.52% 8.57%
RP-3 6.24% 6.46% 639% 6.24%
RP-4 6.72% 4.49% 6.67% 6.72%
RP-5 6.24% 6.46% 6.39% 6.24%
RP-6 874% 824% 8.15% 8.74%
RP-7 732% 730% 7.22% 7.32%
RP-combol 0.72% 0.56% 0.74% 0.72%
RP-combo2 0.59% 0.84% 0.83% 0.59%
RP-combo3 0.59% 0.84% 0.83% 0.59%
Switch-1 346% 4.49% 2.96% 3.46%
Switch-2 1.81% 0.98% 0% 1.82%
DMAs 2.25% 0% 1.30% 0.48%

DFX-Decouplers  0.04% 0% 0%  0.008%
AXI-InterConnect 0.67% 0% 0% 0.58%
AXI-SmartConnect 2.41% 0% 0% 1.61%
ALL 62.5% 52.69% 56.67% 60.42%

TABLE 5.7: Resource of 35 Loda, 25 RS-Hash, and 20 xStream for Cardio

Detector LUT DSP BRAM FF

Loda-35 16783(63.4%) 122(44.2%) 54.5(79.0%) 11478(21.7%)
RS-Hash-25 23732(89.6%) 68(24.6%) 50(72.5%) 14012(26.5%)
xStream-20  23908(90.3%) 80(29.0%)  60(87.0%) 12617(23.8%)
RP-3 26480 276 69 52960

The resource distribution of these blocks is not uniform since the floorplan was manually
created to pass the Design Rule Check (DRC) due to the nonuniform resources located
on the target FPGA (ZCU111). The resources for blocks to combine the results, noted as
combo-pblocks, are minimal, this being LUT (0.63%), DSP (0.75%), BRAM (0.80%), and
FF (0.63%). Overall, the partial reconfigurable blocks and two static switch blocks utilize
57.73% LUT, 52.69% DSP, 55.37% BRAM, and 57.74% FF resources. The remaining area
implements the remaining interface, including DMAs, AXI-Interconnect, DFX-decoupler,

etc.

An important issue affecting achievable parallelism is how many sub-detectors can be assigned
to a pblock. We determine this number by using the smallest pblock (RP-3) as the target and

calculate the maximum ensemble size for Loda, RS-Hash, and xStream. This exercise leads
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TABLE 5.8: Accuracy and Execution Time Comparison between fSEAD and
CPU for Detector: Loda

Dataset AUC-S(CPU) AUC-S(FPGA) AUC-L(CPU) AUC-L(FPGA) Ex Time(CPU) Ex Time(FPGA) Speed-up

Cardio 0.9310 0.9311 0.6447 0.6412 13 ms 4.63ms  2.81x
Shuttle 0.9923 0.9914 0.9490 0.9432 147 ms 3423 ms  4.29%x
SMTP-3 0.8501 0.8506 0.7666 0.7499 222 ms 39.31ms  5.65x
HTTP-3 0.9937 0.9936 0.6415 0.6336 1396 ms 22825 ms  6.12x

TABLE 5.9: Accuracy and Execution Time Comparison between fSEAD and
CPU for Detector: RS-Hash

Dataset AUC-S(CPU) AUC-S(FPGA) AUC-L(CPU) AUC-L(FPGA) Ex Time(CPU) Ex Time(FPGA) Speed-up

Cardio 0.8546 0.8524 0.6310 0.6274 15 ms 4.87ms  3.08x
Shuttle 0.9915 0.9910 0.9543 0.9560 168 ms 35.80 ms  4.69x
SMTP-3 0.8525 0.8513 0.7166 0.7166 260 ms 39.63ms  6.56x
HTTP-3 0.9944 0.9944 0.5065 0.5067 1490 ms 22829 ms  6.53x

TABLE 5.10: Accuracy and Execution Time Comparison between fSEAD
and CPU for Detector: xStream

Dataset AUC-S(CPU) AUC-S(FPGA) AUC-L(CPU) AUC-L(FPGA) Ex Time(CPU) Ex Time(FPGA) Speed-up

Cardio 0.9229 0.9222 0.6467 0.6435 18 ms 4.82ms 3.73x
Shuttle 0.9914 0.9905 0.9688 0.9680 250 ms 40.62ms  6.15x
SMTP-3 0.8077 0.8076 0.7167 0.7167 366 ms 5099 ms  7.18x
HTTP-3 0.9947 0.9948 0.5067 0.5069 2460 ms 297.85ms  8.26x

to an ensemble size of R = 35 for Loda, R = 25 for RS-Hash, and R = 20 for xStream in
each AD-pblock. The resources required are shown in Table 5.7. Thus, if we utilize all seven
AD-pblocks to implement a homogeneous type of detector, the current configuration supports

a maximum of 245 Loda, 175 RS-Hash, or 140 xStream sub-detectors.

5.3.4 Speed, Accuracy and Power Comparison

We achieve 80%-90% logic use of all seven partial blocks in fSEAD on the ZCU111 board
for homogeneous detect implementations of Loda (245 sub-detectors), RS-Hash (175 sub-
detectors) and xStream (140 sub-detectors). This configuration was configured using the
PYNQ environment to test fSSEAD performance. The FPGA was operated at a clock rate of
188 MHz. We also implemented a multi-threaded GCC version of the detectors with the same

parameters and scale as fSEAD for comparison.
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The detector system in fSEAD is configured with the topology shown in Figure 5.5(c). An
averaging-based combination and an OR-Gate-based label combination techniques were
used. The ap_fixed<32, 16, AP_TRN, AP_WRAP> type available in Xilinx Vivado
HLS [62] was used for all inner non-integer operations. This has a word length of 32-bit,
with 16 bits representing the integer part and 16 bits representing the fraction. Convergent
rounding (AP_TRN) and saturating arithmetic (AP_WRAP) were used. To facilitate the use of
the float32 type in the NUMPY library [171] for streaming data transfer with each module on
the FPGA, all fSEAD IP interfaces are converted to float32. This does not cause a significant

increase in resource consumption.

Tables 5.8 through 5.10 show the performance comparison of Loda, RS-Hash, and xStream
detectors in terms of AUC, and execution time on the ZCU111 board and CPU, respectively.
The execution time test uses the time() function in Python to measure the time from the
start of the input DMA transfer to when all data is obtained from the output DMA. The
GCC implementation was executed on a multi-threaded CPU on the target PC, and the
time command in bash was used to measure execution time. The pthread library is used to
support the multi-threaded C implementation. Since each sub-detector in the ensemble is
data-independent, we equally distribute the same number of sub-detectors to each CPU thread.
The sub-score computed by multiple threads requires a synchronization operation at the end
of each sample to compute the average score of the ensemble. The pthread_mutex_lock
and pthread_mutex_unlock functions are placed between different threads to guarantee the
streaming mode execution. The target CPU has 8 cores and 16 hardware threads; we tested
switching the thread number from 1 to 16. Figure 5.9 shows the speedup results with different
numbers of threads on the longest test case: xStream for HTTP-3, 4-thread always gets the
best speedup. We believe this is due to synchronization overheads introduced by the mutex
scheme limiting performance when the number of threads exceeds 4 (mutex is called in every
streaming execution). Based on this result, all the following CPU experiments results are

measured from a 4-thread configuration.

Regarding accuracy, very similar scores were obtained on CPU and FPGA platforms. This

indicates the ap_fixed<32, 16> variable type used can provide sufficient accuracy as
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FIGURE 5.9: Multi-threaded CPU Implementation for xStream for HTTP-3
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FIGURE 5.12: Execution Time Comparison of fSEAD and CPU for Detector: xStream.

the float32 variable type of CPU implementation. The minor differences are due to the

accumulation of errors during the cumulative calculation of the accuracy differences generated

by each ap_fixed and float32 type sub-detector. Future developers may wish to explore

minimizing resource consumption further by reducing precision.

On the smallest dataset, Cardio, it can be observed that the FPGA obtains a speed-up of 2.81

for Loda, 3.08 for RS-Hash, and 3.73 times for xStream. The speedup ratio increases as
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TABLE 5.11: Operation Number of fSEAD

Detectors Operation Number

Loda OP = N % (2Rd+ TR+ 2)
RS-Hash | OP = N % (bRdw + 4Rd + 11Rw + R + 2)
xStream | OP = N * (2Rdk + 5Rdw + 15Rw + 2R + 2)

1

N the length of the input dataset.

d: the dimension of input dataset.

R: the ensemble size.

w: the hash functions number in CMS.
k: the projection size of xStream.

[T NN N

TABLE 5.12: GOPS Comparison of CPU and fSEAD

CPU fSEAD
Cardio | Shuttle | SMTP-3 | HTTP-3 | Cardio | Shuttle | SMTP-3 | HTTP-3
Loda 1.690 | 2.049 1.402 0.776 4748 | 8.789 7.924 4.748
RS-Hash | 6.772 | 6.353 4.197 4331 | 20.858 | 29.797 | 27.533 | 28.282
xStream | 15.427 | 11.050 | 6.623 5.878 | 57.544 | 67.959 | 47.554 | 48.551

GOPS

the size and dimension of the dataset increases. On the largest dataset, HTTP-3, the three
detectors achieve speedups of 6.12, 6.53, and 8.26, respectively. XStream achieves the highest
speedup of 8.26 for dataset HTTP-3. For smaller datasets, the transfer time from the Linux
OS-based host ARM processor to the FPGA becomes the bottleneck. As fSEAD is optimized

for large datasets, this is not a significant issue.

It is worth mentioning that since the ensemble on fSEAD is based on sub-detector-level
parallelism, its latency is not significantly affected by the ensemble size in the case that
FPGA resources are sufficient to implement the required ensemble in parallel. In contrast,
the ensemble implementation on GCC uses a for loop to iterate the computation of each
sub-detector, so its execution time increases proportionally with the increase of the ensemble
size. Figures 5.10 to Figures 5.12 show the execution times of the three detectors on the
CPU and FPGA for multiple sets of experiments and different ensemble sizes. The red dots
indicating CPU execution time show a linear increase with ensemble size. The green crosses
indicate the execution time on FPGA, while the black cross results from two FPGA executions.

In all cases, significant speed-ups are achieved over the CPU and limited only by FPGA
resources.
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We also use the roofline model to estimate how our target anomaly detector methods have
been optimized. This describes an application’s achieved performance and arithmetic intensity
against the machine’s maximum achievable performance in terms of memory bandwidth and
peak computational performance. The CPU roofline model is measured on the Intel Advisor
2022 [172]. Billions of operations per second (GOPS) is used as the metric for Performance
(y-axis in Figure 5.13), and operations (OPs) per byte is used for Arithmetic intensity (x-axis
in Figure 5.13). The L1/DRAM bandwidth roofline represents the maximum amount of bytes
that can get read or written for a given arithmetic intensity. For FPGA roofline models, we
use the method in Ref. [173] to calculate the roofline chart in Figure 5.14. The arithmetic
intensity (x-axis) is the number of arithmetic operations performed for each byte read or
written to an off-chip memory (we assume 13.4 GB/s off-chip memory bandwidth [174]).

The performance (y-axis) is calculated in GOPS.

For the three detectors, Table 5.11 shows the expressions we used to estimate the total number
of operations to execute a target dataset. Using this and the execution time from Table 5.8 to
Table 5.10, we compute the GOPS in Table 5.12. We use the highest GOPS (67.959 GOPS
of xStream for Shuttle) to estimate the compute-bound performance for the target FPGA
(ZCU111) and fSEAD structure, respectively. The xStream for Shuttle occupies 132391
LUTs, 476 DSPs, and 79485 FFs, which takes up 31.13% of the total FPGA resources and
61.57% of the fSEAD partial blocks resources. From this, we calculate the compute-bound

performance for FPGA and fSEAD as 218.3 GOP/s and 110.4 GOP/s, respectively.
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FIGURE 5.15: Example of the Scalability inside Single Partial Block: RP-1

While no algorithms reach the boundary of the roofline, xStream is closer to the computational
boundary than Loda and RS-Hash, as seen in Figure 5.13 and Figure 5.14. We believe this is
a function of the algorithms: the current three detectors are not extremely computationally

intensive, but xStream has more vector and matrix multiplication operations among the current

AD library.

Figure 5.15 shows the scalability of a single pblock, RP-1, using the Cardio dataset with
20% to 80% resource utilization for Loda, RS-Hash, and xStream. Working at the same
188 MHz clock frequency, the throughput of three detectors can be seen to vary linearly
with the resource utilization of RP-1. This linear scalability enables one to quickly identify
potential ensembles that will fit on a given FPGA and estimate their throughput. One could
then perform software experiments, such as those in Table 5.5, to identify which of these

potential ensembles provides the best accuracy for the target dataset.

The power consumption of fSEAD is separated into chip power and system power; Figure 5.16
and Figure 5.17 show the measured chip and system power consumption from Xilinx Vivado
Tool [175] and EcoFlow RIVER Max Portable Power Station [176] respectively. In Fig-
ure 5.17, the idle system power measured on EcoFlow is 30 Watts. The working system power
(35 Watts) is gained by configuring the PYNQ to invoke all pblocks for xStream with the
biggest dataset HTTP-3, which matches the dynamic power of 5.232 Watts, as demonstrated

in Figure 5.16. Intel(R) Core(TM) i7-10700F CPU power is measured with the powerstat
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command using Running Average Power Limit (RAPL) domains. 120 samples of power
measurements with 0.5-second steps are averaged over a one-minute time period. The CPU
idle power is 7.90 Watts, and the CPU working power for xStream, which has the biggest
dataset, HTTP-3, is 51.23 Watts. The dynamic CPU power (43.33 Watts) is more than 8x
higher than the fSEAD dynamic power consumption on ZCU111 FPGA (5.232 Watts).

5.3.5 Partial Reconfiguration

Although the reconfiguration of each partial region in fSEAD can often be done when the
system is idle, we measure the overhead of partial reconfiguration in the PYNQ framework.
The horizontal axis of Table 5.13 shows all pblocks, and the vertical axis shows the direction
of reconfiguration for bitstream downloads. For example, Flunction — Identity indicates
that the configured logic is F'unction which is overwritten with /dentity. We have chosen a
common function module: Loda_Cardio and Averaging for (RP-1 to RP-7) and (COMBOI1
to COMBO3), respectively, as the Frunction module. Identity is a design where the input is
simply passed to the output. The objective is to evaluate the impact of the hardware logic size
of the target bitstream on the reconfiguration time cost. Referring to the size of each pblock
provided in Table 5.6 (all seven AD-pblock resources are larger than those of COMBOI1 to
COMBO3; among the seven AD-pblocks, RP-3 has the least programmable resources and

RP-6 the most; while COMBOI1 occupies the largest area of the three COMBO blocks).
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TABLE 5.13: Partial Reconfiguration Time Cost (Unit is ms) of the Different Pblocks

BIT download directions RP-1 RP-2 RP-3 RP-4 RP-5 RP-6 RP-7 COMBOl1 COMBO2 COMBO3

Function — Identity  607.8 606.1 604.5 606.1 608.9 609.6 609.5 587.2 582.7 579.8
Identity — Function 606.3 611.3 607.2 606.0 606.9 608.1 607.5 582.9 580.1 581.9
' L1=0 , Tl
DMA RP-1 _
> (input) (Bypass) o Mif—S1 Mib—»
. A RP-COMBO1
Switch-1 SWItCh-SZ (Bypass)
DMA ~ 5[
-] (output) [ Ms S8 |- M13

FIGURE 5.18: Example of fSEAD Channel with Empty Logic.

The latencies reported in Table 5.13 are the total partial reconfiguration latency. This will be a
function of the size and location of the region, as well as the size of the partial bitstream and
the chosen FPGA. Since we do not have the ability to modify the chosen FPGA, in this section,
we explore how these other factors impact reconfiguration time. The results in Table 5.13
show that the pblock with larger area takes a little more time to reconfigure, e.g., RP-6 takes
609.6 ms for updating Loda_C'ardio with Identity. The pblock with the smallest area uses
the shortest time i.e., COMBO?3 used 579.8 ms to reconfigure Loda_C'ardio to Identity. In
addition, the complexity of the target bitstream has a slight impact on the reconfiguration
time. Apart from RP-2, RP-3, and COMBO3, a general trend indicates that the simpler the

logic of the target bitstream (in this case, /dentity), the lower the reconfiguration time.

While fSEAD is focused on ensemble-centric anomaly detection, different real-life detectors
in the literature can be incorporated into this library for higher flexibility and salable combina-
tions. Moreover, it can potentially be used for more general machine-learning applications by
adding different modules. To evaluate the default latency of fSEAD interconnections, since
this is a key metric that could affect design decisions, Figure 5.18 illustrates a data path where
each pblock simply copies its input to output (the "Bypass" in Figure 5.18 is the same as

Identity in Table 5.13). The execution time, which is a measure of system latency overhead,
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is 0.80 ms. Thus, for pblocks with latency L1 on the left and L2 on the right, the maximum
latency of the system is ~ 0.80+L1+L2 (ms). We also measure the shorter DMA latency
where the data path includes DMA (input), L1, Switch-1, and DMA (output); the latency is
0.77 ms. This reflects that the default system latency is dominated by the Linux OS-based

PYNQ framework rather than by the routing latency of switches.

Compared to static hardware, the overhead introduced by the proposed dynamic framework
includes the system time required to update partial blocks, additional interconnection latency,
and the achievable maximum clock frequency (affected by the manually partitioned pblocks).
The first two aspects are discussed in Table 5.13 and Figure 5.18, while the last aspect is not

quantified in this thesis and is left for future work.

5.4 Summary

In this Chapter, we proposed a flexible computing architecture consisting of multiple partially
reconfigurable regions, called pblocks, interconnected via the AXI-Streaming Switches. The
scheme enables parallel constructions of repeating blocks to be easily scaled to fill the
FPGA. We also demonstrated a concrete application of this architecture to streaming anomaly
detection using ensembles (fSEAD). fSEAD allows complex and more powerful anomaly
detectors to be composed of simple pblocks in an arbitrary fashion. Careful floorplanning of
the pblocks and switches, together with bus-level pipelining, minimizes routing delay and
allows timing closure to be achieved. Through a number of experiments involving ensembles
of three sub-detectors (Loda, RS-Hash, and xStream), we demonstrate a 3 to 8 x speedup

compared with a CPU.
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CHAPTER 6

Conclusion

This thesis explored the development of specialized FPGA-based solutions aimed at enhancing
ML tasks for edge applications. The research focused on three key areas: (1) improving the
accuracy of ML accelerators in an area-efficient manner, (2) integrating these accelerators
into a cohesive SoC architecture, and (3) composing partial blocks within the SoC to adapt
to varying environmental conditions. These topics are thoroughly discussed across three
chapters: circuit-level accelerators in Chapter 3, system-level applications in Chapter 4, and

composable tools in Chapter 5.

First, for ultra-low latency tasks in the nanosecond range, we introduced the LUTEnsemble ar-
chitecture, a novel approach to DNN inference on FPGAs. Traditional LUT-based DNNs face
accuracy challenges due to the exponential growth of lookup table consumption. LUTEnsemble
addresses this by enhancing the connectivity of LUT-based DNNs. The results prove that
the ensemble technique and sub-neural adder tree structures could provide a scalable ap-
proach to improved accuracy. Compared with state-of-the-art works, LUTEnsemble sets new
benchmarks for LUT-based DNN inference on FPGAs. However, a gap remains between
LUT-based DNNs and fully connected DNNs; existing limitations and potential solutions are

discussed in future work.

Second, the thesis explored the application of FPGAs in qubit detection within trapped-
ion quantum information processing systems. The LUTEnsemble was integrated into this
system as a 2D-image classifier. Additionally, for a more accuracy-tailored solution in the
microsecond range, we proposed a Vision Transformer (ViT) accelerator built on the hlsdml
framework, which incorporates several simplifications and optimizations to make it practical

for FPGA implementation. It supports an arbitrary reuse factor to parameterize the degree of
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parallelism in matrix-vector multiplication, allowing customization of the balance between
latency and area for edge-device tasks. Both LUTEnsemble and ViT outperform the traditional
thresholding classifier; for instance, the MMF error of LUTEnsemble is 4.22 x lower than
thresholding in the three-qubit test. ViT further outperforms with 1.13x and 7.6 lower
error rates than CNN and thresholding, respectively. Compared to a GPU-based ViT, the
total detection latency for one- and three-qubit tests on the FPGA showed reductions of 119x
and 94x, respectively. Interestingly, the ViT latency accounts for only 0.89-1.53% of the
total detection latency, with the bottleneck now lying in the EMCCD and transmission via
Cameralink. Thus, this work could contribute to enhancing the performance of next-generation

qubit detection systems.

Finally, the research extended to developing a composable tool for FPGA-based SoCs, with
a focus on partial reconfiguration. The proposed framework consists of multiple partially
reconfigurable blocks, referred to as pblocks, which are interconnected via an AXI switch.
This setup allows for arbitrary composition of these blocks at runtime, facilitating the merging
and combining of results to form an ensemble. The study demonstrates how the ensemble
technique could enhance hardware scalability within a tool. Through a series of experiments
involving ensembles of three sub-detectors (Loda, RS-Hash, and xStream) across four public
datasets, we observed a 3 to 8 x speedup compared to a CPU. These results also highlight that
timing closure for this framework can be effectively achieved through pblocks and switches

floorplanning combined with bus-level pipelining.

6.1 Future outlook

While the FPGA-based machine learning hardware presented in this thesis offers significant
advancements, several research directions remain to enhance its practicality in real-world

applications.

In the LUT-based DNN inference framework introduced in Chapter 3, the current implement-
ation is limited to supporting the MLP architecture. A critical direction for future research

is to extend LUT-based implementations to more advanced DNN models, such as CNNss,
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Transformer [17], and the emerging Kolmogorov-Arnold Networks (KAN) [177]. Achieving
this will not only require optimizations at the DNN model/architectural/circuit level but also
necessitates corresponding improvements in the associated tools, such as quantization tools
(like Brevitas [69]) and model development platforms (like PyTorch [25]), to fully support
these advanced models. Furthermore, the sparsity patterns of sub-models in the ensemble
are currently selected randomly without targeted optimization. We believe that a selective
ensemble approach, which strategically chooses sparsity patterns, could offer advantages
over the current random selection method. Moreover, for non-image input data that lacks
a well-defined notion of neighborhood, developing an effective Mixer layer represents an-
other promising direction for future research. Lastly, in PolyLUT-Add, the generality of the
current adder tree is limited for polynomial degrees greater than 1. We believe that address-
ing this limitation through optimization in future work could result in further performance

improvements.

For the qubit detection system explored in Chapter 4, retraining the DNN model using real-
world images—accounting for imperfections such as variations in temperature and optical
aberrations—could further increase its efficacy. Achieving this requires a meticulously
designed dataset collection process that reflects the operational conditions of the system.
Additionally, improving the simulation dataset generator to more closely mimic real-world
characteristics would facilitate quicker validation with more reliable simulation datasets.
Together, these improvements could significantly increase the system’s practicality for the

trapped-ion research community.

Lastly, for the composable FPGA framework discussed in Chapter 5, a key future direction is
to enhance its programmability by developing module generators capable of automatically
producing optimized HLS directives and detector parameters, such as ensemble size. Expand-
ing the framework’s library to include a broader range of anomaly detection methods would
further enhance its capabilities. Additionally, leveraging the composable framework for qubit
detection to facilitate the reuse of diverse ML solutions, including LUTEnsemble and ViT, on

a single FPGA die represents another promising avenue for research.
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