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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and 

parallel computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Nanoscale interfaces
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Initially expectation :  Heralded single photon rate should enhance significantly without degrading 
coincidence to accidental ratio (CAR)

Enhancement : 33%~59%

Time domain multiplexing of single photons

Nature Comms 7(10853), 2016



Time Multiplexing of Single Photons



Cool Transistors (0.35u CMOS C35B4C3)

5

Layout of QNL2_CMOS

Purposes: 
• To characterize CMOS transistors 

• Evaluate matching property of 
CMOS transistors

• Test analog circuits: ADC, Level 
Shifter, Ring Oscillator, Beta 
Multiplier, Passive LC circuit, Metal 
tracks, …

IEEE Electron Device Letters, 38:847–850, 2017



Wide-range Threshold Voltage Model
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Two-Speed Multiplier
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Modified Booth Radix-4 datapath is split into 2 sections, each with its own critical path

Non-zero encodings take !𝐾𝜏 and zero take 𝜏

TVLSI, v. 27, no. 4, 2019



Motivation for FPGAs

› FPGAs can implement ML algorithms with better performance and energy 
through
- Exploration– easily try different ideas to arrive at a good solution

- Parallelism – so we can arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to improve efficiency

› Describe our work on efficient implementations of ML that use these 
ideas
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› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC



Throughput and Latency

› Significant improvements in ML 
algorithms but cannot keep up with 
sources e.g. hyperspectral imager or 
wireless transceiver

› Need extremely high throughput

› In control applications we need low 
latency e.g. triggering data collection in 
Large Hadron Collider

› Need very low latency
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Challenges in measurement and control are becoming feasible

Improvements in throughput and 
latency enable new applications!



Kernel Methods

› Choose high dimensional feature space (so easily separable)
› Use kernel trick to avoid computing the mapping (fast)
› Do regression/classification using

11



Kernel Trick

› Kernel is a similarity function 
- defined by an implicit mapping f, (original space to feature space)

- e.g. Linear kernel κ(x,x’)=<x,x’> 
- e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: f(x) = (x1

2, x2
2, √2x1x2)

- e.g. Gaussian kernel (universal approximator)
- F(x) infinite in dimension! 

› Modify linear ML techniques to kernel ones by replacing dot products 
with the kernel function (kernel trick)
- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, 

PCA, ICA, LMS, RLS, …
- While we only describe prediction here, also applied to training equations
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κ (x, x ') =φ(x)Tφ(x ') = φ(x),φ(x ')



Online Kernel Methods

𝑓 𝑥 ='
()*

+

𝛼( 𝜅 𝑥, 𝑑(
f(x)

∑Update 
Unknowns

prediction

yi
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𝜅 𝑥, 𝑥′ ∶ ℝ3 → ℝ5, 𝑤ℎ𝑒𝑟𝑒 𝐷 ≫ 𝑑› “Kernel Method” →                  

› Dictionary → subset of the input data of length N

› Computation and Memory scale O(Nd)

› BUT…  N scales linearly with the dataset size               

Dictionary 
Entry



Exact Kernel Methods

Random Kernel Expansion
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𝑛
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** Only for k(x,x’) = k(x-x’,0)

Define z(x):

1 x d 1 x n

z(x) α

OutputInput

𝜅 𝑥, 𝑥′› Approximates
› MV + Non-Linear Activation
(i.e. like Multilayer Perceptron)
› W is fixed and random

Random Approximation
(Rahimi and Recht, ‘07)



B, G, S P
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0   1   0   0

H

1    1   1   1
1   -1   1  -1
1    1  -1  -1
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Fast Hadamard 
Transform (dxd)

Memory = O( 3n ) Time = O( n log d )

** Each Qjx is an independent dxd transform

𝑧 𝑥 =
1
𝑛
cos 𝑽𝑥 , where 𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥

𝑸R𝑥 = 𝑺𝑯𝑮𝑷𝑯𝑩𝑥

› Computes z(x) efficiently by replacing Wx with combinations 
of random diagonal matrices and Hadamard transforms

Fastfood
(Le et al. ‘13)



Systolic Array Architecture
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› 𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥
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Systolic Array Architecture
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›

› Block of b PEs (i.e. 𝑸𝒒𝑥)

› General PE: 18-bit ALU, RAMs, Control Unit, LFSR

𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥



Results and Conclusion
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Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



Results and Conclusion
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› Supports much larger problems

Impl. dim. n bw Lat.
(cyc)

Fmax
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Exec
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Th.put
(Gb/s) 

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
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Results and Conclusion
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› Supports much larger problems

› High speed design

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



Results

22

› Supports much larger problems

› High speed design

› 245x speed-up over a CPU 

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



› Exploration
› Parallelisation (Low Precision Neural Network) 
› Integration
› Customisation

EPIC



Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural 
network inference,” FPGA’17



Binarized Neural Networks

› The extreme case of quantization
- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS 2016)
- Competitive results on three smaller 

benchmarks

- Open source training flow

- Standard “deep learning” layers
- Convolutions, max pooling, batch norm, fully 

connected…
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MNIST SVHN CIFAR-
10

Binary weights & 
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy 
loss 

-0.2% -0.84% -2.53%

% classification error (lower is better)



Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition 

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every 
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy 
compared to off-chip

› fast inference with large BNNs 
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Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS 

~66

~4

~1

~0.3

200x



Comparison
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› Who would be willing to incur a loss in accuracy?
› Can we get better accuracy with a little more hardware?

Issues with Low-Precision
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SYQ Quantisation
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SYQ Quantisation
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Subgrouping

› More fine-grained quantisation can improve approximation of weights
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Pixel-wise scaling Row-wise scaling  (layer-wise also option)



Resource Utilisation

› For K filters, I Input feature maps of dimension FxF, N output feature maps
› P=K2INF2
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Results
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› Full precision for 1st and last layers, CONV layers pixel-wise, FC layer-
wise

Baseline is floating-point, reference https://github.com/facebook/fb.resnet.torch (ResNet) 
and https://github.com/BVLC/caffe (AlexNet)

https://github.com/facebook/fb.resnet.torch
https://github.com/BVLC/caffe


Results (Alexnet)
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Results (ResNet)
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ResNet-18 ResNet-50



› Exploration
› Parallelisation
› Integration (radio frequency machine learning)
› Customisation

EPIC



Radio Frequency Machine Learning

› Processing radio frequency 
signals remains a challenge 
- high bandwidth and low latency 

difficult to achieve 

› Autoencoder to do anomaly 
detection

37



Autoencoder
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Train so  x  x  (done in an unsupervised manner)
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Autoencoder learns “normal” representation

› Anomaly if distance between autoencoder output and input large
› FPGA has sufficiently high performance to process each sample of 

waveform at 200 MHz!
- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference

39



Software Defined Radio Architecture
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Implemented on Ettus X310 platform

Radio Core Autoencoder
(Optional FFT)

Crossbar

Ingress/Egress Interface

Hardware Driver

H
os

t 
PC

FP
G

A

Autoencoder
training

I/Q samples

Autoencoder
Parameters (W, b)

Anomaly/Normal (can 
be used by FPGA or PC)



Example
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Performance (XC7K410T)
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Typical SDR latency >> 1 ms



› Exploration
› Parallelisation
› Integration
› Customisation (PIR-DSP)

EPIC



Embedded Deep Neural Networks

› DNNs for embedded applications share two features to reduce 
computation and storage requirements
- Low precision (from 1-16 bits)

- Depthwise separable convolutions

44

Standard Convolution 
(standard)

Depthwise Convolution (DW) Pointwise Convolution (PW)
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Computation and Storage for Embedded DNNs

Standard DW PW FC OtherStandard DW PW FC Other

NASNet-A4@1056
MobileNet-v2
ShuffleNet-v2
SqueezeNet

Distribution of # of MACs Distribution of # of parameters

Motivation (1)



Aims

› Optimise FPGA DSP architecture to better support
- Efficient implementation of embedded DNNs
- Wordlengths down to ternary and binary

› Talk will focus on convolutions
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PIR-DSP

› PIR-DSP: Optimized version of DSP48
- Precision: Multiplier architecture

- Interconnect: Shift-Reg

- Reuse : RF/FIFO

47

PIR-DSP

DSP48



Precision (1)

› Based on two approaches:
1. Chopping

2. Recursive decomposition 
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Precision (2)

› Notation: M×NCijDk 
› PIR-DSP multiplier: 27×18C32D2 

- Chopping factors 3 and 2 respectively for 27 and 18
- (27=9+9+9)×(18=9+9)
- Six 9×9 multiplier

- Decomposing factor is 2
- Each 9×9 multiplier decomposes to Two 4×4 or Four 2×2 multipliers

› PIR-DSP Modes:
- One    27×18 à 1  MAC
- Two 9×9 + 9×9 + 9×9 à 6  MACs
- Four 4×4 + 4×4 + 4×4 à 12 MACs
- Eight 2×2 + 2×2 + 2×2 à 24 MACs
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Parameterised Decomposable MAC unit



Interconnect (1)

› Three types of convolutions
1- Depth-wise: using three PIR-DSPs
2- Standard: based on depth-wise 
convolution implementation and adding the 
partial results

50

2D systolic array (Eyeriss) conventional ours depthwise convolution

filter r3

sums

ifmap r1
filter r2

filter r1

ifmap r2

ifmap r3
ifmap r4

ifmap r5



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)

54

3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Interconnect (2)
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3- Point-wise



Reuse
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Depthwise Convolution (DW) Pointwise Convolution (PW)



Area and Frequency

› SMIC 65-nm standard cell technology
- Synopsis Design Compiler 2013.12
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Version Area Ratio Fmax
DSP48E2 1.0 463
+ M27×18C32D2 MAC-IP 1.14 358
+ interconnect 1.18 362
+ reuse 1.28 357



Energy

› Other networks are similar
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Related Work

› Sits between Sharma (low-precision) and Boutros (high-precision)
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Bitfusion [56]
ISCA’18

Ours Boutros [44]
FPL’18

Ours

Area 0.24 1 0.77 1
Performance Per Area
2x2 1 0.4
4x4 1 0.7 1 1.2
8x8 1 1.4 1 1.2
16x16 1 0.4
27x18 1 0.8



› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC



Summary

› Described some of our efforts to develop efficient ML implementations within 
the EPIC framework
› Exploration

› Kernel methods optimised using different algorithms, mathematical techniques, 
computer architectures, arithmetic

› Parallelism
› Increase parallelism by reducing precision 
› Keep weights on-chip to devote more hardware to arithmetic

› Integration
› In radio frequency, this allows latency to be reduced by 4 orders of magnitude

› Customisation
› Supplement conventional FPGA with different DSP to support DNN 

implementation 

65



Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://phwl.org

http://phwl.org/
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