
Effiicient FPGA implementations of
Machine Learning Algorithms

Philip Leong (梁恆惠) | Computer Engineering Laboratory
School of Electrical and Information Engineering,

The University of Sydney

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using VLSI, FPGA and

parallel computing technology

› Research
- Reconfigurable computing

- Machine learning

- Nanoscale interfaces

2

Initially expectation : Heralded single photon rate should enhance significantly without degrading
coincidence to accidental ratio (CAR)

Enhancement : 33%~59%

Time domain multiplexing of single photons

Nature Comms 7(10853), 2016

Time Multiplexing of Single Photons

Cool Transistors (0.35u CMOS C35B4C3)

5

Layout of QNL2_CMOS

Purposes:
• To characterize CMOS transistors

• Evaluate matching property of
CMOS transistors

• Test analog circuits: ADC, Level
Shifter, Ring Oscillator, Beta
Multiplier, Passive LC circuit, Metal
tracks, …

IEEE Electron Device Letters, 38:847–850, 2017

Wide-range Threshold Voltage Model

6

Two-Speed Multiplier

7

Modified Booth Radix-4 datapath is split into 2 sections, each with its own critical path

Non-zero encodings take !𝐾𝜏 and zero take 𝜏

TVLSI, v. 27, no. 4, 2019

Motivation for FPGAs

› FPGAs can implement ML algorithms with better performance and energy
through
- Exploration– easily try different ideas to arrive at a good solution

- Parallelism – so we can arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to improve efficiency

› Describe our work on efficient implementations of ML that use these
ideas

8

› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC

Throughput and Latency

› Significant improvements in ML
algorithms but cannot keep up with
sources e.g. hyperspectral imager or
wireless transceiver

› Need extremely high throughput

› In control applications we need low
latency e.g. triggering data collection in
Large Hadron Collider

› Need very low latency

10

Challenges in measurement and control are becoming feasible

Improvements in throughput and
latency enable new applications!

Kernel Methods

› Choose high dimensional feature space (so easily separable)
› Use kernel trick to avoid computing the mapping (fast)
› Do regression/classification using

11

Kernel Trick

› Kernel is a similarity function
- defined by an implicit mapping f, (original space to feature space)

- e.g. Linear kernel κ(x,x’)=<x,x’>
- e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: f(x) = (x1

2, x2
2, √2x1x2)

- e.g. Gaussian kernel (universal approximator)
- F(x) infinite in dimension!

› Modify linear ML techniques to kernel ones by replacing dot products
with the kernel function (kernel trick)
- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means,

PCA, ICA, LMS, RLS, …
- While we only describe prediction here, also applied to training equations

12

κ (x, x ') =φ(x)Tφ(x ') = φ(x),φ(x ')

Online Kernel Methods

𝑓 𝑥 ='
()*

+

𝛼(𝜅 𝑥, 𝑑(
f(x)

∑Update
Unknowns

prediction

yi

xi

d, α +

-

𝜅 𝑥, 𝑥′ ∶ ℝ3 → ℝ5, 𝑤ℎ𝑒𝑟𝑒 𝐷 ≫ 𝑑› “Kernel Method” →

› Dictionary → subset of the input data of length N

› Computation and Memory scale O(Nd)

› BUT… N scales linearly with the dataset size

Dictionary
Entry

Exact Kernel Methods

Random Kernel Expansion

𝑓 𝑥 ='
()*

+

𝛼(𝜅 𝑥, 𝑑(

𝑓 𝑥 ='
()*

<

𝛼(𝑧 𝑥

𝑧 𝑥 =
1
𝑛
𝑐𝑜𝑠 𝐖𝑥

** Only for k(x,x’) = k(x-x’,0)

Define z(x):

1 x d 1 x n

z(x) α

OutputInput

𝜅 𝑥, 𝑥′› Approximates
› MV + Non-Linear Activation
(i.e. like Multilayer Perceptron)
› W is fixed and random

Random Approximation
(Rahimi and Recht, ‘07)

B, G, S P

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

H

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

Fast Hadamard
Transform (dxd)

Memory = O(3n) Time = O(n log d)

** Each Qjx is an independent dxd transform

𝑧 𝑥 =
1
𝑛
cos 𝑽𝑥 , where 𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥

𝑸R𝑥 = 𝑺𝑯𝑮𝑷𝑯𝑩𝑥

› Computes z(x) efficiently by replacing Wx with combinations
of random diagonal matrices and Hadamard transforms

Fastfood
(Le et al. ‘13)

Systolic Array Architecture

HBh

HB2

HB1

HBh-1

HB3 HB4

Top

PE2

PEb

PE1

SW
IT

C
H

SU
M

 &

U
PD

AT
E

inBuff

+
x
-

RAM

CTRL

RAM

LFSR

HB PE

› 𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥

Systolic Array Architecture

HBh

HB2

HB1

HBh-1

HB3 HB4

Top

PE2

PEb

PE1

SW
IT

C
H

SU
M

 &

U
PD

AT
E

inBuff

+
x
-

RAM

CTRL

RAM

LFSR

HB PE

›

› Block of b PEs (i.e. 𝑸𝒒𝑥)

𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥

Systolic Array Architecture

HBh

HB2

HB1

HBh-1

HB3 HB4

Top

PE2

PEb

PE1

SW
IT

C
H

SU
M

 &

U
PD

AT
E

inBuff

+
x
-

RAM

CTRL

RAM

LFSR

HB PE

›

› Block of b PEs (i.e. 𝑸𝒒𝑥)

› General PE: 18-bit ALU, RAMs, Control Unit, LFSR

𝐕x = 𝑸*𝑥, 𝑸O𝑥,⋯ ,𝑸Q𝑥

Results and Conclusion

19

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

Results and Conclusion

20

› Supports much larger problems

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

Results and Conclusion

21

› Supports much larger problems

› High speed design

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

Results

22

› Supports much larger problems

› High speed design

› 245x speed-up over a CPU

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

› Exploration
› Parallelisation (Low Precision Neural Network)
› Integration
› Customisation

EPIC

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural
network inference,” FPGA’17

Binarized Neural Networks

› The extreme case of quantization
- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS 2016)
- Competitive results on three smaller

benchmarks

- Open source training flow

- Standard “deep learning” layers
- Convolutions, max pooling, batch norm, fully

connected…

25

MNIST SVHN CIFAR-
10

Binary weights &
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy
loss

-0.2% -0.84% -2.53%

% classification error (lower is better)

Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy
compared to off-chip

› fast inference with large BNNs

26

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS

~66

~4

~1

~0.3

200x

Comparison

27

› Who would be willing to incur a loss in accuracy?
› Can we get better accuracy with a little more hardware?

Issues with Low-Precision

28

SYQ Quantisation

29

SYQ Quantisation

30

Subgrouping

› More fine-grained quantisation can improve approximation of weights

31

Pixel-wise scaling Row-wise scaling (layer-wise also option)

Resource Utilisation

› For K filters, I Input feature maps of dimension FxF, N output feature maps
› P=K2INF2

32

Results

33

› Full precision for 1st and last layers, CONV layers pixel-wise, FC layer-
wise

Baseline is floating-point, reference https://github.com/facebook/fb.resnet.torch (ResNet)
and https://github.com/BVLC/caffe (AlexNet)

https://github.com/facebook/fb.resnet.torch
https://github.com/BVLC/caffe

Results (Alexnet)

34

Results (ResNet)

35

ResNet-18 ResNet-50

› Exploration
› Parallelisation
› Integration (radio frequency machine learning)
› Customisation

EPIC

Radio Frequency Machine Learning

› Processing radio frequency
signals remains a challenge
- high bandwidth and low latency

difficult to achieve

› Autoencoder to do anomaly
detection

37

Autoencoder

38

Train so x x (done in an unsupervised manner)

X1
0

X1
1

X1
2

X2

0

X2

1

X5

0

X5

1

X5

2

X4

0

X4

1

X3

0

w1
00

w0
01

w1
10

w1
11

w1
20

w1
21

w2
00

w2
01

w3
00

w3
01

w4
00

w4
01

w4
02

w4
10

w4
11

w4
2

b1 b2 b3 b4

X0

X1

X2

X0

X1

X2

~

~

~

~

Autoencoder learns “normal” representation

› Anomaly if distance between autoencoder output and input large
› FPGA has sufficiently high performance to process each sample of

waveform at 200 MHz!
- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference

39

Software Defined Radio Architecture

40

Implemented on Ettus X310 platform

Radio Core Autoencoder
(Optional FFT)

Crossbar

Ingress/Egress Interface

Hardware Driver

H
os

t
PC

FP
G

A

Autoencoder
training

I/Q samples

Autoencoder
Parameters (W, b)

Anomaly/Normal (can
be used by FPGA or PC)

Example

41

Performance (XC7K410T)

42

Typical SDR latency >> 1 ms

› Exploration
› Parallelisation
› Integration
› Customisation (PIR-DSP)

EPIC

Embedded Deep Neural Networks

› DNNs for embedded applications share two features to reduce
computation and storage requirements
- Low precision (from 1-16 bits)

- Depthwise separable convolutions

44

Standard Convolution
(standard)

Depthwise Convolution (DW) Pointwise Convolution (PW)

45

Computation and Storage for Embedded DNNs

Standard DW PW FC OtherStandard DW PW FC Other

NASNet-A4@1056
MobileNet-v2
ShuffleNet-v2
SqueezeNet

Distribution of # of MACs Distribution of # of parameters

Motivation (1)

Aims

› Optimise FPGA DSP architecture to better support
- Efficient implementation of embedded DNNs
- Wordlengths down to ternary and binary

› Talk will focus on convolutions

46

PIR-DSP

› PIR-DSP: Optimized version of DSP48
- Precision: Multiplier architecture

- Interconnect: Shift-Reg

- Reuse : RF/FIFO

47

PIR-DSP

DSP48

Precision (1)

› Based on two approaches:
1. Chopping

2. Recursive decomposition

48

Precision (2)

› Notation: M×NCijDk
› PIR-DSP multiplier: 27×18C32D2

- Chopping factors 3 and 2 respectively for 27 and 18
- (27=9+9+9)×(18=9+9)
- Six 9×9 multiplier

- Decomposing factor is 2
- Each 9×9 multiplier decomposes to Two 4×4 or Four 2×2 multipliers

› PIR-DSP Modes:
- One 27×18 à 1 MAC
- Two 9×9 + 9×9 + 9×9 à 6 MACs
- Four 4×4 + 4×4 + 4×4 à 12 MACs
- Eight 2×2 + 2×2 + 2×2 à 24 MACs

49

Parameterised Decomposable MAC unit

Interconnect (1)

› Three types of convolutions
1- Depth-wise: using three PIR-DSPs
2- Standard: based on depth-wise
convolution implementation and adding the
partial results

50

2D systolic array (Eyeriss) conventional ours depthwise convolution

filter r3

sums

ifmap r1
filter r2

filter r1

ifmap r2

ifmap r3
ifmap r4

ifmap r5

Interconnect (2)

51

3- Point-wise

Interconnect (2)

52

3- Point-wise

Interconnect (2)

53

3- Point-wise

Interconnect (2)

54

3- Point-wise

Interconnect (2)

55

3- Point-wise

Interconnect (2)

56

3- Point-wise

Interconnect (2)

57

3- Point-wise

Interconnect (2)

58

3- Point-wise

Interconnect (2)

59

3- Point-wise

Reuse

60

Depthwise Convolution (DW) Pointwise Convolution (PW)

Area and Frequency

› SMIC 65-nm standard cell technology
- Synopsis Design Compiler 2013.12

61

Version Area Ratio Fmax
DSP48E2 1.0 463
+ M27×18C32D2 MAC-IP 1.14 358
+ interconnect 1.18 362
+ reuse 1.28 357

Energy

› Other networks are similar

62

Related Work

› Sits between Sharma (low-precision) and Boutros (high-precision)

63

Bitfusion [56]
ISCA’18

Ours Boutros [44]
FPL’18

Ours

Area 0.24 1 0.77 1
Performance Per Area
2x2 1 0.4
4x4 1 0.7 1 1.2
8x8 1 1.4 1 1.2
16x16 1 0.4
27x18 1 0.8

› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC

Summary

› Described some of our efforts to develop efficient ML implementations within
the EPIC framework
› Exploration

› Kernel methods optimised using different algorithms, mathematical techniques,
computer architectures, arithmetic

› Parallelism
› Increase parallelism by reducing precision
› Keep weights on-chip to devote more hardware to arithmetic

› Integration
› In radio frequency, this allows latency to be reduced by 4 orders of magnitude

› Customisation
› Supplement conventional FPGA with different DSP to support DNN

implementation

65

Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://phwl.org

http://phwl.org/

References

› Sean Fox, David Boland, and Philip Leong. FPGA Fastfood - a high speed
systolic implementation of a large scale online kernel method. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA '18, pages 279–284, New York, NY, USA, 2018. ACM.
(doi:10.1145/3174243.3174271)

› Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip H.W. Leong. SYQ:
Learning symmetric quantization for efficient deep neural networks. In Proc.
Computer Vision and Pattern Recognition (CVPR), June 2018.
(doi:10.1109/CVPR.2018.00452)

› Siddhartha, Yee Hui Lee, Duncan J.M. Moss, Julian Faraone, Perry
Blackmore, Daniel Salmond, David Boland, and Philip H.W. Leong. Long
short-term memory for radio frequency spectral prediction and its real-time
FPGA implementation. In Proc. MILCOM, October 2018.

› Lingli Wang SeyedRamin Rasoulinezhad, Hao Zhou and Philip H.W.
Leong. PIR-DSP: An FPGA DSP block architecture for multi-precision deep
neural networks. In Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 1–8, 2019.

http://phwl.org/papers/ff_fpga18.pdf
http://dx.doi.org/10.1145/3174243.3174271
http://phwl.org/papers/syq_cvpr18.pdf
http://dx.doi.org/10.1109/CVPR.2018.00452
http://phwl.org/papers/lstm_milcom18.pdf
http://phwl.org/papers/pirdsp_fccm19.pdf

