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Introduction

+ There are several degrees of freedom to explore when
optimising DNNs
+ NN architecture (SqueezeNet, MobileNet)
« Compression (SVD, Deep Compression, Circulant)
+ Quantization (FP16, TF-Lite, FINN, DoReFa-Net)

+ This talk: quantisation
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Unsigned Numbers

U = (uw—1uw—2...Up),u; € {0,1}

w-1
= Z U,'2i
i=0

« U is a W-bit unsigned integer
- Range [0,2%)
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Two’s Complement Numbers

X = (Xw—1Xw—_2...Xo),X; € {0,1}
a

= —Xw_12W_1 + Z X,'2i
i=0

+ X is a W-bit signed integer
* Range [-2—1 2W-1)
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Two’s Complement Fractions

I-bit integer  F-bit fraction
Y = (Yw—1...YFYF—1...X0),¥i €{0,1}
w-2 '
= 27Fx (—Xw_12W_1 + Z X,‘2’)
i=0

* Y is a W-bit signed fraction with F-bit fraction

« Are two’s complement numbers scaled by 2—F
* Notation used: (I,F) (with I+ F = W)

+ (W,0) same as two’s complement integers
* (1,W-1) has range [-1,1) and multiplication never overflows
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Dynamic Fixed Point [CBD14]

w-2 )
D = (-1)527F )" x2
i=0

+ D is dynamic fixed point number with sign bit S, fractional
length F, W is word length

+ Sign-magnitude fraction with F being shared within a group

+ Allows number format to be adapted to different network
segments e.g. layer inputs, weights and outputs can have
different F
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Operations on Two’s Complement
Fractions

+ Addition and subtraction same as two’s complement
+ Multiplication

+ An (I,F) multiplication gives a (21,2F) result, need to discard
F bits
+ For (1,3)

0.75 x 0.75 0.110 x 0.110
00.100100 in (21,2F) format

0.100 in (I,F) format (truncated)

* Integer part controls range
+ Fractional part controls spacing between numbers
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Floating Point 1

A B C
A —
Z=(ap by_1...boCr_1...C0),(abjc;) € {0,1}

+ Treating A, B and C as unsigned integers

+1 ifa=0

—1, otherwise

+ The exponent is stored in a biased representation with
E=B-(2)71-1)

+ For normalised numbers, B # 0, and M is a positive (1,F)
two’s complement fraction M =1+ C2-F

» For denormalised numbers B = 0 and there is no implicit 1
in the positive (0,F) two’s complement fraction M = C2—F

* The sign bitis S =
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Floating Point 2

Sx2ExM if(0<B<2/-1)
7 Sx2Ex(M—-1) if(B=0)
S x oo if (B=2/—1and C=0)
NaN if(B=2/—1and C+#0)
00000000 00000001 00001000 00010000 00011001
or 10000000 00000111 / 00004111 ] 00010001 ()0()11000
A A At b
oor 118 1 1781 o8 1o
-0 64 64 64 64 32 32 16 16
negati‘ve denormalized P OSi‘i‘VE
normalized X normalized
numbers numbers numbers
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Operations on Floating Point Numbers

* Much larger resource utilisation
* Longer latency
+ We will focus on fixed point
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Convolution Layer as MM

+ Convolution layers converted to GEMM [CPS06]
- Efficient BLAS libraries can be exploited

Output
features
Traditional Convolution
. kernels
1 S Input
2 o 1 3 features
0 3132
T 1
\ 1o
' 21 o
\ o
2 0 T3> 2 ) /%\ 2 A 12
1---3-7727 2 TTTre-oroTy 1y _ 0] 2
3 1 1 0 1 3 3 *haoo o2 = fiso17
Matrix 2 1 0 1 3 2 1 o4/ 26
Product - A?\\ ! oot
Version of Input features (Matrix) | utput features
17 2 (Matrix)
Convolution 0/ 0
Kernel
Matrix
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DNN Computation

Computational problem in DNNs is to compute a number of dot
products
h=g(wx) (1)
where
* g is an element-wise nonlinear activation function
« x € R""is the input vector
- w € R s the weight vector
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Arithmetic Intensity

Computation of a DNN layer is MV multiplication

For MV multiply is O(1), for MM is O(b) where b is block
size

Efficient CPU/GPU implementations use batch size > 1
(process a number of inputs together)

For latency-critical applications (e.g. object detection for
self-driving car), we want a batch size of 1

Make sure comparisons are at the same batch size!
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% scaled to FP32

Role of Wordlength on Performance

+ CPU/GPU

+ Floating point performance comparable to fixed
+ Integer data types usually vectorisable hence faster
+ Nvidia offers FP64, FP32 and FP16 (> Tegra X1 and
Pascal)
* FPGA

+ Datapath is flexible
+ No floating point unit so fixed point normally preferred

Memory Usage Performance
120 35
100 3
2.5
80 o
& 2
60 2
215
3
40 &,
20 505
4
0 £
FP32 FP16 0n P100  INT8 on P40 FP32 FP160n P100  INT8 on P40
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Role of Wordlength on Resources

+ X axis is bitwidth (weight-activation) and Y axis Number of

LUTs/DSPs for MAC

- For k-bits, area is O(k?)

Number Of LUTs

175  LUTs

[ DSPs
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Number Of DSPs
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Roofline Model

Roofline model for Xilinx ZU19EG
« X axis is computational intensity (ops to perform / byte

fetch), Y axis is performance

Diagonal parts show memory-bandwith limited space

Horizontal parts show computation limited space

Actually this is a better metric to optimise than say GOPs/s

Low precision extremely advantageous for performance

GOPS

10° ‘ : —
- - - 16-bit ops "_,-"‘

....... 8-bit ops "/_‘—.-.’..........

103 -.=.= 1-bit ops - I -t =
/‘1‘/ &
ars e
- Q2 oy
10* - »3 ¥
~— \ 31 \ ! 5

0.125 1 8 64 512 4096 16384

Ops:Byte
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Integer Quantization [Jac+18]

A way to map numbers r € R to unsigned integers q € U+ is
via an affine transformation

r=_5(q-2) (2)

« U+ is the set of unsigned W-bit integers
+ S, Z are the quantisation parameters

+ S € R+ represents a scaling constant
« Z € U+ represents a zero-point
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Integer MM [Jac+18]

* N x N MM defined as

N
k) — > W k) (3)
=

substituting r = S(q — Z) (2) and rewriting we get

N
&Y = Ze+ M(N21 2o~ 2140~ 23"+ 3" Do) (4)

j=1

* Multiplication with M = 5% is implemented in

(high-precision) two’s complement fixed point

. aék) and ési) together only take 2N? additions
+ Sum in (4) takes 2N® and is a standard integer MAC
+ CPU implementation uses uint8, accumulated as int32

oo
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Quantisation Range [Jac+18]
For each layer, quantisation parameterised by (a,b,n):

clamp(r;a,b) = min(max(x,a),b)
b—a
S(a, ba n) - n—1

q(r: a, b, n) = rnd( clang;g, S)) “Asab,n)+a (5)

where r € R is number to be quantised, [a,b] is quantisation

range, nis number of quantisation levels and rnd() rounds to
nearest integer

Figure from [Jac+18] (with permission)

2 e univERsITY OF
S5 SYDNEY



Training Algorithm [Jac+18]

© Create training graph of the floating-point model

® Insert quantisation operations for integer computation in
inference path using (5)

® Train with quantised inference but floating-point
backpropagation until convergence

@ Use weights thus obtained for low-precision inference

output

) . .. wgo SYDNEY
Figure from [Jac+18] (with permission)



Accuracy vs Precision [Jac+18]

ResNet50 on ImageNet, comparison with other approaches

Scheme BWN TWN INQ FGQ Ours
Weight bits 1 2 5 2 8
Activation bits  float32 float32 float32 8 8

Accuracy 68.7% 12.5% T74.8% 70.8% T4.9%

Table 4.2: ResNet on ImageNet: Accuracy under var-
ious quantization schemes, including binary weight net-
works (BWN [21, 15]), ternary weight networks (TWN
[21, 22]), incremental network quantization (INQ [33]) and
fine-grained quantization (FGQ [26])

Figure from [Jac+18] (with permission) THE UNIVERSITY OF
wgo SYDNEY



Accuracy vs Latency [Jac+18]

ImageNet classifier on Google Pixel 2 (Qualcomm Snapdragon
835 big cores)

70} - o |
u
]
g .
§ 60 - n
< m
—
o
5 50 'm =
= ] Float
" m 8-bit
40 - | | I
5 15 30 60 120

Latency (ms)
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Symmetric Quantisation
(SYQ) [Far+18]

+ To compute quantised weights from FP weights
Q, = sign(W)) © M,

with,

i >
w1 Wy,| =
0 if —m<W,<n

1 ifx>0
-1 otherwise

sign(x) = {

where M represents a masking matrix, n is the

izati hreshold h meter (0 for binarised)
quantization threshold hyperparameter (0 for b )%ﬁﬁ

(8)



Symmetric Quantisation
(SYQ) [Far+18]

+ Make approximation W, ~ o;Q;, Q € C

+ Cis the codebook, C € {Cy, C, ...} e.9. C = {-1,+1} for
binary, C = {—1,0,+1} for ternary

+ A diagonal matrix «; is defined by the vector

o = [a},...,alm]:
o . 0 0
; 0 o® .. : 0
a = diag(a) = s Lot
O 0 . 0 aom

+ Train by solving

aj = argmin,E(a, Q) s.t. o >0, Q,,.J eC
=o' SYDNEY



Subgroups

* Finer-grained quantisation improves weight approximation
* Pixel-wise shown, layer-wise has similar accuracy

IxN

X X X X X X X X X
ol «? o3 ot o5 6 o7 oB oc®
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Dealing with Non-differentiable
Functions

Recall (6) Q) = sign(W,) ® M,
This step function has a derivative which is zero
everywhere: vanishing gradients problem

Address via a straight through estimator (STE)
Consider g = sign(r) and g, ~ 9 then 4¢ ~ gq11<1

STE (forwar d)

-

10 i
STE (backward)
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Results for 8-bit activations

Model Bin | Tern | FP32 | Reference
AloxNet | 1oP-1| 566 | 58.1 [56.6 | 57.1
Top-5 | 79.4 | 80.8 | 80.2 | 80.2
Top-1 | 66.2 | 68.7 | 69.4 | -
VGG Top-5 | 87.0 | 88.5 | 89.1 | -
Top-1 | 62.9 | 67.7 | 69.1 | 69.6
ResNet-18 | 1 0.5 | 84.6 | 87.8 | 89.0 | 89.2
Top-1 | 67.0 | 70.8 | 713 | 73.3
ResNet-34 | 1.5 | 87.6 | 89.8 | 89.1 | 91.3
Top-1 | 70.6 | 72.3 | 76.0 | 76.0
ResNet-50 | 0.5 | 89.6 | 90.9 | 93.0 | 93.0

+ Our ResNet and AlexNet reference results are obtained
from https://github.com/facebook/fb.resnet.torch and
https://github.com/BVLC/caffe
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Alexnet Comparison

Model Weights Act. Top-1 Top-5
DoReFa-Net [Zho+16] 1 2 498 -
QNN [Hub+16] 1 2 51.0 737
HWGQ [Cai+17] 1 2 52.7 76.3
syaQ 1 2 55.2 78.4
DoReFa-Net [Zho+16] 1 4 53.0 -
sya 1 4 56.2 79.4
BWN [Ras+16] 1 32 568 794
sya 1 8 56.6 79.4
sya 2 2 55.7 791
FGQ [Mel+17] 2 8 49.04
TTQ [Zhu+16] 2 32 575 797
sya 2 8 58.1 80.8
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Inference with Convolutional Neural
Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural
network inference,” FPGA'17

tens of megabytes of floating point weight data
(from training)

- j‘}} = «caty»

image to be
classified billions of floating point multiply-accumulate ops
(several joules of energy)
Slide © Copyright 2016 Xilinx THE UNIVERSITY OF
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Binarized Neural Networks

> The extreme case of quantization
- Permit only two values: +1 and -1

- Binary weights, binary activations

S
s
5
5
S
5
5

TN
SNNUNYNA

- Trained from scratch, not truncated FP

] MNIST | SVHN | CIFAR-
» Courbariaux and Hubara et al. (NIPS 10

2016) Binary weights &  0.96%  2.53%  10.15%
- Competitive results on three smaller aciivations
benchmarks FP weights & 0.94% 1.69% 7.62%
activations
- Open source training flow BNNaccuracy ~ -02%  -0.84% -2.53%
- Standard “deep learning” layers loss
- Convolutions, max pooling, batch norm, fully % classification error (lower is better)

connected...

Slide © Copyright 2016 Xilinx
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Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

> Much smaller datapaths

- Multiply becomes XNOR, addition
becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every
cycle

> Much smaller weights

- Large networks can fit entirely into on-
chip memory (OCM)

- More bandwidth, less energy
compared to off-chip

Slide © Copyright 2016 Xilinx

Peak TOPS On-chip
weights

~70M
8b ~10M
16b ~5M
32b ~0.3 ~2M

» fast inference with large BNNs
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Design Flow

* One size does not fit all - Generate tailored hardware for
network and use-case

+ Stay on-chip - Higher energy efficiency and bandwidth

+ Support portability and rapid exploration - Vivado HLS
(High-Level Synthesis)

+ Simplify with BNN-specific optimizations - Exploit compile
time optimizations to simplify hardware, e.g. batchnorm
and activation => thresholding

Slide © Copyright 2016 Xilinx
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Design Flow

1. Train your BNN
(Courbariaux et al.)

2. Determine your Theano + BinaryNet
FPS requirements

FPS target FINN synthesizer ‘7/ BNN topology /
& parameters

3. Run FINNthesizer |

synthesizable C++
network description

FINN
hardware
library

Vivado HLx 4. Use resulting
accelerator

bitfile platform with FPGA

Slide © Copyright 2016 Xilinx
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Heterogeneous Streaming Architecture

INPUT

BNN topology

image

> One hardware layer per BNN layer, parameters built into bitstream

- B

FPGA

— Both inter- and intra-layer parallelism

> Heterogeneous: Avoid “one-size-fits-all” penalties
— Allocate compute resources according to FPS and network requirements

> Streaming: Maximize throughput, minimize latency
— Overlapping computation and communication, batch size = 1

Slide © Copyright 2016 Xilinx

esult

1x FPS
10x FPS

T34 UNIVERSITY OF
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Matrix-Vector Threshold Unit (MVTU)

> Core computational element of FINN, tiled matrix-vector multiply

> Computes a (P) row x (S) column chunk of matrix every cycle, per-layer configurable tile size

buffer input for reuse
(neuron folding)

input vector
buffer

output vector
buffer

output
image image
stream stream

broadcast S bits of
input every cycle

apply thresholding and send

}/ to next layer

input vector  index
Fiowew
ployseiy

output vector

multiply-accumulate, but with
XNOR and popcount instead

Slide © Copyright 2016 Xilinx
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Convolutional Layers

> Lower convolutions to matrix-matrix multiplication, W - I
- W : filter matrix (generated offline)

- I: image matrix (generated on-the-fly) flters
o

im 1
images [o]1]2]
ntericave L]

> Two components:

Eg

) 58
convolution layer EgZ
filter matrix 5%

(interleaved) EE

slide window matrix-matrix
overimage  multiply, one vector
(generate I matrix) at a time

Slide © Copyright 2016 Xilinx
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Performance

MNIST, SFC-max 95.8% 123M J73W 21.2W | 1693 583 1
MNIST, LFC-max 98.4% 15M §88W 226WJ177 269 1
CIFAR-10, CNV-max 80.1% 219k §36W 11.7WJ6 2 1
SVHN, CNV-max 94.9% 219k §36W 11.7WJ6 2 1
MNIST, Alemdar et al. 97.8% 2551k} 0.3W - 806 - 2

83.4% 1.2k 02W - 6 - 1
SVHN, TrueNorth 96.7% 25k 03W - 10 - 1

Max accuracy 10 — 100x better CIFAR-10/SVHN energy efficiency
loss: ~3% performance comparable to TrueNorth ASIC

Slide © Copyright 2016 Xilinx
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Summary

* Reducing precision

« Significantly reduce computational costs in DNNs

+ Data may now fit entirely on chip, avoiding external memory
accesses

+ Computations greatly simplified

+ Key dimension for optimisation in CPU/GPU/FPGA
implementations

+ Convolutional layer can be computed as a MM
« Still an active research topic
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Tutorial Question 1

© Download VM (quantisation_usyd.ova) from
https://bluemountain.eee.hku.hk/papaa2018/
® Import to Virtualbox, and inside VM do

git clone https://gitlab.com/phwl/syg-cifarl0.git

©® Derive Equation (4) from (3) and (2)
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Tutorial Question 2

© Cifar10 is a very small neural network benchmark’. Test
precision with SYQ using:

cd syg-cifarl0O/src
python cifarl0O_eval.py

(this can run during training)

® The code provided performs binary quantisation. Modify
the code to determine precision for binary, ternary and
floating-point (use the checkpoint files provided to initialise
your training).

python cifarlO_train.py

2 e univERsITY OF
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https://www.tensorflow.org/tutorials/images/deep_cnn
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