
Reconfigurable Computing Lab

Philip Leong (philip.leongsydney.edu.au)
The University of Sydney

September 26, 2018

The long short-term memory (LSTM) network [6, 3] has revolutionised approaches to time-series predic-
tion problems such as speech recognition and machine translation. In this series of tutorials, we will develop
an FPGA implementation of an LSTM [7].

Our implementation will have identical functionality to BasicLSTMCell1 which is used in Google’s Ten-
sorflow neural network package. This, in turn, is an implementation of the network published in refer-
ences [3, 10].

Using the same notation as [10], let hl
t ∈ Rnl be a hidden state in layer l at timestep t, Tm,n : Rn → Rm be

an affine transformation (Wx+ b for some W and b), � elementwise multiplication, sigm is the elementwise
sigmoid function, tanh is the elementwise hyperbolic tangent, and h0

t be an input vector at timestep t. We
use the activations hL

t to predict yt where L is the number of layers in the LSTM.
The neural network implements a state transition

LSTM : hl−1
t , hl

t−1, c
l
t−1 → hl

t, c
l
t (1)

where 
i
f
o
g

 =


sigm
sigm
sigm
tanh

T(nl−1+nl),(4nl)

(
hl−1
t

hl
t−1

)
(2)

clt = f � clt−1 + i� g (3)

ht
l = o� tanh(clt) (4)

In these labs, marks will be awarded not only for correctness but also understandability and elegance of
the solution. Your answers to the questions should be in the form of a simple report. For each question
below, provide a listing of the changes to the original code. Where applicable, give the speedup of your
optimised design compared with the baseline single precision design generated in the first tutorial.

Only a small number of FPGA implementations of LSTM networks [6] have been reported. Chang et. al. [1]
in 2015 implemented an LSTM network on a Zynq 7020 FPGA using a matrix-vector multiplier architecture.
Their 2 layer, 128 hidden unit design operated at 142 MHz and was 21 faster than the ARM Cortex A9
processor on the same FPGA. In 2017 Guan et. al. [4] in 2017 describe an optimised 32-bit floating point
LSTM implementation which achieved 7.26 GFLOPS on a Xilinx Virtex7-485t FPGA at 150MHz. Finally,
Han et. al. [5] describe a load-balance-aware pruning method to introduce sparsity and quantisation in an
LSTM implementation. On a Xilinx XCKU060 FPGA running at 200MHz with 12-bit precision, their design
achieved 282 GOP/s, corresponding to 2.52 TOPS on an equivalent dense network.

1https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn.py

1

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn.py

1 Lab 1 - LSTM Network (Familiarlisation and Testbench)
This tutorial has the following goals:

• Practise translating published mathematical descriptions into hardware designs

• Gain experience in using high level synthesis

• Gain experience in design optimisation.

1.1 (40%) Familiarisation with xsimple.py

A VirtualBox virtual machine (VM) will be supplied that has TensorFlow, Vivado, and Vivado HLS already
installed (the username and password are both “vivado”). Instructions on how this VM was created are given
in Appendix A. After starting up the VM, download the tutorial source files and set up Tensorflow using
the commands

g i t c l one https : // github . com/phwl/ h l s l s tm
workon keras_tf

You can check that everything is working by typing:

cd h l s l s tm / s r c
make test

You should see output similar to the below.

python xsimple.py >xsimple.out
g++ -p -o simple simple.cpp -lm
grep pred xsimple.out > /tmp/xsimple.out
echo "testing simple ..."
testing simple ...
(./simple | grep pred | sdiff -w80 /tmp/xsimple.out -)
vprint(y_pred) -0.0055398695 -0.01926 vprint(y_pred) -0.0055398695 -0.01926
vprint(y_pred) -0.012691636 -0.027500 vprint(y_pred) -0.012691636 -0.027500
vprint(y_pred) -0.019167556 -0.028273 vprint(y_pred) -0.019167556 -0.028273
vprint(y_pred) -0.021765375 -0.026982 | vprint(y_pred) -0.021765375 -0.026983
rm -f /tmp/xsimple.out

The output is the result of an sdiff command which compares the y_pred output of a floating-point
python implementation of the LSTM (on the left hand side) with the output of the gen.cpp C program (on
the right hand side). If the lines of text are different (as in the case in the last line), a | appears between
them. Note that the simple program prints a number of variables, but (make test) only compares the y_pred
outputs. The initial weight values are random so each time the xsimple.py program generates simple, the
outputs will be different.

Modify the program so it accepts vectors of length 4, produces output predictions of length 4, has batch
size 1 and sequence length 12. Also change the source code so the file containing main() (which we will call
the testbench) and the lstm() function are in separate files.

1.2 (60%) Testbench
Let hp

i be the prediction of the LSTM (i refers to an element of h, and p is the input pattern number) and ypi
is the double precision expected result (l_y[p][i] in gen_io.h). Let P be the number of patterns (L_PATS
in gen.h). Modify the program so the testbench reports the largest relative error between two outputs

MAXERR = maxi,p|(hp
i − ypi)| ∀i,∀p (5)

Page 2

Also print the average mean squared error (AMSE), where the mean square error (MSE) between two vectors,
h and y, is

MSEp(h, y) =
√
(
∑
i

(hp
i − ypi)

2). (6)

and

AMSE = (

P∑
p=1

(MSEp))/N. (7)

Also modify main() to return 1 in the case of an error (and 0 otherwise). Although not an entirely satisfactory
metric, we will call a AMSE which is greater than 0.01 an error.

The expected output is provided in the l_y[] array defined in gen_io.h. Change the data type used for
calculation from double to float . Rerun, is the AMSE the same?

Page 3

2 Lab 2 - LSTM Network (Parallelism)
Compiler directives are used in Vivado HLS to generate solutions with different architectures and degrees of
parallelism. This tutorial has the following goals:

• Gain experience in optimising a design with compiler directives.

2.1 (50%) Vivado HLS Project
Create a Vivado HLS project [9] targetting the Zedboard (which has a xc7z020clg484-1 FPGA). This should
be done outside the Tensorflow environment. The way you can tell is that if you are in the Tensorflow
environment, the command prompt begins with (keras_tf). Import the single precision version of your
simple.cpp program.

You will need to modify the program as some parts of the original C program are not synthesisable,
e.g. vprint(). In many cases, the original source code can be modified to support both normal C and HLS.
In other cases, use C preprocessor #ifdef constructs so you can invoke both the synthesisable and original
programs from the same source code.

Generate a synthesis report for the project, with a target clock period of 10ns. How many cycles does
the execution take? What is the actual clock period?

2.2 (50%) Compiler Directives
Explore how compiler directives such as DATAFLOW, ARRAY PARTITION and PIPELINE can improve
the speed of the design. Use the Analysis Perspective to understand the timing implications of your changes.
Find configurations which give the best overall result in terms of: number of cycles T ; area A (defined as
the percentage of the most used resource out of LUTs, memories and DSPs); and AT product.

Page 4

3 Lab 3 - LSTM Network (Precision)
Fixed-point arithmetic requires less area and has lower latency than floating-point. Moreover, FPGAs
can more efficiently perform low-precision calculations than processors and graphics processing units. This
tutorial has the following goals:

• Gain experience in converting floating-point designs to fixed-point.

• Quantify the performance advantages of fixed-point over floating point for our long short-term memory
(LSTM) example.

3.1 (50%) Fixed-point C Implementation
Use the Vivado HLS ap_fixed type to modify your floating-point implementation to use ap_fixed<12,4,
AP_TRN,AP_WRAP>. You will need to do the following

• Change references to floating point variables to ap_fixed<12,4,AP_TRN_ZERO,AP_SAT>. One way
is to declare

#de f i n e W_WIDTH 12
#de f i n e I_WIDTH 4
typede f ap_fixed<W_WIDTH,I_WIDTH,AP_TRN_ZERO,AP_SAT> l_t ;

in gen.h and then declare all fixed point variables as l_t. W_WIDTH is the word length and I_WIDTH
is number of integer bits (the number of fractional bits is W_WIDTH−I_WIDTH).

• Add

#inc l ude <ap_fixed . h>

to the appropriate files and change CFLAGS in the Makefile to

CFLAGS= −I /opt/ Xi l i nx /Vivado_HLS/2015.4/ inc lude

so the C compiler can find the include file.

• Fix the testbench so it can deal with floating point inputs and outputs but execute in fixed point.

• Deal with the implementations of mytanh() and mysigmoid() as ap_fixed does not support them. One
solution is to replace both functions with a lookup table (if you do it this way, you should make it
flexible so changing the number of integer and fractional bits

What setting of the number of integer bits gives the lowest error?

3.2 (50%) RTL Simulation
Synthesise the design using HLS. Run the C simulation to verify the output is correct. Moreover, run a
C/RTL cosimulation to check that the HLS output is correct.

Page 5

4 Lab 4 - LSTM Network (Exploration)
In this lab we explore how to obtain the maximum speed in our LSTM implementation.

• Gain experience in exploring alternative implementations to accelerate LSTM.

For the questions in this lab, you can apply any optimisations as long as the the percentage error for any
output (compared with the original double precision C version) is less than 10%.

4.1 (50%) Optimising Number of Cycles
In this lab, you are invited to modify the C source code, introduce approximations, trying different fixed
point rounding modes, changing directives etc in order to achieve the minimum number of cycles for the
LSTM implementation at 100 MHz.

4.2 (50%) Optimising Execution Time
Up to this point in all the labs, we have only endeavoured to optimise the number of cycles, T . In this part,
optimise the execution time (T × p) where p is the clock period, by setting tighter timing constraints.

Page 6

5 Lab 5 - LSTM Network (Interface)
In this lab we create an interface to our accelerator for use by a CPU with the following goals:

• Gain experience making a host processor to FPGA interface.

5.1 (20%) Hardware Integration
Adapting the design in reference [9], create a Zynq design for the xc7z020clg484-1 FPGA on the Zedboard
with your LSTM design included as an IP Block. In this lab you do not need to verify that it works, you
just need to integrate the blocks.

5.2 (40%) Software-Hardware Co-design
In this lab, create a design which combines the Zynq processor on the Zedboard, and the LSTM hardware
IP developed in the previous tutorial.

5.3 (40%) Optimisation
Compare the performance of the accelerated design with a pure Zynq implementation and the original
desktop implementation. Improve the performance of the accelerated design using either software or hardware
techniques. Ideas include: finding better ways to compute the nonlinearities; reducing precision requirements;
accumulating at a higher precision before rounding; and increasing the clock rate of the design.

Page 7

6 Report
Report on the work done in these labs in IEEE conference format. Templates are available at https://www.
ieee.org/conferences_events/conferences/publishing/templates.html. The maximum length of the
report is 4 pages but you can include source code listings etc in additional appendices. In your report, you
should include background on machine learning, LSTM, cite key papers etc. Examples of papers that you
can use as templates include [3, 8, 2] (the last one is a 4 page paper).

Page 8

https://www.ieee.org/conferences_events/conferences/publishing/templates.html
https://www.ieee.org/conferences_events/conferences/publishing/templates.html

A Installing Vivado, Python and Tensorflow
Here is the sequence of commands for installing Python and Tensorflow on an Ubuntu 16.04 system.

sudo apt−get i n s t a l l l i bboo s t−a l l−dev l ibusb −1.0−0−dev python−mako doxygen python−
do cu t i l s cmake bui ld−e s s e n t i a l

sudo apt−get i n s t a l l python−pip
pip i n s t a l l −−upgrade pip
sudo pip i n s t a l l v i r t ua l env
sudo pip i n s t a l l v i r tua lenvwrapper
export WORKON_HOME=~/Envs # needed l a t e r f o r v i r tua l envwrapper
mkdir −p $WORKON_HOME

source / usr / l o c a l / bin / v i r tua lenvwrapper . sh
mkvirtualenv keras_tf
pip i n s t a l l t en so r f l ow
pip i n s t a l l keras
pip i n s t a l l r e que s t s

You should also add the following to /.profile.

export WORKON_HOME=~/Envs # needed l a t e r f o r v i r tua l envwrapper
source / usr / l o c a l / bin / v i r tua lenvwrapper . sh

Vivado and Vivado HLS can be installed according to the instructions from Xilinx. For Ubuntu 16.04
you must also put the following line in /etc/udev/rules.d/70-persistent-net.rules and reboot (this is needed
to change the ethernet device from en0 to eth0 which is needed for the Xilinx license system)

SUBSYSTEM=="net " , ACTION=="add" , DRIVERS=="?∗" , ATTR{ address}==" 02 : 0 1 : 0 2 : 0 3 : 0 4 : 0 5 " ,
ATTR{dev_id}=="0x0" , ATTR{type}=="1" , NAME="eth0 "

Page 9

References
[1] Andre Xian Ming Chang, Berin Martini, and Eugenio Culurciello. Recurrent neural networks hardware

implementation on FPGA. CoRR, abs/1511.05552, 2015.

[2] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello. Hardware accelerated
convolutional neural networks for synthetic vision systems. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pages 257–260, May 2010.

[3] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6645–6649,
May 2013.

[4] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. Fpga-based accelerator for long short-term
memory recurrent neural networks. In 22nd Asia and South Pacific Design Automation Conference,
ASP-DAC 2017, Chiba, Japan, January 16-19, 2017, pages 629–634. IEEE, 2017.

[5] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song
Yao, Yu Wang, Huazhong Yang, and William (Bill) J. Dally. Ese: Efficient speech recognition engine
with sparse lstm on fpga. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17, pages 75–84, New York, NY, USA, 2017. ACM.

[6] Sepp Hochreiter and JÃĳrgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[7] Siddhartha, Yee Hui Lee, Duncan J.M. Moss, Julian Faraone, Perry Blackmore, Daniel Salmond, David
Boland, and Philip H.W. Leong. Long short-term memory for radio frequency spectral prediction and
its real-time FPGA implementation. October 2018.

[8] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre,
and Kees Vissers. FINN: A framework for fast, scalable binarized neural network inference. In Proc.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pages 65–74,
2017. Source code available from https://github.com/Xilinx/BNN-PYNQ.

[9] Xilinx. UG871 vivado design suite tutorial. https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2015_4/ug871-vivado-high-level-synthesis-tutorial.pdf.

[10] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. CoRR,
abs/1409.2329, 2014.

Page 10

https://github.com/Xilinx/BNN-PYNQ
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug871-vivado-high-level-synthesis-tutorial.pdf

	Lab 1 - LSTM Network (Familiarlisation and Testbench)
	(40%) Familiarisation with |xsimple.py|
	(60%) Testbench

	Lab 2 - LSTM Network (Parallelism)
	(50%) Vivado HLS Project
	(50%) Compiler Directives

	Lab 3 - LSTM Network (Precision)
	(50%) Fixed-point C Implementation
	(50%) RTL Simulation

	Lab 4 - LSTM Network (Exploration)
	(50%) Optimising Number of Cycles
	(50%) Optimising Execution Time

	Lab 5 - LSTM Network (Interface)
	(20%) Hardware Integration
	(40%) Software-Hardware Co-design
	(40%) Optimisation

	Report
	Installing Vivado, Python and Tensorflow

