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Motivation (latency) 

›  Low latency trading looks to trade in transient situations where market 
equilibrium disturbed 
-  1ms reduction in latency can translate to $100M per year 

›  Latency also important: prevent blackouts due to cascading faults, turn off 
machine before it damages itself, etc 

How to beat other people to the money (latency) 

Information Week: Wall Street's Quest To Process 
Data At The Speed Of Light 



Motivation (latency) 
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Exablaze Low-Latency Products 

ExaLINK Fusion 48 SFP+ port layer 
2 switch for replicating data typical 5 
ns fanout, 95 ns aggregation, 110 ns 
layer 2 switch 
 
Xilinx Ultrascale KU115 FPGA, QDR 
SRAM, ARM processor 

ExaNIC X10 typical raw frame 
latency 60 bytes 780 ns 

Source: exablaze.com 

What we can’t do: ML with this 
type of latency 



Motivation (throughput) 

›  Ability to acquire data improving (networks, storage, ADCs, sensors, 
computers) 
-  e.g. hyperspectral satellite images, Big Data e.g. SIRCA has 3PB of historical 

trade data 

›  Significant improvements in ML algorithms 
-  Deep learning (model high-level abstractions in data) for leading image and voice 

recognition problems; support vector machines to avoid overfitting 
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What we can’t do: learning with 
this data rate 



EPIC Technology Needed 

›  To provide ML algorithms with higher throughput and lower latency we 
need 
-  Low Energy – so power doesn’t become a constraint, operate off batteries 

(satellite and mobile) 

-  Parallelism – so we can reduce latency and increase throughput 

-  Interface – so we don’t need to go off-chip which reduces speed and increases 
energy 

-  Customisable – so we can tailor entire design to get best efficiency 

› Using FPGAs, develop improved algorithms and system 
implementations for ML 
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Why is FPGA research timely? 
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(Intel paid $16.7B for Altera; Intel presentation at OCP Summit 14/3/2016) 
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Linear Techniques 

›  Linear techniques extensively studied 
›  Solution has form y = wTx + b  

-  Use training data x to get maximum likelihood estimate of w or a posterior 
distribution of w  

›  Pros 
-  Sound theoretical basis 

-  Computationally efficient 

› Cons 
-  Linear! 

›  There is an equivalent dual representation 
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e.g. Max Margin Hyperplane 

 



What do we do if given this problem? 

 

› Map the problem to a feature space 
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Mapping to a Feature Space 

› Choose high dimensional feature space (so easily separable) 
› BUT computing Φ is expensive!  



Kernel Trick 

›  Kernel is a similarity function  
-  defined by an implicit mapping φ, (original space to feature space) 

-  e.g. Linear kernel κ(x,x’)=<x,x’>  

-  e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: φ(x) = (x1
2, x2

2, √2x1x2) 
-  e.g. Gaussian kernel (universal approximator) 

-  Φ(x) infinite in dimension!  

› Modify linear ML techniques to kernel ones by replacing dot products 
with the kernel function (kernel trick) 
-  e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, 

PCA, ICA, LMS, RLS, … 
-  While we only describe prediction here, also applied to training equations 
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κ (x, x ') =φ(x)Tφ(x ') = φ(x),φ(x ')



Support Vector Machine 
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b 

b 

Never explicitly compute Φ(x), computing K(x,x’) is O(m) 
e.g. poly kernel Φ(x), dimension (d+m-1)!/d!(m-1)!  
For d=6, m=100 this is a vector of length 1.6e9 
 



Approach 

›  In Kernel-based learning algorithms, problem solving is now decoupled 
into: 
-  A general purpose learning algorithm often linear (well-founded, robustness, …) 

-  A problem specific kernel (we focus on time series but kernels exist for text, DNA 
sequences, NLP) 
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Online Kernel Methods 

›  Traditional ML algorithms are batch 
based 
-  Make several passes through data 

-  Requires storage of the input data 

-  Not all data may be available initially 

-  Not suitable for massive datasets 

› Our approach: online algorithms 
-  Incremental, inexpensive state 

update based on new data 

-  Single pass through the data 

-  Can be high throughput, low latency 

 

Examples are KLMS and KRLS 

Universal 
Approximator 

Σ
- 

+ 

Streaming 
inputs xi 

Prediction 

yi 

Modify 
weights 
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Kernel Online Algorithms 

›  Kernel Least Mean Squares 
(KLMS) 
-  O(N) 

-  Converges slowly (steepest descent) 

-  Takes a ‘step’ towards minimising the 
instantaneous error 

-  e.g. KNLMS, NORMA 

 

›  Kernel recursive least squares 
(KRLS) 
-  O(N2) 

-  Converges quickly (Newton 
Raphson) 

-  Directly calculates least squares 
solution based on previous training 
examples using Matrix Inversion 
Lemma (matrix-vector multiplication) 

-  e.g. SW-KRLS 
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Two extensively studied types of online kernel methods: 
 



Convergence 
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W-KRLS	

The pseudo code of the SW-KRLS 
algorithm	

SW-KRLS Algorithm 
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Computation complexity: O(N2).	



Key idea 

›  Microprocessor O(N) cycles 

 

   for (i = 0; i < N; i++) 

         C[i] = A[i] + B[i]; 

 

 

›  Vector processor O(1) cycle 

   VADD(C, A, B) 

 

 

 

›  Implemented as a custom KRLS 
vector processor using FPGA 
technology 
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Vector add C = A + B 



Instruction Set	

ALL i , j AND L INDEXES RANGE FROM 1 TO N	

Microcode (Opcode)	 Function	 Total Cycles	
NOP(000)	 No operation	 1	

BRANCH (0111)	 BRANCH	 4	

VADD (0001)	 Vector add	 14	
VSUB (0010)	 Vector subtract	 14	
VMUL (0011)	 Array multiply	 10	
VDIV (0100)	 Vector divide	 N+28	
VEXP (0110)	 Vector exponentiation	 N+21	
S2VE (1000)	 Clone a vector N times N+4	
PVADD (1001)	 N x Vector add	 N+13	
PVSUB (1010)	 N x Vector subtract	 N+13	
PVMUL (1011)	 N x Vector multiply	 N+9	
PVDOT (0101)	 N x Vector dot product	 N+9+10	
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SW-KRLS and other kernel methods implemented 
efficiently using this simple instruction set 



Datapath	

  

  

  
C 

Data 
Control 

Unit 

Vector 
Memory ALU 

VM1 

VM2 

VM N 

  

C 

C 

A 

B 

A 

B 

A 

B 

ALU1	

ALU2	

ALU N	

23	



ALU architecture	

Ø  ALU 1 - adder, multiplier, exp and divider 

Ø  ALU 2 .. ALU N - only adder and multiplier	
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Detailed Datapath 
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Arria 10 vs Stratix V vs CPU Single P&R 



Arria 10 vs Stratix V vs CPU Single Performance 



Arria 10 vs Stratix V vs CPU Single Latency 



›  SW-KRLS N=64 
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Performance Summary (Stratix V) 

Platform Power (W) Latency (uS) Energy (10^-5 J) 

Our processor 
(DE5 5SGXEA7N) 

 2 (27)  1 (12.6)  1 (34) 

DSP 
(TMS320C6678) 

1 (13)  355 (4476) 181 (6167) 

CPU 
(i5-2400@3.1GHz) 

 1 (13)  16 (201)  8 (269) 
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Obstacle to Pipelining 

Dependency Problem 

Universal 
Approximator 

Σ
- 

+ 

Streaming 
inputs xi 

Prediction 

yi 

Modify 
weights 

Cannot process 
xi until we update weights 
from {xi-1,yi-1} 
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KNLMS Regression 

›  Finds D (dictionary which is subset of input vectors), and α (weights) for 
function 

›  Is a stochastic gradient descent style kernel regression algorithm. Given a 
new input/output pair, {xn, yn}, weight update is: 

›  1. Evaluate κ between xn and each entry of Dn−1, creating kernel vector, k. 
›  2. If max(k) < µ0, add xn to the dictionary, producing Dn 
›  3. Update the weights using:  

› How can we chose κ, µ0, η and ϵ? We must do a parameter search. 

32 

αn =αn−1 +
η

ε + kTk
(yn − k

Tαn−1)k



Removing Dependencies 

›  Training is usually: 

for (hyperparameters) 

    for (inputs) 

        learn_model() 

›  Alternative is to find L independent 
problems 
-  E.g. monitor L different things 

 

 

› Our approach: run L independent 
problems (different parameters) in 
the pipeline 
-  Updates ready after L subproblems 

-  Less data transfer 

 

for (inputs) 

    for (hyperparameters) 

        learn_model() 
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•  Similar approach for multiclass classification (train C(C-1)/2 binary classifiers)   



High Throughput KNLMS 
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Scalability 

›  Area O(MN) 

› Memory O(MN) 

›  Latency O(log2N+log2M) 
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Original Implementation 

›  Break feedforward/feedback path and sythesised with Vivado HLS  

› RIFFA 2.2.0 used for PCIe interface 
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Optimised Search 

•  Float KNLMS core integrated with RIFFA on Xilinx VC707 board (# ParamSets = 256) 

 

•  Original version read back all the predicted values 

•  Optimised by send all data and then read back accumulated square error  

•  3x faster than original interface 



Performance of KNLMS Core vs 
 Number of Train Samples  

•  96% of the peak core performance has been achieved with RIFFA integration 
when # of train samples reaches 4999 



Performance 

›  Energy efficient, Parallelism (pipelining), Integrated with PCIe and Customised 
(problem changed to remove dependencies) 

›  Can do online learning from 200 independent data streams at 70 Gbps (160 
GFLOPS) 
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Core with input vector M=8 and dictionary size N=16 (KNLMS) 

Implementation Freq 
(MHz) 

Time 
(ns) 

Slowdown 

Float 314 3 1 
System 250 4 1.3 
Naive 97 7,829 2,462 
CPU (C) 3,600 940 296 
Pang et al (2013) 282 1,699 566 



Precision and Learning Accuracy for KNLMS 

•  Trained and Tested with Mackey Glass data 
- Trained with 100-1000 data samples/Tested with 999 data samples 

- Hyperparameter set chosen from Grid/Random Search 

- 5 bits for integer part / Dictionary size = 16, Feature size = 8    

 

 

•  16 fraction bits are enough to produce equivalent learning accuracies with Float 
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NORMA 

›  Finds D (dictionary which is subset of input vectors), and α (weights) for 
function 

› Minimise instantaneous risk of predictive error (Rinst,λ) by taking a step in 
direction of gradient 

 

› Can be used for classification, regression, novelty detection 

› Update for novelty detection  
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Naive Online regularised Risk Minimization Algorithm  

Add xt+1 to dictionary 



Datapath for NORMA 
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NORMA Update (Case 1) 
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NORMA Update (Case 2) 

45 



Properties of NORMA 

› NORMA is a sliding window algorithm 
-  If new dictionary entry added [d1,···dD] → [xt,d1,···dD−1]  

-  Weight update is just a decay αi → Ωαi  

-  Update cost is small compared to computing f(xt) 

›  Is this really true? 
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Idea 

› Recall carry select adder  
-  implement both cases in parallel and select output 
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Braiding 
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Braiding Datapath 
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Generalised to p cycles 
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Implementation 

›  Implemented in Chisel 

› On XC7VX485T- 2FFG1761C achieves ~133 MHz 

›  Area O(FDB2) (F=dimensionality of input vector), time complexity O(FD) 

›  Speedup 500x compared with single core CPU i7-4510U (8.10 fixed) 
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F=8, D= 16 32 64 128 200 
Frequency (MHz) 133 138 137 131 127 
DSPs (/2,800) 309 514 911 1,679 2,556 
Slices (/759,000) 4615 8194 14,663 29,113 46,443 
Latency (cycles) 10 11 12 12 13 
Speedup (×) 47 91 178 344 509 
Latency reduction (×) 4.69 8.30 14.9 28.7 39.2 



Comparison of Architectures 

› Core with input vector F=8 and dictionary size D=16 

Design Precision Freq  
MHz 

Latency 
Cycles 

T.put 
Cycles 

Latency 
nS 

T.put 
nS 

Vector 
KNLMS 

Single 282 479 479 1,699 
 

1,699 
 

Pipelined 
KNLMS 

Single 314 207 1 659 3.2 

Braided 
NORMA 

8.10 113 10 1 89 8.8 

Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk  
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Distributed KRLS 

› One problem with KRLS is how to get scalable parallelism 

›  Proposed a method, which uses KRLS (Engel et al. 2004) to create 
models on subsets of the data. 

›  These models can then be combined using KRLS again to create a single 
accurate model 

› We have shown an upper bound on the error introduced 
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Distributed KRLS 



Accuracy 

›  Accuracy comparison 
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Distributed KRLS Vs Cascade SVM 



Speedup 
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Distributed KRLS Vs Cascade SVM 

›  Average Speedup about 20x on a 16 node cluster 
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› Demonstrated high-performance applications in ML 

› Machines of the future will need to interpret and process data using ML 
-  FPGAs are a key enabling technology for energy-efficient, fast implementations 

-  A lot more to do! 

Conclusion 

1/Latency 

Throughput 

KNLMS 
Vector 

dKRLS 

NORMA 
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