Reconfigurable Computing

Measuring Sensitivity to Rounding Error

Philip Leong (梁恆惠) Computer Engineering Laboratory School of Electrical and Information Engineering The University of Sydney http://phwl.org/talks

Overview

- > Introduction
- > Theory
- > Implementation
- > Results
- Conclusion

Overview

> Introduction

- > Theory
- > Implementation
- > Results
- Conclusion

- > Dynamic error analysis methods effective at detecting rounding error
- Implementation limited
 - Often requires significant modification to existing source code
 - Non-scalable
 - Significant expertise required for implementation
- Implementation of automated solution
 - Monte Carlo arithmetic (D.S. Parker UCLA) for runtime validation of sensitivity to FP rounding errors
 - Changes to software and storage are not required

Rounding Error Analysis

- Monte Carlo Programming:
 - C library implementing MCA supported by source to source compilation
 - Variable precision MCA supporting both single and double precision IEEE formats
 - Inspect the accuracy of floating point variables in existing programs
 - Impose new semantics on existing arithmetic primitives

Associativity

> IEEE-754 operations are not associative

$$(a+b) + c \neq a + (b+c)$$

> Simple example (Knuth) using 8 significant digits:

(11111113 - 1111111) + 7.5111111 = 9.511111111111113 + (-11111111 + 7.5111111) = 10.0000000

Rounding Errors

- > IEEE-754 rounding errors are biased:
- > Simple example:

$$rp(x) = \frac{622 - x \cdot (751 - x \cdot (324 - x \cdot (59 - 4 \cdot x)))}{112 - x \cdot (151 - x \cdot (72 - x \cdot (14 - x)))}$$

> Test rp(x) - rp(u) using the following conditions:

$$u = 1.60631924$$
$$x = u, (u + \epsilon), \dots, (u + 300\epsilon)$$
$$\epsilon = 2^{-24}$$

Rounding Errors – IEEE754

- Catastrophic cancellation is a major loss of significance in FP operations
 - Occurs when subtracting similar values
-) Consider $\hat{x} = \hat{a} \hat{b}$ where $\hat{a} = a(1 + \delta_a)$ and $\hat{b} = b(1 + \delta_b)$

$$\left|\frac{x-\hat{x}}{x}\right| \leq \left|\frac{(a-b)-(\hat{a}-\hat{b})}{a-b}\right|$$
$$\leq \left|\frac{[a-a(1+\delta_a)]-[b-b(1+\delta_b)]}{a-b}\right|$$
$$\leq \left|\frac{-a\delta_a+b\delta_b}{a-b}\right|$$
$$\leq \max(|\delta_a|,|\delta_b|)\frac{|a|+|b|}{|a-b|}$$

> Relative error is highest when $|a - b| \ll |a| + |b|$

THE UNIVERSITY OF SYDNEY

> MCA implemented using the inexact function:

inexact
$$(x, t, \xi) = x + 2^{e_x - t} \xi$$

= $(-1)^{s_x} (m_x + 2^{-t} \xi) 2^{e_x}$

> Where:

$$x \in \mathbb{R}, x \neq 0$$

- t is a positive integer representing the virtual precision

-
$$\xi \in U(-\frac{1}{2}, \frac{1}{2})$$

- Define floating point operation $\circ \in \{+, -, \times, \div\}$ in terms of the inexact function:

$$x \circ y = \operatorname{round}(\operatorname{inexact}(\operatorname{inexact}(x) \circ \operatorname{inexact}(y)))$$

- Results are different each time the program is run -> multiple trials turns execution into a Monte Carlo Simulation.
- Results may be analyzed statistically

MCA Associativity

	(11111113.			11111113.		
	⊕ −11111111.)			\oplus (-11111111.		
	\oplus 7.5111111			\oplus 7.5111111)		
n	$\widehat{\mu}$	±	$\hat{\sigma}/\sqrt{n}$	$\hat{\mu}$	±	$\hat{\sigma}/\sqrt{n}$
10	9.62506	±	0.11484	9.40092	±	0.27888
100	9.49476	\pm	0.04241	9.42260	\pm	0.06533
1000	9.51095	\pm	0.01295	9.49816	\pm	0.02042
10000	9.50977	\pm	0.00411	9.51206	\pm	0.00645
100000	9.51014	\pm	0.00129	9.51396	\pm	0.00204
1000000	9.51093	\pm	0.00041	9.51159	\pm	0.00065
1000000	9.51112	\pm	0.00013	9.51111	\pm	0.00020

Standard error σ/\sqrt{n} gives a measure of the accuracy of mean.

Notice convergence to the exact sum value 9.5111111. Eigure: D.S. Park

MCA Rounding errors

> Zero expected rounding error:

$\begin{array}{l} x \\ x' = randomize\left(x\right) \end{array}$	+3.495683 × 10 ⁰ +3.49568320391695941600884
$egin{array}{l} y \ y' = {\sf randomize}\left(y ight) \end{array}$	+3.495681 × 10 ⁰ +3.49568191870795420835463
(x'-y')	+0.00000228520900520765421
round(x'-y')	+2.2852090 $\times 10^{-6}$

Catastrophic cancellation with input randomization. Boxed values are 8-digit decimal floating-point values.

 For cancellation most digits of each result will be different which we can detect

Implementation

- Translation of C FP operators to MCA operations
 - Compiler to translate any C-based source code.
 - MPFR library to facilitate MCA operations.
 - Storage requirements of all FP variables remain unchanged
 - Variable precision MCA arbitrary precision of MCA operations at any point during execution
 - Run time control of MCA implementation type can select input (precision bounding) perturbation, output (random rounding) perturbation.

- C Intermediate language (CIL) by Necula (UCB) used to translate C FP operations to calls to MCALIB library
 - Translations to C source code defined in set of OCaml modules
 - FP operations translated by first lowering source to single assignment statement form, then converting FP operations to calls to MCALIB library
 - E.g. the FP multiplication:

- Translated to the following call to the MCALIB library function:

MCALIB – Performance Decrease

Speed Comparison of MCALIB using LINPACK

- For a p-digit binary floating point system, the log relative error is proportional to p
 - This is the ideal case

 $\delta \le 2^{-p}$ $p \ge -\log_2(\delta)$

- Sterbenz noted that the number of sigificant digits in result is linear with p
- > Parker showed total significant digits in set of MCA results

$$s' = \log_2 \frac{\mu}{\sigma}$$

- > Previous work was limited in analysis
 - Determining number of significant figures in results
 - Qualitative analysis of mean, standard deviation
- > We define sensitivity to rounding error using two measurements
 - Number of significant figures lost due to rounding, K

$$\begin{split} K &= t - s' \\ &= t - \log_2(\frac{\mu}{\sigma}) \\ &= \log_2(\Theta) + t \\ \end{split}$$
 Where $\Theta = \frac{\sigma}{\mu} \to \mu \neq 0$ is the **Relative Standard Deviation (RSD)**

- Minimum precision to avoid an unexpected loss of significance, t_{min}

- Chebyshev polynomial Orthogonal polynomials used in approximation theory
- > Focus on Chebyshev polynomials of the first kind:

$$T_n(z) = \cos(n\cos^{-1}(z))$$

> May be expanded to:

$$T_{20}(z) = \cos(20\cos^{-1}(z))$$

= 52488z²⁰ - 2621440z¹⁸ + 5570560z¹⁶
- 6553600z¹⁴ + 4659200z¹² - 2050048z¹⁰
+ 549120z⁸ - 84480z⁶ + 6600z⁴
- 200z² + 1

- > Expanded form automatically translated to use MCALIB
- Testing performed using virtual precision, (t), values between 1 and 53 using a step of 1
- > N = 100 executions performed for each t step, (min. sample size).
- For each t value, results are summarized by calculating relative standard deviation
- Normality not assumed Anderson-Darling test used to check normal distribution of results, (results grouped by t). Non-normal data sets removed from computation of K and t_{min}.
- Absolute mean plotted to ensure user is warned if mean approaches zero

$$\Theta = \frac{\sigma}{\mu} \to \mu \neq 0$$

Example – Error Detection & Optimization

- > Sensitivity to rounding error detected
 - Worst case result occurs at z = 1.0
 - Loss of significance for worst case input of 24.02 digits, minimum required precision of 19 bits
 - Single precision FP is insufficient
- Can determine precision required to obtain results normally expected from single precision FP (p=24)
 - Use worst case result, K = 24.02
 - Determine optimized precision:

$$\lceil p + K \rceil = 49$$

Example – Optimized Result

Summation algorithm – widely used algorithm to sum a series of floating point values:

$$s = \sum_{i=1}^{n} x_i, \text{ for } n \ge 3$$

 Several algorithms available for implementation, including the Naïve, Pairwise and Kahan summation algorithms:

```
ALGORITHM 3: Pairwise Summation Algorithm

Input: Vector X[1...n]

Output: Sum s of vector X

n_{max} = 1;

if n \le n_{max} then

s = X[1];

for i = 2 to n do

s = s + X[i];

end

else

m = \text{floor}(n/2);

s = pw(X[1...m]) + pw(X[m + 1...n]);

end

return s
```

ALGORITHM 4: Kahan Summation Algorithm

Input: Vector X[1...n]Output: Sum *s* of vector *X s* = 0.0; *c* = 0.0; for *i* = 1 to *n* do y = X[i] - c; t = s + y; c = (t - s) - y; *s* = *t*; end Return *s*

- > Can compare algorithm implementations using MCALIB
- > Algorithm implementations automatically translated to use MCALIB
- Execute N = 100 trials for virtual precision values, (t), between 1 and 53
- Results analysis methods provide measure of sensitivity to rounding error for each algorithm
- > Can perform quantitative comparison of algorithm implementations
- > MCA plots provide fast visual comparison of algorithm implementations

Summation Algorithm – Analysis of Pairwise Method

THE UNIVERSITY OF

Comparison of Algorithm Implementations

Note: Summation Algorithm Results - Naive, Kahan & Pairwise

1

7

1.6

Comparison of more complex implementations (linear solvers):

- LINPACK benchmark
- LU Decomposition w. Back Substitution implementation from Numerical Recipes in C
- Results used to compare sensitivity to rounding error and Single vs.
 Double precision performance

Comparison of Algorithm Implementations

Comparison of Algorithm Implementations

Comparison of models for Linear Algebra

7.1

7.3

Non-Normal Result Data

- All result data tested for normal distribution before results analysis is performed.
 - Data grouped by virtual precision (t) for testing
 - Anderson Darling test used
 - Non-normal data removed and not used in analysis
- > L-BFGS Optimization Iterative optimization algorithm
 - Precision analysis (MCALIB) tampers with convergence of results
 - Example of non-normal data
 - Anderson Darling test flags 47 out of 53 data sets as non-normal
 - Non-normal data sets have been included in example result to demonstrate the effect on analysis

Non-Normal Result Data

Overview

- Introduction
- > Theory
- > Implementation
- > Results
- > Conclusion

Conclusion

- MCALIB gives quantitative measurements of sensitivity to rounding error
 - Takes arbitrary C source and generates summary graph
- > Applications in data analysis:
 - Dirty data
 - Missing data
 - Inexact Data
 - Sensitivity analysis

Chebyshev Polynomial – Analysis for z = 1.0

- Family of automated rounding error analysis tools
 - Floating to fixed point conversion
 - Range analysis
 - Mixed precision analysis
 - Interval Arithmetic
- MCA operator analysis
 - Proof of correctness of implementation
- > Speed improvements
 - Use quasi-Monte Carlo methods to increase the rate of convergence

- Michael Frechtling and Philip H. W. Leong. MCALIB a tool for automated rounding error analysis. ACM Transactions on Programming Languages and Systems, 37:5:1–5:25, April 2015 (preprint available from http://www.ee.usyd.edu.au/people/philip.leong/publications.html)
- Code available from github (see paper)