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› Dynamic error analysis methods effective at detecting rounding error

› Implementation limited
- Often requires significant modification to existing source code

- Non-scalable

- Significant expertise required for implementation

› Implementation of automated solution 
- Monte Carlo arithmetic (D.S. Parker UCLA) for runtime validation of 

sensitivity to FP rounding errors

- Changes to software and storage are not required
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Rounding Error Analysis



› Monte Carlo Programming:
- C library implementing MCA supported by source to source compilation

- Variable precision MCA supporting both single and double precision IEEE 
formats

- Inspect the accuracy of floating point variables in existing programs

- Impose new semantics on existing arithmetic primitives
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Rounding Error Analysis



Theory



› IEEE-754 operations are not associative

› Simple example (Knuth) using 8 significant digits:
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Associativity



› IEEE-754 rounding errors are biased:
› Simple example:

› Test using the following conditions:
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Rounding Errors
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Rounding Errors – IEEE754

Figure: D.S. Parker UCLA



› Catastrophic cancellation is a major loss of significance in 
FP operations
- Occurs when subtracting similar values

› Consider where and 

› Relative error is highest when 
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Catastrophic Cancellation



› MCA implemented using the inexact function:

› Where:
- A

- is a positive integer representing the virtual precision

-
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Monte Carlo Arithmetic



- Define floating point operation in terms of the inexact 
function:

- Results are different each time the program is run -> multiple trials turns 
execution into a Monte Carlo Simulation.

- Results may be analyzed statistically

13

Monte Carlo Arithmetic
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MCA Associativity

Figure: D.S. Parker UCLA

Standard error σ/√n gives a measure of the accuracy of mean. 



› Zero expected rounding error:
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MCA Rounding errors

Figure: D.S. Parker UCLA



› For cancellation most digits of each result will be different which we can 
detect
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MCA Catastrophic Cancellation

Figure: D.S. Parker UCLA



Implementation



MCALIB Tool
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› Translation of C FP operators to MCA operations 

- Compiler to translate any C-based source code.

- MPFR library to facilitate MCA operations.

- Storage requirements of all FP variables remain unchanged

- Variable precision MCA – arbitrary precision of MCA operations at any 

point during execution

- Run time control of MCA implementation type – can select input (precision 

bounding) perturbation, output (random rounding) perturbation.



MCALIB – Source to Source Compilation
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› C Intermediate language (CIL) by Necula (UCB) used to translate C 
FP operations to calls to MCALIB library

- Translations to C source code defined in set of OCaml modules

- FP operations translated by first lowering source to single assignment 
statement form, then converting FP operations to calls to MCALIB library

- E.g. the FP multiplication:

- Translated to the following call to the MCALIB library function:



MCALIB – Performance Decrease
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Results
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Expected number of significant digits

› For a p-digit binary floating point system, the log relative error is 
proportional to p 
- This is the ideal case

› Sterbenz noted that the number of sigificant digits in result is linear 
with p

› Parker showed total significant digits in set of MCA results



› Previous work was limited in analysis
- Determining number of significant figures in results
- Qualitative analysis of mean, standard deviation

› We define sensitivity to rounding error using two measurements
- Number of significant figures lost due to rounding, K 

- Minimum precision to avoid an unexpected loss of significance, tmin
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MCA Results



› Chebyshev polynomial - Orthogonal polynomials used in 
approximation theory

› Focus on Chebyshev polynomials of the first kind:

› May be expanded to:
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Example – Error Detection & Optimization



› Expanded form automatically translated to use MCALIB
› Testing performed using virtual precision, (t), values between 1 and 53 

using a step of 1
› N = 100 executions performed for each t step, (min. sample size).
› For each t value, results are summarized by calculating relative 

standard deviation
› Normality not assumed – Anderson-Darling test used to check normal 

distribution of results, (results grouped by t). Non-normal data sets 
removed from computation of K and tmin.

› Absolute mean plotted to ensure user is warned if mean approaches 
zero
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Example – Error Detection & Optimization
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Example – Error Detection & Optimization



› Sensitivity to rounding error detected

- Worst case result occurs at z = 1.0

- Loss of significance for worst case input of 24.02 digits, minimum required 
precision of 19 bits

- Single precision FP is insufficient

› Can determine precision required to obtain results normally expected 
from single precision FP (p=24)

- Use worst case result, K = 24.02

- Determine optimized precision:
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Example – Error Detection & Optimization
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Example – Optimized Result



› Summation algorithm – widely used algorithm to sum a series of 
floating point values:

› Several algorithms available for implementation, including the Naïve, 
Pairwise and Kahan summation algorithms:

32

Example – Error Detection & Algorithm Comparison



› Can compare algorithm implementations using MCALIB

› Algorithm implementations automatically translated to use MCALIB

› Execute N = 100 trials for virtual precision values, (t), between 1 and 
53

› Results analysis methods provide measure of sensitivity to rounding 
error for each algorithm

› Can perform quantitative comparison of algorithm implementations

› MCA plots provide fast visual comparison of algorithm implementations
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Example – Error Detection & Algorithm Comparison
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Results for Individual Algorithm Implementation
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Comparison of Algorithm Implementations



› Comparison of more complex implementations (linear solvers):
- LINPACK benchmark

- LU Decomposition w. Back Substitution implementation from Numerical 
Recipes in C

› Results used to compare sensitivity to rounding error and Single vs. 
Double precision performance 
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Comparison of Algorithm Implementations
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Comparison of Algorithm Implementations
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Comparison of Algorithm Implementations
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Non-Normal Result Data

› All result data tested for normal distribution before results analysis is 
performed.

- Data grouped by virtual precision (t) for testing

- Anderson Darling test used

- Non-normal data removed and not used in analysis

› L-BFGS Optimization – Iterative optimization algorithm

- Precision analysis (MCALIB) tampers with convergence of results

- Example of non-normal data

- Anderson Darling test flags 47 out of 53 data sets as non-normal

- Non-normal data sets have been included in example result to demonstrate 
the effect on analysis
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Non-Normal Result Data
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Conclusion

› MCALIB gives quantitative 
measurements of sensitivity to 
rounding error

- Takes arbitrary C source and 
generates summary graph 

› Applications in data analysis:
- Dirty data

- Missing data

- Inexact Data

- Sensitivity analysis
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› Family of automated rounding error analysis tools 
- Floating to fixed point conversion

- Range analysis

- Mixed precision analysis

- Interval Arithmetic

› MCA operator analysis
- Proof of correctness of implementation 

› Speed improvements 
- Use quasi-Monte Carlo methods to increase the rate of convergence
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Future Work



› Michael Frechtling and Philip H. W. Leong. MCALIB - a tool for 
automated rounding error analysis. ACM Transactions on 
Programming Languages and Systems, 37:5:1–5:25, April 2015 
(preprint available from 
http://www.ee.usyd.edu.au/people/philip.leong/publications.html)

› Code available from github (see paper)
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