Reconfigurable Computing

Customisation (Precision)

“It is the mark of an educated mind to rest satisfied with
the degree of precision which the nature of the subject

admits and not to seek exactness where only an

approximation is possible.”
— Aristotle

Philip Leong (philip.leong@sydney.edu.au)
School of Electrical and Information Engineering

http://phwl.org/talks

THE UNIVERSITY OF Permission to use figures have been gained where
SYDNEY possible. Please contact me if you believe anything

within infringes on copyright.

Overview

> Number systems

- Unsigned

- Two’s complement

- Two’s complement fractions

- Floating Point

- Logarithmic number system
» Case study

- CORDIC algorithm

Number Systems

Number Systems - Unsigned

Unsigned integers are used to represent the nonnegative
integers. An N-bit unsigned integer has a range [0, 27 — 1]
and can be described in binary form, with u; being the 7’th
binary digit:

U = (UN_luN_g . 0), U; € {0, 1}

This represents the number

N-1
U= Z ui2".
1=0

Number Systems — 2's Complement

X = (:EN_;[CBN_Q - O), i & {0, 1}

X has arange of [-27~1,2N¥~1 _ 1] and represents

N -2

A = —CBN_12N—1 + Z :1:2-2i
1=0

THE UNIVERSITY OF

SYDNEY

Number systems — 2's Complement Fraction

The most significant /N — F’ bits of the number represent the
integer part and the remaining F’ bits are the fractional part
of the number

integer fraction

e e, e e
Y = (aN_1 ..apap—1... ao).

This corresponds to a scaling of the two’s complement in-
teger representation by the factor S = 2~ and the two’s
complement fraction number Y represents

N-—-2
Y = 2_F X (—J,‘N_12N_1 + Z 2722?')

Note that the two’s complement fraction (IV,0)z corre-
sponds to the two’s complement integer case and (N, N)z
has a range of [—1,1).

Arithmetic Operations on 2’s Complement Fractions

» If we wish to perform arithmetic on two (N,F) format 2’s complement fractions
» Addition and subtraction
- Normal addition

» Multiplication

- An (N,F) multiplication gives a (2N, 2F) result so you need to do an arithmetic right shift
by F bits from the 2N multiplier output

- E.g. for (4,3) 0.75*0.75 = 0.110*0.110=00.100100 >> 3=0.100=0.5
» Question: how about division?

Number systems — Floating Point

A represents the sign S where

- { +1 ifap=0
—1 ifap=1
The unsigned integers B and C are encoded representa-
tions of the exponent and mantissa respectively. The ex-
ponent E, is stored in a biased representation with £ =
B — (2771 — 1). For normalized numbers, B # 0 and the
significand is represented by M =1+ C x 2. Thisis a
two’s complement fraction (F' + 1, F') 7 with the most sig-
nificant bit being implicitly set to 1. If B = 0, it is called
a denormalized number, and there is no implicit 1 in the
(F, F)z fraction.

Number systems — Floating Point

S x2% x M if(0 < B<2/-1)
7 _ Sx28x(M-1) if(B=0)
)] Sxo if (B=27—1and C = 0)

NaN if B=2Y —1and C # 0).

Number systems — Logarithmic Number System

The logarithmic number system (LNS) is a special case
of floating point in which the mantissa is always 1 (i.e. only
the sign and exponent fields are used). It has the advantages
of simplified implementation at the expense of reduced pre-
cision. For an N bit LNS number, (N, F') ¢, the most sig-
nificant bit 1s a zero flag, Z. Z is zero if the number is zero
(since there 1s no log of zero), otherwise set. The next most
significant bit is used for a sign bit and the rest of the num-
ber is the base 2 logarithm of the magnitude of the number
to be represented in (N — 2, F') 7 two’s complement fraction
format. If E is the value of this two’s complement fraction
and S is defined as for floating point, then

L]0 ifZ =0
Tl L=Sx2F ifz=1

10

Reconfigurable Computing

The CORDIC algorithm

“Simplicity is the ultimate sophistication” - daVinci

Philip Leong (philip.leong@sydney.edu.au)
School of Electrical and Information Engineering

http://www.ee.usyd.edu.au/~phwl

THE UNIVERSITY OF

SYDNEY

Introduction

» COordinate Rotation Dlgital Computer

» Efficient method to compute sin, cos, tan, sin-', cos™, tan-', multiplication, division,
v, sinh, cosh, tanh

- Only uses shifts, additions and a very small lookup table

'T‘/"_r‘: T'HE UNIVERSITY OF
2}

o SYDNEY

Rotations

Rotating [x y] by ¢

' = xcos(d)— ysin(o)

y' = ycos(¢) + zsin(e).
(6 ytan(s)
Yooy = cos(g)(y +atan(g)).

(x.y)

Figure 1.2: Rofation af a vector V By the angle ¢

Key idea

' = cos(¢)(z — ytan(o))
y = cos(¢)(y + x tan(e)).

Can compute rotation ¢ in steps where each step is of size

tan(¢) = +£27°.

lterative rotations

Ki(x; — (y:d;27"))
Ki(yi + (x:d;27%)).

Li+4+1

Yi+1

where d; = £1 and K; = cos(tan™127?)

Choose d, so that after n iterations the rotated angle is ¢

K; values

i—1 \/(1 + 2-2%)

As n — o, K — 0.6073 (constant factor which needs to be
corrected for)

Actually it’s easier to omit it and fix it later!

d; decision (rotation mode)

Z; is introduced to keep track of the angle that has been rotated (z0 = ¢)

rit1 = xi— (yidi27")
Yir1 = Ui+ (2:d;27°)
Zitl — R — dz tan_l (Q_i)
gy — —1 2f z; <O

+1 otherwise

Notice we dropped the K! Rotated value is hence (Kx,,Ky,)

5% | THE UNIVERSITY OF

SYDNEY

After n iterations

1 :

45 — E(CB()COS(Z()) — yoszn(ZO))
1 ;

Y = E(yocos(zo) + xosin(20))

Question: What is the procedure to compute sin and cos?

5% | THE UNIVERSITY OF

SYDNEY

Computing sin(a) and cos(a)

1. Initialize (x,y,z)=(1,0,a)

2. Iterate through cordic

3. cos(a)=Kx and sin(a)=Ky

An easier way for this example is to change

step 1 to (x,y,z)=(k,0,a)

N g ke o

THE UNIVERSITY OF

SYDNEY

: Xi=1.000000 yi=0.000000 zi=1.308997 k=1.000000 kx=1.000000 ky=0.000000

xi=1.000000 yi=1.000000 zi=0.523599 k=0.707107 kx=0.707107 ky=0.707107
xi=0.500000 yi=1.500000 zi=0.059951 k=0.632456 kx=0.316228 ky=0.948683
xi=0.125000 yi=1.625000 zi=-0.185027 k=0.613572 kx=0.076696 ky=0.997054
xi=0.328125 yi=1.609375 zi=-0.060673 k=0.608834 kx=0.199774 ky=0.979842
xi=0.428711 yi=1.588867 zi=0.001746 k=0.607648 kx=0.260505 ky=0.965472
xi=0.379059 yi=1.602264 zi=-0.029494 k=0.607352 kx=0.230222 ky=0.973138
xi=0.404094 yi=1.596342 zi=-0.013870 k=0.607278 kx=0.245397 ky=0.969423

d; decision (vectoring mode)

1 — +1 of y; <O
v —1 otherwise.
tn = =22+ 1)
i 0 0
Yn =~ 0

2o + tan™* (yo /o).

N
S
|

» Y, minimized use to compute tan-' and magnitude

Linear functions instead of trig

Li+1 = X; — O(gZdLQ_L) = ;
yie1 = yi+ (x;d;277°)
<41 — 2 — di2_i

g - {—1 if z; <0

+1 otherwise.

After n iterations

Yn = Yo + Toz2o

3
N
|
X
-

S
S

|
=

No need for K, correction.

Division

g +1 tfy: <O
© —1 otherwise.
Ln — I
Yn — Yo

20 — 90/5’30.

S
3
|

No need for K, correction.

Hyperbolic functions

» Similarly, can get cosh and sinh using tanh-! instead of tan"

» Can also get In and exp easily

Implementation

27

% THE UNIVERSITY OF J . =
N Andraka’s iterative and unrolled

cordic structure

X0 Xo Mo Zy
@ > >
register “
.'xn EEEETEE * CE
I e I | ’
2 n
sen(vi) Vi -coml
+ x
register di
ROM
.\'gn(zi)‘r 2
|

Ly
in w Vo w Zy v
70 ; ;

Implementation

» Can develop generalized cordic processors which can compute many different
functions using similar hardware

» Implementations can be bit serial and/or pipelined as well

Precision

> Need n iterations for n bits
» Converges for -99.7 <z < 99.7 (sum of all the angles tan-'(2),i =0 .. n)

- must convert to this range first

Conclusion

» CORDIC algorithms are an efficient method to compute many different functions
» Low area, high speed

» Used in calculators, DSPs, math coprocessors and supercomputers.

5% | THE UNIVERSITY OF

SYDNEY

References

» Ray Andraka, “A survey of CORDIC algorithms for FPGAs”, FPGA '98.
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, Monterey, CA. pp191-200
(http://www.andraka.com/cordic.htm)

Review Question

» Calculate V2/K using the CORDIC algorithm (4 iterations)

» Hint: use vectoring mode

Exploration: Multiplication

34

THE UNIVERSITY OF

SYDNEY

Binary Multiplication

a n bits EASY PROBLEM: design
combinational circuit to multiply
X b n bits tiny (1-, 2-, 3-bit) operands...

HARD PROBLEM: design circuit to
multiply BIG (32-bit, 64-bit)
ab 2n bits numbers

since (2"-1)% < 2°"

We can make big
multipliers out of
little ones!

Engineering Principle:
Exploit STRUCTURE in problem.

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)

THE UNIVERSITY OF

SYDNEY

Given n-bit multipliers:

ay |3, |
a|X|b| = ab
nbits nbits 2nbits - bH bL
Synthesize 2n-bit multipliers: ab,
ab
" by
2n bits
- b + | ayby,
2n bits o
ab
ab
4nbits

Composition of Multipliers

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)

36

Building Blocks

n="1: minimalist starting point
Multiplying two 1-bit numbers is pretty simple:

al|Xx|b

O |ab

37

Of course, we could start with optimized combinational
multipliers for larger operands; e.g.

ine logic gets
more compiex,
but some

3130 % > optimizations
- i are possible...
i €3C2C€1Cp

3 Multipli
bibs ultiplier

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 37

THE UNIVERSITY OF

SYDNEY Induction Step

2n-bit by 2n-bit multiplication:

1. Divide multiplicands into n-bit pieces - EE:]
2. Form 2n-bit partial products, using n-bit by n-bit
multipliers. L
3. Align appropriately REGROUP partial
4. Add. products -
2 additions
ab H rather than 3!
a, a,J x | by le = + LML LD
a.b
asb

Induction: we can use the same structuring
principle to build a 4n-bit multiplier from our
newly-constructed 2n-bit ones...

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 38

Brick Wall View of Partial Products

Making 4n-bit multipliers from n-bit
ones: 2 “induction steps”

35 az a1 ao

—

X bS b2 b1 bO

-+ azby |

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 39

THE UNIVERSITY OF

SYDNEY

Building a Multiplier

. . Step 1: Form (& arrange)
Given Pmb lem: Partial Products:

dsz| d,| dq| dp

a.b

a, bg apsb,

a,b, | ab,| agp.

Subassemblies: 35b5 azbz a1b1 aobo \
» Partial Products I

» Adders a=|22-l_a b.] a1bo_
a

+ b1 Lageo |

aabQ

Step 2: Sum

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 40

THE UNIVERSITY OF

SYDNEY

Performance Cost Analysis

n 1 . 3
(o Order Of" notation: E —
“g(n) is of order f(n)" g(n) = © (f(n)) n2+2n+3 = O 2)
g(n) = O(f(n)) ifthereexist Co2C1>0, e
such that forall but finitely many integral n >0 n 2 < (n 2+2n+5) < 2n 2
c1*f(n) < g(n) s cf(n) "almost always"
_ a(n) = O(f(n) -/
Q(...) implies both 2 _ 2
inequalities; 0(..) Partial Products: n = O(n)
implies only the Things to Add: en-2 = @)
second. Adder Width: 2n = O(n)
2
Hardware Cost: ¢ = O)
Latency: O(n?) 22

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 41

Observations

:

jgﬁ
a1b5 aobz @(ns partial products.
azllza ab, I_aQIv1 O(n") full adders.

a

Hmmm.

azbs b, |a4by | apbg
ab .l_a b, |a.b
azbq | azbo
+ aabQ

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 42

THE UNIVERSITY OF

SYDNEY

Engineering Principle #2:

Put the Solution where the
Problemis.

Repackaging Function

@(ns partlal products.
O(n") full adders.

dap b5

b

a, b,

as

da-

b,

ap

b

b,

a4

b

bo

by

aq

b

by

ds bo

How about n? blocks, each doing a
little multiplicationand alittle

addition?

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)

43

THE UNIVERSITY OF

SYDNEY

Goal: Array of Identical Cells

a, b:|a b, |a,b,
azbz|a b, | a,b, | 2o by

A B

Ci.i ‘_ C

(A+B),

5k+1 Tk / bi
4 N
Single "brick" of brick-wall
array...
Coz | +Forms partial product — G
* Adds to accumulating sum
along with carry
- o
| |
.

S S

Necessary Component: Full Adder

Takes 2 addend bits plus carry bit. Produces sum
and carry output bits.

CASCADE to form an n-bit adder.

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 44

THE UNIVERSITY OF

SYDNEY

1-Bit Multiplier “Brick”

ag b

dq

bx | a5 b,

bs

a, b, | a,

bz aq b1

as

b,

ab1 aq

b1 abo

as bo

Brick design:

« AND gate forms 1x1 product ‘ l ‘ I

Array Layout:
* operand bits bused diagonally
* Carry bits propagate right-to-left
bo * Sum bits propagate down
4o

) } 2 ’
* 2-bit sum propagates from top to Cruz® | FA H FA] Cy
bottom
* Carry propagates to left
Wastes some gates... but consider . v a
(say) optimized 4x4-bit brick! 8.4 5

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 45

Latency

2, "o S p, i bs/ b, What's its propagation delay?
a, N agll_v . b, Naive (but valid) bound:
a, N\ a, by jagb 7 b, » O(n) additions
N a, b, lalb | a, b, - / * O(n) time for each addition
il %52 b, lr b, - Hence O(n?) time required
I fr¥e | 2.1 | &, bQJ On closer inspection:
=[—a§ b, | 3, b, * Propagation only toward
left, bottom
| als_bj } * Hence longest path bounded

by length + width of array:
O(n+n) = O(n)!

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 46

Improved Multiplier

ap bs
a, % / b, Hardware for o (n?‘)
N a,b / b n by n bits:
- Lanl
as W a, b, | a,b b, Latency: O(n)
N |ab,|a b, |agb, |
_|asbs [a,b, | a by |aby Throughput: O(1/n)
asb, |a,b, | a, b,
asb, | a,b,
Note: lots of tricks are
b |
+ \ 25 % J available to make a faster
b v combinational multiplier...

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 47

THE UNIVERSITY OF

SYDNEY

Combinational Multiplier Tradeoffs

Suppose we have LOTS of N NP ////
multiplications. -~

Can we do better from a — .I.E

cost/performance - P \\
standpoint?

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 48

Pipelining

WE HAVE:
* Pipeline rules - "well
formed pipelines” a, bs
* Plenty of registers a, N / b,
e Demand for higher a, N _lab|
throughput. a, N _labylagh|
™ a,b, |a, b, | ayb, /
What do we do? Where do we a, b, |a,b, | a,b,|a,b,
define stages? _—T:I: a, b, | a, b,
as b, | a; by

\ aabol
% & 3

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 49

THE UNIVERSITY OF

SYDNEY

Bad Design

gotta break
a,b | that long

, carry chain!
a, bs | ag bq ,
-
aLlsvzi a, I9i a, b
as, b, |a,b, |a,b,|a,b,
; ;
a;b, |a, b, | a, b,
Y r— =
v X v
as b | wb, Stages: O(n)
- Clock Period: ~ ©(n)
as b, Hardware cost fornby nbits: (n 6
Voo Latency: @(n°)

Throughput: ©(1/n)

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 50

THE UNIVERSITY OF

SYDNEY

Worse Design

WORSE idea:

* Doesn't break long
combinational paths
* NOT a well-formed pipeline...
... different register
b counts on alternative
0
paths
.. data crosses stage
boundaries in both
directions!

b1

ll ao

a- b

Back to basics:
what's the point of pipelining, anyhow?

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 51

THE UNIVERSITY OF

SYDNEY

Breaking O(n) Combinational Paths

a b
LONG PATHS go down, o left: N 7
2
« Break array into diagonal a, a,b / b,
slices 2.5 /
, bo
« Segment every long a, a.b a, b, ./
combinational path a, b a, b,
a, a,b a, b,
a, b, a, by \
ab a, b,
as b, a, b, X /Z
as b, / /
a5 b | v
————
T vl

GOAL: © (n) stages; O (1) clock period!

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 52

THE UNIVERSITY OF

SYDNEY

Stages: © (n)

Clock Period: © (1) a, b
Hardware cost for n by n bits: © (n?) Ny / b
Latency: © (n) , a b / 2 b
Throughput: © (1) ’ 2 b / ! b
o
" a, b ab |
a, b a, b,
s a b3 a, b1

* Well-formed pipeline a, b, ok b‘.’— \
(carefull)

» Constant (high!) /
throughput, /
independently of / /
operand size. /

.. but suppose we don'’t need — e
the throughput? vy ¥ ¥ ¥ ‘

High Throughput Design

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)

53

Small Area Design

Suppose we have INFREQUENT a, bs
multiplications... pipelining o / b
doesn't help us. P e
a, J b,
Can we do better from a cost/ . f// / b,
performance standpoint? 2, f/ A /
Hmmm, do |
really need
all these

extras? i
\ 0O

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 54

THE UNIVERSITY OF

Ty SYDNEY .
Even Smaller Area Design

Sequential Multiplier:

- Re-uses a single n-bit “slice” to
emulate each pipeline stage

* a operand entered serially

« Lots of details to be filled in...

Stages: 1

Clock Period: © (1) (constant!)
Hardware cost fornbynbits: © (n)
Latency: © (n)

Throughput: © (1/n)

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 95

Minimum Area Design

Su ppose we want to minimize
hardware (at any cost)...

« Consider bit-seriall

* Form and add 1-bit
partial product per clock

« Reuse single “brick” for
each bit b, of slice;

» Re-use slice for each bit
of a operand

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 56

THE UNIVERSITY OF

SYDNEY

Minimum Area Design

bz
Bit Serial multiplier: vd b,
a
+ Re-uses a single brick to emulate | N /‘/f / b,
an n-bit slice f/ P 5
bo

* both operands entered serially /

» O(n?) clock cycles required / /
* Needs additional storage
(typically from existing

registers)

Stages: © (1/,1)
Clock Period: © (1) (constant)
Hardware cost fornbynbits: © (1) + ?

Latency: © (n?)
Throughput: © (1/n?)

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 57

Summary

Scheme: $ Latency Thruput
Combinational 8(n?) 6(n) 6(1/n)
N-pipe 8(n?) 8(n) 8(1)
Slice-serial 8(n) 8(n) 6(1/n)
Bit-serial 8(1) 8(n?) 6(1/n?)

Lots more multiplier technology: fast adders, Booth Encoding, column
compression, ...

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 58

