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Overview

> Number systems

- Unsigned

- Two’s complement

- Two’s complement fractions

- Floating Point

- Logarithmic number system
» Case study

- CORDIC algorithm




Number Systems




Number Systems - Unsigned

Unsigned integers are used to represent the nonnegative
integers. An N-bit unsigned integer has a range [0, 27 — 1]
and can be described in binary form, with u; being the 7’th
binary digit:

U = (UN_luN_g . 0), U; € {0, 1}

This represents the number

N-1
U= Z ui2".
1=0




Number Systems — 2's Complement

X = (:EN_;[CBN_Q - O), i & {0, 1}

X has arange of [-27~1,2N¥~1 _ 1] and represents

N -2

A = —CBN_12N—1 + Z :1:2-2i
1=0
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Number systems — 2's Complement Fraction

The most significant /N — F’ bits of the number represent the
integer part and the remaining F’ bits are the fractional part
of the number

integer fraction

e e, e e
Y = (aN_1 ..apap—1... ao).

This corresponds to a scaling of the two’s complement in-
teger representation by the factor S = 2~ and the two’s
complement fraction number Y represents

N-—-2
Y = 2_F X (—J,‘N_12N_1 + Z 2722?')

Note that the two’s complement fraction (IV,0)z corre-
sponds to the two’s complement integer case and (N, N)z
has a range of [—1,1).




Arithmetic Operations on 2’s Complement Fractions

» If we wish to perform arithmetic on two (N,F) format 2’s complement fractions
» Addition and subtraction
- Normal addition

» Multiplication

- An (N,F) multiplication gives a (2N, 2F) result so you need to do an arithmetic right shift
by F bits from the 2N multiplier output

- E.g. for (4,3) 0.75*0.75 = 0.110*0.110=00.100100 >> 3=0.100=0.5
» Question: how about division?




Number systems — Floating Point

A represents the sign S where

- { +1 ifap=0
—1 ifap=1
The unsigned integers B and C are encoded representa-
tions of the exponent and mantissa respectively. The ex-
ponent E, is stored in a biased representation with £ =
B — (2771 — 1). For normalized numbers, B # 0 and the
significand is represented by M =1+ C x 2. Thisis a
two’s complement fraction (F' + 1, F') 7 with the most sig-
nificant bit being implicitly set to 1. If B = 0, it is called
a denormalized number, and there is no implicit 1 in the
(F, F)z fraction.




Number systems — Floating Point

S x2% x M if( 0 < B<2/-1)
7 _ Sx28x(M-1) if(B=0)
)] Sxo if (B=27—1and C = 0)

NaN if B=2Y —1and C # 0).




Number systems — Logarithmic Number System

The logarithmic number system (LNS) is a special case
of floating point in which the mantissa is always 1 (i.e. only
the sign and exponent fields are used). It has the advantages
of simplified implementation at the expense of reduced pre-
cision. For an N bit LNS number, (N, F') ¢, the most sig-
nificant bit 1s a zero flag, Z. Z is zero if the number is zero
(since there 1s no log of zero), otherwise set. The next most
significant bit is used for a sign bit and the rest of the num-
ber is the base 2 logarithm of the magnitude of the number
to be represented in (N — 2, F') 7 two’s complement fraction
format. If E is the value of this two’s complement fraction
and S is defined as for floating point, then

L]0 ifZ =0
Tl L=Sx2F ifz=1

10
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Introduction

» COordinate Rotation Dlgital Computer

» Efficient method to compute sin, cos, tan, sin-', cos™, tan-', multiplication, division,
v, sinh, cosh, tanh

- Only uses shifts, additions and a very small lookup table
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Rotations

Rotating [x y] by ¢

' = xcos(d)— ysin(o)

y' = ycos(¢) + zsin(e).
(6 ytan(s)
Yooy = cos(g)(y +atan(g)).

(x.y)

Figure 1.2: Rofation af a vector V By the angle ¢




Key idea

' = cos(¢)(z — ytan(o))
y = cos(¢)(y + x tan(e)).

Can compute rotation ¢ in steps where each step is of size

tan(¢) = +£27°.




lterative rotations

Ki(x; — (y:d;27"))
Ki(yi + (x:d;27%)).

Li+4+1

Yi+1

where d; = £1 and K; = cos(tan™127?)

Choose d, so that after n iterations the rotated angle is ¢




K; values

i—1 \/(1 + 2-2%)

As n — o, K — 0.6073 (constant factor which needs to be
corrected for)

Actually it’s easier to omit it and fix it later!




d; decision (rotation mode)

Z; is introduced to keep track of the angle that has been rotated (z0 = ¢)

rit1 = xi— (yidi27")
Yir1 = Ui+ (2:d;27°)
Zitl — R — dz tan_l (Q_i)
gy — —1 2f z; <O

+1 otherwise

Notice we dropped the K! Rotated value is hence (Kx,,Ky,)
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After n iterations

1 :

45 — E(CB()COS(Z()) — yoszn(ZO))
1 ;

Y = E(yocos(zo) + xosin(20))

Question: What is the procedure to compute sin and cos?
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Computing sin(a) and cos(a)

1. Initialize (x,y,z)=(1,0,a)

2. Iterate through cordic

3. cos(a)=Kx and sin(a)=Ky

An easier way for this example is to change

step 1 to (x,y,z)=(k,0,a)




N g ke o
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: Xi=1.000000 yi=0.000000 zi=1.308997 k=1.000000 kx=1.000000 ky=0.000000

xi=1.000000 yi=1.000000 zi=0.523599 k=0.707107 kx=0.707107 ky=0.707107
xi=0.500000 yi=1.500000 zi=0.059951 k=0.632456 kx=0.316228 ky=0.948683
xi=0.125000 yi=1.625000 zi=-0.185027 k=0.613572 kx=0.076696 ky=0.997054
xi=0.328125 yi=1.609375 zi=-0.060673 k=0.608834 kx=0.199774 ky=0.979842
xi=0.428711 yi=1.588867 zi=0.001746 k=0.607648 kx=0.260505 ky=0.965472
xi=0.379059 yi=1.602264 zi=-0.029494 k=0.607352 kx=0.230222 ky=0.973138
xi=0.404094 yi=1.596342 zi=-0.013870 k=0.607278 kx=0.245397 ky=0.969423




d; decision (vectoring mode)

1 — +1 of y; <O
v —1 otherwise.
tn = =22+ 1)
i 0 0
Yn =~ 0

2o + tan™* (yo /o).

N
S
|

» Y, minimized use to compute tan-' and magnitude




Linear functions instead of trig

Li+1 = X; — O(gZdLQ_L) = ;
yie1 = yi+ (x;d;277°)
<41 — 2 — di2_i

g - {—1 if z; <0

+1 otherwise.




After n iterations

Yn = Yo + Toz2o

3
N
|
X
-

S
S

|
=

No need for K, correction.




Division

g +1 tfy: <O
© —1 otherwise.
Ln — I
Yn — Yo

20 — 90/5’30.

S
3
|

No need for K, correction.




Hyperbolic functions

» Similarly, can get cosh and sinh using tanh-! instead of tan"

» Can also get In and exp easily




Implementation

27
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Implementation

» Can develop generalized cordic processors which can compute many different
functions using similar hardware

» Implementations can be bit serial and/or pipelined as well




Precision

> Need n iterations for n bits
» Converges for -99.7 <z < 99.7 (sum of all the angles tan-'(2),i =0 .. n)

- must convert to this range first




Conclusion

» CORDIC algorithms are an efficient method to compute many different functions
» Low area, high speed

» Used in calculators, DSPs, math coprocessors and supercomputers.




5% | THE UNIVERSITY OF

SYDNEY

References

» Ray Andraka, “A survey of CORDIC algorithms for FPGAs”, FPGA '98.
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, Monterey, CA. pp191-200
(http://www.andraka.com/cordic.htm)




Review Question

» Calculate V2/K using the CORDIC algorithm (4 iterations)

» Hint: use vectoring mode




Exploration: Multiplication

34
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Binary Multiplication

a n bits EASY PROBLEM: design
combinational circuit to multiply
X b n bits tiny (1-, 2-, 3-bit) operands...

HARD PROBLEM: design circuit to
multiply BIG (32-bit, 64-bit)
ab 2n bits numbers

since (2"-1)% < 2°"

We can make big
multipliers out of
little ones!

Engineering Principle:
Exploit STRUCTURE in problem.

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)
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Given n-bit multipliers:

ay |3, |
a|X|b| = ab
nbits nbits 2nbits - bH bL
Synthesize 2n-bit multipliers: ab,
ab
" by
2n bits
- b + | ayby,
2n bits o
ab
ab
4nbits

Composition of Multipliers

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)

36



Building Blocks

n="1: minimalist starting point
Multiplying two 1-bit numbers is pretty simple:

al|Xx|b

O |ab

37

Of course, we could start with optimized combinational
multipliers for larger operands; e.g.

ine logic gets
more compiex,
but some

3130 % > optimizations
- i are possible...
i €3C2C€1Cp

3 Multipli
bibs ultiplier

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 37



THE UNIVERSITY OF

SYDNEY Induction Step

2n-bit by 2n-bit multiplication:

1. Divide multiplicands into n-bit pieces - EE:]
2. Form 2n-bit partial products, using n-bit by n-bit
multipliers. L
3. Align appropriately REGROUP partial
4. Add. products -
2 additions
ab H rather than 3!
a, a,J x | by le = + LML LD
a.b
asb

Induction: we can use the same structuring
principle to build a 4n-bit multiplier from our
newly-constructed 2n-bit ones...

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 38



Brick Wall View of Partial Products

Making 4n-bit multipliers from n-bit
ones: 2 “induction steps”

35 az a1 ao

—

X bS b2 b1 bO

-+ azby |

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 39
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Building a Multiplier

. . Step 1: Form (& arrange)
Given Pmb lem: Partial Products:

dsz| d,| dq| dp

a.b

a, bg apsb,

a,b, | ab,| agp.

Subassemblies: 35b5 azbz a1b1 aobo \
» Partial Products I

» Adders a=|22-l_a b.] a1bo_
a

+ b1 Lageo |

aabQ

Step 2: Sum

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 40
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Performance Cost Analysis

n 1 . 3
(o Order Of" notation: E —
“g(n) is of order f(n)" g(n) = © (f(n)) n2+2n+3 = O 2)
g(n) = O(f(n)) ifthereexist Co2C1>0, e
such that forall but finitely many integral n >0 n 2 < (n 2+2n+5) < 2n 2
c1*f(n) < g(n) s cf(n) "almost always"
\_ a(n) = O(f(n) -/
Q(...) implies both 2 _ 2
inequalities; 0(..) Partial Products: n = O(n)
implies only the Things to Add: en-2 = @)
second. Adder Width: 2n = O(n)
2
Hardware Cost: ¢ = O )
Latency: O(n?) 22

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 41



Observations

:

jgﬁ
a1b5 aobz @(ns partial products.
azllza ab, I_aQIv1 O(n") full adders.

a

Hmmm.

azbs b, |a4by | apbg
ab .l_a b, |a.b
azbq | azbo
+ aabQ

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 42



THE UNIVERSITY OF

SYDNEY

Engineering Principle #2:

Put the Solution where the
Problemis.

Repackaging Function

@(ns partlal products.
O(n") full adders.

dap b5

b

a, b,

as

da-

b,

ap

b

b,

a4

b

bo

by

aq

b

by

ds bo

How about n? blocks, each doing a
little multiplicationand alittle

addition?

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)
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Goal: Array of Identical Cells

a, b:|a b, |a,b,
azbz|a b, | a,b, | 2o by

A B

Ci.i ‘_ C

(A+B),

5k+1 Tk / bi
4 N
Single "brick" of brick-wall
array...
Coz | +Forms partial product — G
* Adds to accumulating sum
along with carry
- o
| |
.

S S

Necessary Component: Full Adder

Takes 2 addend bits plus carry bit. Produces sum
and carry output bits.

CASCADE to form an n-bit adder.

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 44
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1-Bit Multiplier “Brick”

ag b

dq

bx | a5 b,

bs

a, b, | a,

bz aq b1

as

b,

ab1 aq

b1 abo

as bo

Brick design:

« AND gate forms 1x1 product ‘ l ‘ I

Array Layout:
* operand bits bused diagonally
* Carry bits propagate right-to-left
bo * Sum bits propagate down
4o

) } 2 ’
* 2-bit sum propagates from top to Cruz® | FA H FA ] Cy
bottom
* Carry propagates to left
Wastes some gates... but consider . v a
(say) optimized 4x4-bit brick! 8.4 5

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 45



Latency

2, "o S p, i bs/ b, What's its propagation delay?
a, N agll_v . b, Naive (but valid) bound:
a, N\ a, by jagb 7 b, » O(n) additions
N a, b, lalb | a, b, - / * O(n) time for each addition
il %52 b, lr b, - Hence O(n?) time required
I fr¥e | 2.1 | &, bQJ On closer inspection:
=[—a§ b, | 3, b, * Propagation only toward
left, bottom
| als_bj } * Hence longest path bounded

by length + width of array:
O(n+n) = O(n)!

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 46



Improved Multiplier

ap bs
a, % / b, Hardware for o (n?‘)
N a,b / b n by n bits:
- Lanl
as W a, b, | a,b b, Latency: O(n)
N |ab,|a b, |agb, |
_|asbs [a,b, | a by |aby Throughput: O(1/n)
asb, |a,b, | a, b,
asb, | a,b,
Note: lots of tricks are
b |
+ \ 25 % J available to make a faster
b v combinational multiplier...

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 47
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Combinational Multiplier Tradeoffs

Suppose we have LOTS of N NP ////
multiplications. -~

Can we do better from a — .I.E

cost/performance - P \\
standpoint?

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 48



Pipelining

WE HAVE:
* Pipeline rules - "well
formed pipelines” a, bs
* Plenty of registers a, N / b,
e Demand for higher a, N _lab|
throughput. a, N _labylagh|
™ a,b, |a, b, | ayb, /
What do we do? Where do we a, b, |a,b, | a,b,|a,b,
define stages? _—T:I: a, b, | a, b,
as b, | a; by

\ aabol
% & 3

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 49
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Bad Design

gotta break
a,b | that long

, carry chain!
a, bs | ag bq ,
-
aLlsvzi a, I9i a, b
as, b, |a,b, |a,b,|a,b,
; ;
a;b, |a, b, | a, b,
Y r— =
v X v
as b | wb, Stages:  O(n)
- Clock Period: ~ ©(n)
as b, Hardware cost fornby nbits: (n 6
Voo Latency:  @(n°)

Throughput: ©(1/n)

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 50
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Worse Design

WORSE idea:

* Doesn't break long
combinational paths
* NOT a well-formed pipeline...
... different register
b counts on alternative
0
paths
.. data crosses stage
boundaries in both
directions!

b1

ll ao

a- b

Back to basics:
what's the point of pipelining, anyhow?

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 51
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Breaking O(n) Combinational Paths

a b
LONG PATHS go down, o left: N 7
2
« Break array into diagonal a, a,b / b,
slices 2.5 /
, bo
« Segment every long a, a.b a, b, ./
combinational path a, b a, b,
a, a,b a, b,
a, b, a, by \
ab a, b,
as b, a, b, X /Z
as b, / /
a5 b | v
————
T vl

GOAL: © (n) stages; O (1) clock period!

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 52
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Stages: © (n)

Clock Period: © (1) a, b
Hardware cost for n by n bits: © (n?) Ny / b
Latency: © (n) , a b / 2 b
Throughput:  © (1) ’ 2 b / ! b
o
" a, b ab |
a, b a, b,
s a b3 a, b1

* Well-formed pipeline a, b, ok b‘.’— \
(carefull)

» Constant (high!) /
throughput, /
independently of / /
operand size. /

.. but suppose we don'’t need — e
the throughput? vy ¥ ¥ ¥ ‘

High Throughput Design

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc)
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Small Area Design

Suppose we have INFREQUENT a, bs
multiplications... pipelining o / b
doesn't help us. P e
a, J b,
Can we do better from a cost/ . f// / b,
performance standpoint? 2, f/ A /
Hmmm, do |
really need
all these

extras? i
\ 0O

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 54
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Even Smaller Area Design

Sequential Multiplier:

- Re-uses a single n-bit “slice” to
emulate each pipeline stage

* a operand entered serially

« Lots of details to be filled in...

Stages: 1

Clock Period: © (1) (constant!)
Hardware cost fornbynbits: © (n)
Latency: © (n)

Throughput: © (1/n)

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 95



Minimum Area Design

Su ppose we want to minimize
hardware (at any cost)...

« Consider bit-seriall

* Form and add 1-bit
partial product per clock

« Reuse single “brick” for
each bit b, of slice;

» Re-use slice for each bit
of a operand

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 56
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Minimum Area Design

bz
Bit Serial multiplier: vd b,
a
+ Re-uses a single brick to emulate | N /‘/f / b,
an n-bit slice f/ P 5
bo

* both operands entered serially /

» O(n?) clock cycles required / /
* Needs additional storage
(typically from existing

registers)

Stages: © (1/,1 )
Clock Period: © (1) (constant)
Hardware cost fornbynbits: © (1) + ?

Latency: © (n?)
Throughput: © (1/n?)

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 57



Summary

Scheme: $ Latency Thruput
Combinational 8(n?) 6(n) 6(1/n)
N-pipe 8(n?) 8(n) 8(1)
Slice-serial 8(n) 8(n) 6(1/n)
Bit-serial 8(1) 8(n?) 6(1/n?)

Lots more multiplier technology: fast adders, Booth Encoding, column
compression, ...

Source: Steve Ward (MIT Opencourseware licence http://ocw.mit.edu/terms/index.htm#cc) 58



