
Reconfigurable Computing
Trends and Exploration

School of Electrical and Information Engineering

http://phwl.org/talks

Philip Leong (philip.leong@sydney.edu.au)

In wisdom gathered over time I have found that every experience is a form of
exploration.
- Ansel Adams

Permission to use figures have been gained where
possible. Please contact me if you believe anything
within infringes on copyright.

Introduction

› How do we measure performance?
› What tools can we use to explore a design space?
› What is the impact of VLSI technology on FPGA design?
› Technology trends influence architecture. Can we understand how they change

with time?
› Case study

- Matrix multiplication

2

Performance

› Understand what needs to be optimised (and what doesn’t)
› Tradeoff between speed, area, latency, throughput, energy, cost, accuracy …

- Cannot optimise them all, e.g. usually can increase speed if cost unimportant

› Good design is a tradeoff

3

Speed

Cost Energy

Area

4

Moore’s Law [1]

› Gordon Moore in 1965
predicted number of
transistors in an IC will
double ≈ two years

› This has driven the
semiconductor industry for
many decades

› Made FPGAs practical
(first commercial FPGA
XC2064 which had 64
CLBs with 2x 3-LUTs per
CLB)

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965

Moore’s Law [1]

› He made the bold claim that 65,000 components could fit on an IC by 1975 (at
the time they had 50)!

› Cartoon is from the same paper

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965

7from [2]

Question

› If x is the year and y is the number of transistors on an integrated circuit, give an
equation to model Moore’s Law.

8

1/λ2 vs year [2]

› FPGA lambda from
previous table
plotted vs year

› Transistor density
doubling every two
years, in agreement
with Moore’s Law

› Can use equation to
estimate extrapolate

Design Size (number of LUTs) [2]

› x’s are the number of
LUTs in the largest
FPGA of that year

› o’s are FCCM
designs

› Tech design size
doubles every 2.5
years (slightly slower
than Moore’s Law)

› Inaccuracies because
we don’t count clock
trees and hard blocks

Speed

11

Speedup

› Texecution=Tclk * N
- Where N is the number of clock cycles to complete the task

› Speed S = 1/Texecution

› The speedup of machine A with execution time TA over machine B with
execution time TB

- Speedup = SpeedA/SpeedB

= TB/TA

› Real-time measures often reflect performance per unit time
- GOPS (billion operations per second)

- GFLOPS (billions of floating point operations per second)

12

Amdahl’s Law [3]

› Gene Amdahl in 1967 gave us a way to think about parallelism

› If B is the fraction of algorithm which is serial (e.g. I/O), and Tp is the execution
time for p processors)

› Speedup = T1 / Tp

=

› This equation gives us a way to estimate the speedup of a system

13

p
pB+ (1−B)

Amdahl’s Law Example

Most important issue is I/O (and memory) overhead!

14

› A program takes 3600 s to execute but
must read 100GB of data from a file. If
we replace the CPU with an FPGA
accelerator which is 100x faster, what
is the speedup?

› Speedup =

› B=100/(3600+100)=0.027
› p=100
› Speedup = 3700 s / 137 s

= 100/(100*B+(1-B))
=27.2059

p
pB+ (1−B)

CPU

File

Recv
100GB
of data
(transfer
takes
100 s)

CPU takes 3600 s to
process data

Dennard’s Law [4]

› Dennard in 1974: as transistor feature size (κ or commonly λ) decreases, power
stays proportional to area

15

Clock Frequency (1999-2013) [2]

16

› Tech freq doubles
every 8 years

› Research freq
doubles every 6
years

› Tracking with what
might be expected
based on
technology scaling

Frequency of IP Cores [2]

› Device technology
trend is black line

› Designs have trend
consistent with
technology

Breakdown of Dennard’s Law

› Clock speeds are not rising according to Dennard’s Law as transistors have stopped
getting faster

› Voltage essentially stopped shrinking 10 years ago

› Thermal noise (kT/q = 25 mV at room temperature)

› Subthreshold leakage current

› Cannot reduce voltage and current so that power density is no longer constant

› In fact rising sharply

› Designs used to be speed constrained, now they are power constrained

› Cannot turn on all parts of the chip at the same time (% which must be off is called Dark
Silicon)

18

Power

19

Power Consumption

› P=CV
2
f and it fundamentally limits performance gains

› Three main components in an FPGA

- Static, Dynamic, I/O

› Dennard scaling says halving lambda decreases P by 4 (broken down due to

statis P)

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

Static Power

21Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

Dynamic Power

22Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

I/O Power

23Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

Programmable Power Technology

› High threshold voltage – low leakage but low speed

› Not all LUTs are on the critical path so some can be slower

› CAD tools plus configurable substrate bias allow reduced power without

sacrificing speed

24
Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

Reducing Power in FPGA Designs

› Use minimum possible voltage

› Reduce switching activity

› Use most advanced process technology with best hard blocks

› Use device with appropriate hard blocks

› Do not clock unused parts of circuit

25Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

ASICs vs FPGAs [6]

› Kuon and Rose compared FPGAs and ASICs on a number of benchmarks and
found that FPGAs are

- 20x larger area

- 3-4x slower

- 10x higher power

› Embedded blocks improve area and power significantly (if utilised)

26

Design Space Exploration

27

Flynn’s Taxonomy

› Classification of computer
architectures made in 1966 by Michael
Flynn (IBM)

› Based on whether instruction and data
streams are parallel

› SISD – serial processor
› SIMD – array or vector processor
› MISD – for fault tolerance, systolic

array
› MIMD – multicore or distributed

processor

Design Space Exploration

› Options include

- Algorithm (most important)

- Parallelism

- Precision

- Interface

- Customisation

› Within each are other options and so the actual design space is extremely large

› Key to making good designs is to have good judgment regarding the tradeoffs

- These may be different depending on what you need to optimise

- Can be estimated using back-of-envelope techniques and reduced implementations

- Finding suitable input data to characterise your application is also a big issue

29

Pareto Frontier

› For competing factors such as speed and area efficiency (1/area)
› Pareto Frontier separates infeasible from feasible designs
› We want to be as close to the optimal as possible

30

Area Efficiency

Speed

Feasible
Designs

Infeasible
Designs

Summary

› Introduced some important principles
- Moore’s Law (tells us how IC area scales)

- Dennard’s Law (tells us how IC technology scales)

- Amdahl’s Law (tells us how to estimate speedup for parallel processing)

› FPGA designs have followed technology

› Design space is large (curse of dimensionality) so we need to be selective and
tried to be close to Pareto Frontier

› Exploration must be done right to avoid having to redesign system

31

References

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, April 1965
[2] Lesley Shannon, Veronica Cojocaru, Cong Nguyen Dao, and Philip H.W. Leong.
Trends in reconfigurable computing: Applications and architectures. In Proc. FCCM,
pages 1–8, 2015
[3] Amdahl, Gene M. (1967). "Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities”. AFIPS Conference Proceedings (30): 483–485.
doi:10.1145/1465482.1465560
[4] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-
implanted MOSFET’s with very small physical dimensions,” JSSC, vol. 9, no. 5, pp.
256–268, Oct 1974.
[5] Altera White Paperhttps://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-
power-consumption.pdf
[6] Ian Kuon; Rose, J., "Measuring the Gap Between FPGAs and ASICs," TCAD,
vol.26, no.2, pp.203,215, Feb. 2007

32

https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

Review Exercises

› Explain in your own words:
- Moore’s Law (tells us how IC area scales)

- Dennard’s Law (tells us how IC technology scales)

- Amdahl’s Law

› A problem has a section of non-parallelisable code which takes 100 s to execute,
and the rest of the code is parallelisable and takes 1 hour to process. If we are
given the task of designing an FPGA accelerator to replace the CPU and wish to
achieve a speedup of 100, what should the speedup of the FPGA accelerator
core be? What if it takes a day to process?

›

33

Case Study – Matrix Multiplication

34

Introduction

› Serve as an example of design exploration of matrix multiplication
› While examples are for a processor with cache, they are equally valid for an

FPGA with external memory

Outline

› Performance Modeling
› Matrix-Vector Multiply (Warmup)
› Matrix Multiply Cache Optimizations

Why Matrix Multiplication?

› An important kernel in many problems

- Appears in many linear algebra algorithms

- Bottleneck for dense linear algebra

- One of the 7 dwarfs / 13 motifs of parallel computing

- Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-
Warshall

› Optimization ideas can be used in other problems

› The best case for optimization payoffs

› The most-studied algorithm in high performance computing

Slide: James Demmel UCB

Motif/Dwarf: Common Computational Methods
(Red Hot ® Blue Cool)

Em
be

d

SP
EC

DB G
am

es

M
L

HP
C

Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Slide: James Demmel UCB

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Slide: James Demmel UCB

Note on Matrix Storage

› A matrix is a 2-D array of elements, but memory addresses are �1-D�
› Conventions for matrix layout

- by column, or �column major� (Fortran default); A(i,j) at A+i+j*n
- by row, or �row major� (C default) A(i,j) at A+i*n+j
- recursive (later)

› Column major (for now)

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

0
4
8
12
16

1
5
9
13
17

2
6
10
14
18

3
7
11
15
19

Column major Row major

cachelines Blue row of matrix is
stored in red cachelines

Figure source: Larry Carter, UCSD

Column major matrix in memory

Slide: James Demmel UCB

Computational
Intensity: Key to
algorithm efficiency

Machine
Balance:
Key to
machine
efficiency

Using a Simple Model of Memory to Optimize

Slide: James Demmel UCB

› Assume just 2 levels in the hierarchy, fast and slow

› All data initially in slow memory
- m = number of memory elements (words) moved between fast and slow memory

- tm = time per slow memory operation

- f = number of arithmetic operations

- tf = time per arithmetic operation << tm

- q = f / m average number of flops per slow memory access

› Minimum possible time = f* tf when all data in fast memory

› Actual time
- f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

› Larger q means time closer to minimum f * tf

- q ³ tm/tf needed to get at least half of peak speed

Warm up: Matrix-vector multiplication

{implements y = y + A*x}

for i = 1:n

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

Slide: James Demmel UCB

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

{read row i of A into fast memory}
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m » 2

• Matrix-vector multiplication limited by slow memory speed

Slide: James Demmel UCB

Modeling Matrix-Vector Multiplication

› Compute time for nxn = 1000x1000 matrix
› Time

- f * tf + m * tm = f * tf * (1 + tm/tf * 1/q)

- = 2*n2 * tf * (1 + tm/tf * 1/2)
› For tf and tm, using data from R. Vuduc�s PhD (pp 351-3)

- http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

- For tm use minimum-memory-latency / words-per-cache-line
Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6.3
Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5

Mem Lat (Min,Max)
cycles machine

balance
(q must
be at least
this for
½ peak
speed)

Slide: James Demmel UCB

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

Simplifying Assumptions

› What simplifying assumptions did we make in this analysis?
- Ignored parallelism in processor between memory and arithmetic within the

processor
- Sometimes drop arithmetic term in this type of analysis

- Assumed fast memory was large enough to hold three vectors
- Reasonable if we are talking about any level of cache
- Not if we are talking about registers (~32 words)

- Assumed the cost of a fast memory access is 0
- Reasonable if we are talking about registers
- Not necessarily if we are talking about cache (1-2 cycles for L1)

- Memory latency is constant

› Could simplify even further by ignoring memory operations in X and Y
vectors
- Mflop rate/element = 2 / (2* tf + tm)

Slide: James Demmel UCB

Validating the Model

› How well does the model predict actual performance?
- Actual DGEMV: Most highly optimized code for the platform

› Model sufficient to compare across machines
› But under-predicting on most recent ones due to latency estimate

0

200

400

600

800

1000

1200

1400

Ultra 2i Ultra 3 Pentium 3 Pentium3M Power3 Power4 Itanium1 Itanium2

M
Fl
op
/s

Predicted MFLOP
(ignoring x,y)

Pre DGEMV Mflops
(with x,y)

Actual DGEMV
(MFLOPS)

Slide: James Demmel UCB

Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and operates on
3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

Slide: James Demmel UCB

Naïve Matrix Multiply

{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Slide: James Demmel UCB

Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 to read each column of B n times

+ n2 to read each row of A once
+ 2n2 to read and write each element of C once

= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)
» 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Slide: James Demmel UCB

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Slide: James Demmel UCB

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n / N is
called the block size

for i = 1 to N

for j = 1 to N
{read block C(i,j) into fast memory}
for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Slide: James Demmel UCB

Blocked (Tiled) Matrix Multiply

Recall:
m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
q = f / m is our measure of algorithm efficiency in the memory system

So:

m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
+ N*n2 read each block of A N3 times
+ 2n2 read and write each block of C once

= (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
» n / N = b for large n

So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)

Slide: James Demmel UCB

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q » b
› The larger the block size, the more efficient our algorithm will be
› Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot

make these blocks arbitrarily large
› Assume your fast memory has size Mfast

3b2 £ Mfast, so q » b £ (Mfast/3)1/2 required
t_m/t_f KB

Ultra 2i 24.8 14.8
Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4
Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5.5 0.7

• To build a machine to run matrix multiply at
1/2 peak arithmetic speed of the machine,
we need a fast memory of size

Mfast ³ 3b2 » 3q2 = 3(tm/tf)2

• This size is reasonable for L1 cache, but not
for register sets

• Note: analysis assumes it is possible to
schedule the instructions perfectly

Slide: James Demmel UCB

Limits to Optimizing Matrix Multiply

› The blocked algorithm changes the order in which values are accumulated into
each C[i,j] by applying commutativity and associativity
- Get slightly different answers from naïve code, because of roundoff - OK

› The previous analysis showed that the blocked algorithm has computational
intensity:

q » b £ (Mfast/3)1/2

› There is a lower bound result that says we cannot do any better than this (using
only associativity)

› Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that
uses only associativity) is limited to q = O((Mfast)1/2)
- #words moved between fast and slow memory = Ω (n3 / (Mfast)1/2)

Slide: James Demmel UCB

What if there are more than 2 levels of memory?

› Need to minimize communication between all levels
- Between L1 and L2 cache, cache and DRAM, DRAM and disk…

› The tiled algorithm requires finding a good block size
- Machine dependent

- Need to �block� b x b matrix multiply in inner most loop

- 1 level of memory Þ 3 nested loops (naïve algorithm)

- 2 levels of memory Þ 6 nested loops

- 3 levels of memory Þ 9 nested loops …

› Cache Oblivious Algorithms offer an alternative
- Treat nxn matrix multiply as a set of smaller problems

- Eventually, these will fit in cache

- Will minimize # words moved between every level of memory hierarchy – at least
asymptotically

Slide: James Demmel UCB

Summary

› Described a way to think about computation and memory – computational
intensity

› Introduced the concept of blocking to increase computational intensity

Review Exercises

› Explain in your own words:
- Computational intensity

› Do a similar analysis computational intensity analysis for a different algorithm
e.g. FFT

57

An FPGA Delay Model

58

A Detailed Delay Path Model for FPGAs

Eddie Hung1, Steven J. E. Wilton1,

Haile Yu2, Thomas C. P. Chau2, Philip H. W. Leong2*

1 Department of ECE, University of British Columbia

2 Department of CSE, Chinese University of Hong Kong
›

* Now with School of Electrical and Information Engineering, University of
Sydney

›Funded by NSERC of Canada and RGC of HKSAR

This work based on a paper at FPT09 [1]

60

Overview

This model

Process
Technology
Parameters

Circuit
Parameters FPGA

Architecture
Parameters

Physical Delay Estimate

Compared to previous models:
l Simpler, closed-form, equally accurate

61

Motivation: FPGA Design

Important when designing FPGA architectures:

l Need methods to estimate their performance
ahead of time

l Two different ways of investigating new architectures:
l Analytical Models (our approach)

l Experimental Techniques

62

Motivation: FPGA Design

Existing FPGA design approach:

l Iteratively change details and experimentally measure improvement using
benchmarks

l Problems:
l Slow and resource-hungry

l Lack of intuition and insight into why

Experiments

New
Architecture Benchmark

CAD (e.g. VPR)
Satisfactory?

Sweep next
variable

No

Performance models

63

Motivation: Analytical Models

New paradigm emerging: Analytical Modelling
l Capturing the essence of programmable logic

in a set of simple equations

64

Motivation: Analytical Models

l Why analytical modelling?
l Faster

l Allow early exploration of radical architectures

l What makes a good model?
l Analytical – not rely on curve fitting

l Simple – more insight into architectural trade-offs

l Circuit Independent – capturing average behaviour

65

Where this work fits in

Delay Model:

l Logical delay model
presented by
Das et al. at FPL 2009 [2]

[Das et al.]

Tech-Mapping
model

Clustering
model

Netlist
Parameters

FPGA Architecture
Parameters

Depth in
LEs

Depth in
LCs

66

Where this work fits in

Delay Model:

l Logical delay model
presented by
Das et al. at FPL 2009 [2]

l This paper:
A model which
relates logical delay
to physical delay

This paper:
Physical Delay model

Physical Delay

Process Technology
Parameters

Wirelength

[Das et al.]

Tech-Mapping
model

Clustering
model

Netlist
Parameters

FPGA Architecture
Parameters

Depth in
LEs

Depth in
LCs

67

Motivation: Analytical Models

l Can the models from the experimental flow
be re-used for the analytical flow?

l Requires routing/timing graphs

l Lack of delay model for logic cluster

68

What makes deriving this model hard?

l Would like our model to be:
l Flexible, coping with range of modern architectures

l Accurate

l Closed-form

l Fast

l But complex interactions exist between FPGA architecture and circuit
implementation:

l e.g. Buffer sizes change depending on loading

69

Circuit Assumptions
and Delay Model

70

Circuit Assumptions

l Island-Style FPGA
l 2-D array of Logic Clusters surrounded by a

Global Interconnect of routing tracks

l Delay model broken down into:
l Local Routing Delay:

l Logic Element Delay:

l Global Interconnect Delay:

71

Logic Cluster: Tlocal and Tlogic

›Collection of logic elements accessed through a local routing network with a
shared set of inputs

72

Global Interconnect: Tglobal

›Composed of horizontal/vertical tracks and Connection/Switch Boxes

LC

SB

SB

CB

CB

CB SB

LC

SBCB

CB SB

CBCB

SB

Tglobal

73

Delay Model: How it fits together

Expected number of LCs
on critical path

Expected number of LEs
on critical path

Function of the
expected wirelength

between LCs

Critical Path
Delay

()logiclocalkglobalccrit T+Td+Td=T ××

74

Circuit Assumptions: Logic Element

l Lookup table with D flip-flop and bypass mux

75

Circuit Assumptions: Logic Element

LUT FF+MUX

RC Network View

D1 D2 D3 D3' D3'' D4 D5

76

Circuit Assumptions: Local Routing

›Fully connected crossbar implemented using multiplexers

Local Routing

IPIN

Circuit View

RC Network View

D1 D2 D3

77

Global Interconnect Delay

›Further divided into:

LC

SB

SB

CB

CB

CB SB

SB

LC

SBCB

CB SB

CBCB

Cluster to
Switch Box

Switch Box to
Switch Box

Switch Box to
Switch Box

Switch Box
to Cluster

78

Circuit Assumptions: Cluster-Switch

l Single-Driver Routing

79

Circuit Assumptions: Cluster-Switch

RC Network View

80

Global Interconnect Delay

l Similarly for and

l Combining them:

LC SB SB SB CB LC

() clusterswitchswitchswitchswitchclusterglobal T+TWLf+T=T --- ×

81

Optimal Buffer Sizing

l RC values depends on buffer sizing
l Using equations: differentiate to find optimal size

RC Network View

invg,
lc C

C+'+CC=B
0.69

232221

82

Model Validation

83

Model Validation: Methodology

l Analytical Model

For all variables

Apply Model

For all variables

For all buffer sizes

Construct deck
Run HSPICE

84

Model Validation: Tlocal

Cluster Size
N

Delay

x100 ps

5.0

4.5

4.0

3.5

3.0

2.5

2.0
10

8
6

4
2 2

3
4 5 6 7

Lookup Table Size
K

85

Model Validation: Tlogic

Delay

Lookup Table Size, K

3

4

5

6

7

8

9

10
x100 ps

Simulated

Model

2 3 4 5 6 7

86

Model Validation: Tglobal

Cluster Size
N

Wire Segment
Length, L

Delay

0.8

1.2

1.6

2.0

2.4
2.2

1.8

1.4

1.0

8 7 6
5 4

3
2 1 2

4
6

4
8

10
12

ns

87

Model Validation: Previous Work

l Consistent with previous methods
l But orders of magnitude faster

Tlocal (ps) for K=4 at 0.18um

Experimentally Derived
N Our Model Ahmed et al. Our HSPICE

2 253 221 267

4 286 301 298

6 321 332 326

8 352 331 349

10 361 337 362

88

Model Applications

(1) Speeding up FPGA architecture design

(2) In conjunction with experimental techniques
l Generate delays for use in VPR architecture files

(3) Gain additional insight into FPGAs

89

Application: Experimental Techniques

l VPR does not have a parameterised delay model for Tlocal and Tlogic

l Physical delays currently specified per-architecture

l Can use our model to generate realistic delays

This Delay
Model

Architecture
File VPR

FPGA Architecture
Parameters

90

Application: Gaining Insight

l Abstract away technology parameters
l Leaving behind a 'distilled' expression with architecture parameters only:

l Not possible using experimental techniques

l Interesting insight:

N has about the same effect on delay as K

NKA+NK+K+NA+ATlocal 210 2»

91

Conclusion

l Circuit-level description of FPGA presented
l Simple yet accurate delay model derived

l Future directions:
l Incorporate more recent architectural developments

l Investigate effects of process technology scaling

l Develop associated area model to explore tradeoffs

References

[1] Eddie Hung, Steven J. E. Wilton, Haile Yu, Thomas C. P. Chau, and Philip H.W.
Leong. A detailed delay path model for FPGAs. In Proc. International Conference
on Field Programmable Technology (FPT), pages 96–103, 2009.
[2] Joydip Das, Andrew Lam, Steven J.E. Wilton, Philip Leong, and Wayne Luk. An
analytical model relating FPGA architecture to logic density and depth. IEEE
Transactions on VLSI Systems, 9(12):2229–2242, 2011.

92

