Reconfigurable Computing

Trends and Exploration

In wisdom gathered over time | have found that every experience is a form of
exploration.
- Ansel Adams

Philip Leong (philip.leong@sydney.edu.au)
School of Electrical and Information Engineering

http://phwl.org/talks

THE UNIVERSITY OF Permission to use figures have been gained where
SYDNEY possible. Please contact me if you believe anything

within infringes on copyright.

5% | THE UNIVERSITY OF

SYDNEY

Introduction

» How do we measure performance?
» What tools can we use to explore a design space?
» What is the impact of VLSI technology on FPGA design?

» Technology trends influence architecture. Can we understand how they change
with time?

» Case study

- Matrix multiplication

Performance

» Understand what needs to be optimised (and what doesn’t)

» Tradeoff between speed, area, latency, throughput, energy, cost, accuracy ...

- Cannot optimise them all, e.g. usually can increase speed if cost unimportant

» Good design is a tradeoff

Speed

Cost Energy

| 2952 | THE UNIVERSITY OF

<) SYDNEY

THE UNIVERSITY OF

SYDNEY

Moore’s Law [1]

» Gordon Moore in 1965
predicted number of
transistors in an IC will
double = two years

' wab aah mk el bt e
O = N W H»OGO

> This has driven the
semiconductor industry for
many decades

» Made FPGAs practical
(first commercial FPGA
XC2064 which had 64
CLBs with 2x 3-LUTs per
CLB)

Log?2 of the Number of Components
Per Integrated Function
O

- NDNW A OO N

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965

THE UNIVERSITY OF
SYDNEY

Moore’s Law [1]

» He made the bold claim that 65,000 components could fit on an IC by 1975 (at
the time they had 50)!

» Cartoon is from the same paper

COJMETICS

L)
L=t p

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, April 1965

Year Fea.ture Xilinx FPGA family Device LUTs DSP/Mult BRI‘\M LUTs LUTs | Altera FPGA Devics ALMs /I::;t BRI.\M LEs/ | LEs/
Size blocks Kbits /DSP | /BRAM family (LEs) blocks Kbits | DSP |BRAM
v| xC7v2000T]| 1,221,600 2,160 46,512 566 26
2011 Virtex 7 vx| XxC7vx1140T| 712,000 3,600 67,680 198 11
vH| xc7vHs70T| 547,600 2,520 50,760 217 11
28 nm GT 5SGTC7| 622,000 512 50,000] 1,215 12
) GX 55GxBB| 952,000 704| 52,000] 1,352 18
2010 Stratix V 725 55GSD8| 695,000 3,926| 50,000] 177] 14
£ SSEEB| 952,000 704| 52,000| 1,352 18
x| xcevixzeo| 474,240 864| 25,920 549 18
2009 Virtex 6 SX| XC6VSX475T| 297,600 2,016 38,304 148 8
40 nm HX|XC6VHX565T| 354,240 864 32,832 410 11
GT| EPasi00Gs| 531,200 1,024] 27,376] 519 19
2008 Stratix IV| GX| EP4sGx530| 531,200 1,024 27,376 519 19
£ EP4SES20| 813,050 960| 33,294| 847 24
x| xcsvix33o| 207,360 192| 10,368| 1,080 20
Virtex 5 SX| XC5VvSX240T| 149,760 1,056| 18,576 142 8
2006 65nm FX| xcsvFx200T| 122,880 384| 16,416 320 7
Serati i3 L EP35L340| 337,500 576] 16,272 586 21
E EP3SE260| 255,000 768| 14,688 332 17
>005h—29.0m stratix 1l |GX|EP25GX130/G[132,540 252| 6,747| S26 20
130 nm EP25180| 179,400 384| 9,383 467 19
x| xcavixz2oo| 178,176 96| 6,048 1,856 29
2004] 90nm| Virtex4a sx| xcavsxss| 49,152 512| 5,760 96 9
FX| xcavrxiao| 126,336 192| 9,936] 658 13
. |ex| episGxaop| 41,250 se| 3,423 737 12
2002} 130 nm i EP1580| 79,040 88| 7,428 898| 11
190 e pro|] xcavpioo| 88,192 a44] 7,992 199 11
2001 virtexIl | Prox| xC2vPx70| 66,176 308 5,544] 215 12
0.15 um v| xc2vsooo| 93,184 168 3,024] 555 31| Mercury EP1M350| 14,400 0 115 -| 125
2000| 0.18 um Excalibur EPXA10| 38,400 ol 3,146 - 12
1999| 0.18 uml|[VirtexE | XCV3200E| 64,896| of 851| | 76
199g|-0:22 um Flex 10KE| | EPF10k200E| 9,984| o| 9g| -| 102
0.25um| Virtex XCv1000| 24,576 0 131 - 188
1997| 0.35 um|| 4000 E/XL XC4085XL| 12,544 0 0 - .
1996] 0.3 um Flex 10KA EPF10K250A] 12,160 0 41 [297
1995| 0.42 um Flex 10K EPF10K100| 4,992 0 25 -[200
1992] 0.6 um Flex 8000 EPF81500A 1,296 0 0 - -
1991 0.8uml|[4000 series XC4025 2,048 0 0 - -
1985 2 um|[2000 series XC2018 400 0 0 - -

from [2]

Question

» If X is the year and y is the number of transistors on an integrated circuit, give an
equation to model Moore’s Law.

THE UNIVERSITY OF

SYDNEY

1/\? vs year [2]

» FPGA lambda from P4
previous table
plotted vs year -

5e-04
|
.
I
NN
>
o
-
o
o
=
\l
co
(w=]
(o]
\j
4
=
N
0w
(%]
(]
£
X
\\

» Transistor density
doubling every two
years, in agreement
with Moore’s Law

5e-05
=

1/lambda”2 (nm*-2)
N\

» Can use equation to
estimate extrapolate 7

5e-06
N\

5e-07
N\

l | | | I
1985 1990 1995 2000 2005 2010

THE UNIVERSITY OF

SYDNEY

Design Size (number of LUTS) [2]

» X's are the number of
LUTs in the largest e
FPGA of that year X S & 8

» 0's are FCCM _
designs = é x =

262144
<
i
N
>
T
N
W
o
o
w
N
N
-
o
w
N
3
o)
o)
&
"
\
\
|

8

32768
|

\
GEDC

O YJQD@ (- HEB S L) 8D
O

LUTs

» Tech design size 2 | P gl o
doubles every 2.5 T | e 8 2
years (slightly slower = | e © ; 3
< . (e -
. o 8_.--"' ») 6 (&

than Moore’s Law)

256
|

» Inaccuracies because
we don’t count clock -1 8
trees and hard blocks

64
1

T‘/‘"r‘: T'HE UNIVERSITY OF
2}

<= SYDNEY

— *
) Texecution_ clk N

- Where N is the number of clock cycles to complete the task
) Speed S = 1/Texecution

» The speedup of machine A with execution time T, over machine B with
execution time Tg

- Speedup = Speed,/Speedg
= Tg/Th
» Real-time measures often reflect performance per unit time
- GOPS (billion operations per second)

- GFLOPS (billions of floating point operations per second)

12

5% | THE UNIVERSITY OF

SYDNEY

Amdahl’s Law [3]

» Gene Amdahl in 1967 gave us a way to think about parallelism

» If B is the fraction of algorithm which is serial (e.g. I/O), and T, is the execution
time for , processors)

» Speedup =T, /T,

- p
pB+(1-B)

» This equation gives us a way to estimate the speedup of a system

13

5% | THE UNIVERSITY OF

SYDNEY

Amdahl’'s Law Example

Most important issue is /0 (and memory) overhead!

CPU takes 3600 s to » A program takes 3600 s to execute but
must read 100GB of data from a file. If
we replace the CPU with an FPGA
accelerator which is 100x faster, what
is the speedup?

process data

» Speedup = D
100G pB+{1-5)
of data * B=100/(3600+100)=0.027

(transfer > p=100

ﬁaok(?i) » Speedup = 3700s/137 s
= 100/(100*B+(1-B))
=27.2059

14

5% | THE UNIVERSITY OF

SYDNEY

Dennard’s Law [4]

» Dennard in 1974: as transistor feature size (k or commonly A) decreases, power
stays proportional to area

Device or Circuit Parameter Scaling Factor
Device dimension fox, L, W 1/«
Doping concentration N, K
Voltage V 1/«
Current 7 1/«
Capacitance eAd /¢ 1/«
Delay time/circmit VC/I 1/«
Power dissipation/circuit V/ 1/«?

Power density VI/A 1

15

THE UNIVERSITY OF
SYDNEY

» Tech freq doubles
every 8 years

» Research freq
doubles every 6
years

» Tracking with what
might be expected
based on
technology scaling

Freq (MHz)

16 32 64 128 512

8

4

Clock Frequency (1999-2013) [2]

y=2%(-231.33512+0.11978x)

::;- R

D (Illxp

i
.

X
e)

, Q

O 3
o a o
3 = Q
8 o
o B st @)
b a
s

Y y=27(-332.65084+0.16917x)

OO0 o:‘ml YOO O

O 'Zbi.'f.-o (CF ".3".'.2-.1‘

O QD O OUD

OO 0000 D

1998

2002

I
2006

|
2010

2014

16

THE UNIVERSITY OF

SYDNEY

Frequency of IP Cores [2]

» Device technology
trend is black line

» Designs have trend
consistent with
technology

Frequency (MHz)

128 256 512 1024

64

T
e
—-'----——-- --.
Device trend &— L
e IR il <
-““.—---——T,-f‘ BENCE L, a .
O AT ~_Sar)
."-_-- - =t =]
4 = P
A--‘_-A.-k-‘
= o
“Research trend

] I |
2004 2005 2006

l |
2009 2010 2011

2007 2008

Breakdown of Dennard’s Law

» Clock speeds are not rising according to Dennard’s Law as transistors have stopped
getting faster

» Voltage essentially stopped shrinking 10 years ago
» Thermal noise (kT/q = 25 mV at room temperature)
» Subthreshold leakage current
» Cannot reduce voltage and current so that power density is no longer constant
» In fact rising sharply
» Designs used to be speed constrained, now they are power constrained

» Cannot turn on all parts of the chip at the same time (% which must be off is called Dark
Silicon)

18

T‘/‘"r‘: T'HE UNIVERSITY OF
2}

<= SYDNEY

THE UNIVERSITY OF

SYDNEY

Power Consumption

» P=CV?f and it fundamentally limits performance gains
» Three main components in an FPGA
- Static, Dynamic, I/O
» Dennard scaling says halving lambda decreases P by 4 (broken down due to

statis P)
Figure 5. Total Power Breakdown Across Various High-End FPGA Customer Designs

Figure 7. Static and Dynamic Power Comparison for Same Architecture on Same Process at 100% -
0.85Vand1.0V
o 90% T
X
100 ' 80% -1
|
20 70% +
5 27 60%
2 70 - m 1.0-V FPGA Architecture)
& 60 - B 0.85-V Stratix V FPGAs 50% & Pynamio 1Qrower
.§ 50 40% -+ ® Static Power
g “0° 30% -
2 30 o
20 - 20%
10 - 10% ;

0+ T { %
Dynamic Power Static Power 0%

Normalized Powe

Customer Customer Customer Customer Customer
Designl Design2 Design3 Design4 Design5

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

Static Power

Ground <| ‘ s E|
m
sub

|

i
Table 1. Main Sources of Transistor Leakage
Main Sources of Leakage Impact Mitigation Techniques
= Lower voltage
Subthreshold leakage (ls.») Dominant ISP S
= Longer gate length
= Dopant profile optimization
Gate direct-tunneling leakage (Ig) Dominant High-k metal gate (HKMG)
Gate-induced gate leakage (l5,0,) Small Dopant profile optimization
Reverse-biased junction leakage current (lazy) Negligible Dopant profile optimization

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf 21

THE UNIVERSITY OF

SYDNEY

Dynamic Power

1 -
Paaynamic = [5 CV'+ QShortCircuij}f - actvily

e | \

Capacitance charging Short circuit charge Percent of circuit that
during switching switches each cycle

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf 22

/O Power

Table 2. Main Factors Impacting General-Purpose 1/0 Power

Main Factors Impacting /0 Power Mitigation Techniques
Termination resistors (on-chip series termination (Rg OCT) Dynamic on-chip termination
and on-chip parallel termination (Ry OCT)) (DOCT)
Output buffer drive strength Programmable drive strength
Output buffer slew rate Programmable slew rate
|/0 standard (single ended, voltage referenced, or differential) | Support for multiple I/0 standards
Voltage supply Support for various voltage rails
Capacitive load (charging/discharging) Interface dependent

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf 23

THE UNIVERSITY OF

SYDNEY

Programmable Power Technology

» High threshold voltage — low leakage but low speed
> Not all LUTs are on the critical path so some can be slower

» CAD tools plus configurable substrate bias allow reduced power without
sacrificing speed
Figure 18. Programmable Power Technology Enabled by Adjusting Back-Bias Voltage

s 4

Logic Array

ggg gg Gn—d High speed
NI - s
W8 — &
L FE, » i (P i » \

h2S 5Low power

T XX ¥
2 Y / =\ R
\Q Threshold voltage

High-speed logic \.\. Low-power logic

QUARTUS 11

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf 24

THE UNIVERSITY OF

SYDNEY

Reducing Power in FPGA Designs

» Use minimum possible voltage
» Reduce switching activity

» Use most advanced process technology with best hard blocks

) U se d eV| ce W|th a p p ro p r| ate h a rd b I OCkS Flgure 14. Increase Bandwidth and Cut Power by Half Using 28-Gbps Transceivers

10x 11.3-Gbps CFP
Transceivers

» Do not clock unused parts of circuit

GrauxV. 455\
J

428G CFP2
[NETERYA, Transc?ivers
. . 7
GStratix V 0.8 W

Altera White Paper https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf 25

5% | THE UNIVERSITY OF

SYDNEY

ASICs vs FPGAs [6]

» Kuon and Rose compared FPGAs and ASICs on a number of benchmarks and
found that FPGAs are

- 20x larger area
- 3-4x slower

- 10x higher power

» Embedded blocks improve area and power significantly (if utilised)

26

Design Space Exploration

27

THE UNIVERSITY OF

SYDNEY

Flynn’s Taxonomy

SISD MISD
) CIaSS|f|Cat|On Of CompUter . SISD Instruction Pool MISD Instruction Pool
architectures made in 1966 by Michael — _
Flynn (IBM)
» Based on whether instruction and data s = & Lpg =
3 3
streams are parallel 5 S
» SISD — serial processor = 8
» SIMD — array or vector processor i o
. ' Instruction Pool Instruction Pool
» MISD — for fault tolerance, systolic o e | I
array ——|PU|~ —(PU L PU|
> MIMD — multicore or distributed £ |———|pu| £|—|pu J Lpg-
3 S
processor = 5. N _m.] LEm.
| |[———|PY- _—~PU~—-|~PU~

Design Space Exploration

o “*| Application Platform [~~~ ~-

» Options include #%}gﬁo < Ll
1 . \‘\..//

- Algorithm (most important) ; el ;
- Parallelism Q ' i 74
- Precision :: Analysis 9 ‘:
- Interface - "

L l A Diagnostics
- Customisation th el

» Within each are other options and so the actual design space is extremely large

» Key to making good designs is to have good judgment regarding the tradeoffs
- These may be different depending on what you need to optimise
- Can be estimated using back-of-envelope techniques and reduced implementations

- Finding suitable input data to characterise your application is also a big issue

29

Pareto Frontier

» For competing factors such as speed and area efficiency (1/area)
» Pareto Frontier separates infeasible from feasible designs

> We want to be as close to the optimal as possible

Infeasible
Designs

Speed

Feasible
Designs

Area Efficiency

30

Summary

» Introduced some important principles
- Moore’s Law (tells us how IC area scales)
- Dennard’s Law (tells us how IC technology scales)
- Amdahl’s Law (tells us how to estimate speedup for parallel processing)

» FPGA designs have followed technology

» Design space is large (curse of dimensionality) so we need to be selective and
tried to be close to Pareto Frontier

» Exploration must be done right to avoid having to redesign system

31

References

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, April 1965

[2] Lesley Shannon, Veronica Cojocaru, Cong Nguyen Dao, and Philip H.W. Leong.

Trends in reconfigurable computing: Applications and architectures. In Proc. FCCM,
pages 1-8, 2015

[3] Amdahl, Gene M. (1967). "Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities”. AFIPS Conference Proceedings (30): 483—485.
doi:10.1145/1465482.1465560

[4] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-
implanted MOSFET's with very small physical dimensions,” JSSC, vol. 9, no. 5, pp.
256-268, Oct 1974.

[5] Altera White Paperhttps://www.altera.com/en US/pdfs/literature/wp/wp-01148-stxv-
power-consumption.pdf

[6] lan Kuon; Rose, J., "Measuring the Gap Between FPGAs and ASICs," TCAD,
vol.26, no.2, pp.203,215, Feb. 2007

32

https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

THE UNIVERSITY OF
weas) SYDNEY

Review Exercises

» Explain in your own words:
- Moore’s Law (tells us how IC area scales)

- Dennard’s Law (tells us how IC technology scales)

- Amdahl’s Law

» A problem has a section of non-parallelisable code which takes 100 s to execute,
and the rest of the code is parallelisable and takes 1 hour to process. If we are
given the task of designing an FPGA accelerator to replace the CPU and wish to
achieve a speedup of 100, what should the speedup of the FPGA accelerator
core be? What if it takes a day to process?

33

Case Study — Matrix Multiplication

34

Introduction

» Serve as an example of design exploration of matrix multiplication

» While examples are for a processor with cache, they are equally valid for an
FPGA with external memory

5% | THE UNIVERSITY OF

SYDNEY

Outline

» Performance Modeling
» Matrix-Vector Multiply (Warmup)
» Matrix Multiply Cache Optimizations

Why Matrix Multiplication?

> An important kernel in many problems
- Appears in many linear algebra algorithms
- Bottleneck for dense linear algebra
- One of the 7 dwarfs / 13 motifs of parallel computing

- Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-
Warshall

» Optimization ideas can be used in other problems
» The best case for optimization payoffs

» The most-studied algorithm in high performance computing

Slide: James Demmel UCB

SYDNEY Motif/Dwarf: Common Computational Methods

— Blue Cool)

v .
? o & g e
8, kL g (7 IR TN LR

w o A & = T | Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal

5 Dense Matrix
6 Sparse mMatrix
7 Spectral (FFT)

8 Dynamic Prog
9 N-Body

10 MapReduce

11 Backtrack/ B&B

12 Graphical Models
13 Unstructured Grid

Slide: James Demmel UCB

Matrix-multiply, optimized several ways

N x N Mairix Mullply [UH@-1/170)
1

m_;%. /‘\\/\[...... _'

B
o
T

N 1 S S N U S S I I]

Perliormance (Mikp/s)

100

| ISR SRS R O SRRSO FUUURRR RSO SRS SRU e

C, 3-neslad kbops (Sun oo, ull opi.)

0 i i i i i i i
Q 100 200 00 400 500 &00 700 a00
N

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Slide: James Demmel UCB

Note on Matrix Storage

» A matrix is a 2-D array of elements, but memory addresses are “1-D”

» Conventions for matrix layout
- by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
- by row, or “row major” (C default) A(i,j) at A+i*n+jColumn major matrix in memory

- recursive (later)

Column major Row major>

0| 5([10]15 0Ol 1|23 ‘
1 (6 |11]16 4 | 5|16 |7

2 | 7 (12|17 819 [10] 11

3 | 8 [13]|18 12 13|14 | 15 I |
4 | 9 [14]19 16 | 17 | 18 | 19 ‘

1. I

_ cachelines Blue row of matrix is
> Column major (for now) stored in red cachelines

Slide: James Demmel UCB Figure source: Larry Carter, UCSD

THE UNIVERSITY OF

SYDNEY Using a Simple Model of Memory to Optimize

» Assume just 2 levels in the hierarchy, fast and slow

» All data initially in slow memory

m = number of memory elements (words) moved between fast and slow memory

t,, = time per slow memory operation Computational

f = number of arithmetic operations Intensity: Key to
_ . _ _ algorithm efficiency
te = time per arithmetic operation <<t

- |g = f/m average number of flops per slow memory access

» Minimum possible time = f* t; when all data in fast memory

» Actual time

Machine
- PRt m * ot =% 6 (1 4 t/te *’ 1/q) Balan’ce'
Key to
_ . . machine
» Larger ¢ means time closer to minimum f * t; efficiency

- g = t,/tr needed to get at least half of peak speed
Slide: James Demmel UCB

Warm up: Matrix-vector multiplication

{implements y =y + A*x}
fori=1:n
forj=1:n
y(i) = y(i) + Ai,))*x()

y(i) y(i) x(:)

Slide: James Demmel UCB

5% | THE UNIVERSITY OF

SYDNEY Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
fori=1:n
{read row i of A into fast memory}
forj=1:n
y(i) = y(i) + Ai.j)"x()
{write y(1:n) back to slow memory}

« m = number of slow memory refs = 3n + n?
« f = number of arithmetic operations = 2n?
eq =f/m=2

» Matrix-vector multiplication limited by slow memory speed

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Modeling Matrix-Vector Multiplication

» Compute time for nxn = 1000x1000 matrix

> Time
- fFtetm*t =%t * (1 +t/tr * 1/q)
- =2*%n2 * t;* (1 + t,/te* 1/2)
» For t; and t,,, using data from R. Vuduc’ s PhD (pp 351-3)
- http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

- For t,,use minimum-memory-latency / words-per-cache-line

Clock Peak Mem Lat (Min,Max) Linesize |t_m/t f]
MHz Mflop/s cycles Bytes machine
Ultra 2i 333 667 38 66 16 24.8 ba’ancf
Ultra 3 900 1800 28 200 32 14.0 Llr:t“; et
Pentium 3 500 500 25 60 32 6.3| go g0
Pentium3N\ 800 800 40 60 32 10.0] 4, Coak
Power3 375 1500 35 139 128 8.8 speed)
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36.0
ltanium?2 900 3600 11 60 64 5.5

Slide: James Demmel UCB

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

Simplifying Assumptions

» What simplifying assumptions did we make in this analysis?

- Ignored parallelism in processor between memory and arithmetic within the
processor

- Sometimes drop arithmetic term in this type of analysis
- Assumed fast memory was large enough to hold three vectors

- Reasonable if we are talking about any level of cache

- Not if we are talking about registers (~32 words)
- Assumed the cost of a fast memory access is 0

- Reasonable if we are talking about registers

- Not necessarily if we are talking about cache (1-2 cycles for L1)
- Memory latency is constant

» Could simplify even further by ignoring memory operations in X and Y
vectors

- Mflop rate/element =2/ (2* t; + t,)

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Validating the Model

» How well does the model predict actual performance?
- Actual DGEMV: Most highly optimized code for the platform
» Model sufficient to compare across machines

» But under-predicting on most recent ones due to latency estimate

1400 [| F-’redic.:ted MFLOP
(ignoring x,y)

1200 m Pre DGEMV Mflops
1000 (with x,y)

o m Actual DGEMV

g 800 (MFLOPS)

™

=

Ultra 2i Ultra3 Pentium 3 Pentium3M Power3 Power4 [tanium1 [tanium2

Slide: James Demmel UCB

Naive Matrix Multiply

{implements C = C + A*B}

fori=1ton
forj=1ton
fork=1ton

C(i,j) = C(i,j) + A(i.k) " B(k,))

Algorithm has 2*n3 = O(n3) Flops and operates on
3*n2 words of memory

q potentially as large as 2*n3/ 3*n2 = O(n)

C(i,) C(i,) Ai.2)
[] I B(..j)

I
+

Slide: James Demmel UCB

Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,j) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(i,j) = C(i,j) + Ai.k) ™ B(k,))
{write C(i,j) back to slow memory}

C(i.j) C(i,j) Ali,2)
[] I B(.,j)

I
+

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Naive Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n’ to read each column of B n times
+n? to read each row of A once
+ 2n? to read and write each element of C once
=n3 + 3n?
Soq=f/m=2n?/(n?+ 3n?)
~ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B
Similar for any other order of 3 loops

C(i,) C(i,) Ai.2)
O O I B(.)

I
+

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY

Matrix-multiply, optimized several ways

N x N Matriz Muliply [JH@—1/170]
a00 . r
250 |-
200 -1
w
g
=
§150_J...,...............................,................;................ -
m
E
5
o
o
100 B R e R R -
7 ISR S eveeenas R IO RSSO SRR AR SR S i
C, 3-nesad bops (Sun oc, full gpi.)
o i i i i i i i
0 100 200 200 400 500 600 700 800

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Slide: James Demmel UCB

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n/Nis
called the block size

fori=1to N
forj=1to N

{read block C(i,j) into fast memory}

fork=1to N
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,)) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

C(i.j) C(i,j) A(ik)
| H | .

I
+

m Bk

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Blocked (Tiled) Matrix Multiply

Recall:

m is amount memory traffic between slow and fast memory

matrix has nxn elements, and NxN blocks each of size bxb

f is number of floating point operations, 2n3 for this problem

g =f/ mis our measure of algorithm efficiency in the memory system
So:

m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2=N*n2)
+ N*n2 read each block of A N3 times
+ 2n2 read and write each block of C once

= (2N +2) * n2

So computational intensity g =f/ m =2n3/ ((2N + 2) * n?)
~n/N=Db forlargen

So we can improve performance by increasing the blocksize b

Can be much faster than matrix-vector multiply (q=2)

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Using Analysis to Understand Machines

The blocked algorithm has computational intensity g = b
» The larger the block size, the more efficient our algorithm will be

» Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot
make these blocks arbitrarily large

» Assume your fast memory has size M

3b2< My, SO = b < (Mge/3)2 required
t mitf KB

* To build a machine to run matrix multiply at Ultra 2i 24 .8 14.8
1/2 peak arithmetic speed of the machine, Ultra 3 14 4.7
we need a fast memory of size Pentium 3 6.25 0.9
Miast = 3b? = 392 = 3(t,/t)? Pentium3M 10 2.4
- This size is reasonable for L1 cache, but not Power3 8.75 1.8
for register sets Power4 15 5.4
ltanium1 36 31.1

- Note: analysis assumes it is possible to

i i ltanium?2 5.5 0.7
schedule the instructions perfectly anium

Slide: James Demmel UCB

THE UNIVERSITY OF

SYDNEY Limits to Optimizing Matrix Multiply

» The blocked algorithm changes the order in which values are accumulated into
each CJi,j] by applying commutativity and associativity

- Get slightly different answers from naive code, because of roundoff - OK

» The previous analysis showed that the blocked algorithm has computational
intensity:

q ~ b < (Mfast/3)1/2

» There is a lower bound result that says we cannot do any better than this (using
only associativity)

» Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that
uses only associativity) is limited to g = O((M;.)"?)

- #words moved between fast and slow memory = Q (n3/ (M,1)12)

Slide: James Demmel UCB

THE UNIVERSITY OF

SIS What if there are more than 2 levels of memory?

> Need to minimize communication between all levels
- Between L1 and L2 cache, cache and DRAM, DRAM and disk...
» The tiled algorithm requires finding a good block size
- Machine dependent
- Need to “block” b x b matrix multiply in inner most loop
- 1 level of memory = 3 nested loops (naive algorithm)
- 2 levels of memory = 6 nested loops
- 3 levels of memory = 9 nested loops ...

» Cache Oblivious Algorithms offer an alternative
- Treat nxn matrix multiply as a set of smaller problems
- Eventually, these will fit in cache

- Will minimize # words moved between every level of memory hierarchy — at least
asymptotically

Slide: James Demmel UCB

5% | THE UNIVERSITY OF

SYDNEY

Summary

» Described a way to think about computation and memory — computational
intensity

» Introduced the concept of blocking to increase computational intensity

Review Exercises

» Explain in your own words:
- Computational intensity

» Do a similar analysis computational intensity analysis for a different algorithm
e.g. FFT

57

An FPGA Delay Model

58

A Detailed Delay Path Model for FPGAs

This work based on a paper at FPT09 [1]
Eddie Hung', Steven J. E. Wilton',

Haile Yu?, Thomas C. P. Chau?, Philip H. W. Leong?

' Department of ECE, University of British Columbia

2 Department of CSE, Chinese University of Hong Kong
)
" Now with School of Electrical and Information Engineering, University of
Sydney

yFunded by NSERC of Canada and RGC of HKSAR

THE UNIVERSITY OF
weas) SYDNEY

Overview

Circuit OO0 0o oo
Process Parameters FPGA O &l
Technology Architecture O LC Ve LC &

Parameters Parameters
& []
‘ & LC LC T e u
: = i)
This model

i LE LC e il
E]

0 0T O OO0 O T

Physical Delay Estimate
Compared to previous models:

. Simpler, closed-form, equally accurate

60

Motivation: FPGA Design

Important when designing FPGA architectures:

. Need methods to estimate their performance
ahead of time

. Two different ways of investigating new architectures:

- Analytical Models (our approach)

. Experimental Techniques

61

THE UNIVERSITY OF

SYDNEY Motivation: FPGA Design

Existing FPGA design approach:

. lteratively change details and experimentally measure improvement using

benchmarks
Sweep next <
variable
Experiments
\ 4
New CAD (e.q. VPR) _
Architecture » Benchmark —» B —— Satisfactory?
A
« Problems:

. Slow and resource-hungry

» Lack of intuition and insight into why

62

Motivation: Analytical Models

New paradigm emerging: Analytical Modelling

. Capturing the essence of programmable logic
in a set of simple equations

63

Motivation: Analytical Models

- Why analytical modelling?

. Faster

. Allow early exploration of radical architectures

. What makes a good model?
- Analytical — not rely on curve fitting
. Simple — more insight into architectural trade-offs

. Circuit Independent — capturing average behaviour

64

THE UNIVERSITY OF

DU Where this work fits in
FPGA Architecture Netlist
Delay Model: Parameters Parameters
. Logical delay model [Das et al]
presented by Il l
Das et al. at FPL 2009 [2] Tech-Mapping
model
Depth in
LE I
> vV Vv
Clustering
model
Depth in
LCs

65

THE UNIVERSITY OF

SYDNEY

Where this work fits in

FPGA Architecture Netlist

Delay Model: Parameters Parameters
« Logical delay model [Das et al.]

presented by ! T

Das et al. at FPL 2009 [2] Tech-Mapping
« This paper: model

Depth in
A model which LEs _l Iy

relates logical delay Clustering
to physical delay model
Depth in
LCs

Process Technology
Parameters

Wirelength

Physical Delay

66

Motivation: Analytical Models

« Can the models from the experimental flow
be re-used for the analytical flow?

. Requires routing/timing graphs

. Lack of delay model for logic cluster

67

What makes deriving this model hard?

. Would like our model to be:
. Flexible, coping with range of modern architectures
. Accurate
« Closed-form

. Fast
- But complex interactions exist between FPGA architecture and circuit

implementation:

. e.g. Buffer sizes change depending on loading

68

Circuit Assumptions
and Delay Model

Circuit Assumptions

. Island-Style FPGA

« 2-D array of Logic Clusters surrounded by a
Global Interconnect of routing tracks

. Delay model broken down into:
. Local Routing Delay:
. Logic Element Delay:

« Global Interconnect Delay:

70

THE UNIVERSITY OF

SYDNEY Logic Cluster: T, and T

logic

»Collection of logic elements accessed through a local routing network with a
shared set of inputs

e . | Logic Cluster N
B = A/PINT]
A
s 7 OPIN
E LC Fo- LC] IPIN Logic Element
il [
IPIN o . [OPIN
E] LC LC LC | | {2 Local Logic Element
B] ping | ROUting
LC LC LC ‘
- B Vieng B OPIN
E] Logic Element
[0 N I D I I I \J
Island-Style FPGA > = .

“local “"logic

71

5% | THE UNIVERSITY OF

SYDNEY

Global Interconnect: T iobal

»Composed of horizontal/vertical tracks and Connection/Switch Boxes

SB CBI SB CB| SB
0 i 0 i
cB| | Lc [|ecB[] Lc | |cB

global

72

= SYDNEY Delay Model: How it fits together

Expected number of LCs Expected number of LEs
on critical path on critical path

/
crlt - d 1 global +d (local +Tzogic)

AN AN

Critical Path Function of the
Delay expected wirelength
between LCs

73

Circuit Assumptions: Logic Element

« Lookup table with D flip-flop and bypass mux

'\
K-input |— —|—|/'
I LUT DFF

Architecture View

LE

E-

LUT

S .

DFF + mux

y

N

Circuit View
74

5 SYDNEY

=
E‘E

e
C
D
=

9

LLI

9
(@)
O

—
%)
C

O

-
Q.
=
-
(/p)
/p)

<

=
-
&)
=
@)

»*

RC Network View

Logic Path

IPIN

>

Local Routing

Circuit View

Circuit Assumptions

. Local Routing

- D1 | D2 , D3
| |
| |
T |
| . B | |
| ! = -] ! |
—t— HBig ke 2
| | s> |
: | /~ [: Big
i I I |
|
I I —E I :
: : Rinv/BIc : :
: inv : Rpt Rpt :Rsn :
[[l [
| l — | |
g L 3 LEd
[[l [
[C : Co Ca Czs: Cs
| |
I p1 ! D2 , D3 |

RC Network View

76

THE UNIVERSITY OF

SYDNEY Global Interconnect Delay

yFurther divided into:

SB CB SB CB SB
cB| | Lc [|cB| | Lc [| CcB
i Switch Box
Cluster to ¥y = ¥ s to Cluster
Switch Box
s eB CB
Switch Box to Switch Box to

Switch Box Switch Box 77

Circuit Assumptions: Cluster-Switch

« Single-Driver Routing

i
Cluster Driver L»\ , SB \-r/
----- — VWA
o—] >-| > -] | I: [: I
OPIN o Wire Driver)

> v v

A
.
O
(11

~ ¥

N SB Switch Box

Circuit View
78

D5
AN
_[>
N

i
@)
=
=
)
o
()
e
7p)
=
@)
0
C
i)
-
Q.
=
-
(/p)
/p)
<
=
-
@)
—
@)

[a)
[}
€
e]
B n
- = 1 VC
Q £
> a
@) _I<<<<
x nf --—-—-—-——m7>"7—————
@) n 3 || N
@ arii DO <
'z > D_
.M RI
=S R P .
@] S m M
g Fhvw DS g
o
0
3
O

SYDNEY

T
*

* BE »
L 3

79

RC Network View

THE UNIVERSITY OF

SYDNEY Global Interconnect Delay

o Similarly for and

« Combining them:

LC _>SB_>SB »SB_>CB_> LC

NN N

Tglobal —]-;luster—switch T f (WL) Y;Witch—switch T 7Ts*witch—cluster

80

Optimal Buffer Sizing

« RC values depends on buffer sizing

. Using equations: differentiate to find optimal size

Local Interconnect
D2

\7
NMe: VWM. /
:M%E:
|

- C, TGy, TG,
’ 0.69C

|
| | I

: R|nv/BIc : : .

inv : Rpt Rt : Rsn | g’lnv

|
| | [
| | [
g L L LE L
| | [
C, : Co Ca 23: Cs i
|
D1 D2 '\ D3 |

RC Network View 51

Model Validation

82

Model Validation: Methodology

« Analytical Model

4 4
For all variables For all variables

l

—» For all buffer sizes

v l

Construct deck
Run HSPICE

Apply Model

83

Model Validation:

Delay

Cluster Size 4
S 2 5 3 Lookup Table Size

- K

84

THE UNIVERSITY OF

O
SYDNEY Model Validation: T,

x100 ps

Lookup Table Size, K .

Model Validation: T

global

Wire Segmen.
Length, L 2.4 5 4 Cluster Size

THE UNIVERSITY OF

SYDNEY Model Validation: Previous Work

« Consistent with previous methods

. But orders of magnitude faster

Experimentally Derived

Our Model Ahmed et al. Our HSPICE
2 253 221 267

4 286 301 208
10 361 337 362
Tioca (PS) for K=4 at 0.18um

87

5% | THE UNIVERSITY OF

SYDNEY

Model Applications

(1) Speeding up FPGA architecture design

(2) In conjunction with experimental techniques

. Generate delays for use in VPR architecture files

(3) Gain additional insight into FPGAs

88

Application: Experimental Techniques

- VPR does not have a parameterised delay model for T _,, and Tlogic

. Physical delays currently specified per-architecture

« Can use our model to generate realistic delays

— FPGA Architecture —
Parameters

\ 4

A 4
This Delay Architecture

— ———= VPR

Model File

89

5% | THE UNIVERSITY OF

SYDNEY Application: Gaining Insight

. Abstract away technology parameters

. Leaving behind a 'distilled' expression with architecture parameters only:

~ A, +A~2N+K+NK + A, NK

- Not possible using experimental techniques

local

. Interesting insight:

N has about the same effect on delay as K

90

Conclusion

« Circuit-level description of FPGA presented

. Simple yet accurate delay model derived

. Future directions:

. Incorporate more recent architectural developments
. Investigate effects of process technology scaling

. Develop associated area model to explore tradeoffs

91

THE UNIVERSITY OF
weas) SYDNEY

References

[1] Eddie Hung, Steven J. E. Wilton, Haile Yu, Thomas C. P. Chau, and Philip H.W.
Leong. A detailed delay path model for FPGAs. In Proc. International Conference
on Field Programmable Technology (FPT), pages 96—-103, 2009.

[2] Joydip Das, Andrew Lam, Steven J.E. Wilton, Philip Leong, and Wayne Luk. An
analytical model relating FPGA architecture to logic density and depth. IEEE
Transactions on VLSI Systems, 9(12):2229-2242, 2011.

92

