FPGA-based Implementations of Machine Learning Algorithms and the EPIC Approach

Philip Leong (梁恆惠) | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Machine learning
 - Nanoscale interfaces

Motivation – Embedded ML

- Systems of the future can use FPGA-based ML to interpret and process data adaptively in real-time
 - > Offer new capabilities
 - > e.g. trigger oscilloscope or spectrum analyzer on an anomaly
 - > e.g. battery power, high data rates, supercomputer performance in small form factor
- > There are many applications that could benefit
 - > test equipment
 - > network monitors
 - > prognostics and health management

Throughput and Latency

Challenges in measurement and control are becoming feasible

- Significant improvements in ML algorithms but cannot keep up with sources e.g. hyperspectral imager or wireless transceiver
- Need extremely high throughput

Improvements in throughput and latency enable new applications!

- In control applications we need low latency e.g. triggering data collection in Large Hadron Collider
- > Need very low latency

- FPGAs offer an opportunity to provide ML algorithms with higher throughput and lower latency through
 - Exploration– easily try different ideas to arrive at a good solution
 - Parallelism so we can arrive at an answer faster
 - Integration so interfaces are not a bottleneck
 - Customisation problem-specific designs to improve efficiency
- > Describe our work on implementations of ML that use these ideas

- > Exploration (Online kernel methods)
- > Parallelisation
- Integration
- > Customisation

Examples are KLMS and KRLS

THE UNIVERSITY OF

- Traditional ML algorithms are batch based
 - Make several passes through data
 - Requires storage of the input data
 - Not all data may be available initially
 - Not suitable for massive datasets

- > Our approach: online algorithms
 - Incremental, inexpensive state update based on new data
 - Single pass through the data
 - Can be high throughput, low latency

Mapping to a Feature Space

Input Space

Feature Space

1

- Choose high dimensional feature space (so easily separable)
- > Use kernel trick to avoid computing the mapping (fast)
- > Do regression/classification using

$$f(x_i) = \sum_{j=1}^N \alpha_j \kappa(x_i, v_j)$$

Kernel Methods Scaling

- In conventional kernel methods, computation and memory O(Nd)
 - N is dictionary size, d is input vector dimension
- > BUT... N scales linearly with the dataset size

Random Kernel Expansions

Exact Kernel Methods

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i \mathbf{\kappa}(\mathbf{x}, \mathbf{d}_i)$$

Random Kitchen Sinks

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i \mathbf{z}(\mathbf{x})$$

$$\mathbf{z}(\mathbf{x}) = \frac{1}{\sqrt{n}} \cos(\mathbf{W} \mathbf{x})$$

** Only for k(x,x') = k(x-x',0)

Define z(x):

- Approximates $\kappa(x, x')$
- Matrix-Vector + Non-Linear Activation (just like Multilayer Perceptron)
- W is fixed and random

Fastfood

 Computes z(x) really quickly by replacing Wx with combinations of Diagonal and Hadamard matrices

$$z(x) = \frac{1}{\sqrt{n}} \cos(Vx), \text{ where } Vx = [V_0x, V_1x, \dots, V_jx]$$
$$V_jx = SHGPHBx$$

** Each V_ix is an independent dxd transform

Architecture

- Hierarchical Systolic Array
- Linear combination of n basis functions, distributed across p PEs

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i \mathbf{z}(\mathbf{x}) = \sum_{i=1}^{h} \sum_{i=1}^{b} \sum_{i=1}^{k} \alpha_i \mathbf{z}(\mathbf{x})$$

Figure 1: A hierarchical block diagram of the Fastfood processor

Kernel Methods

Impl.	d	Ν	Latency (cycles)	Fmax (MHz)	Time (ns)	CPU (ns)	Speed Up
Vector - Flexible (Stratix 5)	8	127	4396	157	28000	141000	5.1x
Pipeline - Throughput (Virtex 7)	8	16	207	314	3.18	940	296x
Braided - Latency (Virtex 7)	8	200	13	127	7.87	4025.8	511x
FASTFOOD - Capacity (Kintex Ultrascale)	8K	90.1K	16930	508	3388	17200	245x
 M – Input dimension 1/Latency N – Dictionary Size (or Sliding Window Size for KRLS) 				NORMA (< 100 ns) Pipelining (> 70 Gbps) Vector (flexibility)			

> Exploration

> Parallelisation (Binarised Neural Network)

- Integration
- > Customisation

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., "FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

(several joules of energy)

Binarized Neural Networks

- > The extreme case of quantization
 - Permit only two values: +1 and -1
 - Binary weights, binary activations
 - Trained from scratch, not truncated FP
- Courbariaux and Hubara et al. (NIPS 2016)
 - Competitive results on three smaller benchmarks
 - Open source training flow
 - Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...

	MNIST	SVHN	CIFAR- 10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

- > Much smaller datapaths
 - Multiply becomes XNOR, addition becomes popcount
 - No DSPs needed, everything in LUTs
 - Lower cost per op = more ops every cycle
- > Much smaller weights
 - Large networks can fit entirely into onchip memory (OCM)
 - More bandwidth, less energy compared to off-chip

Precision	Peak TOP	On-chip weights			
1b	~66		~70 M	\wedge	
8b	~4 1	2	~10 M Z		
16b	~1 00		~5 M	30x	
32b	~0.3		~2 M		

> fast inference with large BNNs

Comparison

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
Ş	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
Ľ	CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
ork	MNIST, <u>Alemdar</u> et al.	97.8%	255.1 k	0.3 W	-	806	-	2
Š	CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
rio	SVHN, <u>TrueNorth</u>	96.7%	2.5 k	0.3 W	-	10	-	1
	Max accuracy 10 – loss: ~3% per			0x better mance		CIFAR-10/S comparable	/HN energy e e to TrueNortl	efficiency h ASIC

- > Exploration
- > Parallelisation
- > Integration (radio frequency machine learning)
- > Customisation

Radio Frequency Machine Learning

- Processing radio frequency signals remains a challenge
 - high bandwidth and low latency difficult to achieve
- Autoencoder to do anomaly detection

Autoencoder

Train so $\tilde{x} \times (\text{done in an unsupervised manner})$

- > Anomaly if distance between autoencoder output and input large
- > FPGA has sufficiently high performance to process each sample of waveform at 200 MHz!
 - This minimises latency and maximises throughput
 - Weights trained on uP and updated on FPGA without affecting inference

Software Defined Radio Architecture

Implemented on Ettus X310 platform

Performance (XC7K410T)

Typical SDR latency >> 1 ms

Module	П	Latency (cycles)	BRAM	DSP	FF	LUT
Windower	1	0	0	0	1511	996
FFT	1	8	0	48	4698	2796
NN	1	17	4	1280	213436	13044
L_2 -Norm	1	4	0	32	1482	873
Thres	1	0	0	0	3	21
Weight Update	258	257	0	0	21955	4528
Inference (FFT+NN)	1	37	1068	1360	241522	45448
Inference (NN)	1	29	1068	1312	236824	42652
Total	N/A	N/A	1068	1360	263477	49976
Total Util.	N/A	N/A	67%	88%	51%	19%

Operation	Throughput	Latency
Inference(FFT+NN)	5ns	185ns
Inference(NN)	5ns	105ns
Weight Update	1290ns	1285ns

- > Exploration
- > Parallelisation
- Integration
- > Customisation (Matrix Multiplication on Intel Harp v2)

A C++ API and hardware template GEMM on (Xeon+FPGA) Harp v2

API and Tunable Options

void gemm(trans a, trans b, int m, int n, int k, float alpha, float* a, int lda, float* b, int ldb, float beta, float* c, int ldc);

```
template < typename T1, typename T2>
fpga_gemm < T1, T2 >:: fpga_gemm(
uint32_t a_rows, unit32_t b_cols, unit32_t common,
uint32_t i_a_lead_interleave,
uint32_t i_b_lead_interleave,
uint32_t i_feeder_interleave,
float i alpha, float i beta, GEMM MODE i mode);
```

Parameters	Туре	Options
Systolic Array Size (Sec. 4)	C	*Logic & Memory Limited
Precision (Sec. 4.1)	С	FP32, INT16, INT8, INT4, Ternary, Binary
Accumulator Width (Sec. 4.1)	С	*Logic & Memory Limited
Interleaving (Sec. 4.2)	C&R	*Memory Limited
Fused Ops (Sec. 5.1)	C&R	Scaling, Batch Norm, Clip, Rounding, ReLU

Hardware Template

System Interface

(a) Software and Hardware Stack

(b) Intel HARPv2 Platform

 Apply blocking and interleaving to maximise data reuse (2.7-4x improvement for neural networks)

- Fused operations allow bandwidth and CPU post-processing workload to be reduced
- Dynamic dot product allows switching between types at runtime e.g. binbin and fp32-fp32, avoiding transfers

(a) Fused Operations

(b) Dynamic Dot Product Switching

Matrix Multiplication Performance

Mixed Precision Inference and Training

Louron	Lo	cation	Туре			
Layer	Forward Backward		Forward	Backward		
		•••	•••	•••		
conv	FPGA	FPGA+CPU	BINxBIN	FPxBIN		
c&r	FPGA	N/A	INT	STE		
relu	FPGA	FPGA+CPU	INT	FP		
norm	FPGA	CPU	FP	FP		
pool	CPU	CPU	FP	FP		
	•••					
fc	CPU	CPU	FPxFP	FPxFP		
prob	CPU	CPU	FP	FP		

BNN Inference and Backprop Peak Performance

Impl.	BINxBIN (TOPs)	FPxFP (TFLOPs)	FPxBIN (TFLOPs)	Forward (ms)	Backward (ms)	Total (ms)
SW	-	-	-	421	471	892 (1x)
(1) (2) (3) (2H)	40.77 25.4 25.4 25.4 25.4	0 0.8 0 1.4	0 0.8 0.88 1.4	158 (F) 164 (F) 165 (F) 163 (F+C)	471 (C) 537 (F) 502 (F) 369 (F+C)	630 (1.41x) 702 (1.23x) 668 (1.33x) 533 (1.67x)

Where possible, the operation was performed on the FPGA (F), the 14 core CPU (C) or using heterogeneous load balancing (F+C).

(1) a single BINxBIN, (2) a BINxBIN and FPxFP, (2H) a version of (2) that performs the FPxFP GEMM utilizing heterogeneous load balancing and finally (3) a BINxBIN and FPxBIN.

BNN Inference Performance

Dorrigo	FPGA					GPU			
Device	TOPs	GOPS/W	IPS	IPS/W	T	OPS	GOPs/W	IPS	IPS/W
AlexNet	31.54	657.27	1610	33.54	37	.60	568.09	1626	25.02
VGGNet	31.18	649.67	114	2.39	35	.85	522.59	121	1.78
		[26]	[11]			[21]		Our Work	
Platform		Zynq z704	5 K	ntex US KU	115	Arri	a 10 GX1150	Arria	10 GX1150
Logic Elem	ents (LEs)	350K	1,	451K		1,15	0K	1,150K	-
Power (W)		11.3	41			-		48	
TOPs (Peal	k)	11.612	14	8		25		40.77	
MOPs / LE		33.17	10	.19		-		35.45	
GOPs / Wa	ltt	1027.68	36	0.97		-		849.38	

- > Exploration (Online kernel methods)
- > Parallelisation
- Integration
- > Customisation

Conclusion

THE UNIVERSITY OF

 Kernel methods optimised using different algorithms, mathematical techniques, computer architectures, arithmetic

> Parallelism

- Increase parallelism by reducing precision
- Keep weights on-chip to devote more hardware to arithmetic

Integration

 In radio frequency, this allows latency to be reduced by 4 orders of magnitude

Customisation

 Supplement conventional matrix multiplication to support DNN implementation

- FPGAs can greatly assist with the implementation of intelligent sensing
 - > Learning & inference at 70 Gbps
 - Learning & inference with 100 ns latency
 - Image processing @ 12.3 Mfps
 - > Multimodal measurements
- > Radio frequency anomaly detector
 - We are using this to predict physical and media access layer protocols
 - Could also be used as a novel diagnostic instrument - monitor RF output of electronic equipment, detect anomalies

Open Source Materials

- > LSTM using HLS tutorial
 - <u>https://github.com/phwl/hlslstm</u>
- > Kernel methods code e.g. braiding
 - <u>https://github.com/da-steve101/chisel-pipelined-olk</u>
- > FINN can do trillions of binary operations per second
 - https://github.com/Xilinx/BNN-PYNQ

(all available from http://phwl.org/papers/)

- [E] Sean Fox, David Boland, and Philip H.W. Leong. <u>FPGA Fastfood a</u> <u>high speed systolic implementation of a large scale online kernel method</u>. To appear FPGA18.
- [P] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vissers. <u>FINN: A framework</u> for fast, scalable binarized neural network inference. In *Proc. FPGA*, pages 65–74, 2017. Source code available from <u>https://github.com/Xilinx/BNN-PYNQ</u>. (doi:10.1145/3020078.3021744)
- > [I] Anomaly detector (unpublished but preprint available)
- > [C] Duncan Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak, Chris Johnson, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit Subhaschandra, and Philip H.W. Leong. <u>A customizable matrix</u> <u>multiplication framework for the intel HARPv2 platform</u>. To appear *FPGA*18.

Thank you!

Philip Leong (philip.leong@sydney.edu.au) http://www.sydney.edu.au/people/philip.leong