
FPGA-based Implementations of
Machine Learning Algorithms and the
EPIC Approach

Philip Leong (梁恆惠) | Computer Engineering Laboratory
School of Electrical and Information Engineering,

The University of Sydney

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using VLSI, FPGA and

parallel computing technology

› Research
- Reconfigurable computing

- Machine learning

- Nanoscale interfaces

2

Motivation – Embedded ML

› Systems of the future can use FPGA-based ML to interpret and process data
adaptively in real-time
› Offer new capabilities

› e.g. trigger oscilloscope or spectrum analyzer on an anomaly

› e.g. battery power, high data rates, supercomputer performance in small form factor

› There are many applications that could benefit

› test equipment

› network monitors

› prognostics and health management

3

Throughput and Latency

› Significant improvements in ML
algorithms but cannot keep up with
sources e.g. hyperspectral imager or
wireless transceiver

› Need extremely high throughput

› In control applications we need low
latency e.g. triggering data collection in
Large Hadron Collider

› Need very low latency

4

Challenges in measurement and control are becoming feasible

Improvements in throughput and
latency enable new applications!

Motivation for using FPGAs

› FPGAs offer an opportunity to provide ML algorithms with higher
throughput and lower latency through
- Exploration– easily try different ideas to arrive at a good solution

- Parallelism – so we can arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to improve efficiency

› Describe our work on implementations of ML that use these ideas

5

› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC

Online Kernel Methods

› Traditional ML algorithms are batch
based
- Make several passes through data

- Requires storage of the input data

- Not all data may be available initially

- Not suitable for massive datasets

› Our approach: online algorithms
- Incremental, inexpensive state

update based on new data

- Single pass through the data

- Can be high throughput, low latency

Examples are KLMS and KRLS

Universal
Approximator

Σ
-

+

Streaming
inputs xi

Prediction

yi

Modify
weights

7

Mapping to a Feature Space

› Choose high dimensional feature space (so easily separable)
› Use kernel trick to avoid computing the mapping (fast)
› Do regression/classification using

8

Kernel Methods Scaling

› In conventional kernel methods, computation and memory O(Nd)
- N is dictionary size, d is input vector dimension

› BUT… N scales linearly with the dataset size

9

Random Kernel Expansions

10

Fastfood

11

Architecture

12

Kernel Methods

› M – Input dimension
› N – Dictionary Size (or Sliding Window

Size for KRLS)

Impl. d N Latency
(cycles)

Fmax
(MHz)

Time
(ns)

CPU
(ns)

Speed
Up

Vector - Flexible
(Stratix 5)

8 127 4396 157 28000 141000 5.1x

Pipeline - Throughput
(Virtex 7)

8 16 207 314 3.18 940 296x

Braided - Latency
(Virtex 7)

8 200 13 127 7.87 4025.8 511x

FASTFOOD - Capacity
(Kintex Ultrascale)

8K 90.1K 16930 508 3388 17200 245x

1/Latency

Throughput

Pipelining
(> 70 Gbps)

Vector (flexibility)

NORMA (< 100 ns)

Fastfood (capacity)

› Exploration
› Parallelisation (Binarised Neural Network)
› Integration
› Customisation

EPIC

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural
network inference,” FPGA’17

Binarized Neural Networks

› The extreme case of quantization
- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS
2016)
- Competitive results on three smaller

benchmarks

- Open source training flow

- Standard “deep learning” layers

- Convolutions, max pooling, batch norm, fully
connected…

16

MNIST SVHN CIFAR-
10

Binary weights &
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy
loss

-0.2% -0.84% -2.53%

% classification error (lower is better)

Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy
compared to off-chip

› fast inference with large BNNs

17

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG
On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS

~66

~4

~1

~0.3

200x

Comparison

18

› Exploration
› Parallelisation
› Integration (radio frequency machine learning)
› Customisation

EPIC

Radio Frequency Machine Learning

› Processing radio frequency
signals remains a challenge
- high bandwidth and low latency

difficult to achieve

› Autoencoder to do anomaly
detection

20

Autoencoder

21

Train so x x (done in an unsupervised manner)

X1
0

X1
1

X1
2

X2

0

X2

1

X5

0

X5

1

X5

2

X4

0

X4

1

X3

0

w1
00

w0
01

w1
10

w1
11

w1
20

w1
21

w2
00

w2
01

w3
00

w3
01

w4
00

w4
01

w4
02

w4
10

w4
11

w4
2

b1 b2 b3 b4

X0

X1

X2

X0

X1

X2

~

~

~

~

Autoencoder learns “normal” representation

› Anomaly if distance between autoencoder output and input large
› FPGA has sufficiently high performance to process each sample of

waveform at 200 MHz!
- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference

22

Software Defined Radio Architecture

23

Implemented on Ettus X310 platform

Radio Core Autoencoder
(Optional FFT)

Crossbar

Ingress/Egress Interface

Hardware Driver

H
os

t
PC

FP
G

A

Autoencoder
training

I/Q samples

Autoencoder
Parameters (W, b)

Anomaly/Normal (can
be used by FPGA or PC)

Example

24

Performance (XC7K410T)

25

Typical SDR latency >> 1 ms

› Exploration
› Parallelisation
› Integration
› Customisation (Matrix Multiplication on Intel Harp v2)

EPIC

Customizable Matrix Multiplication Framework

A C++ API and hardware template GEMM on (Xeon+FPGA) Harp v2

API and Tunable Options

28

Hardware Template

29

System Interface

30

Interleaving

› Apply blocking and interleaving to maximise data reuse (2.7-4x
improvement for neural networks)

31

Fused Operations for DNNs

› Fused operations allow bandwidth and CPU post-processing workload to
be reduced

› Dynamic dot product allows switching between types at runtime e.g. bin-
bin and fp32-fp32, avoiding transfers

32

Matrix Multiplication Performance

33

Mixed Precision Inference and Training

34

BNN Inference and Backprop Peak Performance

(1) a single BINxBIN, (2) a BINxBIN and FPxFP, (2H) a version of (2) that performs the FPxFP
GEMM utilizing heterogeneous load balancing and finally (3) a BINxBIN and FPxBIN.

35

BNN Inference Performance

36

› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC

Conclusion

› Exploration
› Kernel methods optimised using different

algorithms, mathematical techniques,
computer architectures, arithmetic

› Parallelism
› Increase parallelism by reducing precision
› Keep weights on-chip to devote more

hardware to arithmetic
› Integration

› In radio frequency, this allows latency to be
reduced by 4 orders of magnitude

› Customisation
› Supplement conventional matrix

multiplication to support DNN
implementation

› FPGAs can greatly assist with the
implementation of intelligent sensing

› Learning & inference at 70 Gbps

› Learning & inference with 100 ns
latency

› Image processing @ 12.3 Mfps

› Multimodal measurements

› Radio frequency anomaly detector

› We are using this to predict physical and
media access layer protocols

› Could also be used as a novel
diagnostic instrument - monitor RF
output of electronic equipment, detect
anomalies

38

Open Source Materials

› LSTM using HLS tutorial
› https://github.com/phwl/hlslstm

› Kernel methods code e.g. braiding
› https://github.com/da-steve101/chisel-pipelined-olk

› FINN - can do trillions of binary operations per second
› https://github.com/Xilinx/BNN-PYNQ

39

References

› [E] Sean Fox, David Boland, and Philip H.W. Leong. FPGA Fastfood - a
high speed systolic implementation of a large scale online kernel method.
To appear FPGA18.

› [P] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A framework
for fast, scalable binarized neural network inference. In Proc. FPGA,
pages 65–74, 2017. Source code available
from https://github.com/Xilinx/BNN-PYNQ.
(doi:10.1145/3020078.3021744)

› [I] Anomaly detector (unpublished but preprint available)
› [C] Duncan Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak,

Chris Johnson, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit
Subhaschandra, and Philip H.W. Leong. A customizable matrix
multiplication framework for the intel HARPv2 platform. To appear
FPGA18.

40

(all available from http://phwl.org/papers/)

Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://www.sydney.edu.au/people/philip.leong

