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Abstract

Although speech is the most natural means for communication among humans,

there are situations in which speech is impossible or inappropriate. Examples in-

clude people with vocal cord damage, underwater communications or in noisy en-

vironments. To address some of the limitations of speech communication, non-

acoustic communication systems using surface electromyogram signals have been

proposed. However, most of the proposed techniques focus on recognizing or clas-

sifying the SEMG signals into a limited set of words. This approach shares sim-

ilarities with isolated word recognition systems in that periods of silence between

words are mandatory and they have difficulties in recognizing untrained words and

continuous speech.

A method for synthesizing speech from surface electromyogram (SEMG) sig-

nals in a frame-by-frame basis is presented. The input SEMG signals of spoken
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words are blocked into frames from which SEMG features were extracted and clas-

sified into a number of phonetic classes by a neural network. A sequence of phonetic

class labels is thus produced which was subsequently smoothed by applying an error

correction technique. The speech waveform of a word is then constructed by con-

catenating the pre-recorded speech segments corresponding to the phonetic class

labels. Experimental results show that the neural network can classify the SEMG

features with 86.3% accuracy, this can be further improved to 96.4% by smoothing

the phonetic class labels. Experimental evaluations based on the synthesis of eight

words show that on average 92.9% of the words can be synthesized correctly. It is

also demonstrated that the proposed frame-based feature extraction and conversion

methodology can be applied to SEMG-based speech synthesis.
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Chapter 1

Introduction

1.1 Motivation

Speech is the most natural way of communication among humans. The speech

production process involves the contraction of the lungs, the vibration of the vocal

cords and the resonance of the air stream in the vocal tract. Unfortunately, there

are situations in which communication through speech is impossible or inappropri-

ate. For example, people suffering from the side effect of laryngectomy surgeries

or vocal cord damage are not able to produce normal speech because the vocal cord

vibration plays a vital role in the speech production process; and speech production

can be problematic in some physical environments such as underwater. Moreover,

speech communication can also be affected by a number of factors. For instance,

background noise can degrade the quality of the produced speech, and results in

poor intelligibility. The performance of conventional speech recognition systems

can be degraded drastically in a noisy environment such as in restaurants, factories,

or trains. In addition, communication through speech is undesirable in some situa-

tions such as when very high privacy is desirable. For example, in the military or

some public places that require silence, e.g. in theaters or libraries.

To address some of these limitations, many solutions have been proposed. To

help the people without vocal cords, using a keyboard as input interface, the typed

text can be transformed into speech by conventional text-to-speech systems [AHK+87];

1
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another method is to use a prosthetic device to simulate the vibration of the vocal

cord, e.g. an electrolarynx [GHK+04], which is a battery powered handheld de-

vice, that can transmit a humming sound to the throat or mouth. For such a device,

training is required and the produced speech is robotic. Non-acoustic communica-

tion systems that recognizing speech without using acoustic signals have also been

proposed. Rather than using acoustic signals to perform recognition, alternative in-

formation sources are employed. One example of an information sources is through

visual images, where the speech recognition is done based on video images of lip-

rounding [CH97].

Recently, there has been an increased interest in using surface electromyogram

(SEMG) signals [KM96], which are measured muscle activities from the skin sur-

face. SEMG signals have been used to perform speech recognition [CEHL01,

MZ04, KKAB04], supplement conventional speech recognition systems [CEHL02a],

and construct computer-human interfaces [JB05].

Although previously proposed SEMG-based speech recognition systems show

the feasibility of recognizing speech based on SEMG signals, limitations exist in

these systems. Most of the proposed methodologies focus on recognizing or classi-

fying the SEMG signals into a limited set of words. This approach share similarities

with isolated word recognition systems in that periods of silence between words are

mandatory. These systems have difficulties in recognizing untrained words and in

order to recognize a new word, the recognition model needs to be retrained. It also

has difficulties to recognize continuous speech, and the recognition accuracy can be

affected by the duration of the words.

1.2 Objectives

The extensibility and applications of the previously proposed SEMG-based speech

recognition systems is limited because of the congenital deficiencies of the isolated

word recognition approach. The main objective of this research work was to address
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the limitations of the previous proposed SEMG-based speech recognition systems.

The detailed research aims were:

• Explore a methodology for continuous speech synthesis from input SEMG

signals.

• Explore the feasibility of unlimited vocabulary synthesis.

Even in conventional speech recognition, large vocabulary continuous speech

recognition is still a challenging task. This problem is made even more difficult in

SEMG-based speech recognition, since the information available in SEMG signals

is not as rich as speech signals, and the collected SEMG is weak and noisy.

1.3 Contributions

The main contributions of this dissertation are:

• To select the suitable SEMG features, a detailed comparison was made be-

tween non-overlapping and overlapping frequency band features. The utility

of overlapping frequency band features was demonstrated quantitatively for

the first time.

• By utilizing knowledge concerning the medium-term stationarity of speech,

an error correction technique was proposed to post-process the outputs of the

neural network and enhance the classification accuracy. This significantly

improves the quality of the synthesized speech.

• This is the first time a concatenative speech synthesis technique with overlap-

and-add being applied to SEMG-based speech synthesis.

• The proposed approach differs from the conventional one in that training data
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is obtained via simultaneous SEMG and audio recordings and, although train-

ing is done based on phonemes, in principle, arbitrary speech can be gener-

ated. The feasibility of synthesizing speech directly from SEMG signals using

this approach was demonstrated.

1.4 Thesis Organization

Chapter 2 gives an introduction to the fundamentals of SEMG signals. The chapter

begins with an introduction to the nature and recording methods of SEMG signals,

and shows the commonly used SEMG features in ergonomics. A review of previous

proposed SEMG-based speech recognition systems and their applications are also

presented.

Chapter 3 gives an introduction to the SEMG-based speech recognition systems

employing isolated word recognition approach. Two classification techniques: hid-

den Markov models and neural networks are described.

Chapter 4 introduces the speech synthesis techniques. It begins with an in-

troduction to the speech production mechanism. Two kinds of speech synthesis

methods are then described: the linear predictive coding vocoder and the concate-

native method. The computation of the linear predictive coding coefficients is also

introduced.

Chapter 5 describes the proposed SEMG-based speech synthesis methodology.

It begins with a discussion of the limitations of previous work, the implementation

details are then described. This is followed by a discussion of the design consider-

ations.

The feature selection process conducted in this work is described in Chapter 6.

This chapter begins with an introduction to a separability measure which is used to

measure the quality of SEMG features. Two types of spectral features of SEMG

signals are compared and the spectral features chosen in this work are presented.

Experimental results are presented in Chapter 7. This includes the classification
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performance of the neural network, the effects of the positioning of SEMG sensors,

the performance of the error correction technique, and the speech synthesis results.

A summary of this work and directions for future research are presented in the

final chapter.

In Appendix A, the circuit diagram of the front end amplifier used for SEMG

collection is shown. Appendices B and C describe the K-Means and vector quanti-

zation algorithms used in this work.



Chapter 2

SEMG signal processing

2.1 Introduction

Surface electromyogram (SEMG) signals are widely used to analyze muscular ac-

tivities, including SEMG-based speech recognition. In this chapter, the nature and

terminology associated with SEMG signals relevant to this thesis are introduced,

including the cause, measurement, and analysis of SEMG signals.

This chapter is organized as follows. Section 2.2 introduces the physiological

basis for SEMG signals. In Sections 2.3 and 2.4, acquisition and feature selection

techniques of SEMG signals are described respectively. A review of previously

proposed SEMG-based word recognition systems is given in Section 2.5. Finally,

some applications of these systems are presented in Section 2.6 and a summary is

given in Section 2.7.

2.2 Nature of electromyogram signals

The change in relative position of filaments arranged in the interior of a muscle

results in muscle contraction and force production. This phenomenon is triggered

by an electrical pulse known as an action potential that traverses along the muscle

fiber. This action potential is induced by a potential difference between the inte-

rior of a muscle cell and the external space. This is also known as the membrane

6
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Figure 2.1: Muscle fiber and ions distributions.

potential. The recorded pattern of muscle action potentials is called an electromyo-

gram (EMG) [KM96]. The EMG signal can be used to analyze muscle activities

as there is a close functional relationship between them. Muscle activities, such

as contraction speed and force, can be derived by analyzing the extracted features

from the EMG signals in both temporal and spectral domains. For example, in er-

gonomics, researchers can understand the level of muscular strain by analyzing the

EMG signal and apply this knowledge to reduce occupational fatigue [WJJ96].

Muscle fiber in the human body is surrounded by a cell membrane (Figure 2.1)

which divides the intracellular fluid from the interstitial fluid. The distribution of

ions in both compartments is uneven because the membrane proteins can transport

ions from one side to the other side. Uneven distribution of ions results in a po-

tential difference induced between the intracellular and extracellular space. Muscle

contraction is triggered when the potential difference exceeds a certain value.

The normal range of this potential difference is between −60 to −90 mV. The

negative sign means the intracellular space is negative compared with the extra-

cellular space. Normally, this potential difference remains fairly constant, and is

called the resting state. If the potential difference increases and reaches the so-

called threshold value, an excitation state is triggered and muscle contraction is
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Figure 2.2: Resting and excitation potential of muscle fiber.

induced. This potential difference is called an action potential as the muscular con-

traction is triggered by the propagation of this potential along the muscle fiber. A

figure showing the change in potential difference from resting to excitation and back

is shown in Figure 2.2.

The propagation of the action potential and muscle fiber activation is shown

in Figure 2.3. Muscle fiber is composed of different filaments arranged regularly.

The action potential can trigger the sliding of myosin and actin filaments, where

myosin filaments move towards actin filaments. In this figure, the action potential

is propagated from the left to right, causing sliding of these filaments from the left

to right and resulting in muscle contraction.
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Figure 2.3: Muscle structure and the muscle fiber activation. Positive sign: higher
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Figure 2.4: Surface electromyogram signal recording using differential amplifica-
tion.

2.3 Recording of SEMG signals

To measure an electromyogram signal, a method that involves inserting a wire elec-

trode into the muscle is often employed in clinical medicine. However, such an

invasive method is not practical for ergonomic studies [KM96]. The surface elec-

tromyogram, records the muscle activity via electrodes on the skin surface and is

widely used.

Figure 2.4 shows an SEMG recording. For simplicity, only one fiber is shown. A

pair of electrodes are placed on the skin’s surface to record the muscle activity. The

potential difference at the amplifier’s two inputs will be amplified, common mode

noise being reduced by the differential configuration. Since the maximum peak-to-

peak amplitude of the SEMG signal is 5 mV, the gain of the amplifier should be

between 1000 and 2000.

The amplified signal is then passed through a 15− 500 band pass filter [KM96].
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The high frequency cut-off corresponds to the maximum frequency of the SEMG

signals. Moreover, because of the movement of electrodes and cables, low fre-

quency components in the collected signal should be removed. This low frequency

cut-off ranges from 0 to 15 Hz, the value depending on the condition of skin surface

and quality of electrodes. A properly prepared subject, e.g. cleaned using alcohol,

can reduce artifacts due to movement of electrodes and a smaller low frequency

cut-off can thus be used. A suitable circuit that includes the amplifier and filter is

given in Appendix A.

An action potential measured using this scheme is shown in Figure 2.5. In this

figure, sub-figures (a)-(e) illustrate the simplified membrane structure and five in-

stants during the propagation of the action potential. The amplitudes of the action

potential measured corresponding to the five instants are indicated in the time curve

in the lower section. The action potential measured from the two electrodes is zero

during the unexcited state (sub-figure (a)). A potential difference is measured when

an action potential reaches the left electrode (sub-figure (b)). The potential differ-

ence becomes zero once the action potential reaches the middle of the two elec-

trodes (sub-figure (c)). A potential difference is measured again when the action

potential progresses further to the right electrode (sub-figure (d)) but with reversed

sign comparing when the action potential reaches the left electrode. Potentials at

the two electrodes are the same when the action potential passes through and a zero

potential difference is measured (sub-figure (e)). The maximum amplitude of the

SEMG signals is proportional to the potential difference between the intracellular

and extracellular space in the action potential, but the period of the time curve is

inversely proportional to the propagation speed of the action potential. As the char-

acteristics of the action potential, e.g. propagation speed of amplitude, is directly

correlated to different muscle activities, the SEMG signal recorded can be used to

analyze different muscle activities.

Figure 2.5 only shows the SEMG time curve of a single muscle fiber. Since the

excitation of multiple muscle fibers may occur at different times, in real recordings,
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Figure 2.5: (a) - (e) are the propagation of action potential at time t1 - t5. (f) is the
measured SEMG signals during the propagation of action potential.
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the SEMG signal recorded is the superposition of all muscle fibers.

2.4 Interpretation of SEMG signals

Although SEMG signals can be used to analyze muscle activities, the raw SEMG

signal is too complex to analyze without considerable data reduction. SEMG anal-

ysis is often based on features derived from the original signals rather than the raw

time domain signals themselves, and these features can be in both temporal and

spectral domains.

2.4.1 Temporal feature extraction

In the temporal domain, amplitude information and zero-crossing rate (ZCR) are

often used. These features are derived from the raw SEMG signal over a certain

window to reduce the influence of artifacts, i.e. noise in the raw SEMG signal.

Lippold e.g. [Lip67] maintained that using features extracted from a window of

electromyogram signal, e.g. mean absolute amplitude, are more accurate than using

a single amplitude at an instant for muscular contraction analysis.

Zero-crossing rate

ZCR counts the number of times that the raw SEMG waveform intersects the time

axis (zero line) within a window:

ZCR =

N
∑

i=1

z(i), where z(i) =







1, if s(i)s(i+1) ≤ 0

0, otherwise.
(2.1)

In the above equation, the window size is N and s(i) is the raw signals at

time i. Zero-crossings are abundant at rest since the SEMG signals are weak and

have a large amount of background white noise. Upon an impending motion, zero-

crossings decrease because of the low frequency characteristic (below 500 Hz) of
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SEMG signals. Another feature, the number of directional changes in raw SEMG

signal per unit time, has similar characteristics to zero-crossing rate.

Amplitude

To extract the amplitude features, the raw SEMG signals are often full-wave recti-

fied and then accumulated over a certain window. The reason for full-wave rectifica-

tion is that the SEMG signals are quasi-random around zero and simple averaging

results in a zero value. Mean absolute amplitude (MAA) and root mean square

amplitude (RMSA) are two of the most commonly used amplitude features.

Mean absolute amplitude (MAA) :

MA =
1

N

N
∑

i=1

|s(i)|. (2.2)

Root mean square amplitude (RMSA) :

RMSA =

√

√

√

√

1

N

N
∑

i=1

s(i)2. (2.3)

In the above equations,N is the window size and s(i) is the raw SEMG signal at

time i. RMSA is chosen in this work as it is more accurate than MAA for muscular

activity analysis [FC86].

2.4.2 Spectral feature extraction

Frequency domain analysis

Any signal can be reconstructed from a series of sine waves having different am-

plitudes, phases, and periods, and a frequency representation describes a signal by

these means. A discrete signal can be transformed into its frequency representation

using the well known discrete Fourier transform (DFT):
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F [k] =
N−1
∑

n=0

x[n]ej −2πkn
N , k = 0, 1, ..., N − 1 (2.4)

where x[n] is the discrete signal and N is the length of the signal.

Time frequency domain analysis

Although the discrete Fourier transform has been of great value in many areas of en-

gineering and science, a spectrogram representation is often used to represent both

time and frequency domain characteristics. The spectrogram representation applies

the discrete Fourier transform to a short-time window and moves this window along

the time axis to capture the variation of the spectrum. This techniques has been suc-

cessfully used to analyze biological phenomena [PWS96], and in particular speech

[NQL83] [DN93]. One assumption made in applying the discrete Fourier trans-

form on a limited window is that the signal is stationary over this window. The

continuous formulation is as follows from the short-time Fourier transform (STFT)

[Mit01]:

STFT [n, k] =

Q−1
∑

i=0

x[n− p]w[p]ej
−2πkp

N , k = 0, 1, ..., N − 1 (2.5)

where Q is the window length and w(p) is a window function, a commonly used

method being the Hamming window:

w[p] = 0.54 − 0.46 cos[
2πp

Q
]; where 0 ≤ p ≤ Q− 1. (2.6)

The purpose of performing the Hamming window is to minimize the disconti-

nuities at the border of each windowed segment [RJ93], the Fourier transform is

thus performed on the windowed segment.

Applying the discrete Fourier transform on a limited window can capture the

variation of spectrum along the time axis, however, it suffers from a window size

selection problem. If a small window size is used, better time resolution can be
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obtained, but this results in poor frequency resolution. On the other hand, a larger

window size can improve the frequency resolution, but results in a loss of informa-

tion between adjacent windows, leading to poor time resolution [Wil98].

2.5 Review of SEMG-based speech recognition

The research on SEMG-based non-acoustic speech recognition is still at a prelim-

inary stage, compared with work on conventional speech recognition. Most of the

proposed SEMG-based speech recognition systems were targeted towards recogniz-

ing isolated phonemes or words, the recognition models were built for recognizing

the whole phonemes or words.

2.5.1 Isolated phoneme recognition

Recently, Jorgensen et al. reported their work on isolated phoneme recognition us-

ing two SEMG channels recorded from the chin [JB05]. A phoneme set contains

twenty-three consonants and eighteen vowels were used, a 33% recognition rate

was achieved. Their work also showed that SEMG signals may be inadequate for

recognizing alveolars, where the tip of the tongue touches the alveolar ridge. By

removing the six alveolars (/t/, /d/, /s/, /z/, /ch/, /j/) from the phoneme set, a recog-

nition rate of 50% was obtained. They estimated the performance can be further

improved by excluding /n/, /l/, and /r/. The authors suggested two future working

aspects to improve the performance. One is analyzing the effects of sensor posi-

tioning to detect the problematic features, the other is applying context-sensitive

techniques used in conventional speech recognition.

By reducing the phoneme size, the recognition rate can be significant improved.

A five-vowel SEMG-based speech recognition system was presented in [KKAB04].

Three facial muscles, mentalis, depressor anguli oris and massetter, were involved

in the experiment. The SEMG signals for the five English vowels, /a/, /e/, /i/, /o/,
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/u/, were recorded in an isolated manner. An average classification rate of 88% was

obtained using a neural network.

Similar work was reported in [MHS03], they achieved an average recognition

rate of 94.7% for a phoneme set of five Japanese vowels by using a neural network

as the classifier.

2.5.2 Isolated word recognition

Morse and O’Brien [MO86] studied the availability of information within the SEMG

signals which is related speech sound. SEMG signals were collected from three po-

sitions near the neck and one position over the temporoparietal muscle of the head.

Average amplitude was chosen as SEMG features and classified using a maximum

likelihood algorithm. For a subject dependent test, their work reported a 97% recog-

nition accuracy on a two-word set. The recognition accuracy deteriorated for larger

word sets, being less than 70% for a six-word set and 35% for a seventeen-word set.

Their experimental results also showed that the performance was improved when

more SEMG channels were used. The authors also conducted an experiment to in-

vestigate the correlation between the data width and the recognition accuracy. In

the experiment, words were classified using the features extracted from a portion of

a word’s SEMG signal, e.g. in Figure 2.6, instead of using the whole SEMG signal

(W ), recognition was done using portion of the word’s SEMG signal (W1). The

results showed that using larger portions can achieve better accuracy.

Manabe and Zhang [MZ04] employed conventional acoustic speech recogni-

tion techniques to an SEMG-based ten-Japanese-digit speech recognition system.

The ten digits were 0, 1, 2, ..., 9. Three SEMG channels, the cheek, the chin and

the upper lip, were used in this work. Isolated SEMG signals were recorded when

each digit was mimed silently. Different SEMG features were analyzed including

filter band coefficients, Mel frequency cepstral coefficients, and linear predictive

coefficients. Their experimental results showed that filter band coefficients are the
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Figure 2.6: Using a portion of a word’s SEMG signal to perform recognition.
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best and a recognition rate of 63.7% was achieved. In this work, a multi-stream

hidden Markov model was used as the classifier, and each SEMG channel was as-

signed with a weight which determined the contribution of each SEMG channel to

the classification. The authors showed that recognition accuracy can be improved

by optimizing the channel weights, a 4.0% improvement was obtained on average.

This experimental result showed that optimizing the SEMG positioning was critical

to improve the recognition accuracy. Jorgensen et al. also presented a SEMG-based

six-word (stop, go, left, right, alpha, omega) recognizer with a recognition rate of

over 90% [JLA03].

2.5.3 Frame-based phoneme recognition

Sugie and Tsunoda proposed to recognize five Japanese vowels (/a/, /e/, /i/, /o/,

and /u/) using a frame-based approach [ST85]. The SEMG signals were collected

from three positions of the face, blocked into frames and each frame was classified

into one of the five vowels using a finite automaton. A recognition rate of 64% was

achieved. In this work, the active/inactive status of each channel was used as SEMG

features. For each SEMG frame, the number of crossings of a threshold level was

counted, if the sum exceeded a certain threshold, the channel was regarded as active

at that frame, otherwise, the channel was regarded as inactive. Each channel was

assigned either a ‘1’ or ‘0’ for an active or inactive state. As a result of this coding,

there were only eight possible outputs as there were only three SEMG channels.

This may explain why the recognition rate was quite low.
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2.6 Applications of SEMG-based speech recognition

2.6.1 Using SEMG to augment conventional speech recognition

systems

As the recognition accuracy of conventional speech recognition systems are sig-

nificantly degraded by a noisy environment, Chan et al. [CEHL02a] proposed to

supplement a conventional speech recognition system by using the SEMG signals

as a secondary information source. They proposed a scheme that integrated a con-

ventional speech recognizer and an SEMG-based speech recognizer, concurrently

recorded SEMG signals and speech signals being used for recognition. Their sys-

tem was tested under various environments with different noise levels and the ex-

perimental results showed that the recognition capability of the SEMG-based rec-

ognizer was immune to noise, while the recognition accuracy of the conventional

speech recognizer was significantly degraded at increased noise levels. Experimen-

tal results also showed that the recognition accuracy of the integrated system was

higher than using either individual recognizer. As there are muscle activities prior

to the acoustic signals, researchers suggested including certain durations of SEMG

signals prior to the acoustic signals to perform recognition by using the acoustic

signals as a trigger [CEHL01, CEHL02b]. The experimental results showed that

including 500 ms of SEMG signals prior to the acoustic signals achieves the best

recognition rate. An average classification rate of 83% was obtained using the hid-

den Markov model to classify SEMG signals of ten English digits (zero, one, two,

..., nine).

2.6.2 Human-computer interface

Jorgensen and Binsted demonstrated the feasibility of applying an SEMG-based

isolated-word-recognition system to construct a human-computer interface [JB05].

In their work, a SEMG-based word recognizer that can recognize ten English digits
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and six words (stop, go, left, right, alpha, omega) were presented, a recognition rate

of 73.13% was achieved. The system was then applied to control a web browser.

Instead of using a keyboard to input hyperlinks, in their system, an alphabet was

constructed from the ten English digits and used to generate inputs. Simple com-

mands were indicated by the six words.

2.7 Summary

This chapter began with an introduction to the physiological nature of the SEMG

signals. The SEMG signals are induced by an action potential that propagates along

muscle fibers causing muscle contraction and can be recorded via a high gain dif-

ferential amplifier. The signals can be analyzed in temporal and spectral domains.

Examples of SEMG features include zero-crossing rate, amplitude information, and

the short-time Fourier transform. Some SEMG-based speech recognition systems

and their applications were reviewed. Most of the proposed systems employed tech-

niques of isolated word recognition in conventional speech recognition. In the next

chapter, an introduction to the SEMG-based speech recognition will be given.



Chapter 3

SEMG-based speech recognition

3.1 Introduction

In the previous chapter, feature extraction from SEMG signals was described. Fea-

tures commonly used include zero-crossing, amplitude, and frequency spectrum.

Based on the extracted features from the SEMG signal recorded from facial mus-

cles, researchers have developed algorithms to recognize speech. From the reviews,

it is found that most of these SEMG based systems employ an isolated word recog-

nition approach, in that features are mapped into a limited set of words, and neural

networks and hidden Markov models are two of the most widely pattern recogni-

tion techniques. In this chapter, an overview of SEMG-based speech recognition

systems will be given.

This chapter is organized as follows. A brief introduction to hidden Markov

models and the application of hidden Markov models to SEMG-based speech recog-

nition is given in Section 3.2. Section 3.3 describes artificial neural networks, the

use of neural networks to SEMG-based speech recognition, and the advantages of

neural networks. A summary is given in the last section.

22
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Figure 3.1: Left-to-Right HMM

3.2 Hidden Markov models approach

3.2.1 Hidden Markov models

Figure 3.1 shows a basic three-state left-to-right hidden Markov model (HMM)

[RJ86] [Rab89], which is a probabilistic finite state machine (FSM) with a set of

state transition and observation probabilities. The state transition probability is the

probability of a state transition from one state to another, and the observation proba-

bility is the probability that a state emit a particular observation. A HMM calculates

a likelihood score for an input observation sequence. In Figure 3.1, S0, S1, S2 are

the states and aij is the probability of state transition from i to j. Figure 3.2 is the

trellis representation which shows all possible state transition paths.

Given an observation sequence O = (o1, o2, ..., oT ), HMM decoding calculates

P (O|λ), which is the probability of the input observation sequence for a given

model λ. The result is the probability that the utterance represented by model λ

will produce the observation sequence O.

P (O|λ) of course can be calculated by enumerating all possible paths in the

trellis diagram (see Figure 3.2) over the entire observation sequence. In total, there

are NT possible paths, where N is the number of HMM states and T is the length

of the observation sequence. Assuming q = (q1, q2, q3, ..., qT ) is one of the state
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Figure 3.2: Trellis representation of Left-to-Right HMM

traversal paths, the probability can be calculated as follows:

P (O|λ) =
∑

all q

P (O|q, λ)P (q|λ)

=
∑

all q

P (O, q|λ) (3.1)

In practice, an alternative approach, called the Viterbi algorithm associated with

amax function is used [RJ93]. P (O|λ) is approximated by the maximumP (O, q|λ),

which generates a best state sequence qbest.

The iterative process to calculate the score for an observation sequence O =

(o1, o2, ..., oT ) is shown below. Assuming the observation probability for an input

symbol ot at state j is pj(ot), the score along the best state sequence at time t that

ends in state i is ht(i), the number of HMM states is N .

1. Recursion for each element ot in the observation sequence:

ht(j) = max
1≤i≤N

[ht−1(i)aij]pj(ot) (3.2)
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2. Termination:

H = max
1≤i≤N

[hT (i)] (3.3)

where H is the probability of the best state sequence.

3.2.2 SEMG-based speech recognition using HMMs

Figure 3.3 shows an SEMG based isolated word recognition system using a hidden

Markov model. The collected SEMG signals for words are blocked into frames,

features are extracted from each frame and concatenated to form feature vectors. As

a result, a sequence of feature vectors can be produced for each isolated word. In

some approaches, these feature vectors are vector quantized before being presented

to a HMM decoder. As shown in this figure, a separate HMM is used for each

word in the target set and scores for the feature vector sequence for all HMMs are

calculated. The word with the maximum score is chosen as the output word.

3.3 Neural network approach

Neural networks, also called artificial neural networks, are an architecture for com-

puting inspired by our knowledge of biological neural networks. The computation

of neural networks model the information processing flow in neural systems and are

commonly used for pattern recognition problem [GM88, KL90, BAH05, Cho97,

Tay96]. The type of neural network used in this work is multilayer perceptrons

[MP69].

3.3.1 Architecture

A neural network contains an array of processing elements (neurons) that linked by

connections (synapses). Each synapse is assigned a weight to represent the strength

of connection between the processing elements. The functionality of the neural

network is encoded in the strengths of the connections.
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Figure 3.3: Hidden Markov model based SEMG word recognition.
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Figure 3.4: A neuron.

Figure 3.4 shows the basic processing element: a neuron. The arrows indicate

the inputs and output, x denotes the output of previous neurons and w denotes the

weighting of each synapse. A neuron computes the weighted sum of all its inputs

to form an activation parameter z:

z =

N
∑

i=1

xiwi, (3.4)

where N is the number of inputs. The output of the neuron is defined by a transfer

function f(z). Some commonly used functions are:

Sign:

f(z) =







1, if z ≥ 0

−1, if z < 0.
(3.5)

Sigmoidal :

f(z) =
1.0

1.0 + e−z
. (3.6)

Tan-Sigmoidal :

f(z) = tanh(z). (3.7)

Log-Sigmoidal :

f(z) = log(z). (3.8)
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A three-layer neural network architecture is shown in Figure 3.5, in which neu-

rons are arranged into three layers: input layer, hidden layer, and output layer. The

network processes an input pattern in a strictly feed forward manner, i.e. an input

pattern is presented to the input neurons and signal pass through the hidden layer

and finally reach the output layer. Neurons in the hidden layer and output layer have

multiple inputs and a single output. However, neurons in the input layer are differ-

ent. They have a single input and single output with an identity transfer function

f(z) = z. The outputs of the neurons in the hidden layer and output layer are:

zj(l) =

Nl−1
∑

i=1

xi(l − 1)wij(l) (3.9)

xj(l) = f(zj(l)) (3.10)

where l denotes the l-th layer (2 ≤ l ≤ L), L is the total number of layers (L = 3 in

Figure 3.5), Nl−1 is the number of neurons at the (l − 1)-th layer, i denotes the i-th

neurons in the (l − 1)-th layer, j is the j-th neuron in the l-th layer, wij(l) denotes

the weight of the connection between the i-th neuron in the (l − 1)-th layer to the

j-th neuron in the l-th layer.

Because of the nonlinearities of neurons and the weights of connections, a large

number of functions can be approximated by a multilayer neural network given

sufficient number of hidden neurons.

3.3.2 Training

A neural network is trained by supplying a series of input patterns with correspond-

ing responses (targets). The weights between neurons are adjusted according to the

level of success in reproducing the targets, in other words, distances between the

produced outputs and the targets.

The training of a neural network involves finding the optimal weights between

neurons that minimize an error function:
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Figure 3.5: A three layer neural network architecture with five input nodes, four
hidden nodes, and two output nodes.

e(w) =

∑P

k=1

∑N

j=1 (t
(k)
j − zj

(k))
2

N × P
, (3.11)

where N is is the number of neurons at the output layer, P is the number of training

vectors, tj(k) and zj
(k) are the target and neural network output at the j-th neuron

for the k-th training vector respectively, w represents all the weights in the network.

A commonly used learning method is backpropagation algorithm [RHW86],

which is a gradient descent based learning method, and the weights are updated

according to the following formula:
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∆wij(l) = −η
∂e(w)

∂wij(l)
(3.12)

wij(l) = wij(l) + ∆wij(l) (3.13)

where η is a constant represents the learning rate.

3.3.3 SEMG-based speech recognition using neural networks

Figure 3.6 shows an SEMG based isolated word recognition system using a neural

network. The number of output nodes equals to the number of words and each

output node represents a word. During training, an output node is set to 1 when the

target is the word represented by the node and, −1 or 0 otherwise. To recognize

a word, isolated SEMG signals for a word are first recorded from different facial

positions. Features are then extracted from the SEMG signals and input to the neural

network in parallel. The values of the output nodes represent the scores of targets,

in other words, the weighting that an input feature vector belongs to each target. By

finding the maximum weighting, the most likely target word can be decided.

3.3.4 Features of neural networks

In this work, a three-layer (one hidden layer) neural network is used to map the

features from SEMG domain to speech domain because its ability to model non-

linear functions [HSW89] while making minimal assumptions about the statistical

properties of the signals.

Noise tolerance

The recorded SEMG signals are noisy, e.g. the electrical noise picked up by human

and transmission lines, noise in the filtering and amplification circuit board, and

the noise due to human artifacts such as sudden movement of electrodes. Although

the noise can be reduced by carefully design the experimental setup, it cannot be
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Figure 3.6: Neural network based SEMG word recognition.
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removed totally. Thus, the noise is unavoidable and can be amplified together with

the SEMG signal. Neural networks are capable of classifying noisy data [MT00],

this capability making them a good choice for the analysis of SEMG signals.

Nonlinearity

As introduced in previous chapter, the SEMG signals are the superposition of action

potentials of many muscle fibers and is by nature quasi-random and largely aperi-

odic [FC86]. This leads to the difficulties in feature selection during SEMG signal

analysis, as the correlation between the selected features and physiological phe-

nomena is unclear. The nonlinearity nature of neural networks thus makes it ideally

suited for SEMG signal analysis. Gevins et. al. [GM88] show that neural networks

are useful in analyzing signals with unknown characteristics and without prior as-

sumptions about the statistical properties of the signals. Other than SEMG signals

[HPS93], neural networks are also being used to analyze ECG (electrocardiogram)

signal and identify cardiovascular diseases with very high accuracy [LJ91].

Neural network in speech processing

Besides the applications of neural networks in SEMG signal analysis, it is also

being widely used in speech processing. Previous work has shown that neural net-

works yield high accuracy in conventional speech recognition [WC93] [CHS+98]

[KHJC04] and in fact the standard technique for this application.

3.4 Summary

In this chapter, brief introductions about neural networks and hidden Markov mod-

els and their applications to SEMG-based speech recognition were given. Neural

networks are a computing architecture inspired by the interconnected neurons of

the brain which can model nonlinear functions. In this work, a three-layer neural
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network is chosen because of its powerful capability of nonlinear function approx-

imation and outstanding features such as nonlinearity and noise tolerance. The

functionality of the neural network used in this work is mapping the features from

SEMG domain to speech domain, and the converted speech feature are then used

to synthesis the speech waveform. In the next chapter, various speech synthesis

techniques will be introduced.



Chapter 4

Speech synthesis

4.1 Introduction

Speech synthesis techniques, used to reconstruct speech waveforms in this work, are

described in this chapter. Two major synthesis methods are introduced: the linear

predictive coding (LPC) vocoder and the concatenative method. A brief introduc-

tion to the human speech production mechanism is given as it is the basis of LPC

vocoder. As LPC coefficients are the widely used speech features, which is also

used in this work, the method of computing LPC coefficients (called LPC analysis)

is also described.

This chapter is organized as follows. A brief introduction to the human speech

production mechanism is given in Section 4.2. The LPC vocoder and the computa-

tion of LPC coefficients are then described in Section 4.3. This is followed by an

introduction to the concatenative synthesis method in Section 4.4. A summary is

given in the last section.

4.2 Speech production

This section presents an overview of the human speech production mechanism, de-

scriptions of speech production and LPC model are detailed in [RJ93]. Figure 4.1

34
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illustrates a cross-section of the human speech production system. The gross com-

ponents of the system are the lungs, vocal cords, nose and various parts of the

mouth. Usually, the pharyngeal and oral cavities are called the vocal tract [HH01].

The speech production process involves the following processes:

• Air entering the lungs via normal breathing.

• Contraction of lungs to produce an air stream.

• Vibration of the air stream at the vocal cord.

• Resonance of the air stream at the vocal tract. By opening the velum, the air

stream can also be resonated at the nasal cavity.

Various sounds are produced by different vibration frequencies of the vocal

cords and resonance frequencies of the vocal tract, where the vibration frequency is

controlled by the tension of vocal cords, and the resonance frequency is controlled

by the shape of vocal tract, e.g. lip rounding and position of the tongue [Bre92].

4.2.1 Vibration of vocal cords

Figure 4.2 shows a superior view of the vocal cords. When the vocal folds are tense,

the two vocal folds are held close together and the glottis is closed. The air stream

from the lungs is obstructed and there is no air flow in the vocal tract. However,

as the pressure keeps increasing and overcomes the resistance of the vocal folds,

they are moved apart and the glottis opens. A rapid air stream then pass through

the glottis and causes the pressure on the vocal folds to be decreased. The tension

on the vocal folds makes them fall back into place rapidly and the glottis is closed

again. This open-close process is repeated and the pitch of human sound is closely

correlated to the open-close frequency of the glottis.
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Figure 4.1: Schematic diagram of the human speech production system.

4.2.2 Voiced and unvoiced sound

The vibration of vocal cords plays an vital role in producing voiced and unvoiced

sounds:

• Voiced : When the vocal folds are oscillating during a speech sound, the sound

is said to be voiced, e.g. when pronouncing vowels.

• Unvoiced : When the vocal folds are too slack to oscillate during speech, the

sound is said to be unvoiced, e.g. some consonants, s, f, etc.
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Figure 4.2: Superior view of the vocal cords.

4.3 LPC vocoder

Figure 4.3 shows an LPC vocoder for speech synthesis. The energy of the air stream

expelled from lungs is modeled by a gain G. The vocal cords are modeled by two

signal train generators which generate an excitation term u(n). An impulse train

generator models the vibration of vocal cords when it is tense and a white Gaussian

noise generator models the slack state of the vocal cords. For a voiced sound, a

periodic impulse train with unity amplitude from the impulse train generator is se-

lected. A white Gaussian noise train is chosen for unvoiced sounds. A time varying

digital filter is used for modeling the articulation tract, i.e. the vocal tract and nasal

tract. The synthesis of speech can be described as follows [Dut97]:

S(z) = E(z)
1

Ap(z)
(4.1)

s(n) =

p
∑

i=1

ais(n− i) + e(n) (4.2)

where e(n) = Gu(n), p is the filter order and the ai is the filter coefficients which
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Figure 4.3: LPC-based speech synthesis.

define the resonance behaviors (frequency response) of the time varying digital fil-

ter. The computation of the filter coefficients is known as LPC analysis.

4.3.1 LPC analysis

From Equation 4.2, one can see that speech can be approximated as a linear com-

bination of the previous p speech samples. LPC analysis thus computes the filter

coefficients from the input speech signal, and minimizes the sum of the squared dif-

ference between the original speech and the approximated (synthetic) speech. The

extracted filter coefficients are called LPC coefficients. This technique is widely

applied in speech recognition and coding to represent speech features [Tre82]. In

this work, it is also used as a speech feature.

Assume spd(n) is the LPC approximated speech, and s(n) is the original speech.
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LPC analysis tries to find the filter coefficients ai by minimizing the following error

function:

Ee = E[s(n) − spd(n)]2 (4.3)

= E[s(n) −

P
∑

k=1

aks(n− k)]2 (4.4)

where P is the filter order. The minimum Ee can be found by taking the partial

derivative with respect to each ak and setting them to zero, giving:

E[s(n− i)s(n)] =

P
∑

k=1

akE[s(n− i)s(n− k)]. (4.5)

By defining:

ψ(i− k) = E[s(n− i)s(n− k)], (4.6)

ψ(i) = E[s(n− i)s(n)] (4.7)

The filter coefficients ak can be found by solving the following equations [RJ93]:
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(4.8)

Two popular methods to solve the above equations are the autocorrelation and

covariance methods. More details about the LPC analysis can be found in [RJ93].
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Figure 4.4: Speech synthesis by waveform concatenation.
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4.4 Synthesis by waveform concatenation

The LPC-based speech synthesizer was developed from knowledge of the human

speech production mechanism. Concatenative speech synthesis, however, uses lim-

ited information about the speech signals and synthesizes speech by concatenat-

ing pre-recorded speech segments [Bre92]. This method requires large memory to

store the pre-recorded speech segments, but it is becoming more popular with the

reduced cost of computer memory. This method is often yields superior speech

quality [HAH01].

Figure 4.4 illustrates the synthesis flow. The speech segment database is formed

from primitives from the given language, e.g. 42 phonemes for English. The synthe-

sis segment database is the pre-recorded speech set for each element in the speech

segment database. Each segment may be recorded several times under different con-

ditions for better quality, e.g. different pitches to make the synthetic speech more

natural. The speech is synthesized as follows:

• The speech text is split into segments based on the speech segment database

and a segment sequence generated, e.g. if phonemes are chosen as the speech

segment, the word she can be split into the phoneme sequence SH-IY.

• The segment matching and loading process sweeps the segment sequence and

retrieves the corresponding segment waveform from the synthesis segment

database.

• The retrieved segment waveforms are concatenated in order to form the seg-

ment sequence.

• The transitions between segment waveforms are smoothed to reduce the dis-

continuities and make the synthetic speech more natural.

In this work, phoneme frame is chosen as the basic speech segment. The synthe-

sis segment database stores the enframed speech waveform for each phonemes. A
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neural network is used to classify SEMG frames and decide which phoneme frame

should be retrieved and concatenated. Details are described in Chapter 5. Using

phonemes can reduce the complexity of the problem as there are only 42 phonemes.

It is believed that the synthesis quality can be further improved by applying more

sophisticated synthesis techniques. This work concentrates on generating correct

phoneme sequences based on the corresponding SEMG signals.

4.4.1 Smoothing transition between speech segments

As mentioned above, the transition between speech segments should be smoothed

to reduce the discontinuities. A popular method to reduce the discontinuity is called

the overlap-and-add technique [HAH01]. Using this technique, each speech seg-

ment is multiplied with a tapered window, then the start of each segment is over-

lapped a certain duration with the end of its previous segment and added together.

A commonly used windowing function is the Hanning window, defined as follows:

w[i] = 0.5 − 0.5 cos[
2πi

N − 1
], 0 ≤ i ≤ N − 1, (4.9)

where N is the segment length. This window function is used in this work. Assume

p[n] and q[n] are two speech segments to be concatenated. After multiplication with

the window function:

p′[n] = w[n]p[n], 0 ≤ n ≤ d1 (4.10)

q′[n] = w[n]q[n], 0 ≤ n ≤ d2 (4.11)

where d1 and d2 are the length of p[n] and q[n] respectively, the resulting speech

s[n] can be formed as follows:

s[n] =



















p′[n] if 0 ≤ n ≤ d1 − R− 1

p′[n] + q′[n− d1 +R] if d1 −R ≤ n ≤ d1 − 1

q′[n− d1 +R] if d1 ≤ n ≤ d1 + d2 − R− 1

(4.12)
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where R is the length of the overlapping region.

4.5 Summary

This chapter began with an introduction to the human speech production mech-

anism, which involves three steps: the contraction of lungs, the vibration of vo-

cal cords, and the resonance in the vocal tract. Two speech synthesis techniques

were then introduced. The LPC vocoder is based on speech production mechanism

and LPC coefficients are used as speech features in this work. The concatenative

method synthesizes speech by simply concatenating pre-recorded speech segments.

Phonemes are chosen as the speech segments in this work and the transition be-

tween phonemes can be smoothed using an overlap-and-add technique. In the next

chapter, the design methodology will be presented, including the SEMG feature

extraction and conversion to speech.
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An SEMG-based speech synthesis

system

5.1 Introduction

In previous chapters, background on the nature of SEMG signals, classification

techniques, and speech synthesis have been introduced. Previous SEMG-based

speech recognition systems were also introduced where the features extracted from

SEMG signal were classified into a set of words, however, various limitations exist

in these kinds of systems. A frame-based approach will be introduced in this chap-

ter, where the features are extracted from enframed SEMG signals and a speech

waveform is synthesized on a frame-by-frame basis.

The chapter begins with a discussion of the limitations of previous work on

SEMG-based speech recognition and the challenges of this work. The proposed

methodology for SEMG-based speech synthesis is then presented. This is followed

by a discussion of some design considerations and a summary is given in the last

section.

44
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5.2 Limitations of previous work

Previous work reviewed in Section 2.5 demonstrate the feasibility of recognizing

speech based on SEMG signals. However, most of the previously proposed ap-

proaches focused on recognizing or classifying SEMG signals into a limited set

of words. These approaches are similar to conventional isolated word recognition

systems [RL81] in that there must be sufficient silence intervals before and after

the speech signals, i.e., the words must be segmented and isolated from each other

before recognition can be taken place. Although these approaches achieved satis-

factory performance for SEMG signals, e.g. in [CEHL02b] and [KKAB04], the

recognition accuracies were over 80%, they are not suitable for large vocabulary

speech recognition and various limitations exist [HAH01] [RRWK83]. These in-

clude:

• Untrained words: Word recognition systems have difficulties in recognizing

untrained words. Since the recognition model is built from words, in order to

recognize a new word, the recognition models must be retrained.

• Availability of training data: When there are large numbers of words, it is dif-

ficult to collect a large amount of training data for each word while including

includes all variabilities of the word.

To address the limitations of conventional isolated word recognition, instead of

building whole-word recognition models, researchers proposed to recognize speech

by building recognition models with smaller units [RRWK83]. This work proposes

to synthesize speech from SEMG signals using a frame-based approach. Previous

work on recognizing phonemes using a frame-based approach obtained poor accu-

racy, e.g. 64% in [ST85]. As pointed out by Morse and O’Brien [MO86], informa-

tion for distinguishing SEMG signals for different words were observed throughout

the duration of the whole word. Moreover, from their investigations on the corre-

lation between data width and performance, they showed that using larger portions
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of the whole word’s SEMG signals to perform recognition could achieve better

accuracy. These experimental results showed that recognizing SEMG frames (por-

tion of the whole word’s SEMG signals) is more difficult than recognizing SEMG

signals of the whole words (isolated SEMG word recognition). Their experiment

on distinguishing SEMG frames chopped from the whole words showed that, the

recognition accuracy was only 40% for the same subject on a eight-word set. This

work investigating the feasibility of synthesizing speech from SEMG signals using

a frame-based approach is even more challenging.

5.3 The proposed methodology

To synthesize speech (words or sentences) using the proposed methodology, fea-

tures are extracted from enframed SEMG signals and classified into a number of

phonetic classes, the classification is done by a neural network which is trained

using features extracted from parallel recorded SEMG and speech signals. The

produced sequence of phonetic class number are mapped to acoustic signals by

concatenating corresponding pre-recorded speech waveforms.

5.3.1 SEMG sensor positioning

Three channels of SEMG signals were collected and analyzed as shown in Figure

5.1. The first channel was collected from the cheek about 2.5cm from the nose, the

second channel was collected from the chin and the third channel was collected from

the lower lip. An additional electrode was attached to the forehead as a reference

point. Speech was recorded using a microphone. The SEMG signal was amplified

with a gain of 1000 using the circuit given in Appendix A. Both the amplified

SEMG signal and speech were recorded concurrently using a National Instruments

PCI6024E PCI data acquisition card [Nat] at a sampling rate of 8000Hz.
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Figure 5.1: Electrode placement: SEMG signals were collected from the cheek, the
chin, and lower lip, forehead was used as reference point.

5.3.2 Speech feature extraction

All speech signals (phonemes) in the training set are blocked into 22.5 ms frames,

and there is no overlapping between frames. This scheme has been used in speech

coding standard [Tre82]. For each speech frame, ten linear predictive (LP) coeffi-

cients, pitch and root mean square value are extracted. The pitch is the fundamental

frequency of human speech, which is correlated to the vibration frequency of the

vocal cords as described in Section 4.3, and the root mean square value (RMSV)

is corresponding to the energy. The extracted LP coefficients, pitch, and root mean

square value extracted from each speech frame are concatenated to form a speech

feature vector (Figure 5.2).

Unsupervised clustering, based on the K-Means algorithm (see Appendix B), is

then used to extract the representative feature vectors for the phonemes and silence.

The extracted feature vectors form a speech-feature-vector codebook which can be

used to label the SEMG signal during neural network training.
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Figure 5.2: Speech feature extraction and forming speech-feature-vector codebook.
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Figure 5.3: Frame-based feature extraction and neural network training.
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5.3.3 Neural network training

The speech and SEMG signal are recorded concurrently, training pairs (input-target

pairs) for the neural network being formed from the parallel recorded data as shown

in Figure 5.3. This involves forming and labeling the SEMG feature vectors.

• Forming SEMG feature vectors: The SEMG signals of training phonemes

from different SEMG channels (two channels in this figure) are blocked into

frames, and features are extracted from each SEMG frame. SEMG features

selection and SEMG channel positioning will be discussed in the next chap-

ter. The extracted features from different channels are concatenated to form

SEMG feature vectors.

• Labeling the SEMG feature vectors: The parallel recorded speech signals of

the training phonemes are blocked into frames and the extracted speech fea-

ture vectors are quantized (see Appendix C) using the speech-feature-vector

codebook. Thus, each speech frame is represented by a codebook index. Be-

cause the codebook is formed by the representative speech feature vectors,

the speech feature index indicates to which phoneme a speech frame belongs.

As the SEMG and speech signals are recorded in parallel, the speech feature

index also indicates to which phoneme an SEMG frame belongs.

Each of the concatenated SEMG feature vectors is thus paired with the cor-

responding speech feature index to form an input-target training pair. The neural

network, which takes an SEMG feature vector as input and produces speech fea-

ture indices as output, is trained using the input-target pairs. It is noted that only

phonemes are involved in training.

In this work, a three-layer feed-forward backpropagation neural network is used.

The number of input nodes is equal to the number of SEMG features. The number

of output nodes is eight, as there are seven phonemes, one output node is allocated

for each phoneme, and an additional one is used for silence.
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5.3.4 Speech synthesis

After the neural network is trained, it can be applied to synthesize speech from input

SEMG signals. In addition to synthesizing phonemes, the SEMG-based synthesis

method proposed can also be applied to synthesize words as shown in Figure 5.4.

To this end, SEMG signals recorded are blocked into frames, the features from

different SEMG channels are concatenated to form SEMG feature vectors. Then

the neural network is used to classify the concatenated SEMG feature vector into

one of the seven phonemes or silence, which results in a sequence of speech feature

indices for each word to be synthesized.

The error rate of the produced sequence of speech feature indices can be im-

proved by using an phonetic smoothing technique, which is developed by assuming

mid-term stationarity of speech signals. The details will be discussed in Section 5.4.

After smoothing the sequence of speech feature indices, a concatenative syn-

thesis method is applied to reconstruct the target speech in a frame-by-frame basis.

Based on the error corrected speech feature indices, target phoneme frames are

loaded from the pre-recorded set and concatenated to form the complete speech.

The transition between phonemes is smoothed using overlap and add method.

5.3.5 Potential Advantages

The training data set consists only of phonemes, but the proposed method is capable

of recognizing any words whose phonetic transcription is formed from the training

phoneme set. Although the number of recognized words increases exponentially

with the number of phonemes involved in training, using this method, an unlimited

vocabulary continuous speech synthesis is potentially realizable.
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Figure 5.4: Speech synthesis from input SEMG signal.
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5.4 Design considerations

The proposed methodology is a frame-based synthesis approach, several aspects

need to be addressed.

5.4.1 SEMG feature extraction

The review in Section 2.5 showed that spectral features are useful and yield better

performance than temporal features. The spectral features thus should be chosen

carefully. This work provides an analytical analysis on the selection of the fre-

quency band coefficients.

5.4.2 SEMG frame size

The SEMG frame size should be chosen carefully, because it affects the frequency

resolution [KGA01]. If a small frame size is used, better time resolution can be ob-

tained, but this results in poor frequency resolution. On the other hand, using larger

frame size can improve the frequency resolution, but results in a loss of information

between adjacent frames. In this work, correlation between frame size and perfor-

mance is analyzed, finding optimal frame size that can balance the performance and

maintain maximum time resolution is addressed.

5.4.3 Channel positioning

Previous proposed SEMG-based word recognition system using SEMG signal col-

lected from different positions, such as a two-channel system [JLA03] from the

chin, a three-channel system [MZ04] from cheek, chin, and upper lip, a five-channel

system [CEHL01] from major facial muscles. The effect of different channels in

distinguish SEMG frames for different speech has not been addressed. Analyzing

the correlation between different sensor positions and performance is one of the

major concern in this work.
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5.4.4 Smoothing phonetic sequence

To synthesize speech, input SEMG signals are classified into an sequence of speech

feature indices. Due to classification errors, some indices in the produced sequence

are incorrect (Figure 5.5), and these misclassifications appear as fragments embed-

ded in the sequence. Based on this observation, a smoothing technique was applied

in an attempt to remove these fragments.

Majority-filter-based error correction

Based on the observation that voiced speech signals are fairly stationary over a

short period of time and, in contrast, characteristics of the signal change over long

periods of time, i.e. on the order of 200ms or more [RJ93]. A majority filter which

attempts to remove glitches due to misclassification was studied. This correction

technique involves scanning the produced sequence of speech feature indices over

a window of 9 indices (i.e. 202.5ms) with step 1, the index id with the highest

frequency f within the window is found, and a new index equal to id is produced

if the frequency f exceed a threshold. From the example in Figure 5.5, one can see

that, after applying majority filtering, error indices in phoneme SH are corrected.

Correction based on triggering

There are still some errors that cannot be corrected by employing a majority-filter-

based error correction technique, especially when the error indices are close to each

other. From the example in Figure 5.5, one can see that, there are still incorrect

indices present in phoneme IY after applying this technique.

The trigger-based correction process sweeps the index sequence using a window

of nine consecutive indices with step 1, and an index is generated based on the

similarity of all indices in each window. If all the nine indices are the same, an index

equal to the nine indices, is generated. The generated index remains unchanged if

the indices in the next window are not the same, and the index changes again when
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00000000005555555555333333333333333333330000000000Original sequence

00000000005555005555333333333333003033330000000000Produced sequence
by neural network

 index of silence frames 0

 index of phoneme "IY"  frames 3

 index of phoneme "SH"  frames5
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Figure 5.5: An example showing the classification error in the sequence of speech
feature indices for word she. The arrows indicate the misclassification in the pro-
duced sequence.
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Figure 5.6: Majority filter based smoothing technique. Where oseq is the sequence
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the next nine indices are the same. For the example in Figure 5.5, after sweeping the

sequence produced by neural network, the errors in phoneme IY, cannot be corrected

by majority-filter technique, is corrected. However, a problem arises, more errors

are produced in the resulting sub-sequence of phoneme SH.

Hybrid approach

An hybrid approach that integrating majority-filter and trigger techniques is used

to correct the classification error. The sequence generated by neural network is

firstly pass through the correction process based on majority-filter, the smoothed

sequence is then passed to trigger-based correction process for further smoothing.

The majority-filter based process is removing the single index error, and the trigger-

based process strengthen each sub-sequence. As shown by Figure 5.5, all error

indices are corrected after using the hybrid smoothing technique.

5.4.5 Smoothing phoneme transition

The overlap-and-add technique is used to reduce the discontinuity between phoneme

transition. Each phoneme is overlapped 25% of its length with its adjacent phonemes,

the phoneme waveform is multiplied with a Hanning window before added together.

5.5 Summary

In this chapter, a methodology to synthesis speech from SEMG signal is presented.

To synthesis speech, input SEMG signal is blocked into frames, features extracted

are classified into sequence of phonetic labels, concatenative method is then used

to reconstructed the original speech waveform based on the sequence of phonetic

labels. Several aspects, such as SEMG feature selection and channel positioning,

should be carefully addressed. A hybrid smoothing technique is proposed to correct

the errors in the sequence of phonetic labels, which consists of majority-filter-based
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and trigger-based correction technique.

Since the neural network is trained using features extracted from the enframed

phoneme SEMG and speech signal, speech is then synthesized frame by frame, the

proposed methodology is applicable for continuous speech synthesis with unlimited

vocabulary. In the next chapter, some experimental results will be presented.



Chapter 6

Spectral feature assessment of SEMG

signals

6.1 Introduction

In the previous chapter, a frame-based speech synthesis method was introduced,

where the features were extracted from enframed SEMG signals and classified into

phonetic classes. Frequency band coefficients are useful feature to analyze SEMG

signals, however, parameters of filter band coefficient are often selected arbitrarily,

e.g. in [PBYTI02]. It is believed that spectral feature selection plays a vital role in

distinguish different speech and performance can be improved by carefully selecting

spectral features. In this chapter, the spectral feature selection process conducted in

this work will be discussed in detail.

This chapter is organized as follows. The divergence score, used to measure

the quality of features, is introduced in Section 6.2. This is followed by a descrip-

tion of the data set used in Section 6.3. Two spectral feature extraction methods,

non-overlapping frequency band and overlapping frequency band, are described and

compared in Section 6.4 and 6.5. The spectral feature used in this work is presented

in Section 6.6 and summary is given in the last section.

60



Chapter 6 Spectral feature assessment of SEMG signals 61

6.2 Separability measuring

To measure the efficacy of various features, one approach is to directly present the

extracted feature vectors to a neural network and then evaluate the classification

performance. However, as there are a large number of different feature extraction

schemes, it would be prohibitively time consuming to test all combinations. In this

work, divergence [TK03] is thus used to measure the utility of different features.

The divergence is inferred from the Bayes classification rule and used as a separa-

bility measure of two distributions. In Bayes classification rule, given two classes

ω1 and ω2, a feature vector x is classified into ω1 if

P (ω1|x) > P (ω2|x).

Alternatively, the likelihood ratio between P (x|ω1) and P (x|ω2) thus represents

the discriminatory capability between two classes ω1 and ω2, and the mean log

likelihood ratio over class ω1 is calculated as

DIV1 =

∫ +∞

−∞

P (x|ω1) ln
P (x|ω1)

P (x|ω2)
(6.1)

and for ω2

DIV2 =

∫ +∞

−∞

P (x|ω2) ln
P (x|ω2)

P (x|ω1)
(6.2)

The divergence between the two classes, ω1 and ω2, is calculated as the sum

DIV12 = DIV1 + DIV2. (6.3)

The above equation can be transformed to

DIV12 =
1

2
trace(Σ−1

1 Σ2 + Σ−1
2 Σ1 − 2I)+

1
2
(µ1 − µ2)

′(Σ−1
1 + Σ−1

2 )(µ1 − µ2), (6.4)
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where µ1 and Σ1 are the mean and covariance of class ω1, and µ2 and Σ2 are the

mean and covariance of class ω2. The average divergence is calculated as follows:

DIV AVG =

N−1
∑

i=1

N
∑

j=i+1

DIVij

N−1
∑

i=1

i

, (6.5)

where N is the number of classes. In this work, N is equal to 8, which includes one

silence class and 7 phoneme classes (Section 6.3).

Another term, ASF DIV AVG, is used to analyze the average separability capa-

bility of individual features within the feature vector, where the average divergences

for individual features, DIV AVGs, are calculated using Equation 6.5, and the aver-

age of these is called the ASF DIV AVG coefficient, i.e.

ASF DIV AVG =

∑

k

DIV AVG

P
, (6.6)

where k is the kth dimension of the feature vector, and P is the total dimension

number of the feature vector.

6.3 Analysis data set

Using the experimental setup described in Section 5.3.1, an analysis was done using

a phoneme set consisting of: ae, iy, ao, uw, sh, f and s. Data sets were recorded in

a twenty-second period, during which the speaker repeatedly pronounced a given

phoneme. This process was repeated four times for each phoneme and the collected

data was used for analysis. The concurrently recorded speech signals were used as

a reference to label the SEMG signals.
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Figure 6.1: Distribution of NOFBC. The horizontal axis is the NOFBC number 1

- 10 from left to right, and the vertical axis is the amplitude of the NOFBC (lower

corresponds to larger amplitude). The color represents the number of NOFBCs.
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NOFBC number Frequency region
NOFBC 1 0 Hz – 50 Hz
NOFBC 2 50 Hz – 100 Hz
NOFBC 3 100 Hz – 150 Hz
NOFBC 4 150 Hz – 200 Hz
NOFBC 5 200 Hz – 250 Hz
NOFBC 6 250 Hz – 300 Hz
NOFBC 7 300 Hz – 350 Hz
NOFBC 8 350 Hz – 400 Hz
NOFBC 9 400 Hz – 450 Hz
NOFBC 10 450 Hz – 500 Hz

Table 6.1: NOFBC number and corresponding frequency region for N = 10.

6.4 Non-overlapping frequency bands

The SEMG signals of the were blocked into 112.5 ms frames, the frequency spectra

from 0 Hz to 500 Hz were calculated for each frame and divided into N equal non-

overlapping frequency sections; the bandwidth of each section is 500/N Hz. The

frequency components in each section were summed to give one coefficient (called

the non-overlapping frequency band coefficient or NOFBC) corresponding to that

section. This results in N NOFBCs and non-overlapping schemes are often used to

analyze SEMG signals, e.g. [PBYTI02]. Table 6.1 shows the NOFBCs and their

corresponding frequency regions for N = 10.

Figure 6.1 shows the distribution of the 10 NOFBCs for different phonemes

and SEMG channels. This preliminary view clearly shows the variability between

different phonemes and the similarities for the same phoneme. As we can see in

this figure, the NOFBCs are compacted in a small variance for the same phoneme.

On the other hand, variation can be found for different phonemes, particularly in

the amplitude. For example, the amplitudes for silence are much smaller than other

phonemes. Although the amplitude of some phoneme may be similar, variation can

be observed by comparing their shape over the NOFBC bands. For example, the

shape of phoneme ae and f in the cheek channel are different, but their amplitudes
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Silence ae f iy ao sh s uw

Silence 0.00 33.98 41.70 13.67 6.45 48.67 8.67 26.27
ae 33.98 0.00 12.66 47.69 41.00 19.04 88.90 18.68
f 41.70 12.66 0.00 20.64 26.61 3.00 68.98 4.63
iy 13.67 47.69 20.64 0.00 5.08 21.77 15.77 12.55
ao 6.45 41.00 26.61 5.08 0.00 28.47 6.28 16.71
sh 48.67 19.04 3.00 21.77 28.47 0.00 74.46 1.15
s 8.67 88.90 68.98 15.77 6.28 74.46 0.00 49.04

uw 26.27 18.68 4.63 12.55 16.71 1.15 49.04 0.00
Mean score 25.63 37.42 25.46 19.00 18.65 28.08 44.59 18.43

Table 6.2: Divergence scores of different phonemes using 10 NOFBCs from cheek
channel.

Silence ae f iy ao sh s uw

Silence 0.00 25.98 58.40 51.55 18.25 83.30 23.27 47.80
ae 25.98 0.00 3.09 10.07 2.12 10.73 9.78 7.32
f 58.40 3.09 0.00 19.38 2.54 13.62 15.17 7.98
iy 51.55 10.07 19.38 0.00 10.62 5.07 25.73 5.62
ao 18.25 2.12 2.54 10.62 0.00 10.25 9.13 5.01
sh 83.30 10.73 13.62 5.07 10.25 0.00 41.84 2.01
s 23.27 9.78 15.17 25.73 9.13 41.84 0.00 25.01

uw 47.80 7.32 7.98 5.62 5.01 2.01 25.01 0.00
Mean score 44.08 9.87 17.17 18.29 8.27 23.83 21.42 14.39

Table 6.3: Divergence scores of different phonemes using 10 NOFBCs from lower
lip channel.

are quite similar.

Table 6.2, 6.3, 6.4 shows the divergence scores for different SEMG channel

using 10 NOFBCs and the average scores (DIV AVG) calculated using Equation

6.5 are shown in Table 6.5. These tables show that the cheek channel is best able to

separate the SEMG feature vectors on average, the lower lip channel is the next, and

the chin channel is the worst. However, the cheek channel is not always the best.

For example, the lower lip channel is better than the cheek channel for separating

silence from other phonemes, as the mean divergence score is 44.08, compared with

25.63 using the cheek channel.

The DIV AVGs for different numbers of frequency bands are calculated and
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Silence ae f iy ao sh s uw

Silence 0.00 11.57 10.15 17.44 28.59 32.95 11.30 12.55
ae 11.57 0.00 1.99 5.67 6.75 6.35 1.89 0.80
f 10.15 1.99 0.00 12.74 16.05 15.91 1.67 4.04
iy 17.44 5.67 12.74 0.00 1.04 1.25 14.15 3.82
ao 28.59 6.75 16.05 1.04 0.00 0.63 16.39 3.73
sh 32.95 6.35 15.91 1.25 0.63 0.00 14.21 3.78
s 11.30 1.89 1.67 14.15 16.39 14.21 0.00 2.73

uw 12.55 0.80 4.04 3.82 3.73 3.78 2.73 0.00
Mean score 17.79 5.00 8.93 8.02 10.45 10.72 8.91 4.49

Table 6.4: Divergence scores of different phonemes using 10 NOFBCs from chin
channel.

Position DIV AVG

Cheek 27.2
Lower lip 19.7

Chin 9.3

Table 6.5: Comparison of DIV AVG score using 10 NOFBC from different SEMG
channel.

the results are shown in Figure 6.2. One can see that the DIV AVG value is larger

for a larger number of frequency bands. This shows that SEMG feature vectors

are more separable for a larger number of frequency bands, and hence, using more

frequency bands are better for capturing the variability of SEMG feature vectors

between different phonemes.

The ASF DIV AVGs for different numbers of frequency bands, are calculated

and the results shown in Figure 6.3. The separability of individual features can be

seen to be increasing with bandwidth. This is reasonable as each frequency band is

capable of capturing more SEMG features with larger bandwidth and is thus more

representative of the SEMG characteristics for different phonemes.

Figure 6.2 shows that DIV AVG increases with the number of frequency bands,

however, it is almost saturates after the number of frequency bands is larger than 5.

One of the reasons is that the bandwidth is smaller for more frequency bands and

the separability of each frequency band becomes lower. A problem of balancing the
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Figure 6.2: DIV AVG scores for different numbers of frequency bands using the
NOFBC feature.

trade-off between the number of frequency band and bandwidth is thus confronted.

In the next section, overlapping bands are used to address this problem.

6.5 Overlapping frequency bands

The overlapping method partitions the full frequency range into several bands, ad-

jacent bands being overlapped over a certain interval. Define N to be the number of

frequency bands of bandwidth ω. The frequency range FR in each frequency band

is:

FRi = [(i− 1)η, (i− 1)η + ω], for i = 1, 2, 3, ..., N

where

η = (500 − ω)/(N − 1).
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Figure 6.3: ASF DIV AVG scores for different bandwidths using NOFBC feature.

The SEMG signals for the analysis data set were also blocked into 112.5 ms

frames and the frequency spectra from 0 Hz to 500 Hz were calculated for each

frame. Frequency responses in each band were summed to give one coefficient

(called the overlapping frequency band coefficient or OFBC) corresponding to that

band, which results in N OFBCs.

Figure 6.3 shows the separability of individual frequency band increases with

the bandwidth. However, especially for the lower lip and chin channels, the sep-

arability tends to saturate for bandwidths larger than 140 Hz. As a result, OFBC

features with N = 10 and ω = 140 Hz were selected in this work. Table 6.6 shows

OFBCs and their corresponding frequency regions,

Table 6.7, 6.8, 6.9 shows the divergence scores for different SEMG channels

using 10 OFBCs with a bandwidth of 140 Hz. Average scores (DIV AVG) calcu-

lated are shown in Table 6.10. It is interesting to note that there are similarities

compared with the results obtained using NOFBCs. In particular, the cheek channel

is best for separating the SEMG feature vectors on average, the next is the lower lip
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OFBC number Frequency region
OFBC 1 0Hz – 140Hz
OFBC 2 40Hz – 180Hz
OFBC 3 80Hz – 220Hz
OFBC 4 120Hz – 260Hz
OFBC 5 160Hz – 300Hz
OFBC 6 200Hz – 340Hz
OFBC 7 240Hz – 380Hz
OFBC 8 280Hz – 420Hz
OFBC 9 320Hz – 460Hz

OFBC 10 360Hz – 500Hz

Table 6.6: OFBC number and corresponding frequency region for N = 10, ω =
140 Hz.

Silence ae f iy ao sh s uw

Silence 0.00 51.19 79.57 17.51 9.09 64.69 13.44 33.91
ae 51.19 0.00 13.80 66.96 80.78 21.72 216.07 21.26
f 79.57 13.80 0.00 34.29 54.22 3.49 145.57 5.62
iy 17.51 66.96 34.29 0.00 5.19 30.45 17.37 19.70
ao 9.09 80.78 54.22 5.19 0.00 44.17 6.51 27.86
sh 64.69 21.72 3.49 30.45 44.17 0.00 119.63 1.17
s 13.44 216.07 145.57 17.37 6.51 119.63 0.00 80.11

uw 33.91 21.26 5.62 19.70 27.86 1.17 80.11 0.00
Mean score 38.49 67.40 48.08 27.35 32.55 40.76 85.53 27.09

Table 6.7: Divergence scores of different phonemes using 10 OFBCs from cheek
channel, where ω = 140 Hz.

channel, and the lower lip channel is better than the cheek channel for separating

silence from other phonemes. On average, using 10 OFBCs is better than using 10

NOFBCs for distinguishing different phonemes (see Figure 6.4).

From Table 6.7, 6.8, 6.9, one can see that different channels are better for dis-

tinguishing different phonemes, i.e. while a channel may be bad for separating a

particular phoneme, another channel may be good. For example, the cheek channel

is better than the chin channel for distinguishing between s and f. The lower lip

channel is better than the cheek for distinguishing between iy and s. However, the

chin channel is almost always poor for all phoneme pairs. It only performs slightly
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Silence ae f iy ao sh s uw

Silence 0.00 59.74 93.69 104.00 38.26 147.28 49.25 70.97
ae 59.74 0.00 3.47 9.08 2.34 11.90 12.97 7.04
f 93.69 3.47 0.00 19.66 2.65 14.63 17.12 8.69
iy 104.00 9.08 19.66 0.00 11.09 3.45 52.01 5.14
ao 38.26 2.34 2.65 11.09 0.00 12.34 10.80 5.23
sh 147.28 11.90 14.63 3.45 12.34 0.00 65.66 2.76
s 49.25 12.97 17.12 52.01 10.80 65.66 0.00 31.80

uw 70.97 7.04 8.69 5.14 5.23 2.76 31.80 0.00
Mean score 80.46 15.22 22.84 29.20 11.81 36.86 34.23 18.80

Table 6.8: Divergence scores of different phonemes using 10 OFBCs from lower
lip channel, where ω = 140 Hz.

Silence ae f iy ao sh s uw

Silence 0.00 19.34 16.65 24.78 44.95 50.30 17.81 22.21
ae 19.34 0.00 2.52 9.29 9.90 9.79 1.95 0.89
f 16.65 2.52 0.00 26.10 28.24 27.26 1.73 5.42
iy 24.78 9.29 26.10 0.00 1.41 1.61 22.89 5.33
ao 44.95 9.90 28.24 1.41 0.00 0.83 23.51 4.93
sh 50.30 9.79 27.26 1.61 0.83 0.00 22.49 5.58
s 17.81 1.95 1.73 22.89 23.51 22.49 0.00 3.53

uw 22.21 0.89 5.42 5.33 4.93 5.58 3.53 0.00
Mean score 28.01 7.67 15.42 13.06 16.25 16.84 13.41 6.84

Table 6.9: Divergence scores of different phonemes using 10 OFBCs from chin
channel, where ω = 140 Hz.

better in separating a limited number of phoneme pairs, such as sh and f.

The results obtained in Table 6.7, 6.8, 6.9 also show that characteristics of

SEMG and speech signals are very different. All channels are bad for separating

phoneme sh from uw, but the speech signals for these two phonemes are actually

totally different, where phoneme uw is a voiced sound with vocal cord vibration and

sh is a unvoiced sound. These two phonemes can be easily distinguished by human

or acoustic speech recognition systems. The divergence score shows that SEMG

characteristics of these two phonemes are similar as the degree of lip-rounding is

quite similar resulting in similar muscle activities.
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Position DIV AVG

Cheek 45.9
Lower lip 31.2

Chin 14.7

Table 6.10: Comparison of DIV AVG using 10 OFBCs from different SEMG chan-
nel, where ω = 140 Hz.
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Figure 6.4: Comparison of DIV AVG for 10 NOFBCs and 10 OFBCs.

6.6 Feature selection

The above analysis shows that the cheek and lower lip channels are the best two

channels for distinguishing phonemes. These two channels were chosen for this

reason in this work. Using a bandwidth of 140 Hz, 10 OFBCs extracted from each

channel are concatenated and results in a total of 20 OFBCs. This configuration is

used for further experiments. The divergence scores calculated using 20 OFBCs are

shown in Table 6.11. One can see that, all divergences are improved compared with

the divergences obtained using a single channel. The DIV AVG calculated using 20
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Silence ae f iy ao sh s uw

Silence 0.00 105.04 154.55 170.11 47.79 174.31 64.55 90.61
ae 105.04 0.00 18.54 148.93 95.37 35.31 239.37 33.36
f 154.55 18.54 0.00 116.10 66.38 25.73 170.23 20.92
iy 170.11 148.93 116.10 0.00 19.78 54.47 59.68 55.81
ao 47.79 95.37 66.38 19.78 0.00 48.52 15.56 32.65
sh 174.31 35.31 25.73 54.47 48.52 0.00 157.20 4.12
s 64.55 239.37 170.23 59.68 15.56 157.20 0.00 98.54

uw 90.61 33.36 20.92 55.81 32.65 4.12 98.54 0.00
Mean score 115.28 96.56 81.78 89.27 46.58 71.38 115.02 48.00

Table 6.11: Divergence scores of different phonemes using 20 OFBCs from the
cheek and lower lip channels, where ω = 140 Hz.

OFBCs becomes 83.0.

6.7 Summary

In this chapter, the spectral feature selection process conducted in this work was pre-

sented. The quality of features was measured using a divergence score. Two spec-

tral feature extraction schemes, non-overlapping and overlapping frequency band,

were compared. The results show that the overlapping frequency band is better than

the non-overlapping frequency band to distinguish phonemes. The cheek channel

yields the best average divergence score and this is followed by the lower lip chan-

nel. The chin channel is the worst. A configuration, using 20 OFBCs extracted

from the cheek and lower lip channels with a bandwidth of 140 Hz, was found to

yield better performance than a single channel and thus chosen for the rest of this

work. In the next chapter, the speech synthesis results using this configuration will

be presented.
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Results

7.1 Introduction

The previous chapter showed that using overlapping frequency band coefficients

(OFBCs) had advantages over non-overlapping frequency band coefficients (NOF-

BCs). In this work, two additional features were employed, the root mean square

amplitude (RMSA) and zero-crossing rate (ZCR). Moreover, the analysis in Chapter

6 showed that the cheek and lower lip channels can achieve a better average diver-

gence score than the chin channel. In this chapter, speech synthesis results, obtained

using OFBC, RMSA, and ZCR as features and two SEMG channels including the

cheek and lower lip, will be presented.

This chapter begins by describing the experimental data set used. This is fol-

lowed by experimental results obtained to find the most suitable SEMG frame size.

The classification performance of the neural network is analyzed. The performance

of an error correction technique, used to correct the classification error of the neural

network, is then presented. Synthesis results for words are then described and a

summary is given in the last section.

73
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7.2 Experimental data sets

Data sets were recorded in twenty-second duration, during which a speaker repeat-

edly pronounced a given phoneme or word. Each data set contains two twenty-

second SEMG signals (recorded from the cheek and lower lip) and one twenty-

second speech signal.

7.2.1 Training phoneme set

The phoneme set described in Section 6.3 was chosen, four data sets for each

phoneme were used for the training of neural network and results in twenty-eight

data sets in total. SEMG signals from each channel were blocked into frames every

22.5 ms. As a result, the number of SEMG frames for each channel is:

28 data sets × b
20 sec

22.5 ms
c = 24864 frames.

For each SEMG frame, 10 OFBCs, one RMSA and one ZCR were extracted,

thus for both channels, each SEMG feature vector contains contains 20 OFBCs, 2

RMSAs and 2 ZCRs. As a result, there were a total of 24864 vectors used to train

the neural network.

7.2.2 Testing phoneme set

The testing phoneme sets contains one data set for each phoneme, and results in

seven data sets. SEMG signals from each channel were blocked into frames every

22.5 ms. The number of SEMG frames for each channel is:

7 data sets × b
20 sec

22.5 ms
c = 6216 frames.

SEMG feature vectors containing 20 OFBCs, 2 RMSAs and 2 ZCRs were extracted

in the same way as the training phoneme set. As a result, there were 6216 SEMG
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Figure 7.1: Average classification rate for different SEMG frame sizes using 20
OFBCs, 2 RMSAs, 2 ZCRs.

feature vectors in total. These vectors were used to evaluate the classification per-

formance of the neural network. Speech signals are recorded concurrently and used

as a reference to label the SEMG signals for performance evaluation.

7.2.3 Testing word set

The word used for testing are shaw, she, ash, shoe, see, saw, fee and off. The

phonetic transcriptions are formed by concatenating the training phonemes. The

testing word set contains one data set for each word, and results in eight data sets.

SEMG feature vectors containing 20 OFBCs, 2 RMSAs and 2 ZCRs were extracted

in the same way as the training phoneme set. The testing word set was used to

evaluate the speech synthesis performance.
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Figure 7.2: Average classification rate of silence and phonemes for different SEMG
frame sizes using 20 OFBCs, 2 RMSAs, 2 ZCRs.

7.3 SEMG frame size

To find the SEMG frame size that balances the trade-off between the time and fre-

quency resolution, SEMG features vectors were extracted for different frame sizes.

The neural network was trained under different frame sizes and classification per-

formance was evaluated using the testing phoneme set. In this work, SEMG frame

sizes from 22.5 ms to 202.5 ms with a step of 45 ms were analyzed. As the feature

vectors contains 20 OFBCs, 2 RMSAs, and 2 ZCRs, a three-layer neural network

with 24 input nodes, 24 hidden nodes and 8 output nodes were chosen. One third of

the training data was used as a cross-validation set.

The average classification rates for SEMG frame sizes from 22.5ms to 202.5ms

are shown in Figure 7.1. A clear trend can be seen in this figure: the classification



Chapter 7 Results 77

rate is higher for larger SEMG frame sizes and becomes saturated for frame sizes

larger than 112.5 ms. Because smaller frame size gives better time resolution, a

frame size of 112.5 ms is chosen for further experiments despite larger frame size

giving a slightly higher classification rate.

An interesting result is shown in Figure 7.2, which shows the classification rate

of silence and phonemes separately for different SEMG frame sizes. One can see

that the classification rates for silence are almost the same for all frame sizes, how-

ever, the classification rate for phonemes increases with the frame size and becomes

saturated for frame sizes larger than 112.5 ms. SEMG signals for silence have

similar characteristics, e.g. low amplitude, low response of frequency, these charac-

teristics can be classified using either small or large frame sizes. This may explain

why the classification rate curve of silence is flat. On the other hand, the classifi-

cation rate curve for phonemes suggests that larger frame size can achieve better

classification rate since a larger SEMG frame contains more information related to

the muscle contraction when speaking. Thus larger frame sizes are able to capture

variabilities among different phonemes.

7.4 Neural network classification

7.4.1 Number of hidden nodes

To analyze the effects of varying the number of hidden nodes, using 20 OFBCs,

2 RMSAs, and 2 ZCRs as features, the classification performance of the neural

network was analyzed using the testing phoneme set. Figure 7.3 shows the average

classification rate for different numbers of hidden nodes. It can be seen that the

number of hidden nodes has little impact on the result. Hidden nodes ranging from

8 to 24 give almost the same classification rate, and 24 gives a slightly better rate.

As a result, the number of hidden nodes was chosen as the number of input nodes

in this work.
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Figure 7.3: Average classification rate for different number of hidden nodes using
20 OFBCs, 2 RMSAs, 2 ZCRs.

7.4.2 Single channel

To further analyze the correlation between sensor position and performance, instead

of using 20 OFBCs, 2 RMSAs, and 2 ZCRs extracted from both SEMG channels,

the neural network was trained and tested using SEMG features extracted from a

single SEMG channel, i.e. 10 OFBCs, 1 RMSA, and 1 ZCR. An SEMG frame size

of 112.5 ms was used.

Table 7.1 shows the confusion matrix for classification using 10 OFBCs, 1

RMSA, and 1 ZCR extracted from the cheek, and the results obtained for lower

lip channel are shown in Table 7.2. In these tables, the columns show the neural

network classified labels and the rows represent the true labels. The average classi-

fication rates for the cheek and lower lip channels are 74.3% and 60.4% respectively.
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Classified True phoneme label
phoneme label Silence ae f iy ao sh s uw

Silence 76.6% 0.7% 0.0% 1.9% 3.3% 0.0% 5.3% 0.5%
ae 1.6% 91.3% 9.6% 0.2% 0.0% 3.2% 0.4% 0.9%
f 1.7% 2.8% 77.9% 0.2% 0.5% 13.5% 0.0% 6.1%
iy 2.3% 3.0% 0.0% 74.2% 11.2% 1.7% 0.7% 2.6%
ao 5.3% 1.1% 0.2% 16.0% 71.6% 0.7% 5.3% 0.7%
sh 2.1% 0.4% 9.0% 0.0% 0.7% 51.7% 0.0% 26.6%
s 9.0% 0.7% 0.0% 6.0% 12.2% 0.4% 88.3% 0.2%

uw 1.4% 0.0% 3.3% 1.5% 0.5% 28.8% 0.0% 62.4%

Table 7.1: Confusion matrix showing the classification performance using 10 OF-
BCs, 1 RMSA, and 1 ZCR extracted from the cheek, the SEMG frame size is
112.5 ms. The average classification rate is 74.3%.

Classified True phoneme label
phoneme label Silence ae f iy ao sh s uw

Silence 79.7% 1.1% 0.0% 0.4% 0.7% 0.0% 1.6% 0.0%
ae 2.7% 50.2% 16.2% 8.5% 23.9% 16.1% 8.7% 2.4%
f 1.3% 15.7% 63.7% 0.4% 22.2% 1.3% 1.2% 0.9%
iy 0.9% 0.4% 0.0% 62.6% 0.0% 11.8% 0.0% 5.9%
ao 4.0% 9.1% 15.6% 1.0% 30.0% 1.9% 3.0% 1.6%
sh 2.2% 0.0% 0.0% 15.4% 0.0% 53.2% 0.0% 30.1%
s 8.0% 23.5% 4.3% 2.7% 13.4% 0.6% 85.5% 0.9%

uw 1.2% 0.0% 0.2% 9.0% 9.8% 15.1% 0.0% 58.2%

Table 7.2: Confusion matrix showing the classification performance using 10 OF-
BCs, 1 RMSA, and 1 ZCR extracted from the lower lip, the SEMG frame size is
112.5 ms. The average classification rate is 60.4%.

One can observe that the cheek channel provides more discriminative information

for SEMG frame classification for the phoneme set used in this work.

From these two tables, the results are consistent with the results obtained in

the spectral feature assessment of SEMG signals in Chapter 6. For example, on

average the cheek channel is better than the lower lip channel and the lower lip

channel is better than the cheek for separating silence from other phonemes. The

cheek is better than the lower lip channel for distinguishing phonemes except sh.

Comparing Table 7.1 and 7.2, it can be seen that that confusion between phoneme

sh and uw exists in both cases. An average misclassification rate of 27.7% was
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Figure 7.4: Correct classification rate of silence and each phoneme using the cheek,
the lower lip, and both channels respectively.

found using the cheek channel, and 22.6% misclassification rate was found using

the lower lip channel.

7.4.3 Classification using both channels

Figure 7.4 shows the correct classification rates for silence and each phoneme using

the cheek, the lower lip, and both channels respectively. This figure shows that,

compared with using a single channel, correct classification rates of all phonemes

and silence are improved when both channels are used.

Table 7.3 shows the classification results using 20 OFBCs, 2 RMSAs, and 2

ZCRs. The average classification rate is 86.3%. From this table and Figure 7.4,
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Classified True phoneme label
phoneme label Silence ae f iy ao sh s uw

Silence 82.1% 1.8% 0.0% 1.0% 1.7% 0.2% 1.4% 0.2%
ae 2.1% 95.5% 5.1% 0.0% 0.0% 1.9% 0.2% 0.5%
f 1.5% 1.7% 94.9% 0.0% 1.2% 1.3% 0.0% 0.2%
iy 1.2% 0.0% 0.0% 91.5% 0.7% 0.0% 1.2% 0.0%
ao 4.0% 0.6% 0.0% 4.4% 85.2% 0.6% 2.3% 1.2%
sh 2.1% 0.0% 0.0% 0.0% 0.2% 69.2% 0.0% 20.0%
s 5.3% 0.4% 0.0% 2.9% 9.3% 0.4% 94.7% 0.7%

uw 1.7% 0.0% 0.0% 0.2% 1.7% 26.4% 0.2% 77.2%

Table 7.3: Confusion matrix showing the classification performance using 20 OF-
BCs, 2 RMSAs, and 2 ZCRs extracted from the cheek and lower lip channels, the
SEMG frame size is 112.5 ms. The average classification rate is 86.3%.

one can see that, although the correct classification rates of all phonemes and si-

lence are improved when using both channels, there is no improvement in sepa-

rating phoneme sh from uw. The average misclassification rate between these two

phoneme is 23.2% when both channels are used, however, a misclassification rate

of 22.6% is obtained when the lower lip channel is used, this rate is even slightly

lower than for two channels. Moreover, from Figure 7.4, it is found that the correct

classification rates of phoneme sh and uw are the worst among the seven phonemes.

These results indicate that the SEMG signals collected from the cheek and lower

lip may be inadequate for separating phoneme sh from uw, as the degree of lip-

rounding for pronouncing these two phoneme are similar.

Table 7.3 shows that there are still 17.9% silence SEMG frames being misclas-

sified to other phonemes when using both SEMG channels. This error is introduced

by the fact that SEMG activities exist prior or posterior to acoustic signals (see

Figure 7.5). In the training phoneme set, some SEMG frames prior (region A2 in

Figure 7.5) or posterior (region A3 in Figure 7.5) to acoustic signals are labeled as

silence, and as these kinds of SEMG frames are actually associated with rich mus-

cle activities, the classifier may be confused, as SEMG frames in regions A1 and

A4 in Figure 7.5, which are associated with less muscle activities, are also labeled

as silence and thus form a one-to-many situation.
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Figure 7.5: SEMG activities prior and posterior to speech.



Chapter 7 Results 83

0

20

40

60

80

100

120

2 RMSAs 2 ZCRs 20 OFBCs ALL

A
ve

ra
ge

 c
la

ss
if

ic
at

io
n 

ra
te

Features

69.2

38.8

84.2 86.3
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Classified True phoneme label
phoneme label Silence ae f iy ao sh s uw

Silence 87.0% 0.4% 0.0% 0.4% 1.0% 0.0% 2.3% 3.3%
ae 1.8% 99.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
f 2.1% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
iy 1.6% 0.0% 0.0% 94.8% 0.0% 0.0% 0.0% 0.0%
ao 1.6% 0.0% 0.0% 3.8% 99.0% 0.0% 0.0% 0.0%
sh 3.2% 0.0% 0.0% 0.0% 0.0% 96.3% 0.0% 0.0%
s 1.4% 0.0% 0.0% 1.0% 0.0% 0.0% 97.7% 0.0%

uw 1.3% 0.0% 0.0% 0.0% 0.0% 3.7% 0.0% 96.7%

Table 7.4: Confusion matrix after applying error correction to the produced se-
quence of speech feature indices. The average classification rate is 96.4%.

Figure 7.6 shows the classification results for different features using both SEMG

channels. Using 2 ZCRs and 2 RMSAs achieve the worst accuracy and this result

is consistent with previously obtained results [ST85, MO86]. In these studies, the

authors tried to classify SEMG frames using similar features and also achieved poor

results. In their work, the number of crossing threshold [ST85] and average ampli-

tude [MO86] were used as features. Figure 7.6 also shows that OFBC is the best

feature among these three kinds of features, using 20 OFBCs can achieve almost

the same classification accuracy as using all features.

7.5 Phonetic sequence smoothing

7.5.1 Data set

Using 20 OFBCs, 2 RMSAs, and 2 ZCRs as features, SEMG signals in the testing

phoneme set were classified into sequences of speech feature indices. Since there

were seven phonemes, seven sequences were produced, each sequence containing

888 indices. As indicated in Table 7.3, misclassifications exist in the classified

sequences of speech feature indices. A hybrid smoothing technique, described in

Section 5.4.4, was applied to correct these classification errors.
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Figure 7.7: Average classification rates after smoothing for different threshold val-
ues in the majority filtering process.

7.5.2 Smoothing of classifications

Figure 7.7 shows the average classification rates after smoothing for different thresh-

old values in the majority filter process. The classification rate is similar for differ-

ent threshold values, and a value of 8 achieves the best classification rate. Thus this

value was chosen for further experiments.

Table 7.4 shows the results obtained after applying the hybrid smoothing using a

threshold of 8 for the majority filter process. An average classification rate of 96.4%

was achieved. A comparison of classification rates before and after smoothing is

shown in Figure 7.8. This figure shows that the classification rates for each phoneme

and silence are improved with the smoothing technique. In particular, phonemes ao,

sh and uw exhibit the greatest improvement.



Chapter 7 Results 86

0

20

40

60

80

100

120

silence ae f iy ao sh s uw

C
or

re
ct

 c
la

ss
if

ic
at

io
n 

ra
te

Phoneme

Before smoothing
After smoothing

Figure 7.8: Comparison of correct classification rate before and after smoothing.

7.6 Speech synthesis

The testing word set was used for evaluating the performance of a speech synthesis

system. Using 20 OFBCs, 2 RMSAs, and 2 ZCRs as features, the SEMG signals

for each data sample were classified into a sequence of speech feature indices. After

performing error correction, speech waveforms for each data set were then synthe-

sized using the concatenative method (see Section 5.3.4).

Table 7.5 shows the synthesis results. 92.9% of the words are synthesized cor-

rectly. A word is regarded as synthesized correctly if the phonetic transcriptions of

the synthesized word is correct, e.g. a synthesized word off is regarded as syn-

thesized correctly if it’s phonetic transcriptions is a phoneme ao followed by a

phoneme f.

Figure 7.9 and 7.10 show the sub-sequences of speech feature indices before
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Figure 7.9: A sub-sequence of speech feature indices before and after smoothing
for word ash.
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Figure 7.10: A sub-sequence of speech feature indices before and after smoothing
for word off.
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Figure 7.12: Spectrogram of the synthesized speech of six repetition of the word
ash.
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Figure 7.13: Spectrogram of the synthesized speech of five repetition of the word
off.
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Words Number of words Number of words
synthesized synthesized correctly

she 5 5
ash 6 6

shaw 6 6
see 4 4
saw 6 3
shoe 4 4
fee 6 6
off 5 5

Total 42 39

Table 7.5: Synthesis results for words

and after smoothing for two synthesized instances of word ash and off respectively.

Note that there are many errors in the sequences produced by the neural network

(i.e. before smoothing). After applying the smoothing technique, clear phonetic

transcriptions for both words are obtained. Thus, both words are regarded as syn-

thesized correctly, since they can produce the correct phonetic transcriptions. This

work focuses on generating correct phonetic transcriptions for input SEMG signals.

As this is directly correlated to the intelligibility of the synthesized speech. Once

a correct phonetic transcription is obtained, more sophisticated speech synthesis

techniques can be used to generate the speech waveform with better quality and

intelligibility.

Although the duration of phonemes in the synthesized words using the presented

technique may be incorrect, the intelligibility of the synthesized words is not af-

fected. For example, Figure 7.11 shows a smoothed sub-sequence of speech feature

indices for word ash with longer ae, the intelligibility of the synthesized speech

will not be affected, as a correct phonetic transcription is obtained, i.e. a phonetic

transcription of an ae followed by a sh can be heard. Moreover, the duration of each

phoneme can be adjusted by the speech synthesizer. In the above case, a speech syn-

thesizer could potentially shorten the duration of phoneme ae and extend the length

of phoneme sh. If the duration of both phonemes are too long, the synthesizer can
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also shorten the durations of both phonemes. The spectrograms of the synthesized

instances of ash and off are shown in Figures 7.12 and 7.13.

7.7 Summary

Experimental results were presented in this chapter. The results showed that an

SEMG frame size of 112.5 ms achieves a good balance between time and frequency

resolution. Using two SEMG channels and features as 20 OFBCs, 2 RMSAs, and 2

ZCRs, an average classification of 86.3% was obtained. This result can be improved

to 96.4% after applying the hybrid smoothing technique. Experimental evaluations

based on the synthesis of eight words showed that on average, 92.9% of the words

could be synthesized correctly.
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Conclusion

The main objective of this work was addressing the feasibility of unlimited vocab-

ulary continuous speech synthesis from SEMG signals. Several subproblems and

original contributions made to address them were studied.

Spectral feature selection

Two kinds of spectral features, NOFBCs and OFBCs, were compared in this work.

Using a divergence metric, the assessment showed that overlapping frequency band

coefficients achieve a higher divergence score, and the separability of each fre-

quency band increases with the bandwidth. The classification results showed that

spectral features alone can achieve nearly the same performance as all features com-

bined. This showed that spectral features were important despite temporal features

being widely used in previously proposed systems, and that the results can be im-

proved by carefully analyzing and selecting the appropriate spectral features. This

work showed that OFBCs are excellent features for the analysis of SEMG signals.

SEMG frame size

The effects of the SEMG frame size were investigated. Classification performances

of the neural network for different SEMG frame sizes were analyzed. Experimental

results showed that classification accuracy increases with the SEMG frame size and

tends to saturate for frame size larger than 112.5 ms. This frame size was chosen in

94
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this work as it can balance the requirement of frequency and time resolution. The

experimental results showed a strong relationship exist between SEMG frame size

and accuracy of phoneme frame classification, suggesting that it should be chosen

carefully. The effects of the frame size should be considered when new phonemes

are appended to the phoneme set.

SEMG sensor positioning

SEMG sensor positioning is a critical element that affect the classification perfor-

mance. The divergence test on spectral features showed that, the cheek channel can

achieves the best divergence score, then the lower lip channel and the chin channel

has the lowest score. The experimental results from a neural network classification

also showed that the cheek channel can achieve higher accuracy, and the perfor-

mance is much better when more SEMG channels are used. However, phonemes

having similar degrees of lip-rounding are difficult to distinguish using SEMG sig-

nals, despite the fact that their acoustic signals may be totally different. For ex-

ample, using SEMG signals from the cheek and lower lip is hard to distinguish

phoneme sh from uw. This result suggests that more SEMG channels from various

positions should be used.

Error correction

Generating correct phonetic transcriptions, i.e. sequences of speech feature indices,

was one of the major problems studied in this work. As the accuracy of the sequence

of speech feature indices is directly correlated to the intelligibility of the synthesized

speech, a hybrid smoothing technique, which was developed that assumes mid-term

stationary of the speech signals. Experimental results showed that it is capable of

enhancing the accuracy of the produced sequences of speech feature indices to some

degree, as shown in Chapter 7, the accuracy is improved from 86.3% to 96.4%, a

10.1% improvement was achieved.
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WS this thesis 1 8 Wds 92.9% 2 Y Phoneme frame Word Y
+ 7 Phs

IWR [MO86] 1 6 Wds < 70% 4 N Word Word N
IWR [CEHL02b] 2 10 Wds 83% 5 N Word Word N
IWR [MZ04] 10 10 Wds 63.7% 3 N Word Word N
IWR [JLA03] 3 6 Wds 92% 2 N Word Word N
IPR [KKAB04] 3 5 Vws 88% 3 N Phoneme Phoneme N
IPR [MHS03] 3 5 Vws 94.7% 3 N Phoneme Phoneme N
IPR [JB05] 2 41 Vws 33% 2 N Phoneme Phoneme N
PS [ST85] 3 5 Vds 64% 3 N Phoneme frame Phoneme N

Table 8.1: A comparison between this work and previous work. WS - word syn-
thesis, IWR - isolated word recognition, IPR - isolated phoneme recognition, PFR -
phoneme frame recognition, PS - phoneme synthesis, Wds - words, Vws - vowels.
Previous work was reviewed in Section 2.5.

SEMG word synthesis

This work presented an SEMG-based speech synthesizer for a small phoneme and

word set. A comparison between this work and previous work (reviewed in Section

2.5) is shown in Table 8.1. The major differences are that this work addressed the

problem of speech synthesis from SEMG signals, the recognition model was built

from phoneme frames, several sub-problems such as error correction and transition

smoothing between speech segments were addressed. Although the training process

involved only phonemes, it was demonstrated that words can be synthesized by

using a frame-based feature extraction and conversion approach. Using a three-

layer neural network with 24 hidden nodes, the experimental results showed that

the neural network can classify the SEMG frames at an accuracy of 86.3% and

this was improved to 96.4% by applying the error correction process, and 92.9%
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of words can be synthesized correctly and demonstrated the feasibility of unlimited

vocabulary speech synthesis from SEMG signals.

8.1 Future work

This work introduced a new approach to speech recognition from SEMG signals.

There are many potential directions for future research directions.

8.1.1 Speech recognition techniques

The applicability of techniques from conventional speech recognition can be investi-

gated. For example, a hybrid recognizer that integrates neural networks and HMMs

[BMFK92], the neural network being used to produce observation probabilities for

the HMM, could be applied. This approach is commonly used in conventional

speech recognition and yields good performance.

8.1.2 SEMG sensor positioning

As shown in the experimental results, the positioning of the SEMG sensor plays a

vital role in performance. In this work, three positions (the cheek, the lower lip,

and the chin) were investigated and only two channels were used to perform clas-

sification. The contributions of SEMG channels to the discrimination of phonemes

can be analyzed for other facial positions, and it is believed that performance can

be further improved by using additional SEMG channels.

8.1.3 Large phoneme/word set and multiple subjects

A small phoneme and word set from a single subject was used in this work. Larger

phoneme and word sets from multiple subjects can be used to further explore the

feasibility of this approach and the variabilities of SEMG features for different sub-

jects can be analyzed.
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8.1.4 Potential applications

Previously proposed SEMG-based applications, such as a human-computer inter-

face [JB05] using a limited word set was inconvenient to a user. Once a larger

phoneme/word set is addressed, more SEMG-based practical systems can be im-

plemented, such as practical speech prosthetic devices, human-computer interfaces,

underwater communications and silent communication devices.

8.2 Concluding remarks

The feasibility of speech synthesis from SEMG signals was addressed in this work.

Encouraging results were obtained for a small phoneme and word set using only two

SEMG channels. Continuous speech synthesis from SEMG signals is a challenging

and difficult task. It is hoped that the approach described in this work inspires

further advances in this area and large phoneme and word sets become practical.



Appendix A

Schematic circuit diagram

The following circuit was used to obtain all of the SEMG data used in this work.

The output of thie circuit was sent to a National Instruments PCI6024E PCI data

acquisition card [Nat] for digitization (see Section 5.3.1).
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2
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2


Input 1
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Reference


Output


R
3


M1
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Figure A.1: Schematic circuit diagram of SEMG signal amplification. R1 = 10kΩ,

R2 = 100kΩ, R3 = 1kΩ, C1 = 1µF, C2 = 3.2nF, M1: Analog Devices AD625 am-

plifier, M2: Analog Devices AD210 amplifier.
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Appendix B

K-Means clustering algorithm

The following pseudo code describes the K-Means algorithm used in this work (see

Section 5.3.2)

Initialize guesses for the means m(1), m(2), ..., m(N)

Set the counts c(1), c(2), ..., c(N) to zero

Set iteration to zero

When iteration < threshold

For all datas

Retrieve a new data x

If distance between m(k) and x is minimum

c(k) = c(k) + 1

delta m = (1/c(k))(x-m(k))

m(k) = m(k) + delta m

End if

End for

iteration = iteration + 1

End when
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Appendix C

Vector quantization

The vector quantization (VQ) process finds a codebook index specifying the code-

book vector that best represents a given vector. The codebook vectors can be ob-

tained by clustering a set of training vectors, and the K-Means clustering algorithm

was used in this work.

Figure C.1 shows the VQ processing, for an input vector sequence V {v(1), v(2),

v(3), ..., v(N)}, the VQ process calculates the vector distance between each vec-

tor in the codebook C{c(1), c(2), c(3), ..., c(P )} and each input vector v(n). The

codebook index with minimum distance will be chosen as output. After vector

quantization, a sequence of codebook indices I{i(1), i(2), i(3), ..., i(N)} is pro-

duced.

In this work, the vector distance between an input vector v(n) and each vector

in codebook was calculated using:

d(v(i), c(j)) =

K
∑

k=1

[v(i)(k) − c(j)(k)]2, (C.1)

where v(i)(k) is the k-th element of the i-th input vector v(i), c(i)(k) is the k-th

element of the j-th codebook vector c(i), K is the vector length. The following

pseudo code describes the vector quantization algorithm used in this work (see Sec-

tion 5.3.3).

for p from 1 to codebook size {
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Figure C.1: Vector quantization process
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distance(p) = 0;

for k from 1 to vector length {

temp = (v(n)(k) - c(p)(k))*(v(n)(k) - c(p)(k));

distance(p) = distance(p) + temp;

}

}

i(n) = arg minp (distance(p));

In the above pseudo code, i(n) is the n-th element of the output codebook in-

dices sequence as shown in Figure C.1. Similar input vectors are clustered together

in vector quantization.
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