Elliptic Curve Cryptography: Schoof’s
Algorithm on Fields of Characteristic Two

Suen Tak Tsung, Daniel

Thesis
Submitted to the Faculty of the Graduate School of
The Chinese University of Hong Kong

(Division of Computer Science and Engineering)

In partial fulfillment of the requirements
for the Degree of

Master of Science

July, 2000

Schoof’s Algorithm on Fields of Characteristic T'wo

Abstract

Elliptic curves find their practical importance in the field of cryptography,
where the associated inverse logarithmic problem on the underlying finite group
has been believed to be intractable in most cases. In practice, it is important to
identify those exceptions so that only cryptographically-strong curves are selected
for real-life applications. It turns out that the group order is one of the crucial
criteria in identifying these exceptions. However, determining this group order
used to be a time-consuming operation, especially for curves over huge finite
fields, which is the case in most cryptographic applications.

It is well-known that points on elliptic curves over finite fields form finite
groups under the chord-tangent composition law. The problem of determining
the group order, also known as the point counting problem, has been an active
research area in the past ten years.

In this dissertation, the point counting problem will be introduced on elliptic
curves over fields of characteristic two. In particular, the Schoof’s algorithm,
the first algorithm that drops the complexity of the problem from O(q%“) for
every positive €, to O(log®q), where ¢ is the order of the underlying field, will
be discussed with its implementation details. Several example curves and their

group orders determined by our implementation will also be presented.

Schoof’s Algorithm on Fields of Characteristic T'wo

ACKNOWLEDGMENTS

I wish to express my gratitude to my supervisor, Phillip Leong, for his ex-

cellent guidance. I also wish to thank Thomas Pfahler of Technische Universitat

Darmstédt, for his support in my investigation of the LiDIA library package.

Contents

1 Introduction
1.1 Motivation
1.2 Contribution.
1.3 Previous Work

2 Elliptic Curves

2.1 Definition Lo
2.2 Fields of Characteristic Two

2.2.1 Polynomial Bases: Field Operations

2.2.2 Normal Basis: Field Operations
2.3 Division Polynomials
24 Group Order,
2.5 Frobenius Map

3 Schoof’s Algorithm
3.1 Chinese Remainder Theorem
3.2 Frobenius Map Identity
3.3 Strategy

Schoof’s Algorithm on Fields of Characteristic T'wo

331 t(mod2) 24

3.32 t(modp)forp>2 24

3.4 Implementation 29
3.4.1 Precision. 29

342 Primes, 29

3.4.3 Legendre’s Symbol 31

3.4.4 Division Polynomials f, 31

3.45 137yl y? (mod f,) 31

3.4.6 Organization of Computations 33

3.5 Summary and Performance Suggestion 35

4 Results 36
4.1 Examples oL 38

5 Conclusions and Future Developments 43
5.1 Conclusions, 43
5.2 Future Developments 44

6 Source Code Listing 45

Bibliography 69

Chapter 1

Introduction

1.1 Motivation

In the last decade, elliptic curves have been extensively studied. One of the
major reasons is that they have important properties which contribute to the
solution of Fermat’s Last Theorem. Apart from their theoretical value, elliptic
curves find their practical application in the field of cryptography. Elliptic Curve
Cryptosystem(ECC) is believed to be a good replacement of RSA scheme as
elliptic curves are good sources of abelian groups that can be utilized in public-
key cryptosystem, such as the Diffie-Hellman key exchange. Most importantly, it
is widely believed that, in general, there is no sub-exponential-time algorithm to
solve the associated discrete logarithmic problem.

Discrete logarithmic problems can be illustrated in cryptosystems such as the
Diffie-Hellman key-exchange: parties A and B need to communicate with each
other through a common session key. Let’s assume that they are computing in
a common known group GG with an element g. A picks a positive integer a and
computes ¢*, and sends this to B. Similarly, B does the same thing, but picking
his/her own positive integer b, and sends ¢” to A. Now, A can compute g by

multiplying a times the value of ¢°, which was received from B. B does a similar

Schoof’s Algorithm on Fields of Characteristic T'wo

procedure to get ¢?. This quantity ¢? will then be the common session key
between the two parties. This method is secure as long as the inverse logarithmic
problems are difficult to solve. In the above example, three inverse logarithmic

problems are involved:
1. given g%, determine the value of a,
2. given ¢°, determine the value of b,
3. given g%, determine the value of ab.

The first two problems assure that A and B cannot tell one another’s private
key. The third problem prevents interceptors from knowing ab, and thereby,
determine the correct value of a and b. With the order of G' a huge integer, the
inverse logarithmic problem is generally believed to be intractable.

ECC can be compared with the traditional RSA cryptosystem where the un-
derlying integer factorization problem can be solved pseudo-exponentially, inter-
estingly, through the Lenstra’s elliptic curves factorization algorithm. Hence, to
achieve the same level of security, ECC uses far fewer bits than the corresponding
RSA scheme.

In order that ECC be practically useful in reality, we have to identify what
makes "good” curves. A "good” curve possesses nice properties that allows
the construction of a strong cryptosystem, i.e. properties that make the un-
derlying discrete logarithmic problem intractable. It turns out that one of the
major criteria is the order of the underlying finite group. It was shown that
cryptographically-strong cryptosystems can be built with a non-supersingular el-
liptic curve over a finite field, whose group order is divisible by a large prime as
described on p.101 of [6], which is usually hundreds of bits long in practice. The
problem of point counting is the determination of this quantity given an elliptic

curve over a finite field. The earliest efficient algorithm that solves the point

Schoof’s Algorithm on Fields of Characteristic T'wo

counting problem is Schoof’s Algorithm, though the more recent Schoof-Elkies-
Atkin algorithm (SEA) is more superior in performance. The understanding of
Schoof’s algorithm serves to lay the foundation in understanding and investigat-

ing more advanced techniques such as the SEA algorithm.

Schoof’s Algorithm on Fields of Characteristic T'wo

1.2 Contribution

In this thesis, we shall review the theories behind general elliptic curves. Our
focus will only be on important results, i.e., results that are vital in subsequent
chapters. These results are then followed by the explanation of Schoof’s algorithm
in Chapter 3. Our implementation of Schoof’s algorithm is described and the
results presented.

The underlying field of ECC is usually GF(p), galois field of prime charac-
teristic p, or GF(2™), galois field with 2™ elements. It is the latter kind of fields
that we shall be focusing on as arithmetics inside these fields can be done without
worrying about the carry bit. As a result, efficient hardware can easily be built
to speed up calculations [9]. The Schoof’s algorithm that we shall be studying

will assume the underlying field is of this even characteristic.

Schoof’s Algorithm on Fields of Characteristic T'wo

1.3 Previous Work

Since the introduction of the point counting problem, different algorithms have
been proposed to solve it efficiently. The first successful candidate was the Baby-
Step Giant-Step (BSGS) method proposed by Shanks and Mestre. With ¢ being
the order of the underlying field, the algorithm’s runtime complexity is O(q%“)
for arbitrary small € > 0. For more information about BSGS algorithm, see
p.104 of [6]. Then in 1985, the runtime complexity was reduced to O(log®q) by
Schoof [13]. Schoof’s algorithm is based on calculations with the torsion points
of the elliptic curve. After the introduction of Schoof’s algorithm, Elkies and
Atkin jointly discovered improvements to the Schoof’s original algorithm that
makes point counting practical. It is Schoof’s original algorithm that we shall be

focusing on in this dissertation.

Chapter 2

Elliptic Curves

In this chapter, we shall review the definitions and major results on elliptic curves
over general fields in Section 2.1. Starting from Section 2.2, all fields are assumed
to be of characteristic two, we shall adapt the results in Section 2.1 to this kind of
finite fields, and see how the general formula for elliptic curves can be simplified
in this special case. The division polynomials will be introduced in Section 2.3,
where the relationships between these polynomials and points on the correspond-
ing elliptic curves are investigated. The last section introduces the Frobenius

endomorphism and the notion of supersingularity.

10

Schoof’s Algorithm on Fields of Characteristic T'wo

2.1 Definition

Definition 2.1.1 Let F be a field, an elliptic curve E over F is defined as the

set of points (z,y) on F? satisfying the Weierstrass’s equation,
E: vV +aizy+ a3y =2 + ayx? + asx + ag (2.1)

where a; € F fori € {1,2,3,4,6}. Moreover, for any point in T on E, at least

one of the followings are non-zero: ?)—5, %—5, where,

F(ZL‘, y) = y2 —+ a;xry + asy — (1‘3 + a2x2 + a,x + (ZG) =0 (22)

The field F is an algebraic closure of F, the field extension of F that every poly-
nomials over F factor completely into linear factors in F.

In this report, F will always denote a finite field, its characteristic is char(F),
and E is always an elliptic curve over F.

A point on a cubic curve is called a singular point if ?)—5 = %—5 = 0 at that point.
A cubic curve is called a singular curve if it has a singular point. Otherwise, the
curve is said to be non-singular. The following shows typical elliptic curves when

F=R:

—
_

Clearly, elliptic curves are cubic algebraic curves with certain properties. The

requirement on the partial derivatives not only serve to eliminate non-smooth

Schoof’s Algorithm on Fields of Characteristic T'wo

curves, it also lets us avoid some undesirable situations. For example, a smooth
curve may cross itself, thus giving two distinct tangents at the intersection point.

This is illustrated below:

y
' U '

There are other quantities that are important as well. They are summarized

as follow,

d2 = Cl% + 4@2

d4 = 2(14 + aqas

d6 = Clg + 4@6

2

2 2
ds = ajas+ 4asag — ajazas + asa; — a;

cy = di—24d,

A = —djdy — 8d; — 27d} + 9dad,dy
3
C
J(E) A

The quantity A is called the discriminant of the Weierstrass’s equation and j(F)
is called the j-invariant of E.

Sometimes, it is useful to consider elliptic curves in projective plane, and in
this case, in addition to points in 2, there is a point, denoted by O, which is
commonly called the point at infinity. The introduction of such a point, together
with the chord-tangent point composition law, forms a group, whose elements are

points on the elliptic curve. The group operation is called point-addition, and

12

Schoof’s Algorithm on Fields of Characteristic Two 13

the identity element is the point O. When F = R, this point composition law can

be visualized geometrically as follow:

Draw a straight line through two points, P and @), on the elliptic curve, the
third intersection point R is taken as the “result” of “adding” points P and Q.
In fact, this is not yet a group, but if we do some operations on R to get the
point R’ that is still on the elliptic curve, this bulk of operations become a group
operation. The figure above depicts an example of point addition just described.
For detailed discussion on the group law, see [3] and [7].

Notice that when F is a finite group, this point addition is still a group oper-
ation as mentioned in [3].

We shall use the following notations: E(F) denotes the set of points in F? on
E, together with the point O. If E is defined over the field FF, the set of F-rational
points is F(F).

Schoof’s Algorithm on Fields of Characteristic T'wo

2.2 Fields of Characteristic Two

In fields of characteristic two, one can consider only elliptic curves of the form,
B y® 4+ 2y = 2° + ap2® + ag (2.3)

This is because there is an isomorphism between F in (2.1) and E’ above through
admissible change of variables. For details, please see p.16-17 of [2]. From now on,
we shall be working solely in fields of characteristic two, and therefore, equation
(2.3) is always assumed.

How are the associated quantities simplified to, such as A, the discriminant,

and j(FE), the j-invariant? It turns out that,

A = ag (2.4)
J(E) = alﬁ (2.5)

See p.22 of [2].
As described in the last section, the points on an elliptic curve over finite
fields form a group under the chord-tangent composition law. Below are explicit

formulas for computing with this law in fields of characteristic two:

—P = (z,y+ 1) (2.6)
(2.7)

if P=(z,y). f P = (x1,11), Py = (29, 12), then their sum is P3 = (z3,y3) given
by,

T3 =N+ X+ ay + 21 + 19

ys = (A + 1)as + 23 + 3

assuming that P; # O, and A is given by,

Y2+ :
\ P if x1 # x4

2
ity _
T if 1 = T2 # 0

Schoof’s Algorithm on Fields of Characteristic T'wo

For more information on the these formulas, see p.37-38 of [6].
The most important observation is that if we denote the z-coordinate of a

point @ by (Q)x, then, formula (2.6) implies,
(=P)x = (P)x (2.8)

This is a useful fact in speeding up the algorithm as will be seen in the next
chapter.

In fields of characteristic two, elements can be represented in two ways,
namely, polynomial bases, and normal bases. In this report, we will use polyno-

mial bases.

2.2.1 Polynomial Bases: Field Operations

It is well known that the quotient ring Flx]|/(g(z)) is a field if g(z) is an ir-
reducible element of F[z]. What this means is that if g(x) = r(x)t(x), where
r(z),t(xz) € Flz], then either r(z) or t(z) is a constant. Let v be a root of g(z)
in some extension field of F. Inside F[z]/(g(z)), all elements can be regarded as
polynomials of degree less than n = deg(g(x)), the degree of polynomial g(x), in
the element . In this case, the set {1,7,72,...,9" '} is the basis for all elements
in F[z]/(g(x)). Elements in F[z]/(g(x)) can therefore be represented using these
bases.

In our implementation, we shall be doing arithmetic in the field Fy[z]/{g(2)),
for either a trinomial or pentanomial g(x). These are “low-weight” polynomials
that allow fast arithmetic operations. In particular, irreducible polynomials of
the form ™ + 7* + 1 with large m relative to b is particularly interesting as
efficient arithmetic operations can be implemented. See p.19-20 of [6] for details.

Addition and subtraction are the same carry-free operation, which can be
done with bitwise XOR since char(Fsy[z]/(g(z))) = 2.

Algorithm 1 is duplicated from p.20 of [6] that performs modulo reduction. It

Schoof’s Algorithm on Fields of Characteristic Two 16

assumes that we are multiplying two polynomials of degree n — 1, and the result

is divided by g(z) to get the remainder in Fy[x]/(g(z)).

Algorithm 1 Reduction Modulo g(z) = " + 2 + 1, where n > b > 0
INPUT: a(x) = ag + a1 7 + asx? + ... + ag,_27°"2 € Fy[x]

OUTPUT: r(x) = a(x)(mod g(z))

for i = 2n — 2 to n step —1 do
Qi < Qj_p + G
Qi—ptb $ Qj—ptp T G

RETURN 7(x) = ag + a1@ + asx? + ... + ap_12™

Notice that modulo reduction is done in-place. Multiplication is done by
normal multiplication followed by modulo reduction. A more efficient algorithm
was based on recursive subdivision, first described by Karatsuba, which had the
number of operations proportional to O(n'°¢23). The key observation is that, if
a(z),b(r) € Fylz],

a(z)b(x) = (Ai1(z)X + Ao(2))(Bi(z)X + By(x))

= [Ai(2)Bi(2)]X? + Ag(z) Bo(w) + [A1(2) Bo(2) + Ao(2) By ()] X

= [Ai(2)Bi(2)]X? + Ag(z) Bo ()

+ [(Ao(z) + A1(2))(Bo(2) + Bi(2)) — A1 (2) By () — Ao(x) Bo(x)]X
where Ay, Ai, By, B; are polynomials of degree n/2 — 1, and X = 2™/2. Notice
that the following products need to be determined: A;(x)Bj(z), Ag(x)By(z), and
(Ag(z) + A1 (x))(Bo(x) + Bi(x)). Therefore, a multiplication operation is divided
into three multiplications of degree n/2 — 1. Karatsuba deployed this recursive

relation in performing multiplications.

2.2.2 Normal Basis: Field Operations

A normal basis of Fyn over Fy is of the form (v,72,7%,...,7*") for some y € Fyn.

Such representation allows efficient hardware implementation as described by

Schoof’s Algorithm on Fields of Characteristic Two 17

Messey and Omura. [8]. Notice that squaring is just a simple bit shift opera-
tion. This allows fast repeat-squaring operation to be implemented in Schoof’s
algorithm, as will be seen in the next chapter. For multiplication, it has been
shown that the number of operations involved is minimal if an optimal normal

basis (ONB) is used. ONBs had been successfully identified. See [14] for details.

Schoof’s Algorithm on Fields of Characteristic T'wo

2.3 Division Polynomials

Definition 2.3.1 Let E be an elliptic curve over F, where char(F) = 2, then we

associate a set of division polynomials f, € Flz] to E given by,

Jo =0

fi =1

f2 = T

fs = 2+ 2%t ag

fa = 2%+ a¢2?

fone1 = [ifave+ forfia n>2
fon _ I fofntotifno2fnf2iy n> 3

T

From now on, we shall always denote the ith division polynomial by f;. In
the point counting problem, the notion of torsion group is vital in our discussion

in later sections.

Definition 2.3.2 The set of m-torsion group, denoted by E[m], is given by,

E[m] ={P € E(F) | mP = 0} (2.9)
With the result below, the question on whether a given point is in E[n] can

easily be determined [6].

Theorem 2.3.1 Let P be a point in E(F)\{O}, and let m > 1. Then P € E[m)|
iff fm(P) = 0.

This theorem allows us to limit our attention on points in a specific torsion
group when dealing with the Frobenius map identity as will be seen in chapter 3.
Division polynomials can also be used to compute the value of nP without
reference to the primitive point-addition formulas. This is summarized in the

following result:

Schoof’s Algorithm on Fields of Characteristic T'wo

Theorem 2.3.2 Let n > 2, and let P = (z,y) € E\ {O} with nP # O. Then
nP = (z,y), where

T=x+ 7fn}§n+1
~ fn—2f7%+1 2 fn—lfn—i—l
= _ X X Ere—
y=z+y+ o + (2" + 7 +y) 2

19

Schoof’s Algorithm on Fields of Characteristic Two 20

2.4 Group Order

In 1983, Hasse has discovered the bounds of the group order. This is known as

the Hasse’s Theorem,

Theorem 2.4.1 Let F = F,, then the number of F-rational points on an elliptic
curve E, denoted by #E(F), is given by,

#EF) =q+1—t

where —2,/q <t < 2,/q.

For a proof of the theorem, see [3] and [7].
With the Hasse’s theorem, the point counting problem boils down to the

determination of the value of ¢.

Schoof’s Algorithm on Fields of Characteristic T'wo

2.5 Frobenius Map

The Frobenius endomorphism ¢ of a given curve E over F, is,

E{F,) — E(F,)
P (zy) — (2% y9)
O — O

and for any point P € E(F,),
©*(P) —to(P)+qP =0 (2.10)
where ¢ is the same ¢ in Hasse’s Theorem, which is called, the trace of Frobenius.

Definition 2.5.1 An elliptic curve E over F is supersingular if char(F) | t, the

the trace of Frobenius.

Supersingular curves are cryptographically weak curves and are therefore not

suitable for practical use. See p.35 of [6]. It can be shown that,
Theorem 2.5.1 An elliptic curve E over T is supersingular iff
1. char(F) =2 or char(F) =3, and j(E) =0 or,
2. char(F) > 5 and t = 0.

Therefore, for curves of characteristic two, to guarantee non-supersingularity,

J(E) =% #0,ic., a; £0.
The following theorem is duplicated from p.38 of [6],

Theorem 2.5.2 For an elliptic curve E over F where char(F) = 2,
#E(F) = 0(mod 2) (2.11)
As a result, using Hasse’s Theorem, the trace of Frobenius ¢ must satisfy,

t = 1(mod 2) (2.12)

Chapter 3

Schoof’s Algorithm

In this section, the theory behind Schoof’s algorithm will be presented followed

by the implementation details.

22

Schoof’s Algorithm on Fields of Characteristic T'wo

3.1 Chinese Remainder Theorem

By Hasse’s Theorem, for an elliptic curve E over F,, #E(F,) = ¢ + 1 — ¢ where
t| < 2/q. Let pyq, be the smallest prime such that,
1T p>4/q (3.1)
p prime,2<p<pmaz

By the Chinese Remainder Theorem (CRT), the value of ¢ can be uniquely de-
termined if ¢(mod p) are known for all primes p € [2, Diaz] [5]-

How many primes do we need? If n primes are required, by the Prime Number
Theorem, we have,

pma:v

But, by p.140 of [1], pmaz ~ O(logq) and therefore, combining equation (3.2)

glves,

o log q)

3.3
loglog q (3:3)

Clearly, for a large value of ¢, i.e. a large finite field, the number of primes
required to determine ¢ uniquely is still manageably small. This gives rise to

opportunities in improving point counting algorithms.

3.2 Frobenius Map Identity

Recall that the Frobenius map ¢ : (z,y) +— (2%, y9) satisfying,

©*(P) —to(P)+qP =0 (3.4)

for any P € E(FF;). We consider this equation for points in E*[p] = E[p] \ {O},
the set of non-zero p-torsion points. Let ¢, = ¢(mod p) where ¢, € {0,1,...,p—1}.
If it can be shown that, for a point P = (z,y) € E*[p],

(@, y") + gp(z,y) = T(2, ") (3.5)

Schoof’s Algorithm on Fields of Characteristic T'wo

for 7 € {0,1,...,p—1}, then we must have 7 = t(mod p). Clearly, this 7 is unique
since P # O, and p is a prime.

As mentioned in the last section, with these modulo quantities determined, ¢
can be uniquely recovered. Thus, the problem of point counting is reduced to the
determination of t(mod p) for all primes p € [2, Prmas)-

Notice that we are restricting ourselves to non-zero p-torsion points, this allows
all computations be done modulo the division polynomials f,’s as a result of

theorem 2.3.1.

3.3 Strategy

3.3.1 t(mod 2)

In our implementation, we shall always assume that the curves interested are not

supersingular. This means that ¢ = 1(mod 2) as described in section 2.5.

3.3.2 t(mod p) for p > 2

For each prime 3 < p < ppaz, We have to check which 7 € {0, 1,...,p— 1} satisfies

the Frobenius map restricted to points in E*[p]. First, we check if ¢ = —¢,, i.e.,

(qu’ yQ2) - _QP(xa y) (36)
This can be done by first equating the z-coordinates of both sides. Theorem 2.3.2
gives,

2 Jap-1fgpr1
e (3.7)
qp

Multiplying both sides by f7 gives,

(@ +2)f2 + fo,-1fge1 = 0 (mod f,) (3.8)

If equation (3.8) does not hold, p?(P) # g,. Otherwise, there are two cases,
(1)3P € E*[p] with ?(P) = —¢,P, (2) 3P € E*[p] with ¢? = ¢,P. This is

Schoof’s Algorithm on Fields of Characteristic T'wo

because (P)x = (—P)x. In the first case, p*(P) + ¢,P = O, which implies that
7 = 0 since p(P) # O. In the second case, we have ¢?(P) = ¢, P, so that equation
(3.5) simplifies to,

2q, =T
Rearrange both sides, we get,
2
o=t (3.9)
T

where 77! is the inverse of 7 in Z,. Substitute equation (3.9) into equation (3.5)
gives,

44,

2 +qp, = 2q,

which implies
% = 4q, (3.10)

This means that g, has a square root in Z,,.

With the above concept in mind, we first compute the Legendre’s symbol
(%p). If (%’) # 1, ¢, is not a quadratic residue modulo p, so that we must have
¢* = —q,, which implies that 7 = 0. Otherwise, let 02 = ¢, in Z,, then equation

(3.10) gives,
7'2 = 4qp = 40’2 (311)

combining this result with equation (3.9), we have,

2 2
T +20 o

To check for this condition, we equate the z-coordinates of both sides of equation

(3.12), and eliminating the denominator, we get,

(@9 4+ 2)f2 + fo 1fos1 (mod f,) (3.13)

Schoof’s Algorithm on Fields of Characteristic T'wo

If equation (3.13) does not hold, p* = —g,, so that 7 = 0. Otherwise, ¢* = g,
and we have to check if ¢ = 0 or ¢ = —0. Equating the y-coordinates of both

sides of (3.12) and eliminating the denominator, we get,

fﬁfg(yq + y) + f0'+2f371 + (5172 + y)fU*lfO’fU‘Fl =0 (mOd fp) (314)

If this condition holds, by equation (3.9) and (3.10), ¢ = 0, and 7 = 2% = % =
20, otherwise, ¢ = —o, and 7 = —20.

At this stage, if 7 cannot be determined in the steps above, then, 7 # 0, and
we have to check each value of 7 € {1,2,...,p — 1} in turn. As observed above,
(P)x = (—P)x. By checking 7 € {1,2,...2.1} instead, the computations required
are significantly reduced by half at this step.

This checking of 7 requires equating the z-coordinates of both sides of equation
(3.5) and see if equality holds. If so, we have found the appropriate 7 and we

can move on to the next prime, otherwise, we check for the next value of 7. This

results in the following two steps as described on p.138 of [1]:

1. Compute the following for each prime p,

a = ofd T +y)+ foafis + @+ fop 1 fo e (3.15)
B = afy (@ +2) +2fo,1 fo, fopa (3.16)
g = FL((" +2)B+a)B+a?) + B fo1fynr (3.17)
he = f2u7"B+27a)B+ (o + B)g (3.18)

2. Repeat the following computation for each 7 € {1,2, ..., 7%1}:

e Compute,

F296 + B2 fo, (2907 + 11 fl11) (mod f,) (3.19)

This is the result of equating the z-coordinates of equation (3.5). If

equation (3.19) does not evaluate to zero, we check for the next 7.

Schoof’s Algorithm on Fields of Characteristic Two 27

Otherwise, we equate the corresponding y-coordinates, and compute,

fhy 4 f2 B)

+ o B2 @* +y) fL 1L (mod fy)
If the result is zero, t = 7(mod p), otherwise, t = —7(mod p).

Finally, we are left with a set of ¢(mod p) for enough p’s so that ¢ can be uniquely
recovered in the range [~2,/q, 2,/q] using the Chinese Remainder Theorem. The

complete algorithm is shown on the next page.

Schoof’s Algorithm on Fields of Characteristic T'wo

Algorithm 2 Schoof’s Algorithm

1:
2:
3:
4:
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:
32:
33:
34:

35: use t[] and the Chinese Remainder Theorem to compute the unique ¢ in

36:

INPUT: as, ag, and a finite field F
OUTPUT: #E(F)
determine primes used and stored in p[], n is the # of primes used
compute division polynomials f; and stored in f[i] for ¢ € {0,1,...,,n+ 1}
compute 2%, 29", y4, y‘ﬂ(mod flpli]]) for i € {0,1,...,n}
for:=1tondo
qp q(mod pli])
if f2 (27 +) + fg,—1f4+1 = 0 (mod f[p[i]]) then
if (#2) = —1 then
tli] <0
BREAK
else
determine o € Z,p; such that o> = ¢, by trial and error
if f7(2?+2) + fo1for1 # O(mod f[pli]]) then
tli] < 0
BREAK
else

if :Efg)(yq + y) + fa-l-?f(z—l + (152 =+ y)fa—lfafa-l-l =0 (mOd f[p[z]])

then
ti] < 20
else
tli] + —20
else
Q < 117fq3 (yq2 + y) + fqp+2qup71 + (I2 + ?J)fqp—lf%ﬂ

B xfy (" +3) + 2 fg—1fo, fo 1
95 [2 (@7 +)8 +)8+ a?) + F2fy, 1 fa1
he < 2 (7 B+ az®) B + (o + B)gy
for 7 =1to 5! do
if 2994+ fo B2 (a0 f20 + f{_1 f741) = 0 (mod f[pli]]) then
4 fa 20 + fo B fy 4 flafioy)
P f7 B (@ y) £ ff A (mod fpli]])
if r =0 then
tli] < 7
else
tli] «+ —1

[~2v4:2/4]

output ¢+ 1 —1

28

Schoof’s Algorithm on Fields of Characteristic T'wo

3.4 Implementation

The Schoof’s algorithm implemented assumes all computations be done in fields
of characteristic two. As discussed in section 2.2, the general form of elliptic curve
is thus given by E : y?+xy = 23+ as2% +as where as, ag are input parameters. To
specify the field that all computations be done, an irreducible polynomial must be
supplied. Currently, only trinomials or pentanomials are supported. The elliptic
curve is also assumed to be non-supersingular. The implementation used the
Multiprecision Integer and Rational Arithmetic (MIRACL) C/C++ package by
Shamus Software Ltd. to perform computations in GF(2™), as well as on large

integers. For more information about MIRACL, please see [10].

3.4.1 Precision

The type that allows large integer arithmetic operation is the type Big. The
number of bits used is set at compile time by a call to the function mirsys(n,
m), where n is the number of bits to be used. The types Poly2 and Poly2Mod
are used to capture elements in Fym. They are internally represented by the type
Big, and therefore, the same precision specified in mirsys() applies.

In our implementation, the value of n is pre-set to 600 to allow large finite
groups. In practice, the underlying fields are picked from GF(2™)s, where m =
163,233, 283,409, and 571 [11].

3.4.2 Primes

Algorithm 3 on the next page returns the primes to be used given the order of

the finite field q.

Schoof’s Algorithm on Fields of Characteristic T'wo

Algorithm 3 Determine the Primes required in Schoof’s Algorithm

INPUT: g, the order of the finite field F
OUTPUT: p[|, array containing primes used in Schoof’s Algorithm

[+3

M+ 2

n <0

while M < 2,/q do
M« M x1

[< nextprime(l)

n<n+1
n < n+ 1 {allocate memory for p[]}
fori=0ton—1do

pli] 1

[+ nextprime(l)

RETURN p]]

30

Schoof’s Algorithm on Fields of Characteristic T'wo

3.4.3 Legendre’s Symbol

The Legendre’s symbol is computed with the algorithm cited on p.18 of [6]. The
algorithm is duplicated as Algorithm 4 on the next page for easy reference to

other implementors.

3.4.4 Division Polynomials f,

Division polynomials are generated recursively from f; up to f,,.. using the

recursive formulas given in definition 2.3.1.

2 2
3.4.5 2927 y4 yT (mod f,)

This is one of the trickiest part of the implementation. The desired powers
are reached through repeat squaring. However, this is not straight-forward as
squaring y’s results in high powers of 3’s and high powers of z’s, that need to
be resolved by substituting the corresponding expressions defined in E for high
powers of y’s. At every step in repeat squaring, this kind of substitutions is done
so that the resulting expression is of the form 42" = u;(2) + v;(2)y where u; and
v; involve only terms in the variable x. Let’s suppose that, at step 0, ¢« = 0, we

have
up(zr) = 0
vo(z) = 1
At every step, we square the whole expression, so that, we have,
ui(z) = g(z)
vi(z) = =
at the next step, where g(z) = 2° + a»7? + ag¢. Squaring again gives,
us(z) = g*(x) +2g(x)

v(z) = 2?xa=2"

Schoof’s Algorithm on Fields of Characteristic T'wo

a

Algorithm 4 compute (;), the Legendre’s Symbol

INPUT: @ and p integer
OUTPUT: (%)
if a = 0(mod p) then
RETURN 0
ré—a,y<p, L1
loop
x + x(mod y)
if x > y/2 then
Ty —x
if y = 3(mod 4) then
L <+ —L
while x = 0(mod 4) do
x <+ x/4
if x = 0(mod 2) then
x4 x/2
if y = £3(mod 8) then
L <+ —L
if x =1 then
RETURN L
if x = 3(mod 4) and y = 3(mod 4) then
L <+ —L

swap x and y

32

Schoof’s Algorithm on Fields of Characteristic T'wo

Note that v;,1(x) is obtained from v;(x) by squaring v;(x), which is due to the
previous repeat squaring procedure, and then multiply the result by z, which

7 ... at each

comes from xy in the equation for E. Therefore, v; equals 1, z, 23, x
repeat squaring step respectively. With this in mind, algorithm 5 on the next page
computes x, xq2, ye, yq2. The array ztemp|| stores partial results when squaring
x’s at each step, which is used to compute v;(z)'s: at step i, in squaring y, an x

is multiplied to xtemp|i] to give the correct value for v;(z).

3.4.6 Organization of Computations

It can be easily seen that careful organization of computations is vital to an
efficient implementation. As seen in the Schoof’s algorithm, the quantities x?, a:qQ,
Y9, qu, as well as the products and powers of f, s and f;’s, are seen everywhere,
and it is important to compute them only once for all. This has been done in
our implementation, so that repeat computation of the same quantity is avoided.
In particular, the following quantities are to be computed once only for each
iteration in the outermost loop: fo, —1fe,+15 fo-1fo+1, 27 + 2. Also, inside the

inner loop on the variable 7, the quantity, fZ

q
+_1/741 can be computed once and

reused inside the same loop iteration.

Schoof’s Algorithm on Fields of Characteristic T'wo

Algorithm 5 computes 24, 27", y?, y¢*

INPUT: ¢ = 2™, the field order; g(x) where F : y* + a2y = g(z)
OUTPUT: 24, xq2, ye, yq2 {compute z?, store partial results for y?, and y‘12}
zq 1
for k=0tom —2do
Q4 Tq XX
xq < xq X 1q
xtemplk] «+ xq
STATE zq < xq X © x x {compute y7}
yqu < g()
for k=0tom —2do
Yyqu < yqu X yqu
yqu < yqu + (g(z) x atemplk])
yqu < = x xtemp[m — 2] {compute z¢° and y¢* together}
xqtwo < xtemp(m — 2]
yqtwo < yq
for k=0tom—1do
Tqtwo <— rqtwo X T
Tqtwo <— xqtwo X Tqtwo
Yyqtwo < yqtwo X yqtwo
yqtwo < yqtwo + (zqtwo X g)
Tqtwo <— xqtwo X T X T
yqtwou <— yqtwo
Yyqtwov <— xqtwo X x
{29 = 2q, 27 = zqtwo, y? = yqu(z) + yqv(z)y,
y" = yqtwou(z) + yqtwouv(z)y}

34

Schoof’s Algorithm on Fields of Characteristic T'wo

3.5 Summary and Performance Suggestion
In general, computations can be done by assuming the curve E is of the form,
E": "+ aoy=2° +ag (3.20)

instead of the general formula (2.3) as mentioned on p.102 of [2]. In fact, E” and
E’ of (2.3) are twist of one another if certain conditions hold. Twist curves are
complement of one another in the following sense: #E'(F,) + #E"(F,) = 2¢ + 2
if £ and E" are twist of one another. This eliminates computations involving
the 22 term.

The bottleneck of the algorithm lies in the computations of the following
quantities: 27, 29", 49,y (mod fp), and f4 (mod f,). Similar time-consuming
operations occur in evaluating powers of f..

In some cases, eigenvalue search can be deployed to avoid this time-consuming

computation step all together as mentioned on p.105 of [2].

Chapter 4

Results

In this chapter, we shall show examples on point counting. Notice that the
example curves are still not good enough to be practically applied in cryptography.
As mentioned before, national standards require the power of 2 be at least 163
[11].

The examples are illustrated by running our implementation on an SMP ma-
chine with two PentiumIII 667MHz processors and 512MB of RAM. The runtimes
required for all examples are summarized in table 4.1.

In all examples, all finite field elements are in polynomial representations in ¢.

The value of ag will be shown in decimal, which is the sum of two to the powers

Example | Runtime (in seconds)
1 0.17

2 12.77

3 216.54

4 471.8

Table 4.1: Runtime Summary for Examples 1 to 4

36

Schoof’s Algorithm on Fields of Characteristic T'wo
Line Number(s) | Tag Reference
5-6 [0]
10 1]
15 2]
19, 21 3]
32, 34 4]

Table 4.2: Location Reference to Schoof’s Algorithm

of ¢ in the corresponding field. For example, ag = 15 means that,
ag =12 +12+t+1

since 23 4 22 4+ 21 + 20 = 15.

As can be seen in the list for the Schoof’s algorithm in Section 3.3, the values
of 7 are determined at several locations, namely, line 10, 15, 19, 21, 32, and 34.
We shall use table 4.2 to illustrate where the correct values of 7 are picked up in
all our examples.

For instance, let’s suppose that in one of our examples, where 7 = t(mod p),
and we find that 7 = k, and is picked up by Schoof’s algorithm at line 21. This

is represented as,
t = k(mod p) [3]

since the tag labeled “[3]” represents either line 19 or line 21. Notice that the tag
“[0]” is used only for the case when p = 2. Since we are assuming that the input
curve is non-supersingular, and therefore, ¢t = 1(mod 2), i.e. 7 =1. Hence, we do
not need go through all lines below line 6 in this case. In our implementation, this
assumption is made before the for-loop, i.e. at line 5-6 of the Schoof’s algorithm
listed.

We shall also step through example 1 in the next section as it is instructive

in understanding Schoof’s algorithm.

37

Schoof’s Algorithm on Fields of Characteristic T'wo

4.1 Examples

Example 4.1.1

E oy tay=2°+1

Irreducible Polynomial : 2%+ 23+ 1

Field i e

Primes used : 2,3,0,7

Result : t=1(mod 2) [0]
t = 0(mod 3) [2]
t = 4(mod 5) [3]
t=2(mod 7) [4]
= t=9
E(Fy) = 56

For p = 3, f3 = a2* + 2% + 1, the Schoof’s algorithm goes as follow: check
(xq2, y‘12) = —qs(z,y). With g3 = 25(mod 3) = 1, equation (5.8) applies,

=7 +2)f2+ fofs = 3 42

— l“"l‘

= 0(mod f3)

since %" = x(mod fs). Furthermore, the Legendre’s symbol (£)=(3)=1, and
therefore, we have to pick a o € Zs with 0® = 1. Clearly, 1> = 1(mod 3) and we

check for equality of equation (3.13). Since,

(294 2)f2+ fofo = 2% 42
= 224+z+1

% 0(mod f3)

7 = 0. So, the algorithm goes for the next value of p.

Schoof’s Algorithm on Fields of Characteristic Two 39

For p = 5, f5 == Zie{0’374’576’8710711712}ZL‘i we agam check (38) with qs = 26 =
4(mod 5),

(qu’ +3)fi+ fafs = (I642 +2)f;

0(mod f5)

Now, (%) = (%) = 1. We pick the quadratic residue 2 and compute equation

(' +2)fi+ fifs = @ +a)fi+f

st +14 £

0(mod f5)
Now, we have to check equation (3.14),

ef3 (" +y) + fuff + (@° +y) ffafs = 0(mod f5)

and therefore T = 2 x 2 = 4.
Forp =17, ¢ = 25(mod 7) = 1. Equation (3.8) gives,

(xq2+x)f12+f2f0 = 2 4 5
= 2B+ a0+ e+ 1

Z 0(mod f7)

therefore, we have to check for T € {1,2,3}. First, we compute v, 3, gy, and hy.

_ i j
a = E{z'eZ | i€{0<i<22}}\{0,8,11,18} T + yzje{(],1,2,3,8,9,11,12,18,19,23}55]
_ i
B = Yiex | ie{0<i<22}\{8,11,16,17,18}TL
- 3. . . 1
9o = i€ | 1€{0<i<23}\{0,3,9,12,17,18,20} L

7, .5 i
hy = " +2° + 2+ yXicf0,1,5,89,11,12,16,17,20,21,23} T

Schoof’s Algorithm on Fields of Characteristic Two 40

For 7 =1, equation (3.19) gives,

128 128 .64 64 £64
9o + B2 fL(f1 + fo £

= Y, . i

= {i€Z | 0<i<23}\{2,5,6,8,9,13,18,21} L

% 0(mod fr)

therefore, the next value of T is tried. For T = 2, equation (3.19) gives,

1289¢+B2f1(128 64 4 164 ;34)

0(mod fr)

and we have to check equation (3.20),

$64f2192h¢ + f1253 (1'64 128 64 + f 128)

R) A1 = 0(mod)
Therefore, T =2 for p=1.

Example 4.1.2

E Pt ay =2+ 22+ 34
Irreducible Polynomial : 22° + 23 +1
Field ¢ a2
Primes used :02,3,5,7,11,13
Result : t=1(mod 2) [0]
t = 0(mod 3) [2]
t = 0(mod 5) [2]
t = 6(mod 7) [4]
t = T7(mod 11) [4]
t = 11(mod 13) [4]
— t=-15

E(Fyo) = 1048592

Schoof’s Algorithm on Fields of Characteristic T'wo

Example 4.1.3

E 4oy =2° + 2%+ 11

Irreducible Polynomial : x*' + 2% + 23 + 238 11

Field o Fou

Primes used :02,3,5,7,11,13,17,19

Result .t = 1(mod 2) [0]
t = 2(mod 3) [4]
t = 0(mod 5) [1]
t = 3(mod 7) [4]
t = 7(mod 11) [4]
t = 12(mod 13) [4]
t = 15(mod 17) [4]
t = 3(mod 19) [4]

= t = —2252485
E(Fy) = 2199025508038

Schoof’s Algorithm on Fields of Characteristic T'wo

Example 4.1.4

E

Irreducible Polynomial
Field

Primes used

Result

y:+ oy =23 + 2% + 1234
A AR A

Fiyss
2,3,5,7,11,13,17,19, 23, 29
t = 1(mod 2)

t = 2(mod 3)

t = 3(mod 5)

t = 5(mod 7)

t = 10(mod 11)

t = 2(mod 13)

t = 3(mod 17)

t = 1(mod 19)

t = 20(mod 23)

t = 9(mod 29)

= t = —130401217
E(Fy3) =9007199385142210

[0]
l4]
l4]
l4]
l4]
l4]
l4]
l4]
l4]
l4]

42

Chapter 5

Conclusions and Future

Developments

5.1 Conclusions

In this thesis, the mathematics essential to the point counting problem has been
reviewed. The Schoof’s algorithm, and its implementation on fields of character-
istic two, were described in great details and several examples have been included
for illustration. The runtime were summarized and the last chapter contains the

full source code of our implementation.

43

Schoof’s Algorithm on Fields of Characteristic T'wo

5.2 Future Developments

In our implementation, we use polynomial bases representation as our underling
field. As was seen in chapter two, normal bases gives efficient hardware imple-
mentation.

The current state of art in point counting is the implementation of Elkies
and Atkins’ s improvements on the original Schoof’s algorithm. Elkies and Atkin

looked at the discriminant of the characteristic equation of Frobenius equation,
6t = t2 - 4q

If §; is a square modulo a prime p, then, the characteristic equation factors into
two linear factors, and p is called an Elkies prime. Otherwise, p is called an
Atkin prime. Notice that §; cannot be determined as ¢ is unknown. However,
it turns out that this classification can be done in another manner through the
splitting type of the pth modular polynomial. This polynomial also allows one to
determine a factor of the pth division polynomial, which is of degree (p — 1)/2.
Reduction can be done through this factor instead of the division polynomial, and
therefore, much time is saved in the computation. In fact, it has been shown on
p.150 of [1] that their suggested improvements drop the complexity from Schoof’s
O(log® q) to O(log® q).

With the observation above, efficient point counting implementation will be
employing Elkies and Atkin’s improvements on Schoof’s algorithm. Th elliptic
curve selected will be over fields of characteristic two, whose elements are repre-

sented with normal bases, and computations be done in efficient hardware.

Chapter 6

Source Code Listing

This chapter contains the source code listing of the Schoof’s algorithm imple-

mented. The implementation is written in C/C++.

1 /%

2 * Schoof’s Algorithm on Elliptic Curve

3 *E: Y2 + XY =X"3+ A2 x X2 + A6 over GF(2°m)

4 x We shall follow [3] closely!

5 * Daniel Suen (ttdsuen@ln.edu.hk), July 2000

6 * Reference:

7 *x [1] Alfred J. Meenezes.

8 x Elliptic Curve Public Key Cryptosystems. Kluwer
9 =x Academic Publishers.

10 * [2] I. Blake, G. Seroussi, N. Smart.

11 = Elliptic Curves in Cryptography.

12« Cambridge University Press.

13 * [3] Andeas Enge.

14 % Elliptic Curves and their Applications to Cryptography,
156 * An Introduction. Kluwer Academic Publishers.

16 =/

45

Schoof’s Algorithm on Fields of Characteristic Two 46

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include <iostream>

#include "big.h"

#include "poly2.h"

#include "poly2mod.h"

#include "crt.h"

#include <string.h>

#include <ctype.h>

#define MAX(a, b) (((a) > (b)) 7 (a) : (b))

extern bool init_prime_table (int, Big **, int &, Big, Big);

extern void init_ql_table (Big **, Big *, int, Big);

extern int legendre (int a, int p);

extern Big hextobig (char *buf);

//
//
//
//
//
//
//
//
//
//
//
//
//

init_prime_table

parameters:

m : 2°m, the order of the field

primes : table of primes

n : returns as the number of primes needed
qg:q=2"m

w : 4 * sqrt(q)

this function determines the primes to be used in
the Schoof’s algorithm

it also returns the number of primes used in the
reference parameter n

return value: true if things are ok

false if memoray allocation fails

Schoof’s Algorithm on Fields of Characteristic T'wo

45 bool

46 init_prime_table (int m, Big ** primes, int &n, Big q, Big w)

47 {

48 Big 1 = 3;
49 Big M = 2;
50 n = 0;

51 while (M < w)

52 A

53 M=M=x1;

54 1 = nextprime (1);
55 n++;

56 }

57 n++;

58 *primes = new Big[n];
59 int i;
60 1 = 2;

61 if (*primes)

62 {

63 for (i = 0; 1 < n; i++)
64 {

65 (*primes) [i] = 1;

66 1 = nextprime (1);
67 }

68 return true;

69 X

70 return false;
71 %}
72

Schoof’s Algorithm on Fields of Characteristic Two 48

73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

// init_ql_table

// parameters:

// qlll : table of q (mod primes([i])

// primes[] : table of primes

// m : 2°m, order of the field

// n : size of primes[]

// q : 2m=q

// this function determines the all q (mod primes[i])
// and stored them in ql[]

void

init_ql_table (Big ** ql, Big * primes, int n, Big q)
{

for (int i = 0; i < n; i++)
{
(xql) [i] = q 7 primes[i];
}
}
// legdendre

// parameters:

// a : the value to be tested if it’s a

// quadratic residue mod p

// p : the prime field characteristic

// return value: 1 if (a/p)=1, a is a quadratic
// residue mod p

// 0if a=0

Schoof’s Algorithm on Fields of Characteristic T'wo

101 // -1 if (a/p)=-1, a is not a quadratic
102 // residue mod p

103 int

104 legendre (int a, int p)

105 {

106 if (a % p == 0)
107 return O

108 int x

Il
o]

109 int y

Il
gel

110 int 1 = 1;
111 while (1)

112 {

113 x=(&x%y;

114 if (x> (y / 2))
115 {

116 X =5y - X;

117 if (y % 4 == 3)
118 1=-1;

119 }

120 while (x % 4 == 0)
121 x=x/ 4;

122 if (x % 2 ==0)
123 {

124 x=x/ 2;

125 if (y 8 ==3 1|y % 8 ==5)
126 1=-1;

127 X

128 if (x == 1)

Schoof’s Algorithm on Fields of Characteristic T'wo

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
1563
154
155
156

return 1;

if ((x % 4==23) && (y % 4 == 3))

int t = x;

// hextobig
// paramters:
// buf : the character array that contains
// the hex digits
// return value: the corresponding value in Big
Big
hextobig (char #*buf)
{
int len =::strlen (buf);
Big retval = O;
int k = len - 1;
while (k >= 0)
{
buf [k] =::tolower (buflk]);
int r = len - k - 1;
if (isdigit (buf([k]))
retval += pow ((Big) 16, r) * (buf[k] - ’07);
else

retval += pow ((Big) 16, r) * (bufl[k] - ’a’ + 10);

30

Schoof’s Algorithm on Fields of Characteristic T'wo

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

q mod 1 for each prime 1

division polynomial

division polynomial square
division polynomial cube

Y72 + XY = g(X) = X"3 + A2 x X"2 + A6
x~q mod f[i] involving x

x7(q"2) mod f[i] involving x

y~q mod f[i] involving x

y~q mod f[il terms with y

y~(q"2) mod f[i] terms involving x
y~(q”"2) mod f[i] terms involving y

contains all t (mod p) for each p

k——;
}
return retval;
}
int
main (int argc, char *argv[])
{
miracl *mip = mirsys (600, 10);
char torp;
int m, a, b, c;
char a6buf [256];
int a2;
Big a6;
Big *ql; //
Poly2 *f; //
Poly2 *f2; //
Poly2 *f3; //
Poly2 g; //
Poly2Mod *xgmod; //
Poly2Mod *xq2mod; //
Poly2Mod *ygmod; //
Poly2Mod *yqxymod; //
Poly2Mod *yq2mod; //
Poly2Mod *yq2xymod;//
Big *tmodp; //
int j;
bool noinput = true;

o1

Schoof’s Algorithm on Fields of Characteristic T'wo

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

// get parameters to specify the field
// allow specification through an irreducible polynomial
cout << "Field Irreducible Polynomial" << endl;

cout <K No===========================! << endl;

a6 = 0;
a2 = 0;
while (noinput)
{
cout << "\tTrinomial / Pentanomial [T/P]? ";
cin >> torp;
switch (torp)
{
case ’T’:

cout << "\tf(X) = X"m + X"a + 1" << endl;

cout << "\tm ;

cin >> m;

cout << "\ta ",
cin >> a;

noinput = false;
break;

case ’P’:

cout << "\tf(X) = X"m + X"a + X"b + X"c + 1" << endl;

cout << "\tm ;

cin >> m;

cout << "\ta = ";

cin >> a;

52

Schoof’s Algorithm on Fields of Characteristic T'wo

213 cout << "\tb = ";

214 cin >> b;

215 cout << "\tc = ";

216 cin >> c;

217 noinput = false;

218 break;

219 default:

220 cout << "invalid input, please try again" << endl;
221 }

222 }

223 // get parameters to specify the elliptic curve
224 cout << "Elliptic Curve ";

225 cout << "Y°2 + XY

X"3 + A2 x X2 + A6" << endl;

226 cout << '"==================================" << endl;
227 cout << "\tA2 = ";

228 c¢in >> a2;

229 char flag = ’N’;

230 cout << "\tInput in Hex? [Y/N] ";

231 cin >> flag;

232 if (flag == ’Y’)

233 {

234 cout << "\tA6 (non-zero) = ";
235 cin >> a6buf;

236 a6 = hextobig (a6buf);

237 }

238 else

239 {

93

Schoof’s Algorithm on Fields of Characteristic Two 54

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
267
2568
259
260
261
262
263
264
265
266
267
268

cin >> a6;
}

// check that everything is ok

// (1) the field is correctly specified,

// the polynomial specifed is

// indeed an irreducible polynomial

// (2) check if the curve is not singular

if ('ecurve2 (m, a, b, c, a2, a6, TRUE, MR_AFFINE))
{

cout << "illegal curve parameters'" << endl;

cout << '"m " << m << endl;

cout << "a =" << a << endl;
cout << "b =" << b << endl;
cout << "¢ =" << ¢ << endl;

cout << "ab = << ab << endl;

return O;
}
// we now let g = x"3 + a2 x"2 + a6
g = 0;
g.addterm (a6, 0);
g.addterm ((GF2m) 1, 3);
g.addterm (a2, 2);
cout << "E: Y"2 + XY = " << g << endl;
int n;

Big *primes = NULL;

// determine the number of primes to be used

Big q = pow ((Big) 2, m);

Schoof’s Algorithm on Fields of Characteristic T'wo

269 Big w = 4 * sqrt (q);

270 if (init_prime_table (m, &primes, n, q, w))

271 {

272 cout << "primes: ";

273 for (dnt 1 = 0; 1 < n; i++)

274 {

275 cout << primes[i] << " ";

276 X

277 cout << endl;

278

279 // computing division polynomials

280 cout << "computing division polynomials..." << endl;
281 int lastprime = toint (primes[n - 1]);

282 ql = new Big[n];

283 tmodp = new Bigl[n];

284 init_ql_table (&ql, primes, n, q);

285 f = new Poly2[MAX (lastprime, 5) + 1];

286 f2 = new Poly2[MAX (lastprime, 5) + 1];

287 £3 = new Poly2[MAX (lastprime, 5) + 1];

288 xqmod = new Poly2Mod[MAX (lastprime, 5) + 1];
289 xq2mod = new Poly2Mod[MAX (lastprime, 5) + 1];
290 yqmod = new Poly2Mod[MAX (lastprime, 5) + 1];
291 yaxymod = new Poly2Mod[MAX (lastprime, 5) + 1];
292 yq2mod = new Poly2Mod[MAX (lastprime, 5) + 1];
293 yq2xymod = new Poly2Mod[MAX (lastprime, 5) + 1];
294 bool condl = !xgmod || !xq2mod || !yqmod;

295 bool cond2 = !ygxymod || !'yg2mod || !yq2xymod;

296 if (condl || cond2)

Schoof’s Algorithm on Fields of Characteristic T'wo

297 {

298 cout << "cannot allocate memory for x°q, x~(q°2), ";
299 cout << "y°q, y~(q"2)" << endl;
300 return O;

301 }

302 if (f && f2 && £3 && ql)

303 {

304 f[0] = 0;

305 cout << "f[0]\t...done" << endl;
306 f[1] = 1;

307 cout << "f[1]\t...done" << endl;
308 f[2] = 0;

309 f[2] .addterm (1, 1);

310 cout << "f[2]\t...done" << endl;
311 f[3] = 0;

312 f[3] .addterm (a6, 0);

313 f[3].addterm (1, 3);

314 f[3].addterm (1, 4);

315 cout << "f[3]\t...done" << endl;
316 f[4] = 0;

317 f[4] .addterm (a6, 2);

318 f[4] .addterm (1, 6);

319 cout << "f[4]\t...done" << endl;
320 f2[0] = 0;

321 £3[0] = 0;

322 f2[1] = 1;

323 f3[1] = 1;

324 £2[2] = 0;

Schoof’s Algorithm on Fields of Characteristic T'wo

3256
326
327
328
329
330
331
332
333
334
3356
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

f2[
£3[
£3[
f2[
£3[
f2[
£3[
for

{

2] .addterm (1, 2);
2] = 0;

2] .addterm (1, 3);
3] = f[3] * f[3];
3] = £2[3] * f[3];
4] = f[4] * f[4];
4] = f2[4] * f[4];

(int i = 5; i < lastprime + 1; i++)
cout << "f[" << i << "J\t...";
if A %h2==1)

{

j=Gl-1)/2;
f[i] = £f[j + 2] = £3[j] + £f[j - 11 * £3[j + 1];
}
else if (1 % 2 == 0)
{
i=1/2;
Poly2 tt = f[j + 2] * f2[j - 1];
tt += £[j - 2] * f2[] + 1]1;
flil
flil
}

cout << "done" << endl;

01 * tt;

divxn (f[i], 1);

£2[i]

fLil = £[il;

£3[i] = f2[i] * f[il;

a7

Schoof’s Algorithm on Fields of Characteristic Two 58

3563
354
3556
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

else
{
cout << "cannot allocate memory " << endl;
cout << "for division polynomial" << endl;
return O;
}
/%
* computing x°q, x°(q72), y°q, y~(q°2) mod f[il
* for each prime i
*/
Poly2 x;
Poly2Mod xq, yq, y92, xq2;
Poly2Mod *xtemp = new Poly2Mod[m - 1];
for (dnt 1 = 1; 1 < n; i++)
{
int p = toint (primes[i]);
setmod (f[pl);
x = 0;
x.addterm (1, 1);
xq = 0;
xq.addterm (1, 0);
cout << "computing x"q mod f[" << p << "]" << endl;
for (int k = 0; k < m - 1; k++)
{

xq

Xq * X;

Xq = Xq * Xq;

xtemp[k] = xq;

Schoof’s Algorithm on Fields of Characteristic T'wo

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

xq = xq * (x * x);

xgmod [p] = xq;

ya = &;

cout << "computing y~q mod f[" << p << "]" << endl;

for (int k = 0; k < m - 1; k++)

{
yq4 = y49 * y4;
yq = yq + (g * xtemp[k]);
}
yqmod[p] = yq;
/*

* needs to add one more x * xtemp[m-2] * y

* for each yq

*/

cout << "computing x~(q~2) mod f[" << p << "]" << endl;
cout << "computing y~(q~2) mod f[" << p << "]" << endl;

ygxymod[p] = x * xtemp[m - 2];

xq2 = xtemp[m - 2];

ya2 = yq;

for (int k = 0; k < m; k++)
{

xXq2 = xq2 * X;

xXq2 = xq2 * xq2;

y92 = yq2 * yq2;

yq2
}

xq2mod [p]

yq2 + (xq2 * g);

Xq2 * X * X;

yq2mod[pl = yq2;

99

Schoof’s Algorithm on Fields of Characteristic T'wo

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

yq2xymod [p] = xq2 * x;
}
delete[]xtemp;
/%
* make tau = 1 (mod 2)
* we are assuming that the curve is non-supersingular
*/
tmodp[0] = 1;

cout << "prime: 2\ttau = 1" << endl;

/%
* Schoof’s Algorithm
*/

for (dnt 1 = 1; 1 < n; i++)
{

int p = toint (primes[i]);

int temp = (p - 1) / 2;

int qlt = toint (ql[il);

/%
* check if (x7(q"2), y°(q@"2)) = [+|-] k (x, y),
* i.e. Step 3 on p.137 of [3]
*/

cout << "prime: " << p << ’\t’;

setmod (f[pl);

Poly2Mod x2

X * X;

Poly2Mod x3 = x2 * X;
Poly2Mod r = (xq2mod[p] + x) * f2[qlt];
Poly2 fgpimil = f[qlt - 1] * flqlt + 1];

r += fqpimi;

Schoof’s Algorithm on Fields of Characteristic T'wo

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

if (iszero (r))
{
// check the Legendre’s symbol (ql[i] / primes[il)
// if the result is -1, then gl is not a quadratic

// residue of 1, which implies that t = 0 (mod p)

if (legendre (qlt, p) == -1)
{
tmodp[i] = 0;
cout << "tau = " << tmodp[il;
}
else
{

// otherwise, by trial and error, find sigma with
// sigma~2 = ql[i]. we check for all sigmas in
// {0, 1, ..., p-1}
for (int sig = 0; sig < p; sig++)
{
int sig2modp = sig * sig;
sig2modp = sig2modp % p;
if (sig2modp == qlt)
{
// Then compute the fomula at the bottom
// of p.137 in [3].
r = f2[sig] * (xgmod[p] + x);
Poly2 fsigpiml = f[sig - 1] * flsig + 1];
r += fsigpimi;
if (liszero (r))

{

61

Schoof’s Algorithm on Fields of Characteristic Two 62

465 tmodp[i] = 0;

466 cout << "tau = " << tmodp[il;

467 break;

468 }

469 else

470 {

471 // else compute the formula

472 // at the top of

473 // p.138 , if it holds, then

474 // t = 2sigma(mod primes[i])

475 // else t = -2sigma(mod primes[i])
476 Poly2Mod fsigtrip = fsigpiml * f[sigl;
477 Poly2Mod tempX = x * yqmod[p] * f3[sigl;
478 tempX += flsig + 2] * f2[sig - 1];
479 tempX += x2 * fsigtrip;

480 Poly2Mod tempY = x * f3[sig];

481 tempY = tempY + tempY * yqxymodl[p];
482 tempY += fsigtrip;

483 if (iszero (tempX) && iszero (tempY))
484 tmodp[i]l = 2 * sig;

485 else

486 tmodp[i] = -2 * sig + p;

487 cout << "tau = " << tmodpl[il;

488 break;

489 b

490 } // if

491 } // for

492 } // else

Schoof’s Algorithm on Fields of Characteristic T'wo

493 +

494 else

495 {

496 /] (x7(q"2), y°(q72)) != [+]-] k (x, y),
497 // so we check for

498 // all other possible values of tau, i.e. tau in
499 // {1, 2, ..., (p-1)/2}, we check the sign later,
500 // so that we actually cover

501 // {-(p-1)/2,...,-1,0,1,...,(p-1)/2}
502 // we are now at step 5

503 // alpha = alphaX + alphaVY * y

504 // gphi = gphiX + gphiY * y

505 // hphi = hphiX + hphiY * y

506 Poly2Mod fqldoub = fqpimil;

507 Poly2Mod fqltrip = fqldoub * f[qlt];

508 Poly2Mod alphaX = £3[qlt] * x;

509 Poly2Mod beta = alphaX;

510 Poly2Mod alphaY = alphaX;

511 alphaX *= yq2mod[p];

512 alphaX += f[qlt + 2] * f2[qlt - 1];

513 alphaX += fqltrip * x2;

514 alphaY = alphaY * yq2xymod[p] + alphaV;
515 alphaY += fqltrip;

516 Poly2Mod gphiX = xq2mod[p] + x;

517 beta *= gphiX;

518 gphiX += a2;

519 beta += x * fqltrip;

520 gphiX *= beta;

63

Schoof’s Algorithm on Fields of Characteristic T'wo

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

gphiX +=
gphiX *=
Poly2Mod
Poly2Mod
gphiX +=
gphiX *=
gphiX +=
Poly2Mod
gphiY +=
gphiY *=
Poly2Mod
hphiX +=
Poly2Mod
hphiX *=
hphiX +=
hphiX +=
hphiX +=
Poly2Mod
hphiY +=
hphiY *=
hphiY +=
hphiY +=

hphiY

+
1}

hphiY +=

// iterate for all possible values of tau

for (int

{

alphaX;

beta;

alpha¥2 = alphaY * alphaV;
beta2 = beta * beta;
alphaX * alphaX + alpha¥2 * g;
f2[qlt];

beta2 * fqldoub;

gphiY = alphaY * beta;

x * alphaV¥2;

f2[qlt];

hphiX = yqg2mod[p] * beta;
alphaX * xq2mod[p];

ttemp = f2[qlt] * beta2;
ttemp;

beta * gphiX;

alphaX * gphiX;

alphaY * gphiY * g;

hphiY = yq2xymod[p] * beta;
alphaY * xq2mod[p];

ttemp;

alphaX * gphiY;

alphaY * gphiX;

x * alphaY * gphiY;

beta * gphiV;

tau = 1; tau <= temp; tau++)

Poly2Mod f2qtau = f2[taul;

64

Schoof’s Algorithm on Fields of Characteristic T'wo

549
550
5561
552
553
554
555
556
567
5568
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

Poly2Mod fqtau = f[tau];

Poly2Mod fqtaupone = f[tau + 1];

Poly2Mod fqtaumone = f[tau - 1];

Poly2Mod fqtauptwo = f[tau + 2];

for (int k = 0; k < m; k++)
{
fqtau = fqtau * fqtau;
f2qtau = f2qtau * f2qtau;
fqtaupone = fqtaupone * fqtaupone;

fqtaumone = fqtaumone * fqtaumone;

fqtauptwo = fqtauptwo * fqtauptwo;
}
ttemp = fqtaupone * fqtaumone;
Poly2Mod tempX = f2qtau * gphiX;
Poly2Mod rr = xqmod[p] * f2qtau + ttemp;
tempX += f2[qlt] * beta2 * rr;
Poly2Mod tempY = f2qtau * gphiY;
if (iszero (tempX) && iszero (tempY))
{
// now the x-coordinate matches
// check the y-coordinate to
// determine if we have tau or -tau
Poly2Mod f3qtau = f2qtau * fqtau;

Poly2Mod beta3 = beta2 * beta;

Poly2Mod f2qtaumone = fqtaumone * fqtaumone;

tempX = xqmod[p] * f3qtau * yqmod[p];
tempX += fqtauptwo * f2qtaumone;

tempX *= f2[qlt] * beta3;

65

Schoof’s Algorithm on Fields of Characteristic T'wo

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

return O;

tempX += xgmod[p] * f3qtau * hphiX;
ttemp = xqmod[p] * xqgmod[p] + yqmod[p];
Poly2Mod fqtautrip = fqtaumone * fqtau;
fqtautrip *= fqtaupone;

tempX += ttemp * f2[qlt] * betal3 * fqtautrip;
tempY = xqmod[p] * f3qtau * hphiY;

rr = f2[qlt] * xqgmod[p] * f3qtau;

rr *= yqxymod[p] * beta3;

tempY += rr;

Poly2Mod ww = yqxymod[p] * f2[qlt];

ww x= fqtautrip * betad;

tempY += ww;

if (iszero (tempX) && iszero (tempY))

tmodp[i] = tau;

else

tmodp[i] = -tau + p;

cout << "tau = " << tmodpl[i];
break;

3

// foreach tau >= 1

cout << endl;

// foreach prime

cout << "could not allocate prime table" << endl;

66

Schoof’s Algorithm on Fields of Characteristic T'wo

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

3

// we got all modulos, now it’s time to do CRT.

Crt tcrt

Big t =

Big 1b

Big ub
Big prod
for (int
prod *=

if (¢t <=

(n, primes);

tcrt.eval (tmodp);

-w / 2;

w / 2;

=1;

i=0; i< mn; i++)
primes[i];

1b)

t += prod;

else if (t >= ub)

t -= prod;

// now, let’s output the trace t

cout << "t = " << t << endl;

// by Hasse’s theorem, total number of points

equals g+1-t

cout << "#E(F_{2"" << m << "}) = " << g+ 1 - t << endl;

delete[]lprimes;

delete[]tmodp;

delete[]f;

deletel[]f2;

delete[]£3;

delete[]lxqgmod;

delete[]xq2mod;

delete[]ygmod;

delete[lql;

delete[]lyq2mod;

delete[lygxymod;

Schoof’s Algorithm on Fields of Characteristic T'wo

633 delete[]yg2xymod;
634 return O;

635 }

68

Bibliography

[

2]

3]

[4]

[5]

[6]

[7]

8]

Andreas Enge, Elliptic Curves and Their Applications to Cryptography, An
Introduction, Kluwer Academic Publishers. (1999).

Alfred J. Menezes Elliptic Curve Public Key Cryptosystems, Kluwer Aca-
demic Publishers. (1993).

Dale Husemoller Elliptic Curves, Graduate Texts in Mathematics, Springer-

Verlag. (1986).

Eric Von York FElliptic Curves Over Finite Fields, George Mason University.
(1992).

Harold M. Stark An Introduction to Number Theory, MIT Press. (1998)
p.72-73.

Ian Blake, Gadiel Seroussi & Nigel Smart Elliptic Curves in Cryptography,
London Mathematical Society Lecture Note Series 265, Cambridge Univer-
sity Press (1999).

Joseph H. Silverman, John Tate Rational Points on Elliptic Curves, Under-

graduate Texts in Mathematics, Springer-Verlag. (1992).

J. Omura and J. Massey Computational method and apparatus for finite field
arithmetic, U.S. Patent number 4,587,627, May 1986.

69

Schoof’s Algorithm on Fields of Characteristic Two 70

[9] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.-W. Leong FPGA Implementa-
tion of a Microcoded Elliptic Curve Cryptographic Processor, Department of

Computer Science and Engineering, The Chinese University of Hong Kong.

[10] Mike Scott Multiprecision Integer Rational Arithmetics C/C++ Library Doc-

umentation, ftp://ftp.compapp.dcu.ie/pub/crypto/manual.zip.

[11] National Institute of Standards and Technology (NIST) Recommended Ellip-
tic Curves for Federal Government Use, Computer Security Resource Centre,

NIST (July 1999).

[12] Neal Koblitz Algebraic Aspects of Cryptography, Algoirthms and Computa-
tion in Mathematics, Volume 3, Springer-Verlag. (1991).

[13] Par René Schoof Counting Points on Elliptic Curves over Finite Fields, Jour-
nal de Théorie des Nombres, de Bordeaux 7 . (1995) p.219-254.

[14] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson Optimal
normal bases in GF(p"), Discrete Applied Mathematics, vol 22, pp. 149-
161, 1988/89.

