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Abstract

From a data mining perspective, this thesis advocates two main factors to improve subject-

independent automated classification techniques: (1) utilizing better feature extraction, and (2)

a more efficient model of classification. This thesis argues that supervised techniques can help

find features that are more discriminative and better correlated with the output, and then used

this salient feature set to produce improved models by utilising domain knowledge. In this work,

three popular saliency criteria for feature selection were used in a voting-based scheme: mutual

information, Euclidean distance or variance ratio based discrimination. More efficient features

are found through a systematic process, and the framework of this approach holds for a wide

range of machine learning applications. Three case studies that are demonstrated in this thesis

are human body movement assessment, respiratory artefact removal, and spike sorting for elec-

trophysiological data. Manual classification is often considered the de facto standard practice

but it is time-consuming and subjective. Existing automated efforts have been predominantly

designed for subject dependence. Unsupervised sorters using simple statistics have only yielded

modestly accurate results. The first application studied is human movement assessment. An

anomaly score detector (ASD) is introduced with adaptive threshold to identify gait freezing

events. Results achieved were significantly higher than those previously reported. In the second

respiratory artefact application, the top ten feature subsets with their quartile thresholds are used

to reject anomalous breath cycles. Unlike previous works, the thresholds are determined by both

saliency and performance metrics rather than qualitative assumptions, and accuracy was found

to be higher than existing methods. The final case involves electrophysiological spike clustering

into an unknown number of classes. Correlation-based sorting strategies are proposed thanks

to utilizing prior knowledge in the physiological domain to extract features (e.g., motor unit

activation and recruitment). This approach achieves comparable results to the standard manual

and outperforms other automated methods with traditional features. Through these three real-

life applications, due to systematic feature engineering, it is concluded that unsupervised and

subject-independent automated classifiers to provide solutions with low computational cost and

competitive accuracy can replace standard manual sorting.

Key words: Subject-independent, automated classification, feature selection, anomaly scores.
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Chapter 1

Introduction

This work is aimed to demonstrate the contribution of feature learning in classification applications,

especially for biomedical data. Unsupervised and subject-independent settings are desirable deployment.

One reason is that these abilities can help deploy classification tasks in out-of-the-lab wearable devices.

Another reason is reducing labour costs and subjectivity associated with human involvement. In this

thesis, three examples are studied: (Case 1) human body movement assessment where acceleration data

is used, (Case 2) respiratory artefact removal where lung function tests are carried out, and (Case 3) spike

sorting for electrophysiological data.

Manual classification is often considered the de facto standard practice but it is time-consuming

and subjective. Existing automated efforts have been predominantly designed for subject dependence.

Unsupervised sorters using simple statistics have only yielded modestly accurate results.

1.1 Motivation and Approach

This thesis argues that the classification performance of unsupervised and subject-independent automated

sorters for biomedical data can be improved by exploiting data-driven and domain-knowledge-driven

strategies that help find better features and more efficient sorters.

In the first scenario, accelerometry data were used to assess body movements, specifically to make

a binary classification for freezing of gait (FoG) or normal events over a number of FoG is one of the

most common symptoms of Parkinson’s disease (PD) and strongly relates to falls. Objective FoG de-

tection has been a pressing concern, particularly out-of-lab deployment with wearable devices. Current

automated methods have been proposed with various global parameters (i.e., inconsistent threshold fixed

values and/or different data channel settings found in literature). This suggests a high variability in actual

thresholds over time and subjects.

The second scenario, which is also a two-class discrimination problem, involves removing respira-

tory artefacts in the forced oscillation technique (FOT). The averages of measurements in lung function

tests (e.g., total respiratory mechanical resistance) are the main outcomes in clinical and research usage,

which are significantly affected by the artefacts. Consequently, more work is required to improve the

1



2 CHAPTER 1. INTRODUCTION

reproducibility of FOT by automatically eliminating respiratory artefacts. Apart from the natural de-

pendency of breath samples on time and subjects, we found that the normality of given data should not

be assumed as it has been rejected by common test statistics Hence, besides choosing better features,

more general statistical parameters with quartiles should be applied rather than existing methods with the

normality assumption.

Thirdly, multi-class sorting for intramuscular electromyography (nEMG) spikes (action potentials)

can help identify classes that are often referred to motor units (MUs). Single motor unit activity study

is a major research interest because changes of single motor unit activities (e.g., MU action potential

(MUAP) morphology, MU activation, and MU recruitment) provide the most informative part in diag-

nosis and treatment of neuromuscular disorders. Nevertheless, nEMG data often provide more than one

MU activities, thus MUAP discrimination is a crucial task to study single unit activities. One important

note is that the number of classes in this classification task could not be pre-defined. Hence clustering

methods are often employed. Existing features have been calculated from Euclidean distances which

assumes a spherical distribution of data. To account for electrode drift and normalized values that suit

subject-independent settings, we proposed to use the correlation metric that range −1→ 1.

These three cases share certain difficulties. One is the de facto standard practice of each relies on

human-based assessment which is almost always subjective and time-consuming. Another is that it is

challenging to assess the relevance and clusterability of existing features. Higher correlated and more

separable features across classes may improve the classification performance of subject-independent

classifiers. Most existing automated efforts have failed to address the aforementioned factors, having

been designed primarily in subject-dependent settings.

1.2 Contributions

This thesis aims to improve accuracy performance of classification tasks in subject-independent settings

by utilsing supervised techniques to find better features (i.e., more discriminative and higher correlated

with the desired output). A voting-based technique has been proposed to analyze ranking scores by sev-

eral saliency criteria including mutual information, Euclidean distance based discrimination, and vari-

ance ratio based clusterability. This hybrid selection scheme is a data-driven approach and can compare

a comprehensive set of candidates including existing features and novel variants. Given a large set of

exploratory feature candidates, the most selective features learnt from this process are most applicable

to the unsupervised and subject-independent applications. Exploiting this strategy in each scenario, bet-

ter models are also suggested through this domain-knowledge-driven approach (e.g., issues associated

with dependency in Case 2 and/or other related domain knowledge in Cases 1 and 3). This approach is

applicable to a wide range of machine learning applications as well.

The main contributions of this work are:

1. This is the first reported feature selection technique based on voting which considers not only

mutual information criterion but also clusterability for respiratory artefact removal in FOT mea-

surements [1, 2, 3], FoG detection [4, 5, 6, 7], and nEMG spike sorting [8].

2. Introduce novel features that are more relevant and discriminative in the FoG, FOT, and nEMG
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data [4, 1, 8].

3. Propose anomaly detectors which, to the best of our knowledge, achieve the best reported perfor-

mance for unsupervised subject-independent settings for FOT data regardless of participants’ age

[3] and FoG data [5, 6, 7].

4. Suggest an efficient unsupervised spike sorting when the class number is not pre-defined for

subject-independent settings [8].

1.3 Selected Publications Arising from Thesis

Journals ([Reference in thesis] details (peer reviewed contribution assessment))

[1] Thuy T. Pham, Cindy Thamrin, Paul D. Robinson, Alistair McEwan, Philip H.W. Leong,

“Respiratory Artefact Removal in Forced Oscillation Measurements: A Machine Learning

Approach,” in IEEE Transactions on Biomedical Engineering , vol.PP, no.99, pp.1

(Apr-2016): “Recent years have seen an increased realization that the forced

oscillation technique can provide valuable clinical information. The authors have

developed a technically sound work that could potentially contribute in detecting

and removing artifacts from measurements of respiratory impedance using forced

oscillations. This work is very interesting and presents an ingenious approach...”

“The need for an objective-automated method to filter out forced oscillation

respiratory signals has been underlined for a long time. Although I am not quite

familiar with the mathematics, the new procedure appears to represent an impor-

tant step toward optimisation of such computational procedures.”

[3] Thuy T. Pham, Philip H.W. Leong, Paul D. Robinson, Cindy Thamrin, “Automated

Quality Control of Forced Oscillation Measurements: Respiratory Artefact Detection with

Advanced Feature Extraction,” Journal of Applied Physiology. Accepted 2017.

(Sept-2016): “ This submission addresses an important issue: the improve-

ment of the quality control of forced oscillation measurements by using auto-

mated selection of artefact-free breaths. The Authors compare performances of

different artefact recognition algorithms that are based on previous work (includ-

ing theirs), and their combinations in paediatric and adult (normal and asthmat-

ics) data sets. Although this is a preliminary methodological study as the ”win-

ners” among the considered algorithms need to be examined further on more

comprehensive test data, the manuscript is nicely prepared and it represents a

laudable mission for the improvement of lung function techniques. ”

“ The authors present an automated artifact removal algorithm for improving

the quality of oscillatory impedance data. The algorithm is tested using previ-

ously recorded single-frequency FOT data in adult and pediatric subjects during
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spontaneous breathing, and compared to quality control from a human operator.

They find that their approach offers equivalent (or better) quality control of FOT

data compared to that of a human operator.

This is a well-written manuscript, mathematically sound, and is a nice follow-

up to the authors’ recent 2016 IEEE paper. The study is quite innovative, and

demonstrates some very elegant signal processing for the potential use of FOT in

clinical settings.”

[4] Thuy T. Pham, Steven Moore, Simon Lewis, Andrew J. Fuglevand, Diep N. Nguyen,

Eryk Dutkiewicz, Alistair L. McEwan, Philip H.W. Leong, “Freezing of Gait Detection in

Parkinson’s Disease: Subject-Independent Detector Using Anomaly Scores,” IEEE Transac-

tions on Biomedical Engineering 2017 (accepted 2017).

(June-2016): “ The reviewers found merit in the work presented on FOG de-

tection, ...” “ It is a very interesting work...” “ In this work, authors present a

freezing of gait detection algorithm in subjects with advanced Parkinson’s dis-

ease. Using an anomaly score detector combined with freezing index calculation

based on one to multiple channels, authors have been able to reach a sensitivity

of 96% with the optimal parameters... ”

Conferences ([Reference in thesis] details)

[8] Thuy T. Pham, Andrew J. Fuglevand, Alistair L. McEwan, and Philip H. W. Leong,

“Unsupervised Discrimination of Motor Unit Action Potentials Using Spectrograms,” Engi-

neering in Medicine and Biology Society (EMBC), 36th Annual International IEEE EMBS

Conference, Chicago USA. Conf. Proc. IEEE Eng. Med Biol. Soc. 2014 ;2014:1-4.

[2] Thuy T. Pham, Diep N. Nguyen, Eryk Dutkiewicz, Alistair L. McEwan, Cindy Thamrin,

Paul D. Robinson, Philip H.W. Leong, “Feature Engineering and Supervised Learning Clas-

sifiers for Respiratory Artefact Removal in Lung Function Tests,” IEEE Globecom-SAC-EH

2016, Washington DC, USA Dec 2016 (in press).

[6] Thuy T. Pham, Diep N. Nguyen, Eryk Dutkiewicz, Alistair L. McEwan, and Philip H.W.

Leong, “Wearable Healthcare Systems: A Single Channel Accelerometer Based Anomaly

Detector for Studies of Gait Freezing in Parkinson’s Disease”, ICC’17 SAC-6 EH, France

2017 (in press).

1.4 Thesis Structure

The thesis is organized in seven chapters. Chapter 2 provides a background and literature review for

the three applications: FoG detection with proper acceleration data, respiratory artefact removal in FOT

data, and MUAP sorting for nEMG data. In Chapter 3, algorithms including feature engineering and

sorting schemes are described. Details of data collection, parameter setting, and experiment results are

demonstrated separately for each specific domain such as FoG detection (Chapter 4, Point anomalies),
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FOT respiratory artefact removal (Chapter 5, collective anomalies), and spike sorting for nEMG data

(Chapter 6). The final chapter concludes with a summary and future work for this thesis.



Chapter 2

Background

In this chapter, relevant machine learning background is provided. The first section is about classification

algorithms, then performance metrics for studied applications are introduced, followed by related tech-

niques that are used to select salient features in the applications. Finally, automatic feature selection

models are reviewed.

In this thesis, the term classification is mentioned to a task that predicts a class label of an instance

regardless of prediction model algorithms. The terms sorting and clustering are used in the third

case of application (Chapter 6) are used in the context of unknown class number situation.

2.1 Unsupervised Classification

A classification task involves finding a mapping from features to a categorical variable. When no label in

the training phase is used, the task is referred to as unsupervised classification. There are two common

problems for this: anomaly detection (i.e., two-class) and clustering or x-class sorting with an unknown

number of classes.

Let input data D = x1, ...,xN where N is number of data points. D is separated into k disjoint subsets

C1, ...,Ck (k� N): Ci ∩C j = /0 if i 6= j and D = C1 ∪ ...∪Ck. The result of clustering depends on a

measure of similarity between the elements and the aim is to place similar elements in the same cluster.

2.1.1 Multi-class classification

The basic idea of multi-class sorting is to group similar instances, based on some distance metric. Several

ways to establish the similarity between data points are commonly used including: Euclidean distances

among the group members, dense areas of the data space, or high correlation coefficients. For biomedical

data, an example is grouping needle EMG motor unit action potentials (MUAP) in order to find the

number of active motor units, i.e., discover the number of clusters, k, in spike sorting [8].

In the spike sorting literature, algorithms using distances (e.g., k-means clustering [9, 10], mean shift

[11, 12]), likelihood (e.g., Bayesian classification (BC) [13]) and others: template matching [14], neural

6
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network based [15], super paramagnetic clustering (SPC) [16], or density grid contour clustering [17]

have all been proposed.

The k-means algorithm is a classic model for clustering, originally developed for vector quantization

[9]. The k-means algorithm requires k to be given a priori from a set of M points x1, ..., xM in order to

find a label variable y1, ..., yM where yi ∈ 1, ...,k. First, it randomly initializes centroids µ1,µ2, · · · ,µk. It

then calculates the least-squares cost of this initial arrangement using k mean vectors c1, · · · ,ck. Then it

assigns a cluster label yi to each point xi and recomputes the centroids until the following optimization

criterion is met.

y1, ...,ym = argmin
c1,...,ck

k

∑
j=1

∑
yi= j
‖xi− c j‖2 (2.1)

Another popular multi-class algorithm is super paramagnetic clustering (SPC) [16], a state-of-the-art

method, has been used to launch a spike-sorting module for neural data (e.g., [16, 18]). The SPC method

uses interactions between a data point (a spike) and its k-nearest neighbours [16]. If the interactions are

strong, spikes are more similar. Refinement is implemented as a Monte Carlo iteration of a Potts model

[19] which suggests the behaviour of ferromagnets and certain other phenomena of solid-state physics.

The term temperature in SPC is used to interpret the probability at which the states of a number of

neighbouring data points change simultaneously [20]. At a relatively high temperature, all the points

switch randomly, regardless of their interactions (paramagnetic phase). At a low temperature, all the

points change their states together (ferromagnetic phase). At medium temperatures (super paramag-

netic phase) only points in the same group change their states concurrently. In a clustering application,

the ferromagnetic phase, the paramagnetic phase, and the super paramagnetic phase can be considered

a classifying result of one single cluster, several tiny clusters, and a number of medium-size clusters,

respectively.

First, SPC represents m features of a spike i by a point xi in an m-dimensional space. Then it finds

the interaction strengths between the point xi and k nearest neighbouring points. The interaction strength

Ji j between xi and one of its neighbours, named x j, is given by [20]. From Eq. (2.2), Ji j reduces

exponentially when the Euclidean distance
∥∥xi− x j

∥∥2 increases. A smaller distance results in a stronger

similarity between two spikes.

Ji j =

 1
k exp(−‖xi−x j‖2

2a2 ) if xi is one of k nearest neighbors of x j

0 otherwise.
(2.2)

where a is the average distance from xi to its k nearest neighbours.

Then, SPC assigns each point xi to a random state s in a set of q states. N Monte Carlo iterations

are run for different temperatures using the Swendnsen-Wang algorithm [21] or the Wolff algorithm

[22]. Blatt et al. [21] recommended a setting of q = 20 states, k = 11 nearest neighbours, and N = 500

iterations for clustering. With this setting, the clustering process would mainly depend on the temperature

parameter and is robust to small changes of other parameters.

Though there have been enormous number of cluster analysis algorithm proposals across research

areas, the most suitable algorithm for a particular problem is often chosen by experimentation [23]. In
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an early review by Lewicki [24] and Gibson et al. [25], the current benchmark method is k-means clus-

tering [10] because it is simple and fast but requires an assumption of the given k. The valley-seeking

[26] and super paramagnetic clustering (SPC) [16] are cutting edge methods but have high computational

complexity [25]. For example, SPC uses default settings of 100 Monte Carlo iterations, increasing com-

putation time by several order of magnitude. SPC also involves an estimation of the upper bound of k in

the settings [18]. Most of these techniques use the Euclidean distance metric, that assumes a spherical

distribution of data. Due to the effect of electrode drift, ellipsoidal clusters are formed in practice, not

spherical [25]. In this work, an alternative approach is proposed.

2.1.2 Two-class Sorting: Anomaly Detection

Anomaly detection is a special case of sorting when k = 2. D =C1∪C2 where C1 is the anomaly set that

are considerably dissimilar from the remainder, C2. In other words, one class is for all normal data point,

the other is for all anomalies. An anomaly is a deviation from the normal or expected behaviour.

In the literature, C1 is referred to as outliers, exceptions, peculiarities, noise, or novelties [27, 28, 29].

If the data points are merely unwanted and not of interest to the study, this task can be considered noise

removal (e.g., robust regression and outlier detection [28, 27]). For monitoring behaviours, it is often

called novelty detection (e.g., unusual user behaviour and unrecognised activities [29]), or the converse,

anomaly detection. In this thesis two real life examples in biomedical data are studied: freezing of gait

events (Case 1) and respiratory artefact cycles (Case 2).

Key challenges found in this process include defining a representative normal set (i.e., C2) that is hard

and domain specific, and the boundary between C1 and C2 is not being always precise. Furthermore, in the

normal set, element behaviour may be evolving. Thus, according to problem characteristics (i.e., nature

of data, anomaly type, labels, and output) there are diverse ways to detect anomalies. Recently, several

approaches including supervised-classification-based (e.g., rule-based, neural networks, or support vector

machine based), clustering based, statistical (e.g., parametric or non-parametric), information theory, and

visualization based were reviewed in a survey [30]. Similar to comments in the previous section, in order

to be employed towards wearable device and real-time detection, simple thresholding algorithms using

statical parameters are preferred [4, 1, 3].

2.2 Performance Metrics

In a multi-class classification task, the confusion matrix provides a summary of the performance achieved

by a classifier. Let C be the number of classes. The confusion matrix M is a square matrix of C×C where

Mi, j denotes the number of test outcomes (i.e., ground truth labels, Gi) of class i, that were predicted as

class j, Pi (Eq. (2.3)). The number of successful predicted events (True) for class i, denoted Tii, is the

diagonal line of M. All other members of M are incorrectly predicted events (False), denoted Fi j where

i 6= j.
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M =

P1 . . . Pi . . . PC



T11 . . . F1i . . . F1C G1
...

. . .
... . . .

...
...

Fi1 . . . Tii . . . FiC Gi
... . . .

...
. . .

...
...

FC1 . . . FCi . . . TCC GC

(2.3)

The sensitivity and positive predictive value (PPV) of class i, Seni and PPVi, are defined by:

Seni =
Tii

Tii +∑ j 6=i Fi j
(2.4)

PPVi =
Tii

Tii +∑ j 6=i Fji
(2.5)

Let N be the total number of samples in the dataset. The global sensitivity, PPV, and accuracy of the

classifier are calculated as:

Sensitivity =
∑

C
i=1 Seni

C
(2.6)

PPV =
∑

C
i=1 PPVi

C
(2.7)

Accuracy =
∑

C
i=1 Tii

N
(2.8)

When C = 2, the 2× 2 confusion matrix is often reported as True Positives (TP), True Negatives

(TN), False Positives (FP), False Negatives (FN) and sensitivity, specificity, and accuracy are defined as

below.

M =

P P

Positive Negative( )
T P FN Ground Positive

FP T N Ground Negative

(2.9)

Sensitivity =
T P

T P+FN
(2.10)

Specificity =
T N

T N +FP
(2.11)

Accuracy =
T P+T N

T P+T N +FP+FN
(2.12)

F1 =
2T P

(2T P+FP+FN)
(2.13)

Besides, other metrics that have been popularly used are false positive rate (fall-out), false negative rate
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(miss rate), positive/negative likelihood ratios, and F1-score [31]. F1-score, which is the harmonic mean

of precision and sensitivity, has best value at 1 and worst at 0, is calculated as

In the biomedical literature, intra-class correlations (ICCs) [32] has been also used to assess the

accuracy performance of classifier (i.e., regarding to the agreement between the classifier and human-

labels, called raters) [33, 34]. Though ICCs have various forms, this thesis only considers one of six

forms of interpretation as described by Shrout and Fleiss in 1979 [32] and developed by McGraw and

Wong [35]. Specifically, ICCs are calculated using data from two-way random effect analysis of variance

models (designation of ICC(A,1)) [35]. In this model, raters and subjects (i.e., samples to be classified)

are random selections from among all possible sources; also raters classify all subjects chosen at random

with a known method of rating. The type of ICC computation in this work is absolute agreement with

single measures that assesses the comparable classification performance of classifiers.

Let O be a data matrix of size n×k where k is number of raters and n is number of subjects to be rated.

xi j = µ +ri+c j +ei j where i = 1, . . . ,n and j = 1, . . . ,k. µ is the population mean for all observations. ri

is the row effect that is random independent and normally distributed with mean 0 and variance σ2
r . c j is

the column effect that is random independent and normally distributed with mean 0 and variance σ2
c . ei j

is the residual effect that is random independent and normally distributed with mean 0 and variance σ2
e .

The row/column/residual effects, ri/c j/ei j, are random independent and normally distributed with mean

0 and variance σ2
r /σ2

c /σ2
e respectively. More details could be found [35].

O =

Rater1 . . . Rater j . . . Raterk



x11 . . . x1 j . . . x1k Subject1
...

. . .
... . . .

...
...

xi1 . . . xi j . . . xik Subjecti
... . . .

...
. . .

...
...

xn1 . . . xn j . . . xnk Subjectn

(2.14)

Let’s denote the mean squared value for sources of variation to be MSR = kσ2
r +σ2

e for rows, MSC =

nσ2
c +σ2

e for columns, and MSE = σ2
e for error. The term ICC is computed as:

ICC =
MSR−MSE

MSR +(k−1)MSE + k(MSC−MSE )
n

(2.15)

2.3 Feature Engineering

In applied machine learning, success depends significantly on the quality of data representation (features)

[36]. Basic modules involved in a classification application are illustrated in Figure 2.1. The process of

transforming data into features that are more relevant to the problem, called feature engineering, can in-

crease prediction accuracy [37]. Features that are highly correlated with labels can make learning/sorting

steps in the classification module easy. Conversely if label classes are a very complex function of the

features, it could be impossible to build a good model.
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One may argue that when label classes are a very complex function of the features, a complex

classification model such as non-linear classifiers using the kernel trick. From the context of an

unsupervised and subject-independent classification application, the approach is not always helpful.

While learners can be largely general-purpose, feature engineering is usually domain-specific [36].

This section describes techniques to automatically select salient features from a large exploratory

feature pool (feature selection). Redundant and irrelevant features are well known to cause poor accuracy

so discarding these features should be the first task. Input features should thus offer a high level of

discrimination between classes. Feature selection can be done using a data-driven approach and can be

used as a common framework for a wide class of problems.

Feature selection has been applied to several applications such as classification, regression, cluster-

ing, association rules and other data mining tasks. This technique sometimes is called variable (e.g.,

[38]) or attribute selection (e.g., [39]). In a selection algorithm, depending on the involvement of class

information (labels), the technique can be a supervised scheme (e.g., [40, 41, 42]) or unsupervised (e.g.,

[43]).

Figure 2.1: Feature engineering and sorting algorithms involved in a classification task.

2.3.1 Feature Relevance

The initial choice of features is often an expression of prior knowledge. Some features may be good

representations while others can be irrelevant. Let X be a complete feature set of the data input. Xi ∈ X

is a candidate. Xi ∈ X is a strongly relevant feature if it contains information that no other candidate does

[44]. Xi is a weakly relevant candidate if it has information that also exists in or in conjunction with other

ones. Hence, Xi is irrelevant if it is neither strongly relevant nor weakly relevant, otherwise it is relevant.

2.3.2 Feature Selection

Let S⊂ X be the desired set of relevant features. S = s1, ...,sm where m is the number of selected features.

The goal of feature selection is to choose S most relevant to the classification task. Identifying the optimal

S is an NP-hard problem [45], dependent on a function usually considering size of S, class distribution,

accuracy, and relevance [46].

Finding all relevant candidates can be done via an exhaustive search through all the subsets of X ,

but this is usually not computationally tractable. Starting with an empty set S = /0, a forward selection

method incrementally adds strongly relevant features but may not find features which are relevant only

when combined with others. A backward selection method will start with a full set S = X then remove
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candidates that are not strongly relevant. This may also discard weakly relevant candidates. The back-

ward elimination can evaluate subsets that contain interacting features thus tends to find better subsets

[47]. Search strategies can be an exponential or greedy search [48], or a randomized search [49]. Greedy

searches include sequential forward or backward or bi-directional selection techniques. When the space

X is very large (e.g., genetic analysis applications), a randomized search is a practical approach in terms

of time complexity.

Several interesting examples [44] show that correlated variables may be useless by themselves or

strongly relevant ones may be not useful for classification. Thus, a popular approach is finding a good

subset of the relevant features with a typical process of four steps: subset generation, an evaluation

function, a stopping criterion, and validation procedure [46].

After selecting a combination from the space X using a search procedure, each candidate is evaluated

and compared according to a certain objective function until a given stopping criterion is satisfied. The

evaluation step measures the discriminating ability of a subset with regarding to class labels. Two main

groups of objective functions are data intrinsic measures [50] and classifier error rates [51]. The former

includes information or uncertainty, distance, and dependence measures. The latter uses the classification

accuracy of a classifier involved in predicting the class labels with a selected subset. Automated selection

algorithms are grouped into filter methods (i.e., use data intrinsic measures and is independent of a clas-

sifier) and wrapper methods (i.e., utilise a classifier within the algorithm) [52]. Recently, combinations

of these methods have been proposed, these being referred to as hybrid [46] or embedded methods [38].

2.3.3 Automatic Selection Models

2.3.3.1 Filter Models

In filter models, S is selected directly from the data and only relies on data intrinsic measures. Fea-

ture candidates are ranked by a scoring metric and the highest scoring features are added to S. Figure

2.2 depicts these steps for classification. Many different relevance scores for uncertainty, distance, and

dependence measures including Chi-squared, information gain, Pearson correlation, and mutual informa-

tion [31] have been proposed. For clustering applications, popular scores are Euclidean distance based

discrimination [53] and variance ratio [54]. Details of these criteria are discussed in Sec. 3.1.2. Filters

select feature subsets independently of the chosen predictor and have low computational cost. Accord-

ingly they may fail to address feature interactions, and the selection criteria are different to the actual

learning algorithm.

2.3.3.2 Wrapper Models

A wrapper selection approach [52] finds S using a predictive model to score candidates’ predictive per-

formance in the evaluation loop. Training instances that are a vector of feature values and a class label

are inputs of the learning machine as illustrated in Fig. 2.3. Each new subset is used to train the model

and then validated using a different test set. The error of the model is used as the score for the subset.

To avoid bias, cross-validation (CV) tests [55, 56] that split the training data into traineting set and

validation set are used. The validation results are averaged to define the error of the subset during training.
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Figure 2.2: Feature selection model with a filter approach. Data intrinsic measures are often
saliency scores using correlation or distance computation.

Popular methods of CV tests include k-fold CV [57], leave-one-out (LOOCV) [58], random subsampling

CV, and bootstrapping CV [59]. The k−fold CV creates k equal sized partitions of the training data.

Let NT be the total number of training samples. Each partition has NT/k examples. The training loop

uses k− 1 partitions and validates on the remaining partition , repeating this step k times [57]. Finally,

the model is chosen if it has the smallest average validation error. k is often set as 10. LOOCV is a

special case of k-fold CV where k = NT . LOOCV is usually practical if NT is small [58]. The random

subsampling CV, a close case of k-fold CV, chooses the validation set as a randomly sampled subset of

NT with a fixed fraction αNT whereα ∈ (0,1) and trains with the rest. The loop is also repeated k times.

The common settings of the random subsampling CV is k = 10 and α = 0.1. The bootstrapping CV is a

method of random sampling with replacement [59].

A wrapper method directly uses the classification error rate to select the subset, therefore this method

tends to perform better than the filter approach. Disadvantages are that it has high computational cost

and overfitting may occur.

2.3.3.3 Advanced Models

Hybrid and embedded approaches are combinations of the two aforementioned models. In the hybrid

method, a filter model is used to reduce the search space for a latter wrapper model [60, 61, 46]. The

learning by the wrapper block in the hybrid model could be considered as a black box to the work

implemented by the filter block [38]. An illustration of this idea is given in Fig. 2.4. Data intrinsic

measures are first used to remove non-salient features. Then only top relevant features are evaluated by

a classifier of interest. The performance of learning is used to further select the subset that causes the

lowest error rate. The hybrid method has advantages of both filter and wrapper approaches, thus it is faster

than a normal wrapper and more accurate than a filter method. Furthermore, it is less computationally

expensive and less prone to overfitting than the wrapper model.

Unlike the hybrid combination, the embedded method finds an optimal S by applying feature weight-

ings during the model building process (Fig. 2.5). An embedded model optimizes feature selection and
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Figure 2.3: Feature selection model with a wrapper approach [52]. A predictive model is used
to score subsets’ accuracy performance during cross-validation tests (CV Tests).

model together rather than separately in two steps [62]. For example, when using the Lasso (Least ab-

solute shrinkage and selection operator) penalty [63], the regularization term of L1-norm is added to the

classification error [62] and does feature selection by the sparsity of the Lasso solution. For a given

training data set of feature X ∈ Rn×d and label Y ,

X =


x1(1) . . . x1(d)

...
. . .

...

xn(1) . . . xn(d)
, Y =


y1

...

yn

(2.16)

The weight w for all feature candidates are considered at once and a regularization penalty that tries

to set the weights to zero if their corresponding features are not relevant (i.e., the criterion based on the

learning objective function) is introduced [62].

min
w∈Rd

1
n

n

∑
i=1

(yi−〈w,xi〉)2 +λ‖w‖1, (2.17)

where (yi−〈w,xi〉)2 is the square loss, λ is a tuning parameter to trade off between loss and penalty, and

‖w‖1 is L1-norm. For classification, when λ is sufficiently large, L1-norm will cause most of the weights

to be zero [64].

The embedded method often requires less computing resources than the wrapper methods. However,

it is specific to a learning scheme. Sometimes these approaches are called integrated feature selections.

Algorithms using various learning techniques for an application are referred to as ensemble selection

methods.
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Figure 2.4: Feature selection model with a hybrid approach. First, data intrinsic measures are
used to remove non-salient features.Then high relevant features are evaluated by a classifier
(cross-validation, CV, tests).

2.4 Summary

This chapter reviewed related background on classification techniques and feature selection. Two com-

mon unsupervised classification problems are: anomaly detection which involves two-classs, and x-class

sorting which has an unknown number of classes. A confusion matrix is commonly used to evaluate clas-

sifier performance. Redundant and irrelevant features are known to cause poor accuracy. It is important

to discard such features, and this is often one of the first steps in feature engineering and classification.

Automated techniques for feature selection include filter, wrapper, and embedded approaches.

Details of data intrinsic scores used in works of this thesis are discussed in the next Chapter. Specific

domain feature extraction is discussed in each scenario of applications (Chapters 4, 5, 6). The next

chapters demonstrate algorithms and their theoretical calculations.
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Figure 2.5: Feature selection model with an embedded approach. Relevance of features are
scored by the objective function of the learning as a part of the model building.



Chapter 3

Algorithms

In Chapter 2, general technical background of automated classification and feature engineering concepts

were discussed. In this chapter, more detailed algorithms of the proposed work are presented. Specifi-

cally, three scenarios of automated classification are introduced in the context of a desirable subject-in-

dependent settings. There are two separate sections for two functional blocks for a classification task:

feature engineering and sorting algorithms. The first block is a common scheme for several scenarios,

on the other hand the second block is specfic to each application scenario. The first section describes a

voting-based feature (data representation) selection process and its criteria. Then the next parts formulate

the problem for three classification scenarios: point anomaly detection (Sec. 3.2.1), collective anomaly

detection (Sec. 3.2.2), and unsupervised multi-class sorting (Sec. 3.2.3).

3.1 Feature Engineering

Discarding redundant and irrelevant features which are well known to cause low learning performance are

first tasks of feature engineering. In this thesis, a hybrid model is proposed to utilize advantages of both

filter and wrapper approaches. The criterion of accuracy is evaluated using simple/low computational cost

classification algorithms. Several saliency criteria have been used at one time and also a voting-based

process is suggested to improve the robustness of features across parameter settings.

3.1.1 Automated Selection Process

Given a large exploratory feature pool, a voting process is suggested to select the best feature [4, 1].

This process uses three levels of selection: saliency, robustness, and accuracy; called Round1, Round2,

Round3 respectively (Fig. 3.1). After each level, selected candidates become more favourable. Specifi-

cally, Round1 suggests the most salient and discriminative subset using mutual information (MI), sepa-

rability calculated using Euclidean distances (DIS), and the variance ratio of clusters (VarRatio). After

identifying a highly salient subset based on relevance scores, Round2 examines if the candidates are ro-

bust across window sizes or criteria (i.e., are shared in more than one list). Finally, given a proposed

detector, Round3 tests the detection performance when applying these features.

17
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Figure 3.1: Feature selection process with three phases: saliency, robustness, and accuracy;
called Round1, Round2, Round3.

3.1.2 Saliency Criteria

Saliency criteria are conditions used to select the best subset of features. Salient features are candidates

that are more relevant to the target variable of the classification task and/or more discriminative. There

are three different ranking scores for each feature. The mutual information (MI) between a candidate and

the class label measures a correlation or the relevance of the feature. The other two types of scores (DIS

and VarRatio) assess the separability of a candidate’s values across class labels, i.e., clusterability. DIS

scores present the relationship of Euclidean distances between clusters while the VarRatio uses variance

ratio of clusters.

3.1.2.1 Mutual Information

Let X be a discrete random variable X ∈X and C be a target variable (c ∈C) where X is the input set and

C is the output set, i.e., , class label set. The entropy Hb(X) of X measures its uncertainty [65]. Hb(X) is

computed as in Eq. (3.2). The conditional entropy of X given C is defined by:

H(X |C) =−∑
c∈C

p(c) ∑
x∈X

p(x|c) log p(x|c) (3.1)

where

Hb(X) =−∑
x∈X

p(x) logb p(x), (3.2)
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and b is the base of the logarithm. In this work, b = 2 and hence the entropy is in bits. p(x) = P{X = x},
x ∈ X is probability mass function.

The mutual information between X and C, MI(X ;C), measures the amount of information shared by

X and C, i.e., the relevance of X to C, (Eq. (3.3)) [65].

MI(X ;C)
def
= H(X)−H(X |C)

= ∑
x∈X

∑
c∈C

p(x,c) log
p(x,c)

p(x)p(c)

(3.3)

3.1.2.2 Clusterability

To assess discrimination of features, relevant candidates are considered having nearest instances (by

Euclidean distances) of same class closer and having nearest ones of other classes more far apart. The

weighting of these distances, called DIS, is calculated with the RELIEF algorithm [53] as implemented in

an existing package [66] and built-in packages by MATLAB (The MathWorks Inc., Natick, MA, 2000).

For VarRatio scores, the variance ratio of a feature X is the ratio of variance calculation for data

within a class (i.e., a cluster) and data between classes (i.e., clusters) and is defined as in Eq. (3.4). A

higher VarRatio(X) implies that it is easier to cluster X [54], therefore the feature is more desirable.

VarRatio(X)
def
=

BC(X)

WC(X)
(3.4)

where BC(X) is the between-cluster variance and WC(X) is the within-cluster variance.

3.2 Classification Algorithms

The aforementioned feature engineering process can be described for several applications, classification

scenarios are conversely better illustrated with particular applications. This thesis includes three types

of applications for the number of class in a classification task. Two-class with data points or collective

instances are first two discussed, then an unknown class number is presented. For the data point case,

data recording from accelerometers to recognize the timing of a special abnormal walking status in pa-

tients with Parkinson’s disease that is so-called freezing of gait (FoG) is considered (details of data and

application are in Chapter 4). Each data point is an instance of acceleration data in a timeseries. FoG

instances can be detected as anomalies. For the collective case, data from each breath cylce during lung

function tests form an instance to classify. Respiratory artefactual breaths can also be detected as col-

lective anomalies. For the last case, action potentials during electrophysiological recordings are typical

inputs for a sorting problem where the class number can be unknown.

3.2.1 Point Anomaly Detection Scheme

Let φ(n) be a value of feature vector of length N at time n. For example, in freezing of gait (FoG)

detection, they are often energy metrics of acceleration data [67, 68, 69, 70, 71, 34, 72, 73] Because

there has been also a contextual abnormal increasing of energy in a specific frequency band of data, an
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anomaly score that has been shown in the preliminary work of this thesis to be efficient for this detection,

called A(n), of φ(n) at time n. A(n) determines if the feature value φ(n) extracted from a window at time

n is higher than a threshold (Eq. (3.5)).

A(n) = sign
(

φ(n)− α

|n−1|

n−1

∑
m=1

[φ(m)A(m)]

)
(3.5)

where A(1)=1, n ∈ [2,N], α > 0 is a scale factor, and sign(x) is 1 if x > 0 else 0.

This thesis proposes an ASD (Anomaly Score Detector) using A(n) to detect such point anomalies

in the FoG application.

3.2.2 Collective Anomaly Detection Scheme

An anomalous collection of related adjacent datan instances is referred to as a collective anomaly. In

this thesis, one example for this real life anomalies is detecting respiratory artefact in lung function tests

using complete-breath approaches. Each sample contains consecutive time instances corresponding to the

beginning and ending of a respiratory cycle. An artefactual breath is an anomaly if it does not conform to

the expected behaviour as normal breaths (e.g., contaminated by a negative respiratory resistance value).

Earlier works [1, 3] suggest that a binary anomaly score can be used to detect the respiratory artefacts.

Via thresholding, a breath is marked as an artefact and discarded if one of any data points in the cycle has

its features exceed a given upper bound or are less than a lower one.

Given a set of breaths, B, let φb(n) be a value of the nth instance of feature vector for breath b

(b ∈ B, n ∈ [1,N] where N is the length of b). In the respiratory artefact removal application, φb(n)

often includes numerical information about the average respiratory resistance, volume, and flow of the

breath. The anomaly score, called Ab, of φb determines if the feature is within a limited range of [θL,θH ]

∀n ∈ [1,N] (Eq. (3.6)).

Ab =
N

∏
n=1

sign
(

φb(n)−θL

)
sign

(
θH −φb(n)

)
(3.6)

where θL and θH are defined in a particular application, and sign(x) is 1 if x > 0 else 0.

One example of applying Eq. (3.6) is discussed further in Chapter 5 with quartile information ex-

tracted from measurements. Though calculation of θL and θH can be different across features, to simplify

parameter settings, a similar computation is illustrated with real data in this work.

3.2.3 Correlation Based Spike Sorting Scheme

In the third scenario of applied machine learning for automated classification in biomedical data, an

unknown-class sorting application is presented. For example, motor unit (MU) activity is analysed using

intramuscular EMG data. MU action potential (MUAP or so-called spike) waveforms can be classified

into MU groups they belong to based on MUAP morphology (Spike sorting). The number of MU is not
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known; i.e., the number of classes in the classification task is not given.

Inspired by a preliminary work of this thesis [74], the correlation between spikes can be used as the

similarity measure for such clustering applications [8]. In this work, after a step of feature extraction

from MUAPs (details as in Sec. 6.3), each spike is presented by a feature vector. Let X and Y be two

feature vectors of MUAPX and MUAPY , respectively, and rX ,Y be the correlation between X and Y .

Equation 3.7 depicts the calculation of Pearson’s correlation by definition for a range of [−1,1]. A high

rX ,Y indicates high similarity between X and Y , the aforementioned thresholding method can also be

applied for this application. Given threshold parameter Θco, a spike Y belongs to the same class with X

if the correlation rX ,Y > Θco.

rX ,Y =
C {X ,Y}

σX σY
(3.7)

where rX ,Y is the correlation coefficient between MUAP X and MUAP Y . C {X ,Y} is the covariance of

two feature vectors X and Y . σX and σY are the variances of X and Y , respectively.

Let X be a set of spikes and ci be a class assignment variable of a spike si (s ∈ S). Initially, there

is only one single class, c1, that contains the very first spike waveform collected (i = 1). Then the

class assignment c j of a spike s j is determined by c j = ci if rsi,s j > Θco where Θco is a parameter of

the application, i and j are indices of spikes (initially i = 1). Let R be the remaining set of spikes with

undefined c j after the above process. These assignments are repeated in a loop until R is empty.

3.3 Summary

Methods of automated feature selection used in this thesis are described in the first two sections. Then

the proposed classification techniquesfor applications are described in the next three sections. The main

goal of this task is grouping data into distinct subsets. In each section, specific anomaly detection and

spike sorting algorithms are introduced.

1. Three saliency scores chosen are mutual information (MI), separability calculated using Euclidean

distances (DIS), and the variance ratio of clusters (VarRatio).

2. Top ranking candidates using these criteria are selected as relevant subsets.

3. The selected features are further filtered using robustness voting criterion across parameter settings

(e.g., window sizes).

4. Finally, performance metrics are used to select the final proposed feature set for classification

applications.

5. For data point and collective sample detection, anomaly scores at time instances represent if the

feature values extracted from windows exceed a threshold.

6. For unsupervised spike sorting that has no pre-defined class information, high correlation coeffi-

cients indicate high similarity between spikes. If the similar degree exceeds a given threshold, the

spikes are considered to belong to the same class.
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The next chapters will discuss in detail for each scenario compared with domain-knowledge feature

extraction.



Chapter 4

Point Anomaly Detection Application

This chapter describes details of settings and experiment reports for a point anomaly detection applica-

tion. First, a dataset of freezing of gait (FoG) in patients with advanced Parkinson’s disease is explained.

Then, specific classification settings for FoG detection are provided. Final sections are results of feature

ranking and performance comparisons with existing methods.

4.1 Background on Gait Freezing Detection in Parkinson’s Disease

Gait is one of the most affected motor characteristics of Parkinson’s disease (PD). Freezing of gait (FoG)

that is defined as a motor block of movement, especially before gait initiation, during turns or when

meeting obstacles [75] is one of the most common symptoms (e.g., forty-seven percent of the patients

reported experiencing freezing regularly [76]). Moreover, there is a strong relationship between FoG

and falls in people with PD [75, 77, 78].

Current clinical FoG assessment methods are self-reported diaries from patients (e.g. the Unified

Parkinson’s Disease Rating Scale (UPDRS) [79], Freezing of Gait Questionnaire [80]) and manual video

analysis of walking tasks [81, 82]. These methods are subjective. UPDRS has poor agreement with

expert labels (the kappa statistic only ranged from 0.49 to 0.78) [83]. The reliability of existing manual

video assessment is not robust (within or across multiple participant recruitment sites); the intra-rater

reliability is remarkably low [33]. An additional difficulty lies in provoking FoG during routine clinical

examinations [84].

Objective FoG detection is very much desirable, especially out-of-lab deployment with wearable

devices [68, 73]. Compared with kinematic and electrophysiological data (e.g. electromyographic and

electroencephalogram), acceleration data have been widely adopted thanks to the small size of accelerom-

eters, making them suitable for wearable systems. An early effort was reported [67] with two accelerom-

eters at both ankles. Han et al. [67] found that freezing gait has high frequency components (6→ 8 Hz)

compared with normal gait (2 Hz). Wavelet analysis [85] has been used to classify normal and freezing

gait (including the ratios of each level’s power to discriminate the freezing and resting states) [67]. A

freezing index (FI), defined as the power in the freeze band (3→ 8 Hz) divided by the power in the loco-

motor band (0.5→ 3 Hz) [68], has been used to build FoG detectors [68, 69, 70, 71, 34, 72, 73]. From

23
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a machine learning perspective, two main classification approaches are: simple thresholding techniques

[68, 69, 34, 72, 73] and supervised/semi-supervised learning classifiers [70, 71]. However, these reports

were based on separate channels.

To extract features, two types of inputs can be used: single input (e.g., single channels from single

sensors (SCSS), the sum of squares of all three channels of single sensors (MCSS)) and multiple inputs

(i.e., multiple channels of multiple sensors, MCMS). While SCSS and MCSS have been well studied,

MCMS is considered for the first time in this work. Note that the work [34] examined one case of using

seven sensors (only single axis from each sensor was used) that was the majority votes of seven outputs

which we categorize into the SCSS group. MCMS to is used to refer to a case where feature values are

computed from a matrix of inputs.

Recently, apart from FI, several features from accelerometer data (e.g., average, standard deviation,

variance, median, entropy, energy, and power) have been proposed for FoG detectors [67, 68, 69, 70, 71,

86, 34, 73, 72]. Advanced statistical techniques to assess gait of human in general (e.g., postural control)

can be found in a comprehensive feature investigation [87], however the work was concerned with 3D

motion analysis for trajectory data using a single accelerometer at the lumbar. The authors concluded that

no measure in their study was able to discriminate the gait patterns of individuals within clinical groups

of PD and peripheral neuropathy. Furthermore, freezing of gait data was not collected in that study.

On the other hand, we explore the new combinations of inputs. We investigate three new computation

methods: the spectral coherence [88], multi-channel FI (FIMC), and Koopman spectral analysis [89]

(FIK). FIMC and FIK , are applicable only to MCMS inputs.

With regard to feature selection algorithms, several other features were compared with FI [86] includ-

ing statistical and zero crossing rate (SCSS group), sum of the Euclidean norm of magnitude, eigenvalues

of the covariance matrix, the mean energy, and principal component analysis over the three axes of the

sensor (MCSS group). Nevertheless, the report [86] was solely based on mutual information (MI) that

measures the correlation of features with labels (Shannon’s information theory) [65]. This selection could

not guarantee the clusterability [54] of the selected features. A classifier will have better performance

with more discriminative features. Thus, in our work, we explore several extra new features that are

extracted from new analysing function or from multiple channels/sensors concurrently and create an ex-

ploratory feature pool. Besides MI, we rank the pool using two additional saliency criteria: the variance

ratio of clusters [54] and the separability calculated by Euclidean distances from an instance to a near-hit

and near-miss [53].

Several works have been proposed recently with moderate subject-independent results. For example,

despite using the same channel (the vertical axis of the ankle sensor), a global threshold FI of 2.3 with

6s windowing was suggested [68], then later on another global FI of 3 with 7s windowing was reported

[34]. By examining the same three locations of sensors as before [34], Zach et al. [72] made a different

choice for the global FI, namely 1.4 (2s windows and the dorsoventral direction of the lumbar sensor). In

the mean time, the model learning based classifiers have been only optimized for subject-dependent or

group-dependent settings [70, 71].

A primary reason hindering subject-independent performance lies in the generalization of parame-

ters. One example could be a strong context dependence of parameters in conjunction with large subject-

variability [34]. Therefore, we hypothesize that a detector based on anomaly scores (called ASD) can
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improve significantly the subject-independent performance.

4.2 FoG Detector

A data point, i.e., a time instance, is a point anomaly if its behaviours differs from other data points. For

example, in freezing of gait (FoG) detection applications for patients with Parkinson’s disease, the time

instance a patient suffers from gait freezing is of interest and is used to compute how long a freezing

event lasts for. Therefore, FoG instances can be considered point anomalies against normal behaviour

of the patient (i.e., non-FoG). In this application, features of an instance are often extracted in a sliding

window manner. Using anomaly detection techniques, FoG events can be detected by anomaly scores

[4].

ASD employs an adaptive rather than fixed threshold. Inspired by observations of an increase in FI

during a FoG event (versus a locomotor activity) [67, 68], we investigate if this is also the case with other

features. When the current feature value of a data window is lower than the on-the-fly threshold, we

consider the window a potential non-FoG epoch. During detection, the threshold at a time is the average

of all previous values from potential non-FoG epochs (initially is the first data window). Thus, ASD only

engages in learning from recent activity periods of the corresponding subject rather than learning globally

from several seen subjects. The initial delay of learning is one window size (e.g., 2s). Furthermore, ASD

can avoid any effect of diurnal variation. After a given typical medium clinical trial duration (e.g., about

thirty minutes in our datasets), we reset the on-the-fly threshold of ASD, i.e., it may not be averaged

across activity contexts. If the reset happens at a anomaly instance, the low pass filter effect of the ASD

(Sec. 3) eventually converges to a normal value. In other words, ASD is inherently independent of subject

variability and diurnal variation.

This thesis demonstrates an example of ASD using A(n) (Section 3.2.1). Initially, the first data

window is assumed to be normal behaviour. If this assumption is wrong, the averaging effect of Eq. (3.5)

is expected to low pass filter FoG events and eventually converges to a normal value. The results of a

setting with α = 1 (i.e no scaling deviation are reported in this work.

4.3 Data Set

We first developed our algorithm with a dataset from the Daphnet project [69]. Then we deployed out-

of-sample tests with a different dataset collected independently as one part of a larger project for FoG

studies [90]. FoG annotations/labels were assessed on the Movement Disorder Society Unified Parkin-

sons Disease Rating Scale Section III (MDS-UPDRS-III) [91] and Hoehn and Yahr stage score [92].

4.3.1 Development Set

Seven male and three female advanced PD patients who could walk unassisted in the OFF period were

recruited at Tel Aviv Sourasky Medical Center (TASMC) in Israel as a part of the EU FP6 Daphnet project

(a collaboration with ETH Zurich, Switzerland) [69]. These ten participants (66.5±4.8 years old) have

been diagnosed with PD for 13.7± 9.67 years (Hoehn and Yahr score [92] (H&Y) is 2.6± 0.65). The
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Figure 4.1: Three tri-axial accelerom-
eters were attached at the shank, thigh,
and lower back.

Figure 4.2: Histogram of FoG episode
durations (second) according to the
annotations.

dataset was recorded in the lab during the OFF stage of the medication cycle of the participants, except for

two participants who reported a frequent FoG experience during the ON stage. As illustrated in Fig. 4.1,

three tri-axial (x - anterior/posterior, y - medial/lateral, z - vertical) accelerometers were attached at the

shank (above the ankle), thigh (above the knee), and lower back (trunk, above the hip) using elasticized

straps. Data was recorded at 64 Hz and transmitted via a Bluetooth link. Figure 4.3 illustrates three

data channels for one sample recording from a participant.

Figure 4.3: Three data channels for one sample recording from a participant.

Three walking tasks (10−15 minutes each) were conducted: walking a straight line, with numerous

turns, and a daily living activity (e.g., fetching coffee, opening doors); more details as in [69]. Three

tri-axial accelerometers were attached at the shank, thigh, and lower back using elasticized straps. An-

notation and simultaneous video taping were used by physiotherapists to determine the start/end times of

FoG episodes. A FoG event label started when the gait pattern (i.e., alternating left–right stepping) was

arrested and ended when the pattern was resumed [69]. The study was approved by the local Human Sub-

jects Review Committee, and was performed in accordance with the ethical standards of the Declaration

of Helsinki [69].
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This dataset is recommended to benchmark automatic methods for gait freezing detection from wear-

able acceleration sensors. A total of five hundred minutes of data were collected. Eight participants had

FoG while two did not. The walking distance and number of turns depended on each participant’s ex-

ecution. A total of 237 freezing events (0→ 66 per subject, 23.7± 20.7) were recognized using video

analysis by physiotherapists (Fig. 4.2). This is used as the ground truth in our accuracy evaluations. For

algorithm development (i.e., ranking features and tuning parameters), this work uses a random sample of

70% (five) participants who had FoG events (66± 5.9 years old, with PD for 16.2± 10.15 years, H&Y

score: 2.3±0.44). For out-of-sample tests, this work uses the remaining subjects (66.8±4.1 years old,

with PD for 11.2± 9.6 years, H&Y score: 2.9± 0.74). Specifically, the test set consists of 30% (three)

of participants who had FoG and the others with no FoG.

4.3.2 Test Set

We employed an independent data set for out-of-sample tests from a larger FoG study project [90]. This

set included 24 patients (mean ±SD age: 69 ±8.41 with advanced PD (mean ±SD Hoehn and Yahr:

2.66 ±0.53; UPDRS III: 40.24 ±11.06) at Parkinsons Disease Research Clinic (the Brain and Mind

Research Institute, University of Sydney, NSW Australia). These participants had severe self-reported

freezing behavior and satisfied UKPDS Brain Bank criteria [93]. The subjects were deemed unlikely to

have dementia or major depression according to DSM-IV criteria (by consensus rating of a neurologist

and a neuropsychologist) and had a mean ±SD Mini-Mental State Examination (MMSE) [94] score of

28.57 ±1.61. The study was approved by the Human Research and Ethics Committee at the University

of Sydney and written consents from participants obtained.

Participants were recorded in the practically-defined off state following overnight withdrawal of

dopaminergic therapy. Six patients also had Deep Brain Stimulation (five Subthalamic Nuclei and one

Pedunculopontine Nuclei), which were turned off for one hour prior to assessment. None of the patients

described any increase in freezing behavior following the administration of their usual dopaminergic

therapy.

Walking tasks were described in detail [90] that were designed to best provoke FoG during data

collection. Participants started from a sitting position, walked along a corridor about five meters meeting

a marked square on the floor (size of 0.6 m) then made a turn (180o or 540o to the left or right of the

subject) as shown in Fig. 4.4. Each task was introduced to a participant at the beginning of the trial, if

the subject had failed to meet the procedure, the measurement was abandoned. Each trial was started by

a signal from the investigator and was completed on return to the beginning position.

Data from accelerometers were acquired by seven tri-axial sensors attached to each subject at the

back, foot, thigh and/or knee (further details as in the previous work [34]). These sensors were inertial

measurement units (IMUs - Xsens MTx, Enschede, Netherlands) that were 38× 53× 21 mm and 30 g.

Data was transmitted via a wireless link to a computer (sampling frequency of 50 Hz). Clocks of com-

puter for data acquisition and of the video camera were used to synchronize the timing between clinical

annotations and acceleration measurement.

Manual assessment of FoG was made by clinicians (neurologist/neuropsychologist experienced in

FoG) using video taped during each trial. These annotations were converted to binary labels (“0” for
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Figure 4.4: Walking tasks description for FoG detection. Tasks started from a sitting position,
walked along a corridor about five meters meeting a marked square on the floor (size of 0.6 m)
then made a turn (180o or 540o to the left or right of the subject) [90].

non-FoG or “1” for FoG each time instance). Each trial was assessed by two clinicians. The official

label was determined hlto be FoG if at least one clinician marked as such. Agreement of these two raters

was previously reportedd with high intraclass correlation coefficient (0.82 for number of FoG epochs and

0.99 for percent time frozen) [90, 34]).

For a better comparison with the development stage, we selected data from all three tri-axial channels

at three sensor locations of back, left thigh, and left shank. There were total of 71 trials across 15 subjects

with six different walking procedures.

4.4 Feature Extraction

4.4.1 Existing Features

Bachlin et al. [69] had reported a relationship between FoG status and the power spectral density distri-

bution from 0→ 128 Hz for walking, FoG, and standing. According to the published distribution [69],

0→ 30 Hz is the main frequency range for human movement. Walking and FoG status have about 96%

of the total energy while the PSD of standing is dominated by sensor noise. They also claimed that the

total energy content of standing is substantially lower than for FoG or walking. Hence, this report applied

these special features of LocoBand of [0.5→ 3 Hz] and FreezeBand of [3→ 8 Hz] to help detect a FoG

event with power and freeze index values P (Eq. (4.1)) and FI (Eq. (4.2)) in this work.

P = PH +PL (4.1)
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FI =
PH

PL
(4.2)

PH =
∑

H2
i=H1+1 PXX (i)+∑

H2−1
i=H1

PXX (i)

2 f s
(4.3)

PL =
∑

H1
i=L+1 PXX (i)+∑

H1−1
i=L PXX (i)

2 f s
(4.4)

where PXX is power spectrum of acceleration data; NFFT is the window size of FFT transform; f s is

sampling frequency, H1 =
3NFFT

f s , H2 =
8NFFT

f s , L = 0.5NFFT
fs

.

4.4.2 New Features

We study four new features. The first two use single input data channels: the maximum and number of

peaks in the spectral coherence [88] (called CXY N pks and CXY max). The others use multiple inputs: FIMC

and FIK . Let x and y be two consecutive data windows. The spectral coherence CXY between x and y

using the Welch method [88] is CXY (ω) = PXY (ω)√
PXX (ω).PYY (ω)

where ω is frequency, PXX (ω) is the power

spectrum of signal x, PYY (ω) is the power spectrum of signal y, and PXY (ω) is the cross-power spectrum

for signals x and y. When PXX (ω) = 0 or PYY (ω) = 0, then PXY (ω) = 0 and CXY (ω) is assumed as zero.

The power and cross spectra are: PYY (ω) = Fy(ω).Fy(ω); and PXY (ω) = Fx(ω).Fy(ω).

Let a matrix X of size N×M represent a N-channel recording session with M regularly spaced time

samples. Similar to the single input FI, FIMC is the ratio of powers PH to PL (i.e., for the freeze and

locomotor bands) that are summations of single powers over N channels. Specifically:

PH =
1

2 fs

N

∑
n=1

[
H2

∑
i=H1+1

[PXXn(i)]+
H2−1

∑
i=H1

[PXXn(i)]] (4.5)

PL =
1

2 fs

N

∑
n=1

[
H1

∑
i=L+1

[PXXn(i)]+
H1−1

∑
i=L

[PXXn(i)]] (4.6)

FIMC =
PH

PL
(4.7)

where N is number of channels, n is the channel identification, , fs is sampling frequency, H1 =
3NFFT

fs
,

H2 =
8NFFT

fs
, L = 0.5NFFT

fs
.

We also extract another type of freeze index from X, called FIK , that results from a spectral analysis

using the Koopman operator [89]. This computation was introduced to study the spectrum of Hamilto-

nian systems by using linear transformations on Hilbert space. Dynamic Mode Decomposition [95] is a

technique to estimate a linear model with Koopman eigenfunctions and eigenvalues. Inspired by a fea-

ture extraction application [96], Koopman eigenvalues and eigenfunctions are considered as frequencies

(2πλ ) and the power (K(2πλ )); details of equations and algorithms can be found [96]. Hence, FIK is

defined as follows,

FIK =
∑

H2
λ=H1+1 K(2πλ )

∑
H1
λ=L+1 K(2πλ )

(4.8)
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where H1 =
3NFFT

fs
, H2 =

8NFFT
fs

, L = 0.5NFFT
fs

, fs is sampling frequency.

4.4.3 Anomaly Scores

Basically, the anomaly score of a feature value at time n, A(n), determines if the feature value extracted

from a window at time n is higher than a threshold (i.e., is an anomaly). In this case study report, A(n)

is calculated using Eq. (3.5) (Sec. 3.2.1) with the scale factor α = 1 (i.e., a simple case of no scaling

deviation).

4.4.4 Exploratory Pool

We construct a feature pool that consists of 244 features (Table 4.1). The first half of the pool are

122 candidates, extracted using seven previously published features and our four aforementioned new

features. Existing extraction methods include average, standard deviation, variance, median, entropy,

energy, power and FI as found [67, 68, 69, 70, 71, 86, 34, 73, 72]. New methods consist of the maximum

and number of peaks of CXY in the spectral coherence [88], multi-channel FI ( FIMC), and the Koopman

spectral analysis ( FIK) [89]. These eleven extraction functions are applied to single and multiple inputs.

Specifically, FIMC and FIK are applied to MCMS while the other functions are to SCSSs and the sum

square of all three channels of single sensors. The second half of the pool consists of 122 anomaly score

vectors (Sec. 4.4.3) of the above 122 features.

4.4.5 Feature Selection

We propose a voting process to select the best feature from the large exploratory pool (as introduced in

Sec. 2.3). This process uses three levels of selection: saliency, robustness, and accuracy; called Round1,

Round2, Round3 respectively (Fig. 4.5). After each level, selected candidates become more favourable.

Specifically, Round1 suggests the most salient and discriminative subset. Then, Round2 examines if the

candidates are robust across window sizes. Finally, Round3 tests the detection performance of these

features using our ASD.

In Round1, feature candidates are ranked according to three saliency criteria, i.e., mutual information

(MI), separability calculated using Euclidean distances (DIS), and the variance ratio of clusters (Var-

Ratio). This step is implemented across 7 window sizes (2→ 8 s in steps of 1 s), creating 21 lists of

ranking scores. The range for window sizes is based on the minimum and maximum values currently

suggested in the literature (e.g., 2 s [72] and 7.5 s [34]). After finding a subgroup of high saliency score,

the robustness is examined in Round2. Secondly, salient candidates are identified that shared in more

than one list across window sizes or criteria (i.e., robustness). Finally, accuracy metrics are used to find

the subset for our ASD.
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Figure 4.5: Feature selection process. 244 features as described in Table 4.1. 7 window sizes
are 2→ 8 s in steps of 1 s. Three saliency criteria are DIS, MI, Var-Ratio scores. Common
candidates are entries that are shared by more than one list of Round1.

4.5 Performance Metrics

In the literature, automatic techniques have been evaluated using different measures such as confusion

matrices and/or intra-class correlations (ICCs) [32]. For instance, authors of [69, 71, 86] used timing-

instance-based confusion matrices (i.e., counting FoG time frames and often involving a tolerance of

milliseconds or seconds); and authors of [68, 34, 72, 73] used event-based confusion matrices (i.e.,

counting continuous FoG epochs) and ICCs on the number of FoG events or percentage of freezing time

over a trial. With regard to real-time applications using wearable FoG detectors, the timing-based method

is of most interest, whereas event-based is important in clinical FoG assessments. We utilize both types

during feature selection as extra criteria (apart from saliency scores).

In our work, ICCs are used as supplemental criteria during Round3 to select features rather than in

performance comparisons with other works due to several limitations of ICC usages; e.g., intra-rater re-

liability reported for FoG number was only 0.44 and at least two observers are recommended to analyse

task videos [33]. In this work, information regarding the reliability for manual ratings were not available

(nor were the number of raters). Thirdly, walking tasks were designed to have a single recording session

per subject (about 30 minutes) rather than several short trial recordings (around one minute each). Hence,

because in our data set the number of individual recordings is relatively small, thus, data are grouped into

one-minute segments. We assume that the segmentation is close to the multi-trials settings. Therefore,

our estimation of ICC is a non-decreasing relationship with the reported ICC in the literature. Given

two vectors of an automatic detection result and manual labels, the estimated intraclass correlation is

calculated as [35]; specifically the ICC(A-1) designation is used (two-way random effects) for the degree

of absolute agreement among measurements.

With respect to the timing-based metrics, in confusion matrices, ground truth is referred to the man-

ual video analysis, and positives for FoG windows. True Positives (TP) are windows which were marked

as FoG by both a test algorithm and the label. False Positives (FP) are windows labelled as FoG but did
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not agree with the ground truth. Windows that the test method failed to label as FoG but were anno-

tated as such, are defined as False Negatives (FN). When the test method and the human agree a window

was non-FoG, it is counted as a True Negative (TN). Please note that the reference labels used in this

work were made by human thus are subjective. Likewise the literature works [69, 71], we investigate a

tolerance, tol. Let t be the time instance an automated method decides it is FoG. If within the range of

[t− tol, t + tol], there is at least one instance where the reference (i.e., manual method) says it is FoG,

we count this agreement is a true positive. Otherwise it is a false positive. Similarly for negative cases.

The tolereance will be determined during the experiments using the performance curves (ROC).

Sensitivity and specificity are T P
T P+FN and T N

T N+FP , respectively. F1-score, which is the harmonic

mean of precision and sensitivity, with best value at 1 and worst at 0 [31], is calculated as 2T P
(2T P+FP+FN) .

4.6 Results

4.6.1 Selection by Saliency

Three types of ranking scores (i.e., MI, DIS, and Var-Ratio) across window sizes for each feature candi-

date were measured (Fig. 4.6). An example feature ranking with window size of 2s using three saliency

metrics are illustrated in Fig. 4.6 (a,b,c) (sorted from high to low scores). The order of ranking is from 1

to 244 (high to low); a higher saliency score indicates the higher ranking order. The other window sizes

shared a similar trend.

As can be seen, scores outside the top ten rank (outside of the dotted vertical line) dropped quickly.

Therefore, these ten candidates were selected for further steps. Specifically, Round1 contains 210 entries

of 21 short lists. We noticed that there were only 64 distinct features in Round1. For example, Fig. 4.6d

to k illustrate that the top-ten lists share many features. In these sub-plots, new features are indicated with

circle markers and labelled horizontal axes with feature identifications (IDs). Description of IDs can be

found in Table 4.1. Our shortlists include FI0y (i.e., freezing index from ankle at vertical axis [68, 69, 71])

and previously proposed features (e.g., FI2y [34], FI2x [72], energy, sum of power Psum [69], and their

standard deviation, mean, variance [86]). Among the 64 distinct features, our new candidates, CXY N pks,

CXY max, FIK , and FIMC, were listed in more top-ranking lists than the existing ones.

4.6.2 Selection By Robustness

In the second round, members of Round1 that are selected as the top ten in more than one list (across

window sizes and/or criteria) are considered robust features. There were 33 entries in Round2 (i.e., about

half of Round1). Interestingly, FIMC is one of the most robust candidates in terms of being selective

across window sizes (Table 4.2). Other new or popular existing candidates are also added in the table for

comparison purposes.

4.6.3 Selection By Detection Performance

In the third round, a simple form of ASD (Section 3.2.1) is used to rank features in Round2 by perfor-

mance criteria. We also examined our other new or popular existing features (Table 4.2) for comparison
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Figure 4.6: Example of feature ranking and the shortlists. (a,b,c) are ranking scores for the
feature pool; (a). DIS, (b). MI, (c). Var-Ratio scores. Vertical axes: saliency scores. Horizontal
axes: ranking order. The top-ten lists are in the dotted boxes. The others, (d-k), illustrate the
sharing among shortlists across window sizes and criteria. Features with circle markers are
new while others are have been currently used in literature. The top ten identifications (IDs) of
features are detailed in Table 4.1.
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Table 4.2: Thirty-three top salient and robust features (Round2) and four others of interest. IDs
are identifications of features. ‘Std’: standard deviation. DIS, MI, and Var-Ratio are criteria.

Feature Sensor, Window sizes (second)
ID Name Channel DIS MI Var-Ratio
244 FIMC all all - -
194 Std 2,y - all 2
124 Std 0,x 8 all 3
214 Std 0,xyz 4,8 all 4,6,7,8
134 Std 0,y 8 all 6,8
154 Std 1,x 4,5 all -
174 Std 1,z 3 all -
184 Std 2,x 4, 5, 6 2 all
138 Energy 0,y 3 - all
98 Psum 0xyz - 3→ 7 -
224 Std 1xyz 3→ 8 - -
155 Variance 1x 4→ 7 - -
198 Energy 2y 6 - 2→ 5,7
26 Energy 0z - - 2→ 5,7
102 Std 1xyz - 2→ 5 5,7
164 Std 1y 7 2→ 5,8 -
215 Variance 0xyz - - 4→ 8
188 Energy 2x 4 - 2→ 5
112 Std 2xyz 6 2→ 5 -
175 Variance 1z 7 6,7,8 3,6
158 Energy 1x 7 - 6,7,8
22 Std 0z 7,8 6,7,8 -
116 Energy 2xyz - - 2,3,5
135 Variance 0y - - 6,8
93 Variance 0xyz - 6,7,8 -
185 Variance 2x 3,6 - -
139 FI [68] 0y 4,5 - -
173 Mean 1z 4,5 - -
179 FI 1z 2,3 - -
225 Variance 1xyz 3,7 - -
143 Mean 0z 5,8 - -
20 Cxymax 0y - - 4,5
60 Cxymax 1z - - 4,5
195 Variance 2y 2,6 - 2

Other new or existing features for comparison purposes
141 CxyNpks 0y 2 - -
243 FIK all 8 - -
199 FI [34] 2y 6 - -
189 FI [72] 2x - - -
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purposes. ICCs results for freezing time percentage and number of FoG showed only seven candidates

that had at least one report of ICC > 0.2 (suggestion from [33]), as shown in Fig. 4.7. These candidates

are FIMC, FI2y, FI2x, FI1z, FI0y, Mean 0z, and Mean 1z (Table 4.1).

During training period, the receiver operating characteristic (ROC) is calculated for each window

size of each feature extraction with a timing tolerance range from 0→ 1 s in steps of 0.1 s. We observed

that configurations FIMC (3 s), FI0y (2 s or 7 s), FI1z (6 s), FI2y (3 s or 8 s), called Round3, had excellent

results (Fig. 4.8). Due to the difficulty of visualizing ROCs across many variables, F1-scores were

displayed in Fig. 4.8 instead.

4.6.4 Tests and comparisons with the same cohort set

We then applied unseen test sets (five subjects who have been with PD for 11.2±9.6 years; H&Y score:

2.9± 0.74 ) to validate ASD. Three subjects had FoG during data collection while the other two had

no FoG. We noticed that, during the validation, FIMC (3 s) and FI2y (3 s) had high accuracies with

lowest deviation between training and out-of-sample tests (Table 4.3). FI0y, a popular feature in existing

detectors (7 s windows), achieved a sensitivity of 79% (specificity of 79.5%) at a tolerance of 0.3 s. On

the other hand, FI0y scores the highest F1-score of 84% with 2s window size (tolerance of 0.9 s). FI2y

with 8 s windows and 0.9 s tolerance can achieve sensitivity of 87.5% (specificity of 84.5%).

Hence, we propose an optimization configuration for ASD as follows: window size as small as

3 s, tolerance for performance measurements of 0.4 s, freezing index is used for feature extraction.

There was a slight preference of sensor locations between ankle and hip in terms of further performance

improvement.

Figure 4.7: ICCs for feature selection in FoG detection. Markers are for different features.
Estimated ICC for the freezing time percentage (Left) and number of FoG events (Right).
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Figure 4.8: Effects of window sizes and tolerances on F1-scores of ASD. Tolerance from 0→
1 s. Three dimensional view for windows from 2→ 8 s. Markers are for different features.



38 CHAPTER 4. POINT ANOMALY DETECTION APPLICATION

Table 4.3: Development performance of ASD using features in Round3. ‘Win’: window size.
‘Tol’: tolerance. ‘SD’: standard deviation of development and out-of-sample test. Performance
in %. Sens: Sensitivity. Spec: Specificity. F1: F1-score.

Feature Name Parameter Development (%) Out-of-sample (%) Average ±SD (%)
ID ChannelWin. Tol. Sens Spec Sens Spec F1
244 FIMC 3s 0.2s 85 74.0 77.0 80.0 81.0

±6
77.0±4 74.5±

6
139 FI

0y
2s 0.9s 88.0 81.0 86.0 63.0 87.0

±1
72.0±13 84.0±

10
7s 0.3s 71.0 93.0 87.0 66.0 79.0

±11
79.5±19 82.5±

11
179 FI 1z 6s 0.1s 80.3 80.0 82.0 58.0 81.0

±1
69.0±16 78.0±

6
199 FI2y 3s 0.4s 75.0 80.0 83.0 92.0 79.0

±6
86.0±8 76.5±

12
8s 0.9s 76.0 74.0 99.0 95.0 87.5

±16
84.5±15 82.0±

24

4.6.5 External Validation Tests

Finally, using independent test sets that were from a different cohort to the one we used for training (Sec.

4.3.2), we validated our proposed ASD-based method (i.e., online ASD detector, freezing index feature,

window size of 3 s). Though the performance improvement between ankle and hip sensor locations was

not signifincant during the development stage, for a better comparison with existing works that used both

types of inputs: single channel and multiple channels, such cases were still included in our report. Table

4.4 shows its high accuracy performance comparing with earlier works across several configurations of

inputs.

4.7 Discussion

During the development stage, we observed that beside the existing FI extracted from ankle sensor at

vertical axis, our new feature with multiple channels, FIMC, is one of the top features in saliency, cluster-

ability, and robustness. Only seven out of 244 candidates met requirements of our three-round selection

procedure. To detect FoG, we implemented an anomaly score based detector, ASD. With ASD, our

features outperformed existing works with a small window and/or low tolerance. Specifically, FI2y,

the freezing index from vertical data at a hip sensor, was found to be the best choice for performance;

achieving sensitivity (specificity) of 87.5% (84.5%) with 8 s windows and 0.9 s tolerance. FIMC, is also

a promising candidate. For example, FIMC has high ICC and is the most robust candidate across window

sizes during feature selection by saliency. FIMC achieved a sensitivity of 81% (specificity of 77%) at the

smallest tolerance of 0.2 s (3 s windows).

During the test stage, we reported out-of-sample test outcomes in as many similar configurations

as suggested from compared works. Our ASD that performed better than current methods can use only

one type of feature extraction (freezing index) from a single channel. It is flexible and convenient to
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Table 4.4: Out-of-sample detection performance of ASD (versus existing methods [69] a [71] b

[34, 72] c d ) across configurations e and datasets f . Performance in %.

Settings Performance (%)
Method Input Win Tol Sensitivity Specificity F1
CNR [69] FI0y, Psum0y 4s 2s 73.1a 81.6a -
Learning
[71]

Mean0y, Std0y,
FI0y, Energy0y

4s 1s 66.25 b 95.38 b -

Global [34] FI012yd, FI =
3

7.5s - 84.3 c 78.4 c -

Global [72] FI2x,
FI = 1.47

2s - 75.0 c 76.0 c -

Online ASDs (proposed), external validation f

ASD multi-
inputs

FIMC 3s 0.4s 96 ±17 79 ±41 99 ±7

ASD ankle y-
axis

FI0y 3s 0.4s 94 ±23 84 ±36 99 ±4

ASD hip y-
axis

FI2y 3s 0.4s 89 ±32 82 ±39 96
±18

ASD hip x-
axis

FI2x 3s 0.4s 89 ±32 94 ±23 97
±17

a as reported [69] using CNR classifier and LOOCV.
b as reported [71] using Random Forest classifier and LOOCV.
c for event-based calculation while others were for timing-based.
d the majority vote of seven sensors [34].
e Input: features, sensors, and axes. ‘Tol’: tolerance. ‘Win’: window size.
f 71 trials of 15 subjects; different cohort to the training set (same to the work [34]) .

choose a sensor location between ankle and hip. Our proposed method significantly outperforms (e.g.,

mean (±SD) of sensitivity, specificity are 94% (±23%) and 84% (±36%) for ASD ankle y-axis) other

automated methods in the literature.

Regarding the system design, to the best of our knowledge, [70, 71] achieved the best published

performance to date for subject-independent settings. Specifically, with different reported configurations,

these two methods used a context recognition network [69] and a Random Forest [71] with leave one

out cross validation techniques (LOOCV). Other works used various global FI values with different

channel selection. Note that, sensitivities and specificities [68, 34, 72] were for event-based calculation

that may differ from the others in Table 4.4. Our detector is an anomaly detection technique that has low

computational cost and is feasible for real-time operation in a subject-independent manner. As presented,

our performance is significantly higher than the one of compared automatic detectors while using a much

smaller window and/or lower tolerance.

4.8 Summary

In this chapter, one successful application of our novel supervised voting technique for feature engineer-

ing with application to point anomaly detection in FoG monitoring is demonstrated. Previous methods

have utilised features yielding high variability across time and subjects. The new features found using
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our technique are not only more sensitive, they also have lower temporal and subject-dependent variation.

These features were exploited to achieve an improve anomaly detector with low computational cost.



Chapter 5

Collective Anomaly Detection

In this chapter, data sets and feature learning result observations in respiratory artefact removal for lung

function tests, specifically the forced oscillation technique (FOT) are presented. The first section intro-

duces the FOT method and respiratory artefacts. The next two sections describe our FOT data sets and

performance metrics used to evaluate the proposed scheme in Section 5. Section 6 discusses feature se-

lection for FOT data, and two different models for artefact detectors are presented in Sections 7 and 8.

The last four sections reports results/discussion of feature ranking and performance comparison between

our proposed detectors and existing methods.

5.1 Background on Respiratory Artefact Removal in FOT Data

The forced oscillation technique (FOT) [97] is a lung function test that can provide useful information

from short duration recordings, and only requires passive cooperation from the subject [98]. FOT assesses

breathing mechanics by superimposing small external pressure signals to the spontaneous breathing of the

subject. A total respiratory mechanical impedance (Zrs), which includes airway resistance together with

elastic and inertive behavior of the lungs and the chest wall, is then measured at one oscillation frequency

(mono-frequency oscillations) or several (multi-frequency). Zrs is described as a complex number with

real and imaginary components, called the resistance (Rrs) and reactance (Xrs) respectively. A primary

reason hindering its widespread adoption lies in difficulties associated with removing artefacts. This

results in lower reproducibility than the most common pulmonary function test, or spirometry. Manual

removal by operators, called the human-based method, is currently considered the gold standard for respi-

ratory artefact removal practice. This, however, is typically done in an ad-hoc manner which is laborious,

and subjective.

To detect artefacts, several automated refinements include detecting low (e.g., transducer noise) and

high frequency artefacts (e.g., light coughing, mouth piece leak, swallowing, glottic closure and tongue

occlusion) are necessary. According to the quality control guidelines [99], low frequency noise removal

rejects low magnitude-squared coherence values of pressure and flow [100]. Several transient artefacts

are removed by identifying deviations from the norm, called thresholding approaches.

To exclude respiratory artefacts, two different strategies are point rejection [101, 102, 103] and

41



42 CHAPTER 5. COLLECTIVE ANOMALY DETECTION

complete-breath rejection [104, 100]. For example, a point-based method called 3SD [101], introduced

a statistical filter that rejected any impedance points greater than three standard deviations (SD) from the

mean Rrs or Xrs value. Alternatively, the complete-breath approach rejects entire breaths as defined by

the starting and ending points of breath cycles in which at least one data point is out of the 3SD range

[100], called B-3SD method. The complete-breath rejection has been reported to be more accurate than

the point approach as it can avoid an imbalance between the inspiratory and expiratory contributions to

each breath [100]. Nonetheless, these automated attempts still miss numerous artefacts.

5.2 Data Collection

5.2.1 Subjects and Protocol

We collated data from two different age groups (Paediatrics and Adults, Table 5.1). The paediatric

dataset comprised a random sample of 9 subjects (total 69 FOT runs) for training and 5 subjects (total

31 runs) for out-of-sample tests. These were taken from a much larger ongoing epidemiological study,

which has been described in detail elsewhere (Ultrafine Particles from Traffic Emissions and Children‘s

Health, UPTECH) [105, 106]. The epidemiological study collected FOT data, as part of its respiratory

function assessment, in eight- to eleven-year-old children recruited from 25 different public primary

schools in Queensland, Australia. FOT was performed for at least 30 minutes after supervised medication

administration and with at least 10 minutes rest prior to recording. Zrs was measured at 6 Hz, using an

in-house built FOT device (transducer Sursense DCAL-4, Honeywell Sensing & Control; more de-

tails are available [107]) and modification to comply with recent recommendations [108]. Children

were encouraged to breathe in a regular manner, avoid swallowing and maintain a tight mouthpiece seal.

Children had multiple recordings in a single session as part of the study protocol.

For the adult group, 9 healthy participants and 10 asthmatic patients were recruited from staff and

patients of the Royal North Shore Hospital, St Leonards, Australia and the Woolcock Institute of Medical

Research volunteer database (Glebe, Australia) [109]. Healthy participants were non-smokers with no

known respiratory disease. Asthmatic adults had a physician diagnosis of asthma (clinically stable as

defined by GINA guidelines [110]) and had no reported diagnoses of any other cardiac or pulmonary

disease. The asthmatic and control subjects had three recordings over seven days within a 10-day period

at the Respiratory Investigation Unit at Royal North Shore Hospital [109]. To ensure clinical stability,

asthmatic patients continued to take their usual medications and were reviewed by a specialist physician at

each visit for any changes in their usual symptoms. All recordings were performed at the same schedule

to avoid any diurnal variation effects. Zrs was measured at an oscillation frequency of 6 Hz from a

FOT device of similar general design and specifications as the children dataset [111]. Three separate

consecutive recordings were collected with subjects breathing tidally for 60 seconds at each session (day).

The participants put their nose clip on and placed their hands on cheeks to reduce the upper airway shunt.

Recordings were assessed from visual inspection by a technician if tidal volume and breathing frequency

appeared stable. Artefact labels were made by the operator using recommendations [100] (more details

[109]). All subjects gave written, informed consent and the study was approved by The Human Research

Ethics Committee of Northern Sydney Central Coast Health (protocol no. 0903-050M). For children, the



5.2. DATA COLLECTION 43

study was approved by the Queensland University of Technology Human Research Ethics Committee.

Table 5.1: Descriptions of FOT data sets used in this work.

Dataset Subjects Recordings Breaths Description
Ds1 9 69 1110 Development, children (asthmatics,

Westmead Hospital)
Ds2 9 261 3067 Development, adults (healthy,

Woolcock Institute)
Ds3 5 31 580 Test, children (asthmatics, West-

mead Hospital)
Ds4 10 285 3947 Test, adults (asthmatics, Woolcock

Institute)

Table 5.2: Subject characteristics of development and test sets.

Characteristics Children Adults
N (Subjects) 15 20
Measurements
(Recordings)

70 546

Total Breaths 1690 7014
Mean (±SD) age,
years

10.4 (± 1.1) Healthy = 32.2 (± 5.9); Asthma
= 37.5 (± 11.6)

Other Weight (kg) = 33.56 (± 6.73) Body mass index: Healthy = 23.2
(± 1.5)

Height (cm) = 137.42 (± 6.47) Asthma= 25.2 (± 4.6)

5.2.2 Data Pre-processing

Flow was measured using a screen type pneumotachograph (3100 series, flow range 0-160 L/min). Flow

and pressure signals were digitally sampled at 396 Hz and band-pass filtered with a bandwidth of ±2 Hz

centred around 6 Hz. Breath cycles were defined as described in the preliminary work [105, 109, 1, 3].

Rrs and Xrs were calculated at 0.1s intervals using a standard frequency-domain method. To ensure

balance between the inspiratory and expiratory contributions to each breath [100], incomplete or par-

tial breaths at the beginning/end of the recording were removed. Since the “not accepted” annotations

included non-eligible physiological breaths which are commonly known to be rejected by the standard

FOT quality guidelines [99], we discard these artefacts in pre-processing steps and report separately

in later comparisons. First, we remove breaths that contain negative Rrs which are non-physiological.

Then, we discard breaths that have magnitude-squared coherence values of pressure and flow less than

0.9 [100]. Unusually high amplitude observations were successfully caught by the B-3SD approach [100]

and discarded. Finally, we apply 3IQR (i.e., 3 IQR away from the median) to Rrs, Xrs, Volume, Pressure,

and Flow.
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5.3 Performance Metrics
True Positives (TP) are breaths which were marked as “artefacts” by both a test algorithm and the

annotation. False Positives (FP) are breaths we labeled as artefacts but did not agree with the ground

truth. Breaths that we failed to label as artefacts but were annotated as such, are defined as False

Negatives (FN). When the test method and the human agree that a breath was not an artefact, it is

counted as a True Negative (TN).

Sensitivity and specificity are T P
T P+FN and T N

T N+FP , respectively. F1-score, which is the har-

monic mean of precision and sensitivity, has best value at 1 and worst at 0 [31], is calculated as
2T P

(2T P+FP+FN) . Throughput is the ratio of breath numbers in the output to input, T N+FN
total input . Approval

rate of the filtered data (i.e., the breaths remaining after removal) is the ratio of breaths that are

“accepted” by the human to the total output breaths, T N
T N+FN .

Since Rrs is one of the main outcomes of FOT in clinical and research usage, we consider vari-

ability (i.e., the standard deviation divided by mean) of the average Rrs for each patient to be a critical

metric. Specifically, within-session coefficients of variation (wCV ) and/or between-session (bCV ) of

measurements for average values of Rrs recordings within one day of recording (i.e.,wCV ) or across days

(i.e.,bCV ). To quantify this, we aim for an equivalent average Rrs, and lower or equal SD compared with

the human-based approach. However, if we only consider variability, we may not account for the number

of valid breaths that remain, e.g, we may discard most valid breaths together with invalid ones to achieve

low variability. Therefore, when comparing techniques, we should strive for an equivalent preservation

level and lower variability.

The preservation after removal can be summarised by standard accuracy metrics (e.g., sensitivity,

specificity, and F1-score [31]) and our new metrics: throughput and approval rate. In confusion matrices

for accuracy calculation, we consider groundtruth to be the human labels (or “manual”), and positives to

be artefacts.

5.4 Proposed Artefact Detection Scheme

From a machine learning perspective, each breath is represented by a vector of features. Features are then

classified by a model (detector) constructed from domain-knowledge and/or human annotations (labels).

The aforementioned existing automated methods are unsupervised techniques in which plain feature

extraction is often exploited and threshold values are chosen as a number of standard deviations away

from the mean of a single measurement. We hypothesize that advanced extraction (e.g., two-dimensional,

2D) may provide more relevant features in order to alleviate the above limitation of current existing

automated methods. The relevance of novel features can be confirmed non-heuristically by supervised

techniques (feature selection). Specifically, correlation of feature candidates with artefact characteristics

can be measured by mutual information (Shannon’s information theory [65]). The clusterability of a

candidate [54] indicates the efficiency of using threshold values to detect artefacts. Two typical ways to

assess the clusterability are the variance ratio of clusters [54] and the separability calculated by Euclidean

distances from an instance to a near-hit and near-miss [53].
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Given an exploratory feature pool, by selecting the k highest ranking candidates (e.g., k = 10 often

used in literature of feature selection), we can construct a more accurate anomaly detector as non-salient

features which cause overfitting are discarded. Several challenging factors should be noted. One is the

time-dependency of lung function (e.g., lung elasticity [112]). The others are clinical aspects of FOT

(e.g., Rrs and Xrs are dependent on body size and possibly racial/ethnic differences [98]). Thus, to avoid

dependency, feature ranking scores should be accumulated across recordings. We also noticed that Rrs

within a recording can be non-Gaussian, with a strong kurtosis. Hence, when applying threshold values,

we do not assume a particular distribution. Instead we use quartile percentages (called quartile thresh-

olding). In contrast to earlier works, the deviation threshold is also not assumed, rather it is determined

from the receiver operating characteristic (ROC) and other performance metrics with training datasets.

In this work, we evaluate FOT measurements at single frequency and expect similar observations with

other frequencies.

5.5 Feature Extraction

After data preprocessing, we construct a pool of exploratory features. According to a ranking report of

these candidates, we select the most salient subset of features (Section 3.1) for further detection steps.

The pool consists of 111 candidates (Table 5.3), of which 11 have been previously reported. Our new

features include landmark information and resampling values.

5.5.1 Feature Pool

Landmark features are scalar values calculated from points of a breath cycle. Intuitively, we want to

capture the boundary information of normal cycles to detect anomalies. For example, in Fig. 5.1.a,

A,B,CL,CR,D,E,F,Z are seven landmark points whose distances contain information for artefact detec-

tion (called 7-point extraction). Specifically, points B and Z are at the zero flow value and the higher and

lower Rrs values, respectively. Points A and D are at the maximum and minimum of Flow, respectively.

Points CR, CL and E are at the maximum (right: positive Flow area and left: negative Flow area) and

minimum of Rrs, respectively.

Resampling features are extracted from one dimensional input with a fixed number of points for a

cycle to alleviate varied durations of breaths. We noticed that the minimum length of all breaths in the

training data sets is larger than 30 points. For generalization, we consider 20 points per cycle and assume

this is sufficient to describe the fundamental shape information for a breath curve. Thus, we re-sample

Rrs, Flow, Xrs, Volume at a fixed rate of 20 points/cycle (called 20-point).

Other new candidates in the pool are from different domains. For example, we obtain the changes

of polar coordinates over time for each breath (using the mapping from Cartesian coordinates to their

polar ones). We also explore the wavelet decomposition analysis, DWT, (three level decomposition)

with the Daubechies method [85] of the above 20-point resampling vectors. For the spectral coherence

computation, we use 0.1667-second windows (as our frequency of interest is 6 Hz) and ensemble-average

every three windows with 50% overlap. This and the impedance are then resampled at 10 Hz to effectively

get the same number of coherence points as the number of impedance values. The existing are minima
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and maxima of Rrs, and DWT of pressure (e.g., [104, 101, 102, 100, 103]).

Table 5.3: List of FOT data features examined in this work.

Measurement Domain Function Description New? ID
Pressure Fre-quency Maximum value of first level DWT No 1
Xrs Time Maximum, minimum, range No 2-4
Xrs Time 20-point resampled Yes 8-27
Volume Time Maximum, minimum, range No 5-7
Volume Time 20-point resampled Yes 28-47
Rrs Time Peaks, minimum, Cr, Cl, E No 54, 56, 61
Rrs Time 20-point resampled Yes 65-84
Flow Time Minimum No 62
Flow Time 2D Landmark Cr,Cl, E Yes 55, 57,

63-64
Flow Time 20-point resampled Yes 85-104
Rrs, Flow 2D Landmark Z, B, A Yes 48-53
Rrs, Flow 2D Landmark Z and D Yes 58-60
Rrs, Flow 2D Mean and std of polar coordinators

from 20-point Rrs, Flow
Yes 105-108

Rrs, Flow 2D Fre-
quency

Maximum of full DWT from 20-
point Rrs, Flow

Yes 109, 110

Rrs, Flow Frequency Maximum spectral coherence Rrs
and Flow

Yes 111

5.5.2 Challenging Factors and Other Criteria

Figures 5.3 and 5.4 illustrate the time dependence of samples within and between recordings (and be-

tween different age groups). These variations and artefacts are contained partly in the scaling information

of the samples. This may introduce bias into ranking scores of features which are extracted from ampli-

tude values across recordings. To reduce the bias, we accumulate scores for each feature candidate in a

recording-wise manner.

Apart from saliency ranking, we select a relevant and efficient feature set based on performance

metrics. We investigated ROC, F1-score, throughput, and approval rate. For clinical interest, we have

quantified the reduction in artefactual activity and selected features by the variability of the average Rrs.

5.6 Unsupervised Artefact Detector

5.6.1 Single Filter Approach

In thresholding filters, a breath is marked as an artefact and discarded if one of its features exceeds a

given upper bound or is less than a lower one. Since the normality hypothesis of Rrs in a recording is

rejected with a significance level of 0.05 (the p-values were very close to zero; 0 to 1.27×10−17) by the

Lilliefors test [113] and the KS test [114], we do not assume a specific data distribution. Instead we use

the ROC plots to determine the threshold parameters. We refer to this detector as a quartile thresholding

filter.
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Figure 5.1: (a): All accepted breaths (Rrs against Flow) by specialists from one child (sev-
eral recordings) and 7 points proposed to determine boundary landmarks (dotted curves). (b):
Example features extracted by landmarks for one breath from a child (dotted lines: Euclidean
distances between points).

Figure 5.2: Example of unified 20-point resampling for a breath (Volume, time).



48 CHAPTER 5. COLLECTIVE ANOMALY DETECTION

(a) Variability of Rrs in recordings within one child.

(b) Changes across children in one data set.

(c) Changes across adults in one data set.

Figure 5.3: Examples of challenges in learning contaminated Rrs (after preprocessing) within a
participant (a) and between participants (b), (c).
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Figure 5.4: Examples of challenges in learning contaminated Rrs (after preprocessing) within
and between participants. (a): Different breaths in one raw recording from a child. (b) Changes
across children in one data set (left) and adults (right).
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Let Q1, Q3, and IQR denote the 25th, 75th percentiles and the interquartile range of a variable,

respectively. Let nIQR be a number of IQR intervals away from the Q1 and Q3. The lower bound θL is

defined by nIQR interquartile intervals less than Q1. The upper bound θH is nIQR intervals greater than

Q3, i.e.:

θL = Q1−nIQR× IQR (5.1)

θH = Q3 +nIQR× IQR (5.2)

To simplify parameter settings, we apply the same nIQR to all features and categorize subjects into

two age groups (i.e., Paediatrics and Adults). We split each age group into two data sets: one for training

and the other for test. In this work, the set of (training, test) for children is (Ds1, Ds3) and for adults is

(Ds2, Ds4) (details of data sets are in Table 5.1).

We compare our detector with B-3SD [100] and the wavelet based with a complete-breath rejection

approach [103] (namely Wavelet-breath). These two methods were recently proposed as the best auto-

mated ones in the literature. Note that, the work [103] used a point rejection approach and asked the

participant to intentionally introduce artefacts while Wavelet-breath uses complete-breath rejection, and

was tested with our real-life artefacts. We performed Wavelet-breath with three levels of DWT coeffi-

cients (cd1,cd2,cd3) and the db5 method for pressure, and then used the three recommended thresholds

[103] (i.e., cd12 = 0.004; cd22 = 0.023; cd32 = 0.07).

5.6.2 Multi-Filter Approach

Utilising previous experimental observations [1, 103], we examine an additional case of employing the

maximum of first level wavelet coefficients, cd1, decomposed from pressure. According to observations

in reference [103] which used a data set with a predetermined plan to introduce artefacts, second and

third level coefficients (cd2, cd3) were proposed to detect swallowing and leaks at the mouthpiece.

These artefacts often cause abnormal data points (i.e., out of usual range) in the Rrs-flow curves [100],

therefore the associated features are expected to be able to detect them.

For invisible artefacts (e.g., light coughs ) which could be in the usual range of normal breaths, the

wavelet features of cd1 was found to be an alternative detection technique [103]. Hence, we investigate

the contribution of this feature type as a separate layer of system for comparison purpose.

We used a three layer system for artefact removal. This comprises the pre-processing step, the

wavelet decomposition step, and the interquartile range filter using landmark features IQR-Landmark

(Fig. 5.5). We call this IQR with landmark and wavelet (IQR-LW). Breaths that fail any threshold check-

ing step are marked as artefacts and discarded (complete-breath approach). The remaining breaths after

three filter layers are considered to be clean data (without artefacts).

The first layer (Pre-processing) is a non-physiologically plausible denoise filter that removes breaths

containing data points which are physiologically implausible or corrupted by nonlinear noise using the

FOT quality guidelines [99]. These include breaths containing negative Rrs values [100] or having

magnitude-squared coherence values [88], equations as in Appendix II, CXY , of pressure and flow less
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Figure 5.5: Combined respiratory artefact detection scheme. Rrs is resistance values of input
breaths. CXY is the spectral coherence between pressure and flow values of breaths. Cd12 is
the squared first level wavelet decomposition of pressure values. R,F,X ,V and (ΘL : ΘH) are
resistance, flow, reactance, volume values and their corresponding threshold ranges. Fea and
(θL : θH) are features extracted (from the relationship between Rrs and Flow values) and their
threshold ranges.
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than 0.9 [99]. CXY was calculated over 1/6-second windows, and ensemble-averaged every three win-

dows with 50% overlap. This and the impedance were then resampled every 10 Hz to obtain the same

number of coherence points as the number of impedance values.

After preprocessing, as its benefits shown in the previous works (discussed detail in the application

background section) the squared first level of wavelet coefficient derived from pressure data is compared

with a preset threshold of 0.004 (cmH2O)2. The second layer is expected to detect artefacts not iden-

tifiable by landmark features. In preliminary investigations (results not shown), we determined that the

optimum performance was obtained using only cd1 (i.e., other coefficients can be ignored). The final

step involves the IQR-Landmark filter.

5.7 Supervised Learning Artefact Detector

5.7.1 Machine learning and challenges

Figure 5.6 illustrates basic steps involved in a classification task, especially for supervised learning meth-

ods. The preprocessing module converts raw recorded pressure and flow into volume, Rrs and Xrs and

removes non-eligible data. The feature extraction module transforms these variables into features mostly

using the knowledge-based domain. Following modules are the newly proposed techniques to discrimi-

nate artefacts from normal breath cycles.

Figure 5.6: Feature engineering scheme is a front-middle step of the applied machine learning
process in which feature learning is used to decorrelate samples before using conventional
general-purpose binary classifiers. Dark colour arrows for training stage; Light colour arrows
for testing stage.

Several challenging factors for the classification task are the time-dependency of lung function (e.g.,

lung elasticity [112] as depicted in Fig. 5.3 and clinical aspects of FOT (e.g., Rrs and Xrs are dependent

on body size and possibly racial/ethnic differences [98]). In Fig. 5.4, one can easily notice the difference

of recordings between children and adults and even between different children.

These individual variations and physiological dependency may introduce bias into modelling, par-

ticularly when training samples need to be recruited from several different recording sessions. Because

each FOT recording often lasts for one minute, thus there is only about twenty breaths within a record-

ing. Moreover, within a recording, samples also suffer from correlation which results from physiological

time-dependence of the lung function [112]. These correlated training samples make modelling difficult.

In this work, we introduce an intermediate module, called feature learning, that helps to decorrelate
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Figure 5.7: Subjectivity of manual removal when regarding to as the ground truth (positives are
artefacts). The line with round markers (increased line width) are real artefacts in one recording
for a child that the operator mislabelled them as accepted during creating labels. The other two
lines are two examples of correct manual labels in the same recording.

samples before using conventional general-purpose binary classifiers.

Another critical issue for supervised learning lies in subjectivity of labels. Human operators created

labels based on recording-wise removal. Usually these labels that are used for training in machine learn-

ing are assumed as ground truth. However, we observed several cases that where the operator missed

artefacts and marked them as accepted due to recording-wise removals and/or subjectivity of human. For

example, Fig. 5.7 demonstrates wrong cases of False Positive evaluation results with regard to manual

removal as the ground truth (positivesves are artefacts). This example is for one recording from a child

when comparing results between the automated detector by our previous work [1] and the operator. In

the figure, the traces with an increased line width were real artefacts in one recording for a child that the

operator realised later when evaluating test methods (e.g. our previous work [1]) that he/she mislabelled

them as accepted during labelling. Hence, conventional accuracies such as sensitivities and specificities

may not reflect the true performance of the proposed method [1]. Thus, in this work, we report the eval-

uation using approval rate and throughput that are less dependent on manual labels than conventional

accuracies but still depict the performance of the filtering function.

5.7.2 Feature Extraction

Though there is a big exploratory pool of features constructed from the knowledge domain (Section 5.5),

we only investigate the selective sets made by saliency scores [1]. Specifically, we extract three top ten

salient feature sets according to three ranking criteria: mutual information (MI) of feature candidates with

artefacts measured by Shannon’s information theory [65]; discrimination of features scored by Euclidean

distances (DIS) [53]; and the variance ratio of clusters [54] (Var-Ratio) to measure the clusterability of
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features. Details of computing these scores can be found in Section 3.1.

As demonstrated in saliency ranking results [1], there are feature candidates that consistently being

selected regardless of participant age and across all above three saliency criteria includes two dimensional

extraction of Rrs and Flow, so-called landmark. Briefly, landmarks are boundary points (e.g. the zero

flow point, the maxima and minima of flow and Rrs) of a breath cycle in a two dimensional presentation

of Rrs and Flow [1].

5.7.3 Feature Learning and Supervised Classifier

The supervised learning classification proceeds in three steps:

1. Step 1: Gathering a training set, Dtr, and a test set, Dte.

2. Step 2: Feature extraction and feature learning.

3. Step 3: Modelling and classification.

In Step 1, from four separate datasets (i.e., Ds1, Ds2, Ds3, and Ds4) we build a study set D =

{Ds1∪Ds2∪Ds3∪Ds4} def
= {Dtr,Dte} where 70% of samples in D, called Dtr is used for training and

30% of samples in D, called Dte is used for out-of-sample tests.

In Step 2, after extracting the numerical features (Sec. 5.5.1), we extract categorical ones. This

process aims to alleviate the aforementioned challenging factors (discussed in Sec. 5.5.2). We use

Wilcoxon signed rank tests [115] to estimate the closest distribution i.e., the closet value of mean between

an unseen test breath and a training group. Hence, the classifier that is used in the next step will operate

in a batch-wise manner [116].

Specifically, consider a training set of N samples, Dtr = {si}i=1:N . A sample s ∈ Dtr has a numeric

feature vector x ∈ Rd , and its class label y∈ {0,1}. We transform x into an extended version that contains

an additional vector a (namely a de-correlating feature vector) to cluster Dtr into nearly i.i.d groups. The

motivation of using this component was discussed in detail at Sec. 5.5.2. Thus, learning inputs of a

classifier will be Feature = {x,a,y}N
i=1 where a is a function of x.

Let atrain and atest denote the a value of a sample in the training and test set, respectively. Given the

total number of training participants, P, the maximum number of measurements per subject, M, and the

maximum number of breaths per measurement, B, we identify s by using (p,m,b) where p ∈ {1, ..,P},
m ∈ {1, ..,M}, and b ∈ {1, ..,B}. atrain is defined by a function of p,m,b that consists of Kronecker delta

functions δ (n−α) where L = P+M+B and n ∈ {1, ..,L}.

a(p,m,b) = δ (n− p)+δ (n+P−m)+δ (n+P+M−b) (5.3)

Since the number of training samples in each FOT measurement is very limited (about twenty sam-

ples per recording), the assumption of sufficient training samples [117] could not be applied. We assign

atest to the “most matched” atrain, i.e., a group that the distribution of test sample is likely to belong to.

For time dependence, we gather breaths with the same ordinal number of a measurement into one

group. If a test sample has a larger ordinal number than any training sample, it is given the largest ordinal

number of the training. For difference of distributions, especially when P is small (i.e., only 20 in our
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case), the assignments use Wilcoxon signed rank tests [115]. The examination finds a training group in

which its median is closest to the distribution of an unseen test sample. The null hypothesis in Wilcoxon

tests is rejected with a significant of 0.05. The most matched is corresponding to the test case with

the maximum p-value. To reduce an estimation error, each group is tested repeatedly within a range of

one interquartile range from the training group (iteration steps of 1/200). We consider the p-value of

Wilcoxon test that larger than 0.9 indicates a match.

In Step 3, we explore three different classifiers to compare the improvements made by our feature

learning: 1-SVM, KNN, and Ensemble. These classifiers are general-purposed classification algorithms

with well-known implementations by MATLAB (The MathWorks Inc., Natick, MA, 2000) and LibSVM

[118]. Detailed descriptions of these algorithms can be found [119, 120, 121]. In 1-SVM tests, we use the

Schlkopf method [119] with the accepted breaths being the target class. We do a nested cross validation

for model selection in 1-SVM. The inner loop (10-fold) is considered a part of the model fitting procedure.

The outer (5-fold) estimates the performance of this model fitting approach. A grid search for parameter

ranges from 0.01 to 1 (steps of 0.05) using a radial basis kernel function. In KNN tests, we train a 5-

nearest neighbors classifier. In Ensemble tests, we construct a boosted classification using the AdaBoost

M1 method (with decision trees as the weak learners, 100 trees).

5.8 Results

5.8.1 Saliency Ranking

Ranking scores (i.e., DIS, MI, and Variance-Ratio) for each feature candidate are presented in Fig. 5.8.

Features with circle markers have been currently used in the literature (Table 5.3) while the others are

our new candidates. Group “I” illustrates results for children while “II” depicts adults. We sorted scores

in the entire pool from high to low by each saliency criterion. Ranking order for the pool in Fig. 5.8.a

is from 1 to 111 (high to low); the higher saliency score indicates the higher ranking order. Figure 5.8.b

shows the top ten features with their identifications (IDs, detailed in Table 5.3).

As can be seen in Fig. 5.8.a, only three previous features (the minimum and peaks of Rrs) are in

the top ten highest ranking candidates from the children group. For adult cases, these Rrs features have

moderate variance ratio and very low DIS scores. Our novel landmark features dominate not only in both

children and adult groups but also across all three saliency criteria. Specifically, in Fig. 5.8.b, they are

landmark features ID 48, 49, 50, 54 56, and 64 (description for these features is in Table 5.3).

In next steps, given a detector of interest, we continue the selection by performance criteria.

5.8.2 Unsupervised Artefact Detector: Single Filter Results

5.8.2.1 Parameter Settings

Using a quartile thresholding detector, against a wide range of deviation threshold parameters, we com-

pared the ROC, F1-scores, throughput, and approval rate curves (Fig. 5.9) and the variability (Fig. 5.10)

of three selection schemes with the case of no selection. Apart from examining effects of introducing the

selection schemes, we use the above curves to determine the optimized nIQR settings.
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(I) Children.

(II) Adults.

Figure 5.8: Ranking scores for the feature pool (a) and the ten highest-score candidates (b).
Vertical axes: scores calculated by three saliency criteria. Horizontal axes in (a): ranking order
(highest =1, lowest=111); (b): feature identification (ID) in the pool. Circle markers: existing
features (details in Sec. 5.5.1). Note that peakR annotations in plots indicate a peak at either the
left or right handside of a Rrs-flow curve.
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We explored nIQR in a range 0→ 10 (incremental steps of 0.25). For nIQR > 4, curves did not vary

significantly. Hence, we depict these curves only for nIQR ≤ 4. Four criteria (DIS, MI, Variance Ratio

or No-sel (i.e., no selection)) are presented with different markers. Figure 5.9 (a,e) presents their F1-

scores. ROCs are shown in Fig. 5.9 (b,f) with solid lines for sensitivity, and dotted for specificity. The

throughput and clinical approval rate of the removal are illustrated in Fig. 5.9 (c,g) and (d,h), respectively.

The effects of nIQR and the feature selection on the variability are demonstrated in Fig. 5.10.

We observed that characteristic curves were different between age groups. When no feature selection

algorithm is used, the optimized empirical nIQR is 3 for children and 2 for adults. If a feature selection

algorithm is involved, the optimized empirical nIQR reduced to around 1.5 for children or 1 for adults.

F1-score and throughput are also improved significantly.

One important parameter setting is nIQR = 1. Across three feature selection algorithms, this setting

can work in a subject-independent manner with a high sensitivity (around 80%) and specificity (about

70%) regardless of participant age (i.e., children or adults). Although curves of the three saliency criteria

were quite comparable, in approval rate and variability, the MI selection is better. Hence, we proposed

a final model for the quartile thresholding detector that uses the MI selection technique and settings of

nIQR = 1, called 1IQR-MI. In the next section, we do out-of-sample test with this model and compare

with the aforementioned existing artefact removal methods.

5.8.2.2 Out-of-sample Tests

We used unseen test sets (Ds3 for children and Ds4 for adults) to validate the proposed detector (1IQR-

MI). Table 5.4 compared 1IQR-MI with existing complete-breath based methods: B-3SD [100] and

Wavelet-breath [103]. Manual is the reference value calculated from removals by a human expert. Paired

t-tests (two-tailed) for the variability (the test minus the operator, degrees of freedom of four (Ds3) or

nine (Ds4)) are also reported in Table 5.4. In terms of sensitivity, approval rate by operator (i.e., of the

output are breaths “accepted” by the clinician), and the variability, 1IQR-MI is the best detector. For

example, in adults, although the mean Rrs of the 1IQR-MI had a comparable average value with the

operator, the standard deviation is lower (only 0.40 while the operator was 0.44 with p value is 0.06).

Rrs in our study ranged from 1.7→ 8 cmH2OL−1s in adults (Table 5.4), i.e. a mild to medium range

of obstruction. To investigate the potential influence of obstruction on our detector, Figure 5.11a shows

one performance metric, i.e. the approval rate, plotted against the median resistance for each recording,

while Fig. 5.11b shows the distribution of the approval rate. It can be seen that while there is a large

range, the approval rate remains mostly high regardless of the median Rrs. Similarly in children, Fig.

5.11c and 5.11d show that, with the exception of three recordings, approval rates remain high regardless

of median Rrs, albeit within a smaller range of resistances. We also quantified the independence of the

approval rate and Rrs using the distance correlation [122], and obtained 0.12 for adults and 0.27 for

children, with complete independence indicated by 0.
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Figure 5.9: Effects of nIQR and feature selection for paediatrics (top) and adult (bottom). Mark-
ers are for different feature selection algorithms. (a, e) are for F1-scores. (b, f) are for ROC
curves (Solid lines: sensitivity; the dotted: specificity). (c, g) are for throughput curves. (d, h)
are for approval rate.
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Figure 5.10: Effects of nIQR and feature selection on the variability of the average Rrs (standard
deviation over the mean across patients). Markers are for different selection algorithms. (a) is
for children and (b) is for adults.
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Table 5.4: Results of out-of-sample test phase. 1IQR-MIa is the proposed. Others are the
existing. P values b are from paired t-tests (two-tailed, N = 5 (Ds3) or 10 (Ds4)). Positives
are artefacts c Performance metrics are percentages. The proposed 1IQR-MI has the highest
approval rate and the closet variation of standard deviation of Rrs to the manual labelling.

Paediatrics (test Ds3)
B-3SD [100] Wavelet-breath

[103]
1IQR-MIa Manual

F1-scorec [%] 46.8 21.6 41.2 -
Approvalc [%] 95.4 94.8 98.0 -
Throughputc [%] 82.7 30.0 67.1 84.1
Mean(±SD) Rrs
[cmH2OsL−1]

3.72 (± 0.18) 3.74 (± 0.20) 3.70 (± 0.17) 3.75 (± 0.16)

P-valueb Rrs 0.08 0.84 0.03 -
Mean(±SD) SDRrs
[cmH2OsL−1]

0.29 (± 0.13) 0.38 (± 0.12) 0.32 (± 0.11) 0.32 (± 0.13)

P-valueb SDRrs 0.23 0.25 0.82 -
Adults (test Ds4)

F1-score c [%] 50.6 49.3 54.7 -
Approvalc [%] 77.4 78.1 80.6 -
Throughputc [%] 85.4 55.9 63.4 68
Mean(±SD) Rrs
[cmH2OsL−1]

3.69 (± 0.97) 3.69 (± 0.98) 3.66 (± 0.94) 3.67 (± 0.95)

P-valueb Rrs 0.34 0.58 0.14 -
Mean(±SD) SDRrs
[cmH2OsL−1]

0.40 (± 0.23) 0.41 (± 0.27) 0.40 (± 0.24) 0.44 (± 0.21)

P-valueb SDRrs 0.05 0.86 0.03 -

a The detector used one interquartile range as a subject-independent parameter with the top ten salient features
selected by the MI technique.

b compared to Manual, significant if P < 0.05.
c Removals by a specialist is considered ground truth. Throughput is the ratio of breath numbers in the output to

input. Approval rate of the breaths remained after removal is the ratio of breaths that are “accepted” by the human
to total output breaths. Details of equations as in Section 5.3.
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5.8.3 Unsupervised Artefact Detector: Multi-Filter Results

5.8.3.1 Comparisons of filters against ground truth

In terms of comparison against the manual operator as ground truth, Fig. 5.13 presents the receiver-

operator characteristic of the proposed filter across a range of nIQR values for both adult and paediatric

data. We found that nIQR = 1.5 gave the best performance in adult data, whereas nIQR = 2.5 gave the best

performance for paediatric data. An example of filtering for a measurement is illustrated in Fig. 5.12 for

an adult with nIQR = 1.5.

With the best performing nIQR values, the combined method achieved 76% (adult) and 79% (paedi-

atric) agreement with the manual operator. The performance metrics for the filters studied are shown in

Table 5.5. Note that since the manual operator labelled acceptability in terms of breaths and not points,

metrics are not available for the wavelet-point method.

5.8.3.2 Comparisons between filters

Table 5.6 and 5.8 show the variability of filtered Rrs profiles across test methods in comparison with the

unfiltered data and filtering by a manual operator, for the training and test datasets, respectively.

The percentage of breaths that were removed by the first layer from raw data sets were only about

1% (paediatric) and 2% (adult) (Table 5.6). The remaining breaths that were kept by our method is

69% (paediatric) and 73% (adult) of the total raw input (the manual method kept about 77% in both

cases). While the Wavelet-point method kept 99% (paediatric) and 97% (adult) of total raw data points,

Wavelet-breath only kept 78% (paediatric) and 98% (adult) of raw breaths. Without the wavelet layer,

IQR-Landmark produced 74% (paediatric) and 81% (adult).

For a completely out-of-sample test set (adult patients with respiratory disease), the above perfor-

mance was maintained (Table 5.7 and Table 5.8). Our method kept 66% of breaths compared with 69%

of the human method. The accuracy of children test set is 89.1%, higher than 82.7% of the training

performance.

5.8.4 Supervised Artefact Detector: Machine Learning Classifier Results

We evaluated the performance gain of our new proposed modules, feature engineering with selection and

learning, across classifiers (1-SVM, KNN, Ensemble) in the classification task. For each classifier, we also

implemented three feature selection algorithms: DIS, MI, Var-Ratio and the case without using selection

(i.e. using all feature candidates, called No-Sel). Figure 5.14 demonstrates examples for out-of-sample

tests with adult data.

As can be seen in Fig. 5.14, using our feature engineering module (referred to as “with”) results

in a higher Approval rate (i.e., positive difference) than the case without the module (referred to as

‘without”). Note that in clinical applications, an improvement of a few percentage in accuracy is very

precious. Intuitively, compared with the “without”, our automated machine learning based method using

the proposed feature engineering module reported more TNs and less FNs, i.e., closer to the groundtruth.

We also notice that the proposed feature engineering module unfavorably has lower F1-score than

the “without” case under the DIS, Var-Ratio feature selection criteria as well as No-Sel. However, if
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Table 5.5: Comparisons of filters against the manual operator during training. IQR-Landmarka

and 1IQR-MIb are our works related to our current proposed, IQR-Combinedc. Wavelet-breathd

is the existing. Positives are artefacts. True positive breaths are breaths rejected by both
machine-based and manual removal. F1-scoree is the harmonic mean of precision and sensi-
tivity. Sens: Sensitivity. Spec: Specificity.

Healthy Adults Paediatrics
Method Accuracye F1e Sense Spece Accuracye F1e Sense Spece

IQR-Landmarka 0.753 0.545 0.640 0.787 0.693 0.525 0.842 0.655
Wavelet-breathd 0.584 0.335 0.453 0.623 0.431 0.341 0.730 0.356
1IQR-MIb [1] 0.763 0.571 0.683 0.787 0.731 0.553 0.824 0.708
IQR-Combinedc 0.781 0.569 0.626 0.828 0.827 0.632 0.734 0.851

a A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
b A single filter approach with features automatically selected by ranking [1] and nIQR = 1 for both age groups.
c A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).
d A complete breath rejection approach using the wavelet coefficient thresholding detecion [103]
e Removals by a specialist is considered ground truth.

combining with the throughput metric, this higher F1-score under “without” is likely linked to the larger

throughput difference between “without” and the manual method, especially the No-Sel case (about

42%). On the other hand, our proposed method not only yields a higher F1-score for the MI feature

selection criterion but also has the smallest throughput difference with respect to the manual method.

Combining all three performance metrics, we find that among implemented feature selection crite-

ria (MI, DIS, Var-Ratio and No-Sel), the MI criterion yields the best performance for all implemented

classifiers (1-SVM, KNN, Ensemble). From the experimentation, classifiers equipped with the feature

learning and MI selection had a higher approval rate with children data than with adults. Meanwhile,

these classifiers had a closer throughput to the manual output for adult than children.

5.9 Discussion

Our experiments were executed on recordings collected from adults and eight- to eleven-year-old children

in Queensland and New South Wales, Australia. For the feature extraction, we suggest to obtain landmark

features of the two dimensional resistance-against-flow curves. This feature group is highly ranked by

supervised learning techniques using saliency scores (DIS, MI, variance ratio). Given a training set, we

calculated mutual information (Shannon’s information theory) and clusterability scores to search for the

best features. The MI score measures the correlation (mutual information) between one feature candidate

of a breath and its label of abnormality. Meanwhie, DIS and variance ratio scores depict the clusterability

of a feature candidate. The selective features we introduced result from analysis of saliency scores that

has been motivated from a solid theoretical foundation and have a unified framework.

Although selecting the ten highest score candidates is common practice in the literature of feature

learning, we acknowledge that an investigation for the stability of these feature preferences should be

undertaken. Nevertheless, our results are consistent with more than one well-known feature selection

algorithm with four separate data sets. As can be seen in Figs. 5.8, scores that lie out of the top ten were
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Table 5.6: Comparison of filtered Rrs profiles between filters during training. IQR-Landmarka

and 1IQR-MIb are our works related to our current proposed, IQR-Combinedc. Wavelet-point
and Wavelet-breathd are the existing. wCV and bCV are within and between session coef-
ficients of variation (Sec. 5.3) and presented in %. P valuese are from paired t-tests (two-
tailed). %out is the percentage of remaining breaths (against the total raw input, unit in %)
after being filtered by methods except for Wavelet-point which is in percentage of the raw data
points. %discarded-by-preprocessing is the percentage of artefacts that were removed in the
preprocessing step (a common step for all test filters).

Healthy Adults Paediatrics
Method wCV P-

value
wCVe

bCV P-
value
bCVe

%out wCV P-
value
wCVe

%out

Unfiltered (raw data) 5.25 - 6.69 - 100.0 13.62 - 100.0
Manual (reference) 5.14 - 6.31 - 76.9 11.66 - 77.2
IQR-Landmarka 4.56 0.08 5.76 0.18 80.6 12.69 0.57 74.5
Wavelet-point [103] 5.43 0.34 6.84 0.46 97.1 13.96 0.30 98.9
Wavelet-breathd 5.93 0.20 7.82 0.34 98 11.9 0.85 77.8
1IQR-MIb 4.69 0.20 5.91 0.05 67.8 12.25 0.80 60.0
IQR-Combinedc (pro-
posed)

4.57 0.11 5.75 0.17 72.8 13.27 0.32 69.6

%discarded-by-preprocessing 1.9 2.6

a A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
b A single filter approach with features automatically selected by ranking [1] and nIQR = 1 for both age groups.
c A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).
d A complete breath rejection approach using the wavelet coefficient thresholding detecion [103]
e compared to Manual operator (highlighted row), significant if P < 0.05.
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Table 5.7: Comparisons of filters against the manual operator with out-of-sample data. IQR-
Landmarka and 1IQR-MIb are our works related to our current proposed, IQR-Combinedc.
Wavelet-breathd is the existing. Positives are artefacts. True positive breaths are breaths rejected
by both machine-based and manual removal. F1-scoree is the harmonic mean of precision and
sensitivity. Sens:Sensitivity. Spec: Specificity.

Asthma Adults Paediatrics
Method Accuracye F1e Sense Spece Accuracye F1e Sense Spece

IQR-Landmarka 0.719 0.610 0.715 0.720 0.738 0.398 0.848 0.725
Wavelet-breathd

[103]
0.596 0.435 0.506 0.636 0.369 0.179 0.674 0.334

1IQR-MIb [1] 0.736 0.606 0.661 0.769 0.747 0.412 0.870 0.733
IQR-Combinedc 0.731 0.609 0.683 0.752 0.891 0.588 0.761 0.906

a A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
b A single filter approach with features automatically selected by ranking [1] and nIQR = 1 for both age groups.
c A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).
d A complete breath rejection approach using the wavelet coefficient thresholding detecion [103]
e Removals by a specialist is considered ground truth.

significantly lower than the highest level. Thus, k = 10 satisfied our requirements. In practice, one may

choose the entire landmark group and the resulting detector will perform comparably to the approach of

this work. This is because the majority of the top ten percentage are actually landmark features and the

performance curves varied negligibly among selection algorithms.

We noticed that the normality hypothesis of Rrs in a recording was rejected with a significance

level of 0.05 (the p-values were very close to zero; 0 to 1.27× 10−17). Hence, rather than assuming

the normality of measurements and fixed threshold values (e.g. 3SD away from the mean) as in earlier

works, we advised to use quartile percentages to detect anomalies, and measurement statistics to consider

a breath an artefact if one of its features exceeds a given upper bound or is less than a lower one.

In the past, quality control of forced oscillation data has often been done on the basis of measures

such as coherence, i.e. the degree of correlation between the oscillatory flow and pressure waves, where

coherence values less than 0.95 were typically excluded [99]. However, this has known limitations:

coherence is highly dependent on windowing and other signal processing settings for impedance calcu-

lation, and it is often much reduced in disease, especially at lower frequencies.

Compared with either 3SD or 5SD filtering (i.e., existing statistical filters based on number of stan-

dard deviations from the mean Rrs or Xrs value [101, 102]), we found that breath-based filtering resulted

in lower within- and between-session variability in children. We also proposed removal of transient

artefacts based on the distinct deviations observed in the oscillatory flow and admittance signals, and

in the Rrs-flow profile [100]. Specifically, mouthpiece leak artefacts manifest as a marked increase in

oscillatory flow and a pronounced spike in the magnitude of admittance. Other artefacts often contain

depressions or gaps in the oscillatory flow signal but are best identified by examining the Rrs-Flow pro-

file (e.g. spikes in Rrs at or near zero flow) [104, 123, 100]. However, these observations were made

subjectively, with no quantitative criteria or threshold to determine exclusion. The results of the present
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Table 5.8: Comparisons between filters during out-of-sample tests using the Rrs profile (refer-
ence: manual work (highlighted row), ). IQR-Landmarka and 1IQR-MIb are our works related
to our current proposed, IQR-Combinedc. Wavelet-point and Wavelet-breathd are the existing.
wCV and bCV are in %. P values e are from paired t-tests (two-tailed). %out is the percentage of
remaining breaths (against the total raw input, unit in %) after being filtered by methods except
for Wavelet-point which is in percentage of the raw data points. %discarded-by-preprocessing
is the percentage of artefacts that were removed in the preprocessing step (a common step for
all test filters).

Asthma Adults Paediatrics
Method wCV P-

value
wCVe

bCV P-
value
bCVe

%out wCV P-
value
wCVe

%out

Unfiltered (raw data) 6.25 - 7.95 - 100.0 8.41 - 100.0
Manual (reference) 6.86 - 8.86 - 68.9 8.55 - 89.8
IQR-Landmarka 6.52 0.13 8.22 0.05 80.6 8.30 0.66 74.5
Wavelet-point [103] 6.64 0.57 8.15 0.09 98.7 9.06 0.21 79.1
Wavelet-breathd 7.51 0.37 8.35 0.24 97.9 10.12 0.23 33.3
1IQR-MIb 7.93 0.26 6.68 0.05 63.7 8.62 0.86 67.1
IQR-Combinedc (pro-
posed)

6.46 0.12 8.18 0.03 65.6 8.22 0.62 66.9

%discarded-by-preprocessing 2.5 0.9

a: A single filter approach with landmark features and nIQR= 1.5 for adults and 2.5 for children (where relevant).
b: A single filter approach with features selected by ranking [1] and nIQR = 1 for both age groups.
c: A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).
d A complete breath rejection approach using the wavelet coefficient thresholding detection [103]
e compared to Manual operator significant if P < 0.05.

study represent a first step towards more objective and automated criteria for quality control of FOT mea-

surements, based on a complete breath strategy. It employs an intuitive approach to detecting anomalies

from the Rrs-flow profile, for the first time using landmark features to identify outliers.

A more recent approach to artefact detection was using wavelet decomposition applied to the pressure

profile of the breath [103], which was effective at excluding light coughing, swallowing and vocalization

artefacts. Although the wavelet method has high performance in sensitivity and specificity (over 90%), its

evaluation was limited to simulated artefacts by trained subjects, and its performance on real world data

was unknown. In this study, using retrospective clinical FOT data, we found that partially incorporating

the wavelet approach into our proposed algorithm, particularly that component which detects artefacts

invisible to the operator from the FOT recording, resulted in superior performance compared to either

method alone.

We found that the method performed best when partly combined with the previously published

wavelet detection method. We tested the different filtering methods using real data collected from a

variety of subjects: children, healthy and asthmatic adults. A high degree of agreement between our

method and the manual work was observed and several breaths containing artefacts missed by the man-

ual operator were detected by our method. Finally, within- and between-session variability was used to
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Table 5.9: Test confusion matrix for out-of-sample tests with MI selection and feature learning.
Positives are artefactsa. 1-SVMb, KNNc, and Ensembled were compared with Manual regarding
throughput.

Paediatrics Adults
Classifiers Approvalc Throughputa Approvala Throughputc

1-SVMb 91.4 53.4 71.5 63.3
KNNc 91.4 53.4 71.6 62.8

Ensembled 91.9 53.1 71.3 63.5
Manuala - 85.3 - 62.8

a Removals by a specialist is considered ground truth. Approval rate [%] is the ratio of breaths that are “accepted”
by the human to the total output breaths. Throughput [%] is the ratio of breath numbers in the output to input.

b is one class SVM using accuracy as the cost function and a nested validation with 10-fold inner and 5-fold
outer; A grid search for parameter ranges from 0.01 to 1 (steps of 0.05) using a radial basis kernel function.

c 5-nearest neighbors classifier.
d A boosted classification using the AdaBoost M1 method (with decision trees as the weak learners, 100 trees).

assess the performance of each filtering method in the absence of ground truth. The combined method re-

duced both variabilities compared with the operator, with a slightly higher exclusion rate. Though using

the IQR-Landmark scheme produced a similar variation, a much lower exclusion rate than the operator

implies that it may have missed several artefacts that were recognized by the human.

The importance of feature engineering in applied machine learning is also presented via respira-

tory artefact removal in lung function tests. Specifically, we showed examples of challenges associated

with individual variation and physiological dependency of samples when applying conventional general-

purpose binary classifiers. We developed a feature learning module in order to overcome these challeng-

ing factors. The feature learning module decorrelates breaths and increases the detection performance of

the classifiers. Our experiments were executed on four datasets collected from both adults and children

in different site locations (15 children + 9 healthy adults + 10 adults with asthmatic; producing 470 FOT

recordings that contains 8704 breath cycles). We use 70% of these datasets for training and 30% for

out-of-sample tests. In total, we trained general-purpose classifiers with 6926 breath cycles (samples)

consisting of 5518 normal breaths and 1408 artefacts. Among popular feature selection criteria in the lit-

erature (mutual information, Euclidean distance, and variance ratio of clusters), our feature engineering

steps significantly improve performance of all implemented classifiers (1-SVM, KNN, Ensemble) with

feature inputs selected by mutual information criterion.

5.10 Summary

This chapter presents a collective anomaly detection application using feature engineering proposed in

Chapter 3. Experiments were executed on recordings collected from adults and eight- to eleven-year-old

children in Queensland and New South Wales, Australia. Several novel feature extraction methods are

suggested. Three approaches of detection schemes were investigated: unsupervised filters with single

or multi-layers and supervised machine learning classifiers. We propose the work of multi-layer unsu-

pervised filters for its best performance and low computation cost. In out-of-sample tests, this detector
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performed similar to the gold standard, as assessed by paired t-tests (two-tailed) for variability.

Lack of standardization in quality control of FOT has been a barrier to its widespread clinical adop-

tion, despite decades of studies showing promising physiological and clinical relevance. The ability to

remove common artefacts using objective and automatable criteria is critical to overcoming this barrier,

as these approaches can be eventually incorporated into commercial software to guide the user and min-

imize inter-operator variability. These approaches are also especially desirable in emerging applications

of FOT such as in epidemiological field testing [105] and home monitoring [123, 124].

There are few limitations in this work for the scenario. We only used data recorded for a single

frequency of FOT (6 Hz) closest to what is commonly reported in the literature (5 Hz). However, our

scheme could indeed be applied to multi-frequency systems, either treating each component frequency

independently (where detection of an artefact at any frequency would result in the exclusion of a breath),

or by feeding the most relevant features from all frequencies into the detector. The applicability of the

detector at other frequencies remains to be tested, but we know that the Rrs-flow profiles appear similar

at 6, 11 and 19 Hz such that the landmark features would likely be relevant.

When evaluating machine learning classifiers, only general-purpose well-known classifiers are ex-

amined. We suggest that taking advantange of our feature engineering result, a specialized supervised

learning algorithm should be developed as future works to further improve the performance of artefact

removal process. In terms of applicability, the test datasets we examined exhibited a mild to medium

range of obstruction, ranging in Rrs from 1.7 to 8 cmH2OsL−1. Thus our method will need to be tested

for applicability across a wide range of obstruction, e.g., severely obstructed patients or during an exac-

erbation. However, we note that our performance metrics remained mostly high (approval rate ≥ 75%)

regardless of median Rrs in both the children and adult datasets. There was also a low correlation between

approval rate and Rrs as reported previously [1]. Further work will also be needed to determine how our

method will perform in other diseases, e.g., chronic obstructive pulmonary disease, where abnormalities

in reactance (Xrs) will likely dominate those in Rrs. For this, a new set of top ranking features may first

need to be determined in a training dataset.
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Figure 5.11: Approval rate plotted against median Rrs and histogram of approval rates for all
recordings for the adults (a, b) and children (c, d) testing datasets.
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Figure 5.12: Example of filtering a measurement from an adult by our proposed method. (a):
the unfiltered data (i.e. contains artefacts). (b): the accepted data or output of the system. (c): the
discarded data by the system.
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Figure 5.13: Receiver operating characteristic of the multi-filter approach with adjustable pa-
rameter nIQR (range from 1.5 to 3) for paediatric group (square) and adult group (diamond).
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Figure 5.14: Effects of feature selection algorithms (DIS, MI, and Var-Ratio) and feature learn-
ing across classifiers during out-of-sample tests for adults. Difference in % (with standard er-
rors) of Approval, throughput, and F1-score are comparisons between with and without feature
learning. MI group produced gains in F1-score and the lowest difference in throughput.



Chapter 6

Spike Sorting

While in Chapter 4 and 5 two-class discrimination applications are demonstrated that the proposed

feature engineering play an important part in improving the accuracy performance results, this chap-

ter illustrates the contribution of the feature learning scheme in a classification problem where some

class information (e.g., number of classes) is not predefined. For example, in application of motor unit

action potential (MUAP) sorting for intramuscular electromyography (nEMG) data, called nEMG spike

sorting. In this application, the number of classes is often larger than two and depends on conditions of

experimental procedures. The first section provides background on nEMG analysis such as definition of

a motor unit and their MUAP. Then results of feature ranking and the selective features are discussed.

The other sections reports parameter settings and details of comparison with existing methods.

6.1 Background on Electromyography Motor Unit Analysis

6.1.1 MUAPs

Motor unit activity analysis provides crucial information towards diagnosis and treatment of neuromus-

cular disorders. In intramuscular electromyography data, when recording small voluntary contractions

with a needle electrode, the electrical signal obtained is often a sum of more than one motor unit (MU)

from the surrounding area of the needle tip. Therefore, a motor unit action potential (MUAP) consists of

several muscle fiber action potentials (MFAPs) within the anatomical MU.

Single MU activity is of research interest because changes of MUAP morphology, MU activation, and

MU recruitment yield valuable information. Neuropathic conditions occur with decreased recruitment

whereas myopathic conditions happen with MUAP morphology changes. As an example, a MUAP

examination can confirm myopathic conditions and identify the differential to find an appropriate biopsy

site [125]. On the other hand, most neurology laboratories utilize experts who spend hours classifying

action potentials (“spikes”) using commercial software tools (e.g., Spike2 [126], Cerebus [127]) after

each recording. Hence, an unsupervised method is highly desirable.

72
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6.1.2 Spike Sorting

A practical spike discrimination procedure involves three basic phases: spike detection, feature extrac-

tion, and spike clustering. Spike detection often involves aligning spikes to a common temporal point.

The feature extraction phase provides principal information that highlights differences among spikes.

A dimensionality reduction step is executed to select only the few best coefficients. In the final phase,

spikes are assigned into different MU classes.

Spike classification processes include two main steps: extracting spike features, and then classifying

spikes using these spike features. Common spike feature extraction algorithms are based on principal

component analysis (PCA) [128] used [129, 130], the discrete wavelet transform (DWT) [131] applied

[132, 20], independent component analysis (ICA), [10] found [133, 134], or discrete derivatives [135].

Other existing algorithms use waveform derivatives [12], the integral transform [136], inter-spike inter-

vals [137], or Laplacian eigenmaps [138].

6.2 Data Collection

6.2.1 Physiologically Based Synthetic Data

We used the nEMG simulation algorithm by Hamilton-Wright and Stashuk [139] for development in

this work. This was shown to produce nEMG data consistent with those acquired from real muscle (the

developed muscle). We run the simulator on a Microsoft Windows personal computer for a concentric

electrode during a 10% maximal voluntary contraction (MVC). Figure 6.1 illustrates a synthetic epoch

of 100 ms.

Figure 6.1: Example of a 100-ms epoch of the simulated nEMG.

6.2.2 Recorded Data

We also collected a real data set recording from a healthy young male at the Fuglevand Laboratory

[140] using a rack-mounted electro-physiological recording system CED [126]. Data were sampled at

55.5 kHz. The experiment settings for force used to create nEMG data was: time interval of 0.1 ms for
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force, scale of 0.0023, unit of “N”. The electrode type was the concentric needle electrode. A neurologist

manually provided labels of MUAP appearances together with its associated MU. Though most of the

manual labeling procedure was aided by a commercial software tool (Spike2 [126]), the human operator

is still needed for final template matching and adjusting. We call this labels “reference” during our

evaluation.

6.3 Feature Pool

We extracted twelve groups of features in both time and frequency domains (Table 6.1). Existing features

include amplitude range information of EMG data, DWT, top ten selected by KS tests [141] of DWT, top

ten percentage selected by ICA or PCA. New feature candidates are singular value decomposition (SVD)

of spectral analysis and spectrograms of raw amplitude data or DWT transformed data.

Table 6.1: List of candidates in the EMG feature pool. New*: Features have not been previously
proposed.

Group ID Domain Description New?* Feature ID
1 Time Maximum amplitude of EMG No 1
2 Time Minimum amplitude of EMG No 2
3 Time Range amplitude of EMG No 3
4 Frequency DWT level d3 No 4-128
5 Frequency DWT level d4 No 129-253
6 Frequency DWT level a3 No 254-378
7 Frequency SVD of spectral analysis Yes 379-386
8 Time ICA (ten percentage) No 387-398
9 Time PCA (ten percentage) No 399-410
10 Frequency KS test of DWT (top ten coefficients) No 411-420
11 Frequency Spectrograms of raw amplitude Yes 421-1065
12 Frequency Spectrograms of DWT Yes 1066-1710

Several methods used for new feature extraction (i.e., have not been proposed for nEMG spike sort-

ing) are described as follows. Discrete wavelet analysis that represents signals in both frequency and

time is a very useful tool in the neuroscience field [142]. Transient differences in high frequency features

(sharp edges and steep leading or trailing slopes) and/or in low frequency features (duration of the repo-

larization phase) can present the morphology of spikes. In this work, MUAPs are first decomposed into

wavelet coefficients using the DWT method [131]. These coefficients represent differences among spikes

based on the quantification of energy found in specific frequency bands at specific time locations (details

in Appendix). We implemented a 4-level decomposition and Haar window using built-in functions of

MATLAB (The MathWorks Inc., Natick, MA, 2000).

Due to the multi-modal distribution of coefficients [20], we rank these candidates by scores calculated

by deviation from normality, using a modification of Kolmogorov-Smirnov (KS) test [141]. Let X be a

data set, the score is max(|F(x)G(x)|) where F(x) is the cumulative distribution function of X and G(x) is

a Gaussian cumulative distribution function with the same mean and variance. To minimize the effect of

overlapping spikes, for each coefficient, only values within three standard deviations (both directions) are
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considered [20]. To better compare with existing most relevant methods, the ten largest score candidates

are selected as previously suggested to separate spikes.

These selected coefficients are transformed to a series of spectral snapshots (spectrograms) using

the short Fourier transform (STFT [143]). Specifically, let v ∈ R1×10 be the wavelet feature of a spike.

A Hamming window is used with STFT to transform v into an image of spectrogram I (e.g., 5×129).

Hence, distance between spikes used in the next sorting process are the correlation coefficients between

these images.

6.4 Automated Spike Sorter

6.4.1 Preprocessing

Intramuscular data is corrupted by spike-like correlated noise. Thus, we need to make data points sta-

tistically independent (“pre-whitening”). A practical approach employs a linear prediction filter [144] to

whiten the input signal itself before we extract any MUAP. In this work, we use a third-order forward

linear predictor (FIR filter) that predicts the current value of the real-valued original data based on past

three samples [144]. Using timing labels from the reference, we extract the spike set together with labels

of MU classes. All spikes are extracted with the same window size of 8 ms.

To focus on sorting evaluation, overlapping spikes (i.e., have more than two MU in the same window)

relate more to spike detection than sorting algorithms. Thus, we removed overlapping spikes with small

delay by detecting multiple peaks within a spike window. For overlaps without delay (i.e., they may look

like the firing of a new neuron) we consider these spikes a separate class.

Because the firing behaviour of an individual MU relates to its recruitment threshold [145, 146], the

size of a valid cluster corresponding to a MU should exceed a parameter. According to the recruitment

threshold assignment derived from the work of Fuglevand [147] and popular settings found in the lit-

erature, we set this parameter to 40. All clusters with size smaller than 40 were merged into a group,

called catch-all class. In the previous works of sorting performance evaluation, this class is sometimes

set apart. We assume that these small clusters may associate with overlapping spikes without delay. Thus,

we evaluate two cases of detection performance: include catch-all and exclude catch-all. To assign the

label for cluster (or individual spike if that is the catch-all cluster), we measure the correlation between

the mean waveform of the cluster and the one of the reference group. A label is chosen if the match has

the highest correlation score.

6.4.2 x-Class Sorter

After feature extraction steps, based on MUAP morphology, the correlation between spikes is used as

the similarity measure for an number x-class sorting application [8, 74] where x is unknown. Rather

than using the Euclidean distance metric, to account for electrode drift and subject-independent setting

requirements, the correlation metric that ranges −1→ 1 is used.

Let IX and IY be two feature vectors of MUAP X and MUAP Y , respectively. rX ,Y is the correlation

between two feature vectors of X and Y (Eq. (3.7)). The class assignment variable of X is defined by the
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correlation based sorting scheme (Section 3.2.3). The sorter starts with a single class contains all spikes

having high correlation rX ,Y with the initial spike given a desired threshold level (e.g., 0.9). Then the

sorter stops when the unsorted pool of remaining spikes is empty.

6.5 Reference Works

The objective reference clustering results are available for the synthetic data as the simulator is controlled

during data generation. However, this is usually not available for the recorded data. Ideally the refer-

ence could be derived from simultaneous intra-cellular recording, but availability of such data is limited.

The most common practice in physiology laboratories involves using commercial software (specifically

Spike2 in our work) and manual checking by a human operator. This was the approach used to obtain the

reference for our real recorded data.

We also compare our proposed method with a relevant work using the DWT extraction and super

paramagnetic clustering (SPC) [16]. We applied the default settings for the SPC method as recommended

by Blatt et al. [21]. Specifically there were q = 20 states, K = 11 nearest neighbours, and N = 500 itera-

tions for clustering. The range of temperature was from 0 to 0.201 in steps of 0.01. The implementation

was provided by the authors [16] (MATLAB packages, The MathWorks Inc., Natick, MA, 2000) .

6.6 Performance Metrics

Performance metrics for a multi-class classification task are derived from the confusion matrix. Let M be

the confusion matrix of sorting outcome (Eq. (2.3) in Chapter 2). The successful predicted events (True)

for a class are on the diagonal of M. All other members of M are incorrectly predicted events (False).

Let Mi, j denote the number of test outcomes (i.e., ground truth labels, Gi) of class i, that were

predicted as class j, Pi. The number of successful predicted events (True) for class i, denoted Tii, is the

diagonal of M. All other members of M are incorrectly predicted events (False), denoted Fi j where i 6= j.

M =

P1 . . . Pi . . . PC



T11 . . . F1i . . . F1C G1
...

. . .
... . . .

...
...

Fi1 . . . Tii . . . FiC Gi
... . . .

...
. . .

...
...

FC1 . . . FCi . . . TCC GC

(6.1)

The sensitivity and positive predictive value (PPV) of class i, Seni and PPVi, are defined as follows.

Seni =
Tii

Tii +∑ j 6=i Fi j
(6.2)

PPVi =
Tii

Tii +∑ j 6=i Fji
(6.3)
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6.7 Results

6.7.1 Selected Features

Fig. 6.2 illustrates the ranking scores by saliency criteria for each feature candidate over the entire

exploratory pool (sorted from high to low scores); a higher saliency score indicated the higher ranking

order. The top highest-score candidates were investigated using histograms by feature Group ID (Table

6.1) as in Fig. 6.3.

(a) Ranking of the entire feature pool. (b) The histogram of the top 25 percent candidates.

Figure 6.2: Feature ranking results by DIS criterion. (a) Ranking scores for the entire feature
pool. Vertical axes: scores calculated by saliency criteria; Horizontal axes: ranking order (high-
est = 1, lowest = 1710). (b) The histogram of the top 25 percent highest-score candidates by
feature groups (Table 6.1).

(a) Ranking of the entire feature pool. (b) The histogram of the top 25 percent candidates.

Figure 6.3: Feature ranking results by MI criterion. (a) Ranking scores for the entire feature
pool. Vertical axes: scores calculated by saliency criteria; Horizontal axes: ranking order (high-
est = 1, lowest = 1710). (b) The histogram of the top 25 percent highest-score candidates by
feature groups (Table 6.1).

As can be seen, scores dropped quickly outside of the top 25 percent candidates by DIS criterion

and only after 80 percent candidates by the MI score. We noticed that, by MI criterion, except for the

single feature of Group 1, all other members of the top 25 percent belong to Group 12. Meanwhile, by
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DIS criterion, though the top 25 percent includes several groups, Group 12 still dominates the high score

area. Hence, we proposed to use the feature set Group 12 for the next evaluation in terms of sorting

performance.

6.7.2 Sorting Performance

6.7.2.1 Synthetic Data

After preprocessing, spike sets were prepared for the sorting stage as in Table 6.2. Note that, though a

confusion matrix may give much more information on misclassification, in the context of this thesis, in

all applications we presented there is no known ground truth, the best practice has been subjective manual

labels. Thus, we used visualization tools to compare our observations. Figure 6.4 depicts five reference

classes (Fig. 6.4a) and two clustering results using the SPC sorter (Fig. 6.4b) and our proposed sorter

(Fig. 6.4c). The MU1 class has much larger amplitude range than other four classes in the reference

set. Classes MU2-5 have only slight difference in the waveforms. In the SPC clustering result, a class

may include more than one cluster (e.g., class MU2 and MU4 in Fig. 6.4b). Also, the MU5 class may

be included in clusters of other classes. Our sorter produced five clusters that match with five reference

classes though it does have a catch-all group similar to the SPC method.

Table 6.2: Class proportions of spike set inputs are in order of the MU names in the labels.

Synthetic data Recorded data
No. data points (sampling rate) 937500 (31kHz) 7500000 (55kHz)

Number of spikes 1230 1220
Number of classes 5 3
Class proportion 336:269:226:207:192 440:483:535

The proportion of the catch-all group is reported in Fig. 6.5a. After assigning labels, the histograms

were compared with the reference histogram (Fig. 6.5b). In terms of the confusion matrix, the general

classification accuracy and class-wise sensitivities as well as predictivities are reported in Table 6.3.

6.7.2.2 Recorded Data

Table 6.4 depicts the distribution of spikes in large clusters corresponding to the reference classes from

the recorded dataset. Both automatic clustering methods had about 19% catch-all spikes . There were

three reference classes. While the amplitude range of spikes in MU1 and MU2 are±0.5 µV, MU3 ranges

are much larger (±1 µV). Sorting performance for each MU and the general accuracy were depicted in

Table 6.5.

In contrast with our superior results against the SPC when applied to the synthetic data, results of

both automatic techniques were comparable with recorded data. However, the size of dataset as well as a

small number of active MUs recorded may explain for this. We may also need an inter-rater measurement

to alleviate the subjectivity of the reference in evaluation. These should be addressed in future work for

the method. In general, all performance measurements we achieved in this study are among the most

accurate outcomes in spike sorting evaluation works.
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Figure 6.4: Clustering results using synthetic data. (a) There are five classes from the reference
labels (MU1 to MU5). (b) SPC sorter (compared method) may include more than one cluster for
the same class. (c) Our proposed method using correlation based clustering. Axes x, y are time
index and amplitude of the spikes (µV), respectively. Different colours are different clusters
made by sorters, not colour coded for the class.
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Figure 6.5: Agreement in histograms of automatic methods against the reference for synthetic
data. (a): excluded catch-all (b): included catch-all.

Table 6.3: Synthetic data MUAP sorting comparisons between automatic methods and the ref-
erence. Accuracy measures (in %) use simulation settings as reference. True/False are MU
matching or not with the reference labels.

Include catch-all Exclude catch-all
Metrics Class SPC-based Our method SPC-based Our method

MU1 39.3 92.5 100.0 100.0
MU2 85.1 67.6 100.0 98.4

Sensitivity MU3 74.7 75.2 98.8 98.3
MU4 71.9 69.5 99.3 88.9
MU5 19.3 88.0 0 72.9
MU1 100.0 100.0 100.0 100.0
MU2 81.2 98.9 98.2 98.9

PPV MU3 54.5 80.2 54.5 80.2
MU4 98.6 97.9 54.6 97.9
MU5 10.4 44.9 0 100.0

Average accuracy 58.2 79.3 81.9 94.8
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Table 6.4: Distribution of spike count in large clusters corresponding to the reference classes
from the recorded dataset.

Our method The SPC-based The reference
MU1 MUAPs 314 368 383
MU2 MUAPs 283 335 408
MU3 MUAPs 378 284 429
Remaining MUAPs 245 233 0

Figure 6.6: Agreement in histograms of automatic methods against the reference for recorded
data. (a) Exclude catch-all (b) Include catch-all.

6.8 Summary

In this chapter, a classification application where the number of classes is not known is reported. A

similar feature ranking can still be used to better extract features. The extention of using anomaly scores

in the classifier was also illustrated. Synthetic and real recorded datasets of motor unit action potentials

were used to evaluate the performance. Comparing with the manual reference, our MUAP classification

method is comparable (regarding to the number of MUs found and histograms of MUs). Moreover, in

the SPC method, the default settings assumed a maximum number of clusters. If the real recording

conditions provoke more classes than that parameter, a technical specialist may need to redefine the

parameter. Furthermore, the temperature terminology used in the SPC for reviewing outcome is less

intiuitive than the correlation as in our method. The correlation values range −1→ 1 while the measure

of temperature is difficult to tune.
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Table 6.5: Comparison of sorting performance using recorded data between automatic methods.
Accuracy measures (in %) use manual labels as reference. True/False are MU matching or not
with the reference labels.

Include catch-all Not include catch-all
Metrics Class The SPC-based Our method The SPC-based Our method

MU1 99.7 99.7 99.7 99.6
Sensitivity MU2 89.9 68.6 100.0 99.6

MU3 74.6 83.9 100.0 100.0
MU1 71.8 65.8 100.0 99.6

PPV MU2 99.7 99.6 99.7 99.6
MU3 100.0 100.0 100.0 100.0

General accuracy 87.6 83.7 99.9 99.8
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Conclusion

This chapter summarises the proposed feature engineering method for classification applications (Chapter

3) and the main observations in several experiments presented in Chapter 4, 5, 6. Discussions also include

limitations and future works for each scenario. In general, the contribution of a systematic application

of feature engineering to accuracy performance is shown in all three cases of real-life biomedical data

classification.

7.1 Proposed Algorithms

This thesis proposed classification schemes for unsupervised and subject-independent settings in biomed-

ical data processing applications, especially for automated deployments in out-of-the-lab environments.

This not only helps eliminate the subjectivity associated with human involvement, but it also reduces

labour costs.

Existing automated efforts have been predominantly designed for subject dependence and only

yielded modestly accurate results for subject-independent settings. In this thesis, three examples (human

body movement assessment (Chapter 4), respiratory artefact removal (Chapter 5), and spike sorting for

electrophysiological data (Chapter 6) demonstrated that the classification performance of unsupervised

and subject-independent automated sorters for biomedical data can be improved by exploiting data-driven

and domain-knowledge-driven strategies that help find better features and more efficient sorters.

7.1.1 Feature Engineering

This thesis improved data mining in subject-independent settings by using supervised techniques to find

better features (i.e., more discriminative and higher correlated with the desired output). A voting-based

technique has been proposed to analyze ranking scores by several saliency criteria including mutual in-

formation, Euclidean distance based discrimination, and variance ratio based clusterability. This hybrid

selection scheme is a data-driven approach and can compare a comprehensive set of candidates including

existing features and novel variants. Given a large set of exploratory feature candidates, the most selec-

tive features learnt from this process are most applicable to the unsupervised and subject-independent

83
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applications.

The feature selection technique based on voting has been first reported for respiratory artefact re-

moval in FOT measurements [1, 3, 2], FoG detection [4, 5, 6, 7], and nEMG spike sorting [8]. The

voting selection considers not only mutual information criterion but also clusterability. Novel efficient

features were discovered thanks to the fact that they are more relevant and discriminative than existing

ones commonly used in the FoG, FOT, and nEMG literature [4, 1, 8].

7.1.2 Classifiers

In each application, better models have been suggested through this domain-knowledge-driven approach

(e.g., issues associated with dependency in Chapter 5 and/or other related domain knowledge in Chapter

4 and 6). Specifically, in Chapter 4 and 5, the proposed feature learning resulted in anomaly detectors

which, to the best of our knowledge, achieve the best reported performance for unsupervised subject-

independent settings for FOT data regardless of participants’ age [3] and FoG data [5, 6, 7]. In Chapter

6, an efficient unsupervised spike sorter is introduced when the class number is not known for subject-

independent settings [8].

7.2 Experiment Results

7.2.1 Point Anomaly Detection Application

As freezing of gait instance of patients with Parkinson’s disease can be detected as point anomalies,

relevant and discriminative features can make simple thresholding filters work as detectors.

According to the feature ranking in Chapter 4, apart from the existing features (e.g., the freezing

index extracted from ankle sensor at vertical axis), the new feature with multiple channels, FIMC, is

one of the top features in saliency, clusterability, and robustness. Only seven out of 244 exploratory

candidates met requirements of our three-round selection procedure.

The proposed anomaly score based detector, ASD, is a simple thresholding method but using dy-

namic threshold values that make ASD suitable for subject-independent requirements. In Chapter 4, the

ASD method significantly outperformed existing works with a small window and/or low tolerance. For

example, for ASD ankle (y-axis), the mean (±SD) of sensitivity, specificity are 94% (±23%) and 84%

(±36%) while the recent work [72] only achieved 75% and 76%, respectively.

These findings form a further step towards subject-independent out-of-lab FoG detectors. In future

work, a combination of top ranking features should be further evaluated. A more elaborate technique for

the ASD threshold settings is also worthy of further study.

7.2.2 Collective Anomaly Detection Application

In Chapter 5, another anomaly detection scenario is demonstrated using data from lung function tests.

Breath cycles that include any respiratory artefact data points are required to be removed (to appropriately

assess the lung function). A complete-breath removal approach is applied to ensure the balance of a cycle.

Hence, the removal can be done by a collective anomaly detection technique. This thesis utilized data
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sets of forced oscillation technique (FOT) recorded from adults and eight- to eleven-year-old children in

Queensland and New South Wales, Australia.

Based on observations from the proposed feature ranking steps, a new set of landmark features

were proposed. These were extracted from boundary points of two-dimensional resistance-against-flow

curves. This feature group is highly ranked by supervised learning techniques using saliency scores

(DIS, MI, variance ratio). The MI score measures the correlation (mutual information) between one

feature candidate of a breath and its label of abnormality. Meanwhile, DIS and variance ratio scores

depict the clusterability of a feature candidate.

Although selecting the ten highest score candidates is common practice in the feature learning litera-

ture, an investigation of the stability of these feature preferences should be undertaken. Nevertheless, our

results are consistent with more than one well-known feature selection algorithm with four separate data

sets. As reported in Section 5.8.1, scores that come after the top ten were significantly lower than the

top ten group. Thus, k = 10 satisfied our requirements. In practice, one may choose the entire landmark

group and the resulting detector will perform comparably to the approach of this thesis. This is because

the majority of the top ten are actually landmark features and the performance curves varied negligibly

among selection algorithms.

While we demonstrated a reasonable degree of independence between the accuracy of our detector

and levels of obstruction (details in Section 5.8.2.2), further work is required to determine if the detector

can be applicable to recordings from severely obstructed patients or those experiencing an exacerbation.

Also of note is that in our datasets of healthy and asthmatic subjects, Rrs features ranked consistently

high, whereas the features associated with Xrs did not rank highly for inclusion in the detector. This may

be different in other diseases, and remains to be tested.

Finally, the analysis was limited to a single frequency closest to what is usually reported in the

literature (5 Hz). However, the detector could also be applied to multi-frequency systems which are

commonly used, using a similar set of features for each component frequency.

In terms of detection performance, we used several metrics (e.g., ROC, throughput, and variability

(Section 5.3)) to determine threshold parameters. During development, the performance curves (i.e.,

F1-scores, ROC, and the variability) against the parameter nIQR showed that the top ten features out-

performed the case of no feature selection. The three saliency scores yield nearly similar performance

curves. The proposed artefact detector, 1IQR-MI achieved promising results in subject-independent set-

tings, regardless of age. In out-of-sample tests, our detector performed similar to the gold standard, as

assessed through paired t-tests (two-tailed) for variability.

Our findings are an important first step towards objective and automated quality control of FOT

measurements, as FOT moves beyond its long-standing role in the respiratory research realm, becomes

more available in commercial systems and is increasingly adopted in clinical and home telemonitoring

settings.

7.2.3 Spike Sorting Application

In Chapter 6, we applied the proposed feature ranking scheme to a different classification scenario where

the number of classes is unknown. Spike sorting is a typical example for this case where the main task
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is to discriminate motor unit action potentials using nEMG data. Both types of data sources were used:

synthetic and real recorded nEMG recordings from human subjects.

From the feature ranking observation, a novel candidate set has been suggested as it was higher

correlated to the motor unit reference and was more separable than existing features. Then the Chapter

introduced a correlation based clustering technique. Compared with the reference produced by human

experts, the proposed method obtained a comparable result. The number of classes was found to be

equivalent. MUAP morphology was identical in each pair of corresponding MU class, and the histograms

of MUs by the proposed method were also similar to the reference ones.

7.3 Summary

Technical background and details of proposed algorithms for feature relevance selection as well as clas-

sifiers were discussed in Chapter 2 and 3. Then biomedical background and their literature review for the

three application scenarios were provided in the remaining chapters of this thesis. Chapter 4 illustrated

point anomaly detection in human body movement assessment using accelerometer data for FoG in pa-

tients with advanced Parkinson’s disease. Chapter 5 reported a collective anomaly detection case study

using lung function test data. Chapter 6 presents outcomes of multi-class classification in spike sorting

for motor unit action potential in nEMG data.

Summary of Findings

1. Current objective methods for FoG detection used various global parameters and/or different chan-

nels. This suggests a high variability in actual thresholds over time and subjects.

2. The averages of FOT measurements, which are the main outcomes in clinical and research appli-

cations, are affected significantly by the artefacts. Apart from the natural dependency of breath

samples, the normality assumption of data within a recording is invalid by current hypothesis tests.

Hence, beside choosing better features, more general statistical parameters with quartiles should

be applied rather than existing methods with the normality assumption.

3. Though single MU activities provide the most informative part in diagnosis and treatment of neu-

romuscular disorders, nEMG data often provide more than one MU activities. Thus MUAP dis-

crimination is a crucial task. Note that the number of classes in this classification task is unknown.

Hence a well-suited metric to sort is the correlation between MUAP waveforms.

4. The de facto standard or ground-truth practice for these three cases has been the manual sorting

that is laborious and subjective. Unsupervised methods using simple statistical thresholds have

only yielded modest performances. Supervised learning models have been mainly reported with

excellent results for subject-based rather than subject-independent settings.

5. New features found by the feature engineering could help deploy a low computational cost classi-

fier and thus make it more generalized with respect to subject variations.
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The three real-life applications demonstrated in this thesis illustrate that systematic feature engineer-

ing could help replace standard manual classification with automated classifiers that are unsupervised,

subject-independent, and of low computational cost.
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Appendix

I

Wavelet decomposition: Wavelet decomposition coefficients (DWT) [85] and spectral coherence [88]

was calculated as below. Let s(t) be a curve which can be presented by coefficients C (a,b)(1).

C (a,b) =
1√
a

+∞∫
−∞

s(t)ψa,b(t)dt (1)

where ψa,b (t) = ψ
( t−b

a

)
is an expanded or contracted and shifted version of a unique wavelet function

ψ(t) a and b are the scale and the time localization, respectively.

II

Spectral coherence: Let CXY be the spectral coherence between signals X and Y . CXY is defined by the

Welch method [88] as in Eq. (2).

CXY (ω) =
PXY (ω)√

PXX (ω).PYY (ω)
(2)

where ω is frequency, PXX (ω) is the power spectrum of signal x, PYY (ω) is the power spectrum of

signal y, and PXY (ω) is the cross-power spectrum for signals x and y. When PXX (ω) = 0 or PYY (ω) =

0, then also PXY (ω) = 0 and we assume that CXY (ω) is zero.To estimate power and cross spectra, let

Fx(ω) and Fx(ω), denote the Fourier transform and its conjugate of signal x, respectively, i.e. Fx(ω) =
+∞∫
−∞

x(t).e− jωtdt. The power spectrum is then: PXX (ω) = Fx(ω).Fx(ω); PYY (ω) = Fy(ω).Fy(ω); and

PXY (ω) = Fx(ω).Fy(ω).

III

STFT: is the mathematical technique to produce spectrograms. Let x[n] be an input vector to be trans-

formed. x[n] is broken up into frames (size m). Frames should overlap each other to avoid artefacts at the

boundary. This transform can be expressed as

X(m,ω) =
∞

∑
n=−∞

x[n]h[n−m]e− jωn (3)

spectrogram{x(n)}(m,ω)≡ |X(m,ω)|2, (4)

where x[n] is an input of the transform, h[n] is a window function with size m.

IV

Table of settings for synthetic nEMG data in Chapter 6.
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Table 1: Settings for synthetic nEMG data.

Number of motor units in muscle 200
Neuropathic MU Loss Fraction 0
Max Adoption Distance In um 150
Neuropathic MU Enlargement Fraction 1.5
Myopathic Fibre Affected Fraction 0
Myopathic New Involvement Percentage In Each Cycle 5
Myopathic fibre gradually dying? 0
Dying and Splitting Depending on Affection Procedure? 1
Myopathic Threshold of Fibre Death 25
Percentage Of Affected Fibers Dying 0
Myopathic Fraction of Fibres Becoming Hypertrophic 0.05
Factor of original area at which hypertrophic fibres split 2
Percentage Of Hypertrophic Fibers Splitting 0
Myopathic Rate of Atrophy 0.96
Myopathic Rate of Hypertrophy 1.04
Tip uptake distance 4500
Cannula uptake distance 4500
Radius of cannula shaft 250
Cannula Length (in mm) 10
Needle X Position (in mm) 0
Needle Y Position (in mm) 0
Needle Z Position from NMJ in mm 15
Tip/cannula reference setup tip versus cannula
Enable Jitter? True
Jitter (variance) in us 25
MFP threshold for jitter OR MU GST Inclusion threshold (kV/s2) 10
Minimum metric to seek needle to 0.25
Generate noise? true
S/N ratio? 25
Recorded Muscle Name Biceps Brachii
Laterality right
Maximum recruitment threshold 50
Total time for EMG generation 29
Max (scaled) value in 16-bit output 4096
Internal interp. factor for jitter 30
Muscle fibre density 10
Area of 1 muscle fibre 0.0025
Min Motor Unit Diameter 2
Max Motor Unit Diameter 8
Ipi Firing Slope 0.8
Min Firing Rate 8
Max Firing Rate 42
Coeff of Variance 0.25
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