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Abstract

Many mainstream electronic systems in applications such as digital signal
processing (DSP), networking and wireless communications require performance,
size, cost and power consumption which is beyond that achievable with a single
microprocessor. In such cases, particularly those in which fine grained paral-
lelism can offer a performance advantage, an application specific integrated cir-
cuit (ASIC) based coprocessor is often used. As the non-recurrent engineering
costs of ASICs continue to rise and the density of field programmable gate ar-
rays (FPGAs) continues to improve, FPGAs are claiming a larger and larger
share of the coprocessor market. Furthermore, FPGAs have advantages of field

upgradeability and faster development time over ASICs.

Realizing an FPGA-based coprocessor system poses many challenges and this
thesis addressed three issues in designing an FPGA coprocessor. Firstly, as pro-
gramming and hardware design are predominately treated as different entities,
tools for developers not intimately familiar with hardware design to translate a
software implementation to hardware can greatly improve productivity. Secondly,

resources on an FPGA device are limited so designers should be able to explore



the tradeoff between area and performance using differing degrees of parallelism.
Thirdly, as the execution of a program is divided into two interconnected portions,

the interfacing issue between the two entities need to be addressed.

In this dissertation, a high level FPGA coprocessor design system which can
automatically translate a high level floating-point algorithmic description into
an optimized FPGA hardware/software co-design system was developed. This
system utilizes two commonly used but seldom simultaneously applied design
methodologies, namely floating to fixed-point conversion and digit-serial compu-
tation. The system takes a floating-point dataflow algorithmic description and
translates it into a fixed-point design via a simulation-based optimization. The
optimizer assigns a wordlength and digit size to each individual variable while
minimizing a cost function which takes into account the tradeoff between perfor-
mance and area. The optimizer achieves a design which would be too tedious for
a designer to perform manually, and which optimally meets the requirements. In
order to achieve a high performance FPGA coprocessor system, a further consid-
eration is the speed of the bus which connects the FPGA to the microprocessor.
A memory slot based coprocessor was developed which achieves significantly im-

proved performance over the standard peripheral bus.

The above techniques were applied to a number of applications in image pro-
cessing, cryptography, rendering and auditory signal processing. In each applica-
tion, the approach was shown to offer a considerable performance improvement

over the standard approach.
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Chapter 1

Introduction

1.1 Motivation and Aims

The latest high-end microprocessors utilize 0.18 pm complementary metal oxide
semiconductor (CMOS) technology with 64-bit data buses, multiple functional
units and megabytes of integrated cache packed on a single die with up to a
hundred million transistors operating at clock frequencies over 1.5 GHz. Al-
though the computational abilities achieved by these advanced microprocessors
are beneficial to a wide range of science, engineering and business applications,
they cannot always fulfill the needs of certain applications. Some applications,
such as real-time signal processing, high-throughput cryptographic systems and
large-scale optimization, require even higher computational power. Furthermore,
microprocessor systems usually have large footprint, high power requirements and
large heat dissipation. Applications of microprocessors to mobile devices and em-
bedded systems, of which performance, power consumption and compactness are

crucial design considerations, are often not feasible.

An important limitation of microprocessor architecture is due to the nature
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that software programs executing on microprocessor systems are essentially se-
quences of operations chosen from the set of instructions supported by the micro-
processor architecture. In contrast, hardware implementations utilize hardware
parallelism and dedicated logic to potentially achieve significant performance im-
provements over a microprocessor implementation. At the same time, a hardware
design can be customized for a specific application, with power efficiency and den-
sity better than that of any microprocessor system. However, it is not always fea-
sible in terms of design time and cost to build a custom hardware implementation

for every application due to long design time and high manufacturing cost.

Field-programmable custom computing machines (FCCMs) are a potential
solution to some of the problems mentioned above. As computational compo-
nents, FCCMs use field-programmable gate arrays (FPGAs) which are hardware
devices with programmable logic cells and routing. The reconfigurable nature of
FPGAs allows multiple designs to be programmed on the same hardware device
at different times, therefore eliminating the costly design and fabrication process
associated with very large scale integration (VLSI). The continuous improvement
in silicon technology offers faster and larger FPGA devices over time. When
newer FPGA devices become available, the same design obtains performance im-
provements accordingly. In addition, with the improved density and shorter de-
sign time, designers may attempt implementations employing more sophisticated

algorithms which lead to a further improvement in performance.

The most straightforward way to deploy an FCCM system is to couple it with
a microprocessor system, with the computationally intensive portions extracted
into hardware which is executed on an FPGA coprocessor. This approach poses

the following challenges:

e The design complexity is increased as this approach splits a design into
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hardware and software portions. Methods that can partially or entirely
automate the process of translating a program into a hardware design can

significantly reduce design times.

e One difficulty in designing FPGA applications is that hardware resources
are strictly limited due to cost constraints. Although density of FPGA de-
vices has improved markedly, hardware-efficiency is still a primary design
issue in many cases. Very often, performance is sacrificed to fit a design
into a given FPGA device. Designers should be able to explore the tradeoff
between area and performance easily, and a single design description can
lead to multiple implementations with different area and performance re-
quirements. In this way, designers can be less concerned with the area and
performance requirements when developing the algorithm, and later choose

an implementation which offers an acceptable tradeoff.

e A high bandwidth and low latency interface between the FPGA device and
the central processing unit (CPU) is desired to reduce communication over-
heads between the hardware and software portions. An efficient interface
between the two entities is essential or else the interface may become a

bottleneck.

The objective of this thesis was to investigate and develop efficient methods to
address the above challenges with a goal to improve upon existing FPGA-based

hardware/software co-design approaches.

1.2 Contributions

Two major contributions were made in this thesis. They respectively addressed

the problems of translating a software algorithm to a hardware implementation
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and the CPU/FPGA bandwidth issue

The first contribution was the development of a design methodology that
translates floating-point software algorithms to fixed-point hardware implemen-
tations. An important step involved in translating a floating-point design to
fixed-point is to determine the minimum required wordlength for each variable
such that the algorithm uses the least area while retaining user-specified perfor-
mance criterion. This criterion can be specified in the form of constraints on
the precision, area, latency or throughput of the resultant implementation and is
application-dependent. In this work, an optimization approach was used to find
an optimal implementation subject to the design constraints. The optimizer tries
different wordlengths for every variable, extracts their corresponding dynamic
range and precisions via a software simulation, and derives the implementation.
This approach, similar to an optimizing compiler, compiles software algorithms to
hardware implementations with modest resource requirements. To further explore
the tradeoff between area and performance, a variable-radix variable-wordlength
architecture was developed. This architecture incorporated the advantages of
both multiple wordlength and digit-serial architectures. Using this architecture,
different implementations of the same algorithm can be generated, each of which
has a different tradeoff among precision of the algorithm, resource requirements
and performance. Consequently, designers can more efficiently decide the most

suitable hardware implementation for an application.

The second contribution was the development of an improved interface that
optimizes data transfers between the FPGA device and the CPU via the memory
bus. Most currently available FPGA reconfigurable computing (RC) platforms
communicate with the CPU via a peripheral bus, such as the Peripheral Connec-
tivity Interface (PCI) Local Bus. In this work, an FPGA interface communicating

with the CPU via the memory bus was developed in an attempt to improve the
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speed of data transfers between the FPGA device and the CPU. Being an inte-
gral part of the CPU datapath in the computer’s organization, the memory bus
interface has substantial throughput and latency improvements upon the PCI
Local Bus. Data transfers on the PCI Local Bus have significant overheads due
to the complicated handshaking involved (such as bus mastering, direct mem-
ory access (DMA) and interrupts). As compared with the PCI Local Bus, the
memory bus interface is simpler because it involves only simple read and write

accesses.

These design methodologies were used to produce designs with significant ben-
efits in terms of productivity and performance over software and many conven-
tional FPGA designs. The advantages of applying these techniques were justified

in several applications:

e International Data Encryption Algorithm (IDEA) cipher: The
IDEA cipher is a private key cryptosystem with very high cryptographic
strength [Sch96]. This application makes use of the memory bus FPGA

interface.

e Post-rendering 3D warping: This algorithm renders an image based on
an input image (typically obtained from geometrical rendering) and a depth
map. Its computational complexity depends only on the output image size
and is independent of scene complexity, making it very suitable for real-time
rendering systems [MMB97]. This application makes use of the automatic

floating-point to fixed-point design approach.

e An electronic cochlea model: The Lyon and Mead electronic cochlea
model mimics the qualitative behavior of the human cochlea [LM88]. This
application makes use of floating-point to fixed-point translation and a

memory bus FPGA interface.
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e A systolic structure for the computation of the Discrete Cosine
Transform (DCT): By setting up the mathematical relationships between
the DCT and discrete moments (DMs), the DCT can be computed by a sys-
tolic structure which involves only additions and multiplications [LLCL98].
This application makes use of the floating-point to fixed-point design ap-

proach and the variable-radix variable-wordlength architecture.

1.3 Organization of the Thesis

A background review of FPGAs and their hardware design methodologies as well
as interface issues are presented in Chapter 2. It begins with a description of
the basic structure of an FPGA, followed by literature reviews of hardware de-
sign methodologies including hardware compilation, floating-point to fixed-point
translation and digit-serial computation. The chapter ends with a description of a
typical microprocessor-based RC system, highlighting the design of the interface
between FPGAs and CPUs.

In Chapter 3, a system that automatically translates floating-point algorithms
to fixed-point hardware (called fp) is presented. This system facilitates the im-
plementation of software algorithms in hardware. During the translation process,
the tradeoff among various conflicting design criteria is addressed. In Chapter 4,

the extension of fp to support digit-serial architectures is presented.

An FPGA RC platform called Pilchard is described in Chapter 5. It overcomes
the bandwidth limitation of the peripheral bus by using the memory bus. Both
hardware and software design aspects regarding the development of Pilchard are

presented.

Applications are presented in subsequent chapters. These include an imple-
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mentation of the IDEA cipher (Chapter 6), a post-rendering 3D warping algo-
rithm (Chapter 7), a parameterized electronic cochlea model (Chapter 8) and a
systolic array implementation of the DCT (Chapter 9). In the final chapter, a
summary of the work in this thesis is given. Some directions for the future work

are also discussed.

In the appendixes, the implementation details of fp are first described (Ap-
pendix A). Next, the technique of directly modifying FPGA design bitstreams
are presented (Appendix B). This technique was applied in the implementation
of the IDEA cipher. Finally, a description of distributed arithmetic (DA) is given
(Appendix C). DA is a computational algorithm used in the implementation of

the electronic cochlea model.



Chapter 2

Background

This thesis addressed methods to improve upon existing FPGA-based coprocessor
approaches by reducing design effort and increasing the performance of the re-
sultant implementation. In this chapter, background information on FPGAs is
first discussed. To show the potential performance advantages of an FPGA-based

design, some high-performance FPGA implementations are described.

In this work, two issues in the FPGA-based coprocessor approach were iden-
tified and improvements were made on these. The first issue is concerned with
the synthesis of an FPGA design from a high-level algorithmic description. An
FPGA design needs to satisfy various implementation criteria, including preci-
sion, area, latency and throughput. In this thesis, a design methodology which
facilitates the translation of an algorithm to an efficient hardware implementation
was developed. This methodology reduces the design effort associated with port-
ing a purely software-based algorithm to an FPGA-based coprocessor platform
and involves hardware compilation, floating-point to fixed-point conversion and
digit-serial computation. A review of the literature in these areas of research is

also presented in this chapter.
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The second issue addressed in this work is concerned with the data trans-
fers between the FPGA and CPU. Most existing reconfigurable computing (RC)
platforms use a peripheral bus for the communication between the FPGA and
CPU and this interfacing bus is often a bottleneck in the FPGA-based copro-
cessor approach. In this work, an RC platform with a memory bus interface was
developed which has improved throughput and latency. Background information
related to the interfacing issue are given in this chapter. A brief description of
the RC platforms (each of which have a peripheral bus interface) used in this

work follows.

2.1 Field-Programmable Gate Arrays

FPGAs are digital hardware devices with their functionality programmable after
fabrication. A typical FPGA consists of an array of programmable computa-
tional cells interconnected by programmable routing resources. Most commercial
devices, such as the Xilinx XC4000, Xilinx Virtex and Altera A8000 series FP-
GAs, use four-input look-up tables (LUTSs) to implement the processing elements
in a cell [RFLCI0]. The architecture of such an FPGA is depicted in Figure 2.1.
Each logic cell (LC) consists of a four-input LUT (the computational element)
together with a register or a latch (the storage element). The inputs and outputs
of the LCs are connected together via programmable interconnections. These are
implemented as horizontal and vertical wire segments between adjacent blocks
that are interconnected via programmable switch matrices (PSMs). The ratio of
storage elements to computational elements is much higher than that of a typi-
cal ASIC or VLSI digital design. Also, the locations of the storage elements are
very close to the processing elements. These two properties enable very efficient

pipelined architectures.
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Figure 2.1: Architecture of an FPGA with four-input LUT cells.
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The functional blocks and routing in a configured FPGA are essentially hard-
wired to solve a specific problem. Compared with a microprocessor, fine-grained
parallelism can be achieved and bit-level operations can replace word-level op-
erations. These give FPGA-based computing machines the potential of having

higher computational density than general-purpose microprocessor systems.

Modern microprocessors typically have superscalar architectures in which mul-
tiple instructions are issued and executed in a single clock cycle. The latest micro-
processors also incorporate single instruction multiple data (SIMD) technologies,
such as the Intel Pentium III Streaming SIMD Extension (SSE) [Int00a], enabling
an instruction execution pattern similar to that of high-end vectorized supercom-
puters. Furthermore, microprocessors typically have an order of magnitude higher
clock rate than an FPGA design. Despite these disadvantages, well-designed im-
plementations of an algorithm in an FPGA can employ fine-grain parallelism
which not only compensates for these deficiencies, but also offers higher perfor-
mance for many applications [DeH00]. Field-programmable custom computing
machines (FCCMs) have achieved the fastest or the most economical results for

many important problems. Some examples include:

e Cryptography: An FPGA-based computing platform called a Program-
mable Active Memory (PAM) machine [VBR'96] achieved the fastest re-
ported Rivest-Shamir-Adelman (RSA) encryption/decryption rate in any
technology (600 Kbits/sec and 165 Kbits/sec for 512-bit and 1024-bit en-
cryption/decryption respectively). In this research work, an implemen-
tation of the International Data Encryption Algorithm (IDEA) achieves
1166 Mbits/sec on a Xilinx Virtex XCV300-6 device, as compared with
a 147 Mbits/sec parallelized software implementation on a Sun Enterprise
E4500 machine equipped with twelve 400 MHz Ultra-ITi processors [CTLLO1].
An implementation of the Data Encryption Standard (DES) on a Xilinx
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XCV150-6 device achieves an 10.7 Gbits/sec encryption rate, which was 10%
faster than the fastest reported ASIC implementation (9.3 Gbits/sec) and
700 times faster than an optimized software implementation on a 200 MHz

Intel Pentium processor (15 Mbits/sec) [Pat00].

e Signal processing: Optimized implementations of digital filters on FP-
GAs outperform dedicated digital signal processing (DSP) chips by an order
of magnitude. For instance, the performance of an implementation of an
8-bit, 16-tap finite impulse response (FIR) filter on a Xilinx XC4013E-2
FPGA was 22 times faster than a 50 MHz, 50 million instructions per
second (MIPS) fixed-point DSP processor (such as the Texas Instruments
TMS320C5401 DSP) and 92 times faster than a 133 MHz Intel Pentium

processor [Kna98|.

e Pattern matching: FPGA implementations for DNA or protein sequence
matching have achieved the highest performance among all implementa-
tion technologies. A systolic array for searching in genetic database imple-
mented on a Splash 2 programmable logic array outperforms contemporary
massively parallel processors (MPP) and supercomputers (CM-2 and Cray-
2) by two orders of magnitude and typical workstations (Sun SparcStation
I) by three orders of magnitude [Hoa93]. An FPGA-based point pattern
matching processor has been applied to fingerprint matching. It achieved a
matching speed of 2.6 x 10° fingerprints per second, which was 3700 times

faster than a software implementation on a Sun SparcStation 10 [RJR95].

e Stereo vision: Using a software implementation on a Sun SparcStation
IT machine, the time taken to compute the correlation between a pair of
images so as to produce stereo vision requires 59 seconds. A four-chip

(Motorola DSP96002 DSP) DSP-based implementation performs the same
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task in 9.6 seconds. An FPGA-based implementation completes this task in
0.28 second, which is 34 times faster than the DSP-based implementation

and 210 times faster than the software implementation [Mol93].

e Speech synthesis: Application of FPGAs to speech synthesis on the
DECPeRLe-1 architecture achieves 11 million samples per second, which
amounts to 22 million 16-bit multiplications, 100 million arithmetic and
logic unit (ALU) operations and 45 million memory operations. This FPGA-
based implementation, which is capable of producing 256 independent voices,
can be compared with a DSP-based implementation which can only com-
pute 24 voices at the same sampling rate on a 27 MHz Motorola 56001 DSP
processor [VBR196].

Other applications of FPGAs that achieved notable performance include an
implementation of the finite difference method for solving the heat and Laplace
equation (39 x 10% add and shift operations per second) [HRR93] and a hardware
emulator for binary neural networks based on the Boltzmann machine model
(500 megasynapses per second, equivalent to 0.5 x 10° additions and 0.5 x 10°
multiplications by small coefficients) [Sku90, Sku92]. As a comparison, the latest
microprocessors have performances in the order of a billion arithmetic operations

per second using a 1 GHz clock.

All of the work described in this thesis was developed using Xilinx FPGAs
(XC4000 and Virtex series). The information below was obtained from the data-
book published by Xilinx [Xil00c]. The two major configurable elements in
an Xilinx series FPGA are configurable logic blocks (CLBs) and input/output
blocks (IOBs). CLBs provide the functional elements for constructing the user’s
logic, whereas IOBs provide the interface between the package pins and internal

signal lines. The CLBs are organized in a two-dimensional array with IOBs sur-
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rounding this array. For the XC4000 series FPGA, a CLB consists of two LCs.
For the Virtex series FPGA, a CLB consists of four LCs organized in two Virtex
slices. Each LC has a four-input function generator and a storage element. The
four-input function generators are implemented as four-input LUTSs, each of them
providing the functions of one four-input LUT or a 16 x 1-bit synchronous random
access memory (RAM) (called distributed RAM). Furthermore, two LUTs of the
same slice (Virtex series) or the same CLB (XC4000 series) can be combined to
create a 16 x 2-bit or 32 x 1-bit synchronous RAM or a 16 x 1-bit dual-port
synchronous RAM. For the Virtex series, one of the LCs in every slice can be

configured as a 16-bit shift register (called a shift register LUT (SRL)).

The density of FPGAs has been increasing rapidly. The Xilinx XC4000 series
FPGAs have up to 180000 system gates (XC4085XL FPGA). The later Xilinx
Virtex series FPGAs have up to 4 million system gates and 832 Kbytes 32-bit
memory (called BlockRAM) (Virtex XCV3200E FPGA). The system clock rate
has also been improving. The Xilinx XC4000 series FPGAs can operate at a
system clock rate of 80 MHz and an internal clock rate over 150 MHz. The
Xilinx Virtex series FPGAs can operate at 240 MHz system clock rates including
input/output (I/0) [Xil00c]. The latest FPGA devices, the Xilinx Virtex-1I series
FPGAs, have a density of up to ten million system gates. They use a 0.15 um
CMOS eight-layer metal process which can operate at 1.5 V with a 420 MHz
internal clock speed and 840 Mbits/sec I/O bandwidth per pin. In addition
Virtex-II FPGAs have dedicated 18-bit multipliers and up to 3.5 Mbytes of dual-
port RAM [XilOla]. As integrated circuit technology continues to improve at an
exponential rate, one can be assured that even more powerful FPGA devices will

be available in the future.
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2.2 Hardware Compilation

In Chapter 1, recent developments in microprocessor technology were described.
Compared with FPGA designs, high-performance microprocessors have the ad-
vantage of higher clock rates, dedicated functional units (specifically the floating-
point unit), and virtually unlimited memory. The programmable nature of FPGA
devices, although providing the flexibility for logic customization, cannot usually
match the clock rate of microprocessors. This is because the same logic function
and routing requires more levels of logic and has higher capacitance in an FPGA
than in a microprocessor. An FPGA also has a finite number of LUTSs, registers
and routing resources. To achieve an overall performance which is competitive to
that of a microprocessor, it is essential for an FPGA design to achieve a higher
degree of parallelism. On the other hand, resources should be carefully conserved.
In general, to increase the degree of parallelism it is important to make as many
LUTs compute simultaneously while at the same time ensuring that the design

will fit in the given resources.

It is important to have a convenient design environment that elaborates par-
allelism and generates area-efficient designs. In the FPGA-based coprocessor
approach, software programs should be able to be automatically translated to
hardware without requiring much extra effort. Ideally, designers should be able
to develop an application as a single program, and later this program can be
automatically partitioned so that some parts execute in hardware and some parts

in software, with both parts individually optimized for efficiency.

Hardware designers and programmers have traditionally considered hardware
and software to be distinct entities with very little in common. Programs are
predominantly regarded as ordered sets of statements that are to be interpreted

sequentially. They encapsulate the execution flow of the algorithmic level behav-
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ior. Describing a circuit is still different from expressing an algorithm. Circuit
descriptions are viewed as sets of concurrent operations in which the same oper-

ations recur every clock cycle [Wir98].

Hardware compilation bridges this gap by automatically translating a software
program into a circuit description. This is similar to a software compiler that
compiles a program into an executable. Hardware compilation permits designers
to primarily focus on the algorithm with most of the circuit specification being

automatically generated from the algorithmic description.

Research on hardware compilation can be considered divided into two main
streams. The first concentrates on extracting the dataflow of an algorithm from
a textual or graphical description [RCHP91, Wei97, WL99, MHD*97, MRHH97,
GSBT00, Xil00a]. The other focuses, not only on the dataflow, but also on
the generation of control sequences [PLI1, PLL93, LW94, GL95, LFP94, Pag96,
Wir98, Z1.99, SVR 98, JD99, PD00]. The latter approach is more general because
most algorithms consists of combinations of data and control transfers. Never-
theless, the former approach yields simplified control circuitry and is suitable for

dataflow-intensive, high-throughput applications, such as DSP.

2.2.1 Dataflow Extraction

The idea of dataflow extraction is to isolate the data transfers and operations of an
algorithm and convert these into a hardware design. This approach cannot handle
arbitrary transfers of control such as loops. When this approach is used in FPGA-
based coprocessor design, designers need to explicitly identify the suitable parts of
a program to be executed in hardware (usually computationally intensive inner-
loops). The hardware generated from the dataflow extraction approach can be

efficiently pipelined and its control circuitry is simple, enabling implementations



Chapter 2. Background 17

with high throughputs. These implementations often require high-bandwidth

data sources and sinks.

In 1991, Rabaey et. al. proposed a system that compiles a Silage language
description into a dataflow graph and then maps and schedules the operations to
a given number of operators [RCHP91]. This system is targeted for DSP chips

so scheduling of the limited amount of operators on the chip is crucial.

In 1997, Weinhardt reported a compilation tool that takes a Pascal-like de-
scription and synthesizes a pipelined architecture [Wei97]. During compilation,
alias and dependency analysis were performed. This analysis tells whether it is
possible to normalize the inner loops. Normalization is the process of identify-
ing whether the statements in the loops can be transformed such that the loop
becomes the innermost loop (without nested loops) after transformation. The re-
sultant architecture employs an acyclic dataflow corresponding to the normalized
inner loops, and the outer loops become feedback paths around these inner loops.
This work was later refined to include loop unrolling, tiling and merging so as to

elaborate more parallelism in loop bodies [WL99].

In work by McCanny et. al., a hierarchical VHDL library that implements
DSP functions was developed [MHD"97, MRHH97|. To construct a DSP system,
designers pick the required components from the libraries and connect them,
essentially describing the dataflow of an algorithm. The libraries were targeted

for ASIC implementations, but its idea applies to FPGA implementations as well.

PipeRench, reported by Goldstein et. al., is another system that transforms
a C-based description into a pipelined architecture [GSBT00]. The PipeRench
compiler inlines all functions and unrolls all loops to generate a straight-line,
single-assignment program which can be trivially mapped to a fully-pipelined

architecture.
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In 2000, a commercial tool that translates a Simulink system model (Simulink
is bit-true system simulator that runs in the Matlab programming environment)
to Xilinx hardware descriptions was introduced [Xil00a]. In this design flow, the
system model description specified by a designer is first simulated in the Simulink
environment for a given set of inputs. The system model may then be adjusted
until the simulation output satisfies performance requirements. The system model

is then translated to a netlist by the tool and taken for hardware implementation.

2.2.2 Dataflow and Control Sequence Extraction

By generating both dataflow and control sequences it is possible to convert ar-
bitrary software programs to hardware implementations. This is a more general
approach which for some algorithms may require substantial resource overhead.
In such an approach, the dependencies of some operations, such as loops with vari-
able number of iterations, are resolved at runtime but not during compilation.
These dependencies degrade the throughput of the resultant implementation as
compared with the dataflow extraction approach due to two reasons. First, the
degree of parallelism is degraded because some operators are forced idle when
waiting for an operand (such as the result from a loop); second, the control cir-

cuitry is more complicated.

In 1991, Page and Luk reported the compilation of Occam programs for FP-
GAs [PL91]. The hardware implementation sequentially executes one assignment
statement or a set of explicitly specified parallel assignment statements in each
clock cycle. Later, this language-based approach for developing hardware was
extended to use the Ruby language [PLL93, LW94, GL95]. Ruby is particularly
suitable for hardware designs. Instead of using assignment statements, the Ruby

language uses functions and relations on the states and I/O of the system to de-
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scribe a program. Another extension of the hardware compiler was to exploit the
syntax of the source program to guide the layout in the implementation [LFP94].
This was achieved by introducing size and performance estimation into the com-
piler. Using guided layouts, faster and better P&R were obtained. In 1996, Page
proposed a language called Handel and a compiler that translates Handel pro-
grams to hardware implementations [Pag96]. The Handel language is a small
subset of Occam2 programming language. It has both sequential and parallel
compositions. In 1998, Wirth reported a hardware compiler for programs written
in an Oberon-like language [Wir98]. The above work has the commonality that

they require designers’ explicit specification of parallelism at the statement level.

In contrast, the hardware compilation system proposed by Zhu and Lin in
1999 [Z199] employs process level parallelism. This system compiles a C-like
programming model based on the communicating sequential processes (CSP) for-
malism. Each C-like function in the program corresponds to a process which can
be either run in hardware or in software. This process-based model enabled an ex-
ecution pattern similar to a multi-thread software program. This work addressed

the partitioning and the interfacing issue between hardware and software.

Schaumont et. al. proposed a framework for the design of high speed ASICs, in
which a hardware circuit is derived from two C++ classes, namely the signal class
and the signal flow graph (SFG) class [SVR98]. In this framework, expressions
are operations on signal objects, and a set of signals assemble a SFG object. The
SFG objects in a program were translated into a finite state machine (FSM),

followed by the scheduling of these objects onto hardware.

There is also a commercial tool called A|RT which automatically converts C
to VHDL, in which resource sharing can be specified explicitly such that imple-
mentations with different throughput and area can be addressed [JD99]. The tool

emphasizes one-to-one mappings between VHDL and C statements, but did not
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seriously consider the performance of the resulting implementations.

Handel-C is another commercial tool, which is itself a hardware design lan-
guage and a hardware compiler [PD00]. Being derived from the Handel language,
Handel-C also requires explicit parallel constructs to control the spatial aspects
of the design. Novel features of Handel-C include its support for I/O statements,

which makes it suitable for the design of embedded systems.

2.3 Floating-Point to Fixed-Point Translation

Fixed-point implementations are characterized by the assignment of a fixed word-
length and a fixed exponent to each variable. This is in contrast with a floating-
point implementation in which wordlengths of variables remain fixed but the
exponents can change at runtime. Fixed-point hardware implementations are
usually preferred over floating-point implementations since they are more favor-
able in terms of hardware resources, design cost and complexity, latency and
power consumption, especially for those designs having variables with small dy-

namic range.

The major difficulty with designing fixed-point implementations arises from
the effects of quantization. Quantization refers to the fact that a finite word-
length is used to represent a real number. There are two sources of quantization
errors in an algorithm: first, the difference between the a real number and the
value represented by the finite wordlength; second, the error produced using
these finite wordlength representations as operands. To minimize relative error
produced by quantization effects, the number of bits for the fractional part of a
fixed-point variable should be maximized. At the same time, the remaining bits
which are allocated for the integer part should be sufficient to avoid overflow dur-

ing execution. Fixed-point representations are sensitive to quantization errors,



Chapter 2. Background 21

particularly when the dynamic range of a variable is large. The quantization ef-
fects of a floating-point variable with the same number of bits is less pronounced
if it has a large dynamic range. In other words, the exponent of a floating-point
variable can be optimally adjusted according to its dynamic range, even if the

exponent uses some bits and reduces the precision.

In software, programmers tend to use floating-point arithmetic for implement-
ing algorithms since floating-point datatypes are integrated in the programming
languages and libraries. The IEEE 754 Floating-Point Standard [ANS85] is used
in almost every microprocessor system. In practice, a 64-bit double-precision
floating-point format is used. A typical fixed-point design begins with a floating-
point algorithmic description. After verification, each floating-point variable is
translated into a fixed-point variable. The bit width of the fixed-point operators
are also decided, usually by the wordlengths of the operands. To ensure the re-
sults obtained are correct, designers observe the dynamic ranges and errors of
variables, and specify sufficient numbers of integer and fractional bits for each
fixed-point variable and operator. Noting that an algorithm consists of many
variables, each of which can be independently assigned different wordlengths for
fractional and integer parts, it is obvious that searching for a set of optimal values

in this enormous space is extremely tedious.

This floating-point to fixed-point design methodology is particularly meaning-
ful for FPGA implementations because FPGAs are capable of bit-level processing
and the wordlength of each variable can be chosen based on the precision required.
In contrast, DSP and microprocessor implementations have fixed wordlengths and
optimal scaling is used in the floating-point to fixed-point translation. For FPGA
implementations, a set of optimized wordlengths and optimized variable scaling

is applied to each variable.

In the literature, there have been two types of approaches, namely simulation-
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based [Sun91, KS94, SK94, SK95, KKS98, WBK+97, WBGM97, KKS99, KKS00,
CRS199, JD99] and analytical-based [CC99, CCL00, CCL01, CRS*99].

2.3.1 Simulation-Based Approach

The simulation-based approach compares the performance of the implementation
with an error-free reference model (typically a floating-point software implemen-
tation). The wordlengths of variables are chosen heuristically while observing
certain error criteria. Different configurations of wordlengths are simulated until
the error is acceptable. This method effectively models the runtime behavior of
the system, so it yields precise optimization results provided that the simulation
dataset is representative. The drawback of this approach is its long simulation
time (particularly for large complex systems) and the difficulty of choosing a

representative dataset.

In 1991, Sung reported an automatic scaling method for fixed-point DSP de-
signs [Sun91]. The method derives the dynamic ranges of every fixed-point vari-
able based on the simulation of a hypothetical floating-point hardware model.
This dynamic range information was used to determine the pre-scaling and post-
scaling of the operands of every operation. Later, Kim and Sung reported a
floating-point to fixed-point assembly program translator using a similar method
[KS94]. The above work targeted fixed-point DSP chips, therefore only the opti-
mal scaling of the variables were considered and the wordlengths of the variables
were fixed to the word size of the DSP chips. In addition to their work on
the scaling of variables, in 1995, Sung and Kim proposed a system which opti-
mizes the wordlengths of variables in DSP systems [SK94, SK95]. The system
minimizes a cost function which reflects resource requirements by modifying the

wordlengths of the variables. The optimization is constrained so that some error
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criterion is satisfied. Furthermore, the authors developed an optimization utility
for C++ based DSP programs [KKS98]. This utility implements a C++ class for
fixed-point representation arithmetic operations. During the initialization of the
fixed-point objects, the wordlength and modes of sign, overflow and quantization
can be specified. There is a simulator, a range-estimator and an optimizer associ-
ated with the class, hence it is possible for users to specify only the algorithm in

a C++ function, and the wordlengths of variables are automatically determined.

In 1997, Willems et. al. proposed a system called Fixed-point pRogramming
DesiGn Environment (FRIDGE) which employs a similar approach, in which
fixed-point variables are also modeled as a C++ class [WBK*97, WBGM97].
FRIDGE initially obtains a worst-case estimation of integer and fractional word-
lengths of every variable, and then progressively reduces these wordlengths. At
every step of wordlength reduction, the system performs a simulation to ensure

the design criteria is fulfilled.

2.3.2 Analytical-Based Approach

In the analytical-based approach, wordlengths are derived from source code struc-
tures, local annotations, interpolation and propagation of ranges of variables.
This approach has faster runtime than the simulation-based approach, but its
result is conservative and often leads to an over-estimation of wordlengths of the

variables.

Cilio and Corporaal reported a tool that converts floating-point C codes to
fixed-point in 1999 [CC99]. The tool computes the wordlengths of fixed-point vari-
ables by propagation of precision formats along the directed acyclic graph (DAG)
built from the input C function. Later, Constantinides, Cheung and Luk reported
a system called Synoptix [CCL00, CCLO01] which takes a Simulink block diagram
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representing the dataflow of an algorithm. Variables are optimized based on es-
timating the observable effects from truncation and roundoff errors. To facilitate
this estimation, a noise model was proposed. This model injects the errors of all
the operators towards the overall system outputs, hence the error of the overall
system outputs is a weighted function of every possible truncation error inside

the system. The output of Synoptix is synthesizable VHDL code.

The work proposed by Cmar et. al. [CRS199] is an integration of the two ap-
proaches: simulated-based and analytical-based. They presented a system which
converts floating-point C++ code to fixed-point C++ code. For the integer part,
an analytical approach was used. The integer wordlengths were determined either
by a statistical method or by propagation of dynamic ranges. For the fractional
part, a simulation-based approach was used. Minimization of fractional word-
length was carried out by comparing the value of the fixed-point representation

with that of the original floating-point representation.

The A|RT tool described in Section 2.2.2 also supports fixed-point model-
ing [JD99]. However, it requires a manual specification of variable wordlengths.
Simulation of the algorithm with the specified variable wordlengths can subse-

quently be carried out.

2.4 Digit-Serial Computation

The most straightforward and common method to implement fixed-point arith-
metic in hardware is to employ a two’s complement bit-parallel architecture. In
a bit-parallel architecture, an n-bit variable requires an n-bit wide datapath for
its transmission, and on any clock cycle all the n data bits appear on their asso-
ciated wires to form a two’s complement representation of the value. Bit-parallel

arithmetic operators process the entire variable in a single clock cycle.
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In a bit-parallel implementation, an n-bit operation would require an n-bit
operator. Most two’s complement arithmetic operators are effectively repeating
the same bitwise operation for every bit of a variable. For instance, an n-bit
adder is formed by cascading n identical one-bit full-adders; an n-bit multiplier
is formed by the summation of n partial products which needs n n-bit adders.
It can be observed that if time-multiplexing is used, the computational logic can
be reused so that different bits of the operands are processed in different clock

cycles. The result is complete after all the bits have been processed.

This time-multiplexing technique is known as digit-serial computation. In-
stead of processing the entire word of a variable, digit-serial arithmetic operations
are carried out in multiple clock cycles, a digit being processed on each cycle. A
digit is a collection of bits from a numerical representation. Suppose a variable
has n-bits and is divided into d-bit digits. Then, at least [n/d] digits are required
to form a complete representation of the variable. In order to identify which digit
is being transmitted over the associated data wires in a clock cycle, each variable
in a digit-serial system is associated with a control signal which its logic level
is high when the first digit is being transmitted. This mechanism is depicted in
Figure 2.2. There are two special cases of digit-serial architectures, namely when
the digit size equals one and when the number of digits equals one. These two

cases correspond to a bit-serial and a bit-parallel architecture respectively.

Due to the reuse of hardware, digit-serial architectures offer reduced area over
bit-parallel implementations. Moreover, since the number of bits to be processed
in a clock cycle is reduced, a higher clock rate can be achieved. The drawback of
employing a digit-serial architecture are increased latency and perhaps decreased
throughput. Increased latency is a direct consequence of processing an operation
in multiple clock cycles. Decreased throughput is due to the dependencies and

overhead of registers and feedback paths, which are essential to carry partial
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Figure 2.2: The control signal associated with a variable in a digit-serial system.
clk is the clock signal, x is an m-digit variable and ctrl, is its control signal. The

bracketed term of x indicates the digit of the variable.

results across clock cycles [PW90, HP95, SCP98|.

A special class of bit-serial computation is distributed arithmetic (DA). DA
offers an efficient method to implement a sum of products (SOP). SOP is widely
used in DSP algorithms such as for infinite impulse response (IIR) and FIR
filters. DA is applicable provided that one of the operands of every product term
does not change during execution. Instead of requiring multipliers, DA utilizes
a pre-computed LUT [Gos95, Xil96]. A detailed description of DA is given in

Appendix C.

2.5 FPGA-Based Coprocessors

In high performance FPGA-based coprocessors, the bandwidth and latency of
data transfers between the FPGA and CPU is of primary importance. Examples
of applications that have high bandwidth requirements include image rendering,

DSP and cryptographic systems. A low transaction overhead is also crucial for
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applications involving numbers of data transfers.

The organization of a typical computer, such as the Intel Pentium III processor-
based personal computer (PC), is shown in Figure 2.3. The organization centers
around the CPU. Most modern CPUs incorporate cache memory on chip to maxi-
mize the transfer bandwidth. The latest CPUs operate at over 1 GHz. The cache
memory usually operates at full speed or half speed with respect to the CPU
and the cache data bus is quad quadwords (256 bits) wide, yielding an equivalent
bandwidth higher than 32 Gbytes/sec [Int01b].

The external connection of the CPU is commonly known as the Front-Side
Bus (FSB). As the FSB is an off-chip component, its operating frequency is typ-
ically lower than that of the CPU (between 100 and 400 MHz). Mainstream
systems typically have a 64-bit FSB operating at 133 MHz, equivalent to a band-
width of 1064 Mbytes/sec. The primary interface between the FSB and the CPU
is controlled by the Graphics and Memory Controller Hub (GMCH) that con-
nects to the main memory (a bandwidth of 1064 Mbytes/sec according to the
PC133 standard [Int98d, IBM98]). Other high-bandwidth devices include the
video interface with a bandwidth of 1064 Mbytes/sec for the industrial Acceler-
ated Graphics Port (AGP) 4X standard [Int98al.

The GMCH is connected to the I/O Controller Hub (ICH), which handles the
connections to comparatively low-bandwidth devices. The two standard inter-
faces for these low-bandwidth devices are the 132 Mbytes/sec Peripheral Connec-
tivity Interface (PCI) Local Bus [PCI] and the 33 Mbytes/sec Industrial Standard
Architecture (ISA) Bus.

In general, bandwidth decreases as one moves from the CPU towards the
peripheral bus. Similarly, the latency of data transfers is higher in the peripheral

bus because more components are involved for data transfers between the CPU
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Figure 2.3: Organization of a typical computer (adapted from Intel 815E chipset
block diagram).
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and the peripheral bus. Also, each intermediate component accumulates small
data packets to form larger data packets before a data transfer operation in
order to minimize the number of transactions and reduce the cost of transaction

overhead.

2.5.1 Reconfigurable Computing Platforms

Existing RC platforms generally connect to the CPU using the fastest available
peripheral bus. Currently, most FPGA RC platforms use the PCI or PCI64 Local
Bus (66 MHz, 64-bit, 528 Mbytes/sec) interfaces. The FPGA RC platforms used
in this research include the Annapolis Wildforce [Ann99b], Wildstar [Ann00] and
Wildcard [Ann99a] Reconfigurable Computing Engines.

The Annapolis Wildforce Reconfigurable Computing Platform is PCI Local
Bus device with one Xilinx XC4085XL FPGA (Processing Element 0 (PEO0))
and four Xilinx XC4062XL FPGAs (PE1 to PE4) interconnected by a crossbar.
A Mezzanine card which contains up to 4M x 32-bit Static RAM (SRAM) can
be connected to each PE. This platform offers approximately 700000 equivalent
system gates and up to 80 Mbytes SRAM [Ann99b].

The Annapolis Wildcard Reconfigurable Computing Platform is CardBus
(equivalent to the PCI Local Bus in a different form factor) device with one Xilinx
Virtex XCV300 FPGA as the PE and two 64k x 32-bit SRAM. This system has
400000 equivalent system gates [Ann99a].

The Annapolis Wildstar Reconfigurable Computing Platform is a PCI64 Lo-
cal Bus device with three Xilinx Virtex XCV1000 FPGAs (PEO to PE2) with
four 512k x 32-bit SRAM (two connected to PE1 and two connected to PE2).
Mezzanine cards can be attached between PEO and PE1, or between PEO and

PE2 (the platform can be populated with up to four Mezzanine cards) to fur-



Chapter 2. Background 30

ther expand the system’s memory. Each Mezzanine card contains two SRAM
(each of which up to 256k x 64-bit SRAM) and a crossbar for simultaneously
accesses from PEQ (32-bit) and PE1/PE2 (64-bit). This platform offers approxi-
mately 4.7 million equivalent system gates and a memory subsystem with up to
24 Mbytes SRAM. The aggregated memory width is 4 x 32 = 128 bits for PE0
and 2 x 64 + 2 x 32 = 192 bits for PE1/PE2 [Ann00].

2.6 Summary

This chapter reviewed the literature on FPGA design methodologies. In partic-
ular, hardware compilation, floating-point to fixed-point translation, digit-serial

computation and FPGA-based coprocessors were introduced.
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fp — From Floating-Point
Algorithms to Fixed-Point

Hardware

In this chapter, a design environment called fp which automatically translates
floating-point algorithmic descriptions into hardware-efficient fixed-point imple-
mentations is described. First, the motivations and aims for developing this tool
as well as its features are presented. Next, a description of the system compo-
nents and the design flow are given. Each of the four main procedures in the
design environment, namely compilation, simulation, optimization and hardware
generation are then presented. Finally, the modular and hierarchical design of

fp’s fixed-point and module libraries are described.
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3.1 Introduction

In Section 2.2, hardware design methodologies were reviewed. The methods to
translate a floating-point algorithm to a fixed-point implementation using digit-
serial computation were discussed. Although these research threads are useful in
designing FPGA applications, they have not been linked together in a design and

synthesis tool.

In this dissertation, an attempt to incorporate these design methodologies into
a single design space so as to improve the productivity of FPGA-based hardware
designs was made. In particular, emphasis was placed on a design methodology
that could be used efficiently in an FPGA-based coprocessor. It was a goal that
a designer be able to identify the most computationally intensive inner-loops and

then automatically translates these into FPGA-based hardware designs.

As described in Section 2.3, the translation of floating-point algorithms to
fixed-point requires the assignment of a fractional wordlength to every variable.
These fractional wordlengths determine the quantization errors of variables, which
consequently affects the performance of the algorithm. If multiple wordlengths
are allowed, the integer wordlength of every variable has to be decided also. This
poses a tradeoff between area and precision. In Section 2.4 it was suggested
that digit-serial architectures with low radix offer reduced area and an increased
clock rate at the expense of increased latency and reduced throughput. One of
the important steps in a digit-serial design is to determine the most appropriate
radix so that the required balance in various performance measures is satisfied.
Traditionally, these two design methodologies were not applied to the same design.
Better designs may result if these design methodologies are applied simultaneously
in a way that their advantages are incorporated. As both the floating-point to

fixed-point translation and digit-serial computation design methodologies have
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an independent design space, the result of combining these design methodologies
is a large design space which offers great flexibility if the most suitable design can

be chosen.

In addition, ease of use is desired for the automated synthesis tools. Ideally,
the design tools should translate a program to a circuit, optimize it automati-
cally, and produce a near optimal implementation of an algorithm that satisfies
user specifications: constraints on precision, area, latency and throughput of the
resultant implementation. A computer-optimized implementation is likely to be
more efficient than a human-optimized version because the translation process it-
self has a large and complex design space. Also, a computer can perform low-level

optimizations which human designers may find too tedious.

To address these challenges, a design environment called fp was developed.
The aims are enabling and simplifying the FPGA-based coprocessor designs while

retaining maximum performance results. It has the following features:

e The input is a floating-point algorithmic description written in a subset of
the C language which does not support pointers, dynamic memory alloca-
tion and I/O operations. Using the C language allows both software and
hardware portions of an application to be designed with a single program-

ming language.

e The dataflow of the algorithm is extracted and represented as a directed
acyclic graph (DAG) [ASU85, FH95] using a method similar to the work
of Weinhardt and Luk [Wei97, WL99] and Goldstein et. al. [GSBT00],

ensuring implementations with high throughputs.

e Floating-point to fixed-point translation is performed by applying a sim-
ulation method to a user-supplied dataset. This approach follows that

of Sung et. al. [Sun91, KS94, SK94, SK95, KKS98, KKS99, KKS00] and
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Willems et. al. [WBK*97, WBGM97] but offers more precise estimations
of the required wordlengths of variables, and therefore better area-efficiency

of the resultant hardware implementations.

e Digit-serial implementations are generated with the option of sacrificing

throughput and latency in order to obtain smaller area implementations.

e A cost function is used to explore the tradeoff among various performance

measures, including precision, area, throughput and latency.

e The design environment is modular, hierarchical, and multiple module li-
braries are supported, allowing different hardware architectures (such as
pipelined operators or multi-cycle operators) with different performance cri-
teria. More complicated operations are built using the primitive operators

in the library.

e Automatic synthesis of the datapath is performed and the output is in

standard VHDL, enabling both synthesis and simulation.

This chapter focuses on the translation of floating-point algorithms to fixed-
point hardware implementation in fp. An extension to support digit-serial imple-

mentations is described in Chapter 4.

3.2 System Components and Design Flow

To give a clear illustration of the design flow, the program in Figure 3.1 is used
as an example throughout this chapter. This program contains relatively small
number of operations and has loops and conditional statements. In this code,
fixed is a datatype used by fp to identify variables that will be converted to

fixed-point representations in the resultant hardware implementation.
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1 void g(fixed &a, fixed &b, fixed &x, fixed &y)
2 |

3 fixed r;

4 int i;

5 X =a+ b;

6 y = a * b;

7 r=y - X;

8 for (1 = 0; 1 < 2; i++)

9 {

10 x=(1==0)7y :x) *r;
11 y=y+ (a+Db);

12 }

13}

Figure 3.1: The example algorithmic description used for illustrating the fp design

flow.
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The fp design environment consists of the following components:

e Dataflow-extraction library: A C++ compiler uses the dataflow-extract-
ion library to compile a C program into a dataflow-extraction executable

which generates an assembly-like DAG description of the algorithm in C++-.

e Fixed-point library: The fixed-point library models fixed-point arith-
metic operations, and tracks quantization and computation errors under

different wordlength configurations.

e Optimizer: The optimizer processes and performs sample input vectors
for simulation of an algorithm under different wordlength configurations in

order to minimize area or errors at the outputs.

e VHDL generator: The VHDL generator uses the wordlengths determined
by the optimizer and calls the module library to generate a synthesizable
VHDL description of individual modules. It connects the modules together

and inserts appropriate control circuitry.

e Module library: The module library contains modules for arithmetic op-
erators. These modules serve two purposes: first, they provide area, latency
and throughput estimations to the optimizer; second, they generate VHDL

descriptions of the arithmetic operator.

Figure 3.2 illustrates the fp design flow. The primary input taken by the sys-
tem is the algorithmic description. It is processed by a C++ compiler with the
dataflow-extraction library to generate a dataflow-extraction executable. After
executing this program, a DAG describing the dataflow of the algorithm in the
form of a C++ program is generated. The DAG description is then compiled
with four components, namely the fixed-point library, the optimizer, the mod-

ule library and a user-defined cost function. In this pass, the module library is
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used for area, latency and throughput estimation only. The output of this pass
is an executable (its main function is known as the fp kernel) which is used for
wordlength optimization. This executable simulates the algorithm with a sample
dataset, varying the wordlengths of variables to reduce a cost function (described
later in Section 3.6.1) which incorporates quantization error, area, latency and
throughput measures. The output of the fp kernel specifies a configuration of
wordlengths that minimizes the cost function while satisfying user-specified con-
straints. Estimations of area and errors of every variable and output, as well
as the latency and throughput of the resultant implementation are also calcu-
lated. The VHDL description generator uses the wordlength configuration and
the intermediate DAG description along with the appropriate module library to
generate VHDL descriptions of individual operators used in the design. At this
step, proper control circuitry is also inserted into the design. The overall out-
put of the design flow is a fixed-point VHDL description that implements the

algorithm.

3.3 Compilation

The first step in the fp design flow is the translation of an algorithmic description
written in C to an equivalent DAG description in C++. The use of a DAG
facilitates the choice of employing a straight-line fully-pipelined architecture for

throughput maximization.

To carry out this translation, a C++ class called the fixed class was devel-
oped. Operations on fixed objects, for example a + b, do not actually perform
the arithmetic operations as typical classes do. Instead, this expression builds
a sub-graph which represents a + b in the eventual DAG description. In other
words, during the execution of the algorithmic description, the DAG that repre-
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Figure 3.3: The resultant DAG built from the program in Figure 3.1.

sents the algorithm is progressively constructed. In the system architecture of fp,

the fixed class is provided by the dataflow-extraction library.

Since the DAG is built according to the execution pattern of the program,
loop-unrolling and resolution of conditional statements are carried out automati-
cally. Due to the choice of using a fully-pipelined, non-feedback implementation,
loops with a variable number of iterations cannot be facilitated. The mechanisms
and the implementation details of the dataflow-extraction library is presented in
Appendix A.1. The resultant DAG built from the code in Figure 3.1 is shown in
Figure 3.3. Notice that the loop and the conditional statement at lines 8 to 12

are resolved according to the execution of the program.

The output of the dataflow-extraction process is the DAG description of the
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1 Module g;

2 g = ModuleBegin("g");

3  FIn("fIn0", "a");

4  FIn("fIni", "b");

5 FAdd("fAddo", "fIn0", "fInl");

6  FMul("fMulO", "fInO0", "fInl");

7  FSub("fSub0", "fMulO", "fAdd0");
8  FMul("fMulil", "fMulO", "fSub0");
9 FAdd("fAdd1i", "fMulO", "fAdd0");
10 FMul("fMul2", "fMull", "fSub0");
11 FAdd("fAdd2", "fAdd1", "fAddo");
12  FOut("fOuto", "fMul2", "x");

13 FOut("fOut1l", "fAdd2", "y");

14 ModuleEnd("g");

Figure 3.4: The DAG description of the algorithmic description in Figure 3.1.

algorithmic description in C++ code. The DAG description corresponding to the
DAG in Figure 3.3 is shown in Figure 3.4. The names of the operators (the node

names in the DAG) are assigned by the dataflow-extraction library.

The dataflow-extraction library uses the compiler to handle loop-unrolling
and resolution of conditional statements. With the optimization feature of the
compiler enabled, arithmetic optimization can be carried out. The design of fp

was simplified as the development of a dedicated compiler was unnecessary.
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3.4 Conventions

3.4.1 Modules and Operators

The DAG description generated by the compilation step (Figure 3.4) is bounded
by a pair of ModuleBegin() and ModuleEnd() function calls which indicate the
beginning and the end of a module respectively. A DAG module can be viewed
as an implementation of an algorithmic description. FEventually, a module is

translated to a VHDL entity.

In between ModuleBegin() and ModuleEnd() are function calls that declare
operators. Functions beginning with “F” declare operators inside the module.
Operators can be interpreted as components in the final VHDL output. In fp, an
operator carries out a certain class of operation (mostly arithmetic operations),
with the wordlengths of the operation parameterizable and configurable. As
shown in Figure 3.5, an operator contains an arithmetic core, surrounded by
N; inputs and N, outputs. Inputs and outputs are assigned port names inn,;
and outn, respectively, where 0 < n; < N; and 0 < n, < N,. In addition, an
operator itself can instantiate sub-operators thus enabling a hierarchical design.
Operators, sub-operators and ports are referenced by dot-separated names. For
instance, the name of a port outO of an operator £Add0 is £Add0.out0; the name

of a port in1 of a sub-operator fMull of an operator £Sop0 is £Sop0.fMull.inl.

3.4.2 Simulation Directed Acyclic Graph

The simulation DAG is a data structure that is constructed and maintained during
the execution of an optimization executable. The nodes of the simulation DAG
are operator objects, each of which is created when an operator call is executed.

The order of operator calls in the DAG description are essentially topologically
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Arithmetic core

Figure 3.5: Structure of a fixed-point operator.

sorted, so the sequential execution of a code segment corresponding to a DAG
description (the output of the compilation step) builds the simulation DAG. The
simulation DAG has the same topology as the DAG built in the compilation

procedure.

To illustrate the construction of the simulation DAG, the code segment in
Figure 3.4 is used. The ModuleBegin() function call in line 2 indicates the
beginning of the construction of a new module called g. The Fin() function
calls in lines 3 and 4 indicate that module ¢ has two inputs, namely a and b.
In fp, inputs (and outputs) are considered as operators. The input operators
themselves are named fIn0 and fIni. Lines 5 to 11 instantiate addition (FAdd),
subtraction (FSub) and multiplication (FMul) operations. The first parameter
to each function call is the name of the operator. The second and the third
parameters are the operands. Note that the names of the operands are all aliases
to the output port names of the operators. In lines 12 and 13, two outputs, namely

x and y are declared. Their operator names are fO0utO and fOutl respectively.
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The ModuleEnd () function call in line 14 indicates the end of the construction of

module g.

There is a class variable in the Module class which is an array of pointers.
During the process of constructing the module, this array of pointers is appended
with references to its operators. In subsequent steps of the simulation, the oper-

ators are accessible via this array.

3.4.3 Precision Format of Variables

The precision format of a fixed-point variable is parameterized by a pair (w, f),
where w is the wordlength (including integer and fractional wordlengths) of the
variable and f is the fractional wordlength. The exponent of the most signifi-
cant bit (MSB) of the two’s complement representation of the variable is 2¢~/~1

whereas that of the LSB is 27/,
As an example, the two’s complement representation b = (by, _1by,—2 - - . bibg)
of a value v with the precision format (w,, f,) is

V= by, g x 2% by, o 20 2y x 2 g x 2

where by, 1,0, 2,-..,b1,b0 € {0,1}.

3.4.4 Parameterization of Operators

In traditional fixed-point architectures [KKS98, WBK'97, WBGM97], only the
precision of variables are parameterized. Operators derive their required bit
widths from the precision of their inputs. A disadvantage of this method can
be understood with consideration of variables that are shared among multiple

operators. Consider a variable which is the input to two operators, with the
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output error of one operator more dependent on the quantization of the input
than the other. For the first operator a higher precision input variable may be
required, but for the second operator some fractional bits may be truncated to
reduce area while still satisfying the precision requirements. When only the pre-
cision of variables are parameterized one cannot individually adjust the precision

of a variable for different operators.

In contrast to previous approaches which only perform parameterization on
the precision of variables, parameterization in fp is performed on the operators,
allowing a variable to effectively have different precision formats when used as
inputs for different operators. FPGAs have rich routing and storage resources,
hence it is preferable to conserve computational resources by minimizing the bit
widths of operators, rather than to conserve routing (the bus width for the con-
nection between operators) and storage (stage latches inserted between operators
for time-alignment, as described in Section 3.5.3) by minimizing the wordlengths

of variables.

In the fixed-point library, all operator objects are parameterized. By modify-
ing these parameters (using the array of pointers in the Module class described
in Section 3.4.2), simulation of the algorithmic description with a given set of
operator configurations can be achieved. The tradeoff between precision and
area can thus be studied. The parameters of an operator describe the changes
of wordlengths of its inputs and outputs. A typical parameterization of an N;-
operand N,-output operator is depicted in Figure 3.6. In this figure, the terms

in parentheses are precision formats of variables.

There are N;+2 x N, parameters for a typical N;-operand N,-output operator.
The parameters inTruncationn;, 0 < n; < Nj;, control the number of bits to be
truncated from the LSB side of the N; operands respectively. The arithmetic core

derives the precision formats of every output based on the precision formats of
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Figure 3.6: Parameterization of an /N;-operand N,-output operator.

the inputs. The parameters outTruncationn,, 0 < n, < N,, control the number
of bits to be truncated from the LSB side of the N, outputs respectively. The
parameters outExpansionn,, 0 < n, < N, indicate the number of bits to be

added to the MSB-side.

During an optimization, fp tries different values of the “truncation” param-
eters. By adjusting these parameters, the fractional wordlength and hence the
precision of variables are reduced or increased and the optimizer investigates these

effects on the overall algorithm.

In addition, because the arithmetic core computes the integer wordlength
based on a worst-case analysis but a runtime analysis may indicate that a reduced
integer wordlength does not lead to overflow (as will be presented in Section 3.5.1),
the optimizer may adjust the values of the “expansion” parameters to override
the integer wordlength determined by the arithmetic core. More specifically,
negative “expansion” parameters reduce the integer wordlengths of variables and

their dynamic ranges are reduced.
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Nevertheless, all these parameters can be positive and negative, with nega-
tive “truncation” parameters indicating an increase in the fractional wordlength
and positive “expansion” parameter indicating an expansion in the integer word-
length. Tt will be shown in Chapter 4 that these parameter settings are useful
in a variable-radix variable-wordlength implementation. The standard technique
where only the precision of variables is parameterized is the case where all of the

parameters related to the inputs are zero.

For the sample program in Figure 3.1 which contains seven two-operand one-
output operators, two zero-operand one-output operators (the inputs) and two
one-operand zero-output operators (the outputs), there are 7 x (2+2 x 1) +2 X

(04+2x1)+2x(1+2x0) =34 parameters in total.

3.4.5 Quantization and Overflow Models

The fixed-point library in fp uses the truncation quantization model and the
wrap-around overflow model. In Appendix A.2, a description of the commonly
used quantization models (truncation and rounding) and overflow models (wrap-
around and saturation) is given and their hardware implementations are high-
lighted. It is shown that the truncation quantization model and the wrap-around
overflow model are the simplest form for hardware implementations so these were
chosen for implementations with the highest area-efficiency. Concerning quanti-
zation, it is always possible to use one more fractional bit with the truncation
model to obtain the same precision as the rounding model. Concerning overflow,
range estimation is based on worst-case analysis so that overflow does not occur.
Nevertheless, provided the sample dataset is representative of the runtime data,
runtime analysis of dynamic ranges can be used. The optimization procedure may

apply the runtime dynamic ranges via setting negative “expansion” parameters.
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Using truncation quantization and wrap-around overflow models, with a pre-
cision format (w, f), the representable range is [—2%~/~1 +27/ 2w=/=1 _92=/) and
the maximum absolute quantization error is 27/, Assuming random quantization

error, the mean absolute quantization error is statistically 27//2 = 2-/-L.

3.5 Simulation

The second step in the fp design flow is to derive an implementation of the al-
gorithmic description which has appropriate wordlengths satisfying the users’
requirements. To achieve this, an optimization approach was used. In every
iteration of the optimization, different configurations of variables’ wordlengths
are tried. Each trial is essentially a simulation of the algorithm under a spe-
cific configuration, from which the corresponding precision and area is estimated.

Additionally, latency and throughput are computed.

A complete simulation of an implementation of the algorithmic description

using a specific configuration of parameters involves the following steps:

1. Performing error extraction and range estimation;
2. Trimming operators whenever applicable;
3. Calculating latency and throughput of the module;

4. Estimating the area requirement of the implementation.

The outputs of simulation include the precision, area, latency and throughput

measures of the implementation using the specific set of parameters.
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3.5.1 Error Measurement and Range Estimation

Error measurement refers to the calculation of the difference between a fixed-point
implementation with a specific configuration of precision formats and an error-
free reference model. In fp, the reference model is a software double-precision
floating-point implementation. Range estimation refers to the calculation of the
maximum dynamic ranges of variables throughout the execution of the fixed-point

implementation of the algorithmic description.

The terms used in the description of error measurement and range estimation

procedures are explained below:

e Worst-case analysis: The analysis of the maximum magnitudes of dy-

namic range and quantization errors of an operation for arbitrary inputs.

e Runtime analysis: The estimation of dynamic range and quantization
errors of an operation via a simulation using a representative dataset as

input.

e Fixed-point value of a variable: The numerical value of a variable ob-
tained from a bit-true fixed-point simulation of the algorithmic description

(with a certain set of fixed-point precision formats of variables).

¢ Floating-point value of a variable: The numerical value of a variable
obtained by executing the algorithmic description with double-precision

floating-point operations.

¢ Quantization error: The absolute difference between the fixed-point and

floating-point values of a variable.

The quantization error arises from fixed-point truncation and arithmetic opera-

tions. Consider the truncation of the fractional wordlength of a variable x from
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m bits to n bits (m > n) represented by y. In this truncation, the maximum
error is 27" — 27™. If x has a quantization error of ¢, before truncation, then the
accumulated quantization error of y, €,, is €, + (27" — 27™). These two compo-
nents, 27" — 27 and ¢,, are the sources of generated (quantization) error and
propagated (quantization) error respectively. As an example, suppose 1 and x5
have quantization errors €,, and €,, respectively, ¥’ = x; + x5 and the fractional
wordlength of %’ is then truncated from six bits to four bits. In this case, the
accumulated quantization error of 3/, €, is the sum of €,, +¢,, (propagated error)

and 27* — 276 (generated error).

The error measurement and range estimation procedure is described below.
It begins by calculating, either automatically from the sample dataset or from
the user input, the range of every input and the quantization error (if the sample
dataset was in floating-point and was quantized to fixed-point). These initial
ranges and quantization errors are processed using the simulation DAG to obtain
a worst-case error analysis of the algorithm based on the given set of parame-
ters. After the worst-case analysis, the wordlengths of variables are determined.
Next, a runtime analysis of the algorithm based on the wordlengths of variables
determined is performed. The input vectors in the sample data are retrieved and
processed according to the algorithm. These sample data are computed both in
fixed-point and in double-precision floating-point, and the quantization error is
determined as their difference. During processing of the sample data, the maxi-
mum runtime dynamic ranges are also recorded. After all the entries in the sample
data are processed, the worst-case and runtime error analysis of the inputs and
outputs of the operators are calculated. Specifically, mean error, maximum error
and signal-to-noise ratio (SNR) are calculated in the runtime error analysis. De-

note the SNR of an input or an output z be SNR,, measured in decibels (dB).
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For the sample dataset S,

SNR, =20 x log (3.1)

where ref,(s) is the result at the input or output z using s as input to the fixed-
point implementation and err,(s) is the corresponding quantization error at z.

A more detailed description of this procedure can be found in Appendix A.3.

To illustrate the error measurement and range estimation procedure, the pro-
gram in Figure 3.1 is used as an example. The input dataset contains 1000 entries
of random values in the range [—0.75,0.25) for each of the two inputs. The input
dataset is quantized to eight binary digits, so its maximum quantization error
is 278 = 3.9063 x 10 3. The parameters of all the operators are set to zero,
corresponding to an implementation that neither truncates the fractional word-
length nor overflow. Table 3.1 presents the worst-case analysis of dynamic ranges,
quantization errors and the set of precision formats of the inputs and outputs of
operators. Table 3.2 presents the runtime analysis of dynamic ranges and quan-
tization errors of the inputs and outputs, in which mean error, maximum error

and SNR are listed.

By comparing the results in Tables 3.1 and 3.2, it can be observed that run-
time analysis offer a less pessimistic estimate of quantization error, leading to
smaller wordlengths. For instance, worst-case analysis suggests that the maxi-
mum quantization errors at the outputs are 4.292 x 1072 and 2.142 x 1072 for «
and y respectively, whereas runtime analysis suggests these error magnitudes are
5.795 x 1072 and 1.882 x 1072 for the given inputs. Results of runtime analysis
can be as little as one-eighth of that obtained by worst-case analysis. Further-
more, runtime analysis gives narrower bounds of dynamic ranges of variables than

worst-case analysis. The dynamic ranges of the outputs extracted by runtime
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o1

Worst-case analysis

Input or output

Dynamic range | Maximum error | Precision format
f£In0.out0 [—0.2500, 0.7500) 3.891 x 1073 (9,8)
fInl.outO [—0.2500, 0.7500) 3.891 x 1073 (9,8)
£AddO. out0 [—0.5000, 1.5000) 7.782 x 1073 (10, 8)
fMulO.out0 [—0.1875,0.5625) 5.852 x 1073 (17,16)
£Sub0.out0 [—1.6875,1.0625) 1.363 x 1072 (18,16)
fMull.outO [—0.9492,0.5977) 1.762 x 1072 (33,32)
fAdd1.out0 [—0.6875,2.0625) 4.292 x 1072 (19, 16)
fMul2.out0 [—1.0085,1.6018) 4.292 x 1072 (49, 48)
fAdd2.out0 [—1.1875, 3.5625) 2.142 x 1072 (19, 16)
fOut0.in0 [—1.0085,1.6018) 4.292 x 1072 (49, 48)
fOutl.in0 [—1.1875, 3.5625) 2.142 x 1072 (19, 16)

Table 3.1: Worst-case analysis of dynamic ranges, quantization errors and preci-

sion formats.
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Runtime analysis
Input or output
Dynamic range | Mean error | Maximum error SNR

f£In0.out0 [—0.2500,0.7461] | 1.988 x 103 3.895 x 1073 | 44.54 dB
fInl.outO [—0.2500,0.7461] | 1.993 x 103 3.900 x 1073 | 44.52 dB
f£AddO0.out0 [—0.4805,1.4922] | 3.981 x 103 7.586 x 1073 | 43.73 dB
fMulO.out0 [—0.1769,0.5567] | 1.132 x 103 4.780 x 1073 | 40.38 dB
f£Sub0.out0 [—0.9355,0.5382] | 2.967 x 103 8.740 x 1073 | 44.31 dB
fMull.outO [—0.5208,0.1201] | 8.710 x 10~* 5.366 x 1073 | 39.43 dB
fAdd1.out0 [—0.4228,2.0488] | 4.994 x 1073 1.180 x 1072 | 43.12 dB
fMul2.out0 [—0.0824, 0.4872] | 7.268 x 10~ 5.795 x 1073 | 38.38 dB
fAdd2.out0 [—0.9032, 3.5410] | 8.975 x 1073 1.882 x 1072 | 43.41 dB
fOut0.1in0 [—0.0824, 0.4872] | 7.268 x 10~ 5.795 x 1073 | 38.38 dB
fOutl.in0 [—0.9032, 3.5410] | 8.975 x 1073 1.882 x 1072 | 43.41 dB

Table 3.2: Runtime analysis of dynamic ranges, mean quantization errors, maxi-

mum quantization errors and SNR.
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analysis are [—0.0824,0.4872] and [—0.9032, 3.5410] for & and y respectively. As
compared with those derived by worst-case analysis, namely [—1.0085, 1.6018) for
x and [—1.1875,3.5625) for y, runtime analysis may give an order of magnitude

narrower bounds and hence leads to a saving of two bits.

3.5.2 Trimming of Operators

After the worst-case analysis is performed in the error extraction and range es-
timation procedure, the precision formats of the inputs and outputs of all the
operators are decided. There are two special cases of interest, namely when there
exist operators with all the outputs having zero wordlength, or when there exist

operators with all the inputs having zero wordlength.

In either case, the operators concerned can be removed because their results
are considered to be zero regardless of the values of the operands and the class
of the operation. There is another case of interest, in which only one among
the inputs of an operator has non-zero wordlength. For certain classes of arith-
metic operations, such operators can be transformed to simpler logic or even
removed. For example, additions and subtractions become identity operations
and multiplications can have their outputs set to zero. Furthermore, the removal
of operators may consequently provide the opportunity to trim other operators

which are connected to the removed operators.

Operator trimming is the process of removing or transforming unnecessary
operators. Trimming of operators may improve the performance of an implemen-
tation, not only in terms of area, but also in terms of latency and throughput.
The removal of an operator shortens the critical path or improve the latency of

a module.

The operator trimming procedure uses an iterative approach. In a single
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execution of the procedure, all operators that can be trimmed are removed or
transformed. The trimming procedure repeats until no further removal or trans-
formation is possible. A detailed description of this procedure is given in Sec-

tion A .4.

3.5.3 Latency and Throughput Calculation

The latency of an implementation is the time taken for an input to propagate to
the output. The throughput of an implementation is the data processing rate.
They are important design considerations in a hardware implementation. In fp,
the latency and throughput are measured in the number of clock cycles only, and

it is assumed that the clock frequency will not change significantly.

The latency or throughput of a module is derived from those of its operators.
The fp module library enables one to compute these for every operator. The
program queries the module library with first, the class of the operator, and
second, the parameters of the operator. The module library responds to this

query and sends the results back to the program.

Some operators, such as multiplication and division, can be implemented in
multiple architectures (for example, restoring and non-restoring dividers, pipelined
and multi-cycle multipliers). Each of these architectures offers a different perfor-
mance tradeoff in terms of area, latency and throughput. As described in Sec-
tion 3.8, the module library contains multiple architectures for the same operator.
Users may choose among these architectures for the most suitable one for a given

algorithmic description.

Most arithmetic operators require all of the operands to enter the operator in
the same clock cycle. Time-alignment is applied when the latencies of the opera-

tors are different. It is the process of inserting stage latches (implemented using
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latency =L, f Qut létpylatency=LZ

latency L,
= Max(L,, L)L,
=Max(L,, L)+ =Ll

f1no finl f1no finl

(a) latencies of every operator (b) stage latches inserted

Figure 3.7: Time-alignment of the DAG in Figure 3.3.

shift registers) between operators so that operands have the same latency after
passing through these shift registers [HP95]. Time-alignment is carried out si-
multaneously with the latency and throughput calculation procedure. Figure 3.7
illustrates the process of time-alignment using the DAG in Figure 3.3 as an ex-
ample. In this example, it is assumed that adders and subtracters have latencies
of L, cycles, multipliers have L,, cycles, inputs and outputs have zero cycles,
L., > L,. The time-alignment process first identifies the input with the maxi-
mum latency for every operator. A stage latch, with a latency equal to the latency
difference between the identified input and every other input of the operator, is

then inserted between the operator and the corresponding preceding output.

In the fp design flow, insertion of stage latches is done before area estimation
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because, as described in Section 3.6, the optimization process requires an estima-
tion of area and a more accurate estimate can be obtained if the stage latches are

taken into account.

Detailed descriptions of the latency and throughput calculation procedure and

the stage latch insertion procedure are given in Appendixes A.5 and A.6.

3.5.4 Area Estimation

Area estimation is the process of evaluating the area of an implementation of
the algorithmic description under a specific configuration of parameters. At this
stage it is only possible to estimate the area of an implementation because firstly,
optimizations could be performed in the synthesis of the VHDL descriptions and
secondly, technology mapping in the FPGA design flow may further optimize the

logic.

The fp kernel obtains the area of individual operators in a query to the module
library. The kernel sums the areas of individual operators, and adds the area
occupied by the stage latches to yield the approximate area of an implementation.
fp is mainly targeted for the Xilinx XC4000 and Virtex series FPGAs, hence one

unit of area corresponds to one logic cell (LC) during area estimation.

3.6 Optimization

In the optimization stage, different configurations of parameters are tried. The
optimization objective is to derive a set of parameters which minimizes a cost
function (in which the tradeoff among various performance measures is specified
mathematically) as well as satisfying a set of performance constraints. Hence,

the procedure is a constrained optimization.
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The optimization procedure is outlined as follows:

—_

. Propose a set of parameters;
2. Simulate the algorithmic description according to the set of parameters;
3. Use the simulation results to compute a cost function;

4. Check for constraint satisfiability, and record the set of parameters that

yield a lower cost;

5. Repeat until the optimization converges or user interrupts.

3.6.1 Cost Function

As inputs, an fp cost function takes the set of errors of inputs and outputs of
every operator E, estimated area A, latency LAT and throughput TP of the
implementation. Note that the set of parameters proposed by the optimizer
is not directly used to compute the cost function. Instead, these parameters are
passed to the simulation procedure. Simulation can be considered as the mapping
between the set of parameters and the performance measures. Denote V =
{E, A, LAT, TP}. The cost function f.(V) computes the sum of individual

weighted functions of these variables,
Jeost(V) = fe(E) 4+ fa(A) + frar(LAT) + frp(TP). (3.2)
A well-designed cost function should have the following properties:

e The function yields a global minimum cost feos(Vmin) = €OStpi, if the
corresponding implementation has the best compliance with the specified

performance requirements.
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e At any point 7 in the multi-dimensional space, o % Umin, the cost along

the direction ’U?}mm} is monotonically decreasing.

e The function encourages faster movements (has a greater slope) when the
current point is far away from ’Umm}, and slower movements (has a smaller
slope) when the current point is relatively closer to Ui This improves the

stability of the system by preventing jumps across the global minimum.

In practice, it is often easier to set latency and throughput via constraints and
set frar and Frp to the zero function. Moreover, the elements in the set of errors
E, except those corresponding to the overall module output (the inputs of output
operators), are neglected by setting their effects on fg to zero. This is due to
the fact that only the errors at the outputs are considered in a typical hardware
design. In most cases, setting fg to be a weighted sum of the reciprocals of SNRs
at the module outputs (Equation 3.1) is preferred, because SNR (sum square

signal divided by sum square quantization error) is invariant to signal amplitude.

Hence, instead of using the general form of fp cost functions in Equation 3.2,

the following form is often used.
k.
Feost (V') = f};(%—s NE) ) (33)

where Z is the set of outputs of the module, k, are weighting factors of the errors
at output, k, € RT. An example of a cost function in this form is given in

Appendix A.7.

3.6.2 Constraints

Throughout the optimization procedure, the fp kernel monitors whether the im-
plementations satisfy certain user-specified design constraints. A set of parame-

ters is only accepted if its corresponding implementation satisfies the performance
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(wy, f,)

Figure 3.8: The two cascaded adders, A and B, used to illustrate the effect of

adjusting parameters on precision formats.

constraints. These constraints include error, area, latency and throughput re-
quirements. More specifically, error constraints can be specified as the mean
error, the maximum error, the worst-case analysis error and the SNR on every
input and output of the operators or the module; area constraints can be specified

for the whole module or on a subset of the operators in the module.

3.6.3 Relationship between Parameters and Precision For-

mats

The effect of adjusting the set of parameters to the precision formats of inputs
and outputs of operators, and consequently the precision, area, latency and th-
roughput of the resultant implementation, is complex. To illustrate the effects of
operator parameters on the precision formats, consider two cascaded adders, A

and B, in Figure 3.8.

Let the precision formats of the inputs x and y, (w1, f1) and (w,, f3), be (10, 8)
and (8,7), their ranges be [-2.0,2.0) and [—1.0,1.0) respectively. If all the pa-
rameters (inTruncation0, inTruncationl, outTruncation and outExapnsion0,

Section 3.4.4) of operators A and B are zero, the operators do not generate error
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but propagate errors (Section 3.5.1). The ranges of w and z are [—3.0,3.0) and
[—4.0,4.0) respectively, and their precision formats, (w3, f3) and (wy, fy), are both
(11,8). In this configuration, the errors at w and z are 45.99 dB and 43.50 dB
(these errors are propagated from the inputs). The estimated area is 22 (two

11-bit adders).

Suppose the parameter inTruncation0 of operator A becomes one. The pre-
cision formats of w and z would consequently be changed to (10,7). In this
configuration, the errors at w and z are 43.50 dB and 42.03 dB. The estimated
area is reduced to 20 (two 10-bit adders).

As another example, suppose the parameter inTruncation0 is two, and the
parameter inTruncationl of operator A and the parameter inTruncationl of
operator B are both one. The precision formats of w and z would both become
(9,6) and the errors at w and z are 37.49 dB and 36.05 dB respectively. The

estimated area is further reduced to 18 (two 9-bit adders).

In previous approaches [SK94, SK95, KKS98], emphasis was made on search-
ing the set of wordlengths of the fixed-point variables that minimizes resource
requirements and the wordlength of each variable is treated independently. A
disadvantage of such an approach is that a change in the wordlength of one vari-
able does not affect the wordlengths of other variables accordingly. For example,
in Figure 3.8, if the wordlength of w is reduced by one, the wordlength of z can

also be reduced by one without further degrading the output precision.

Recall that the quantization error of a variable contains two components,
propagated error and generated error (Section 3.5.1). In fp, the above mentioned
problem is addressed by isolating the propagated and generated errors. More
specifically, the propagated error of an operator is determined by its input word-

lengths, whereas the generated error is determined by the operator parameters.
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Modifying the parameters of an operator effectively adjusts the generated error
of an operator and sets aside the effects of the propagated error. Using this ap-
proach in the above example, if adjusting a parameter causes the wordlength of
w to reduce by one, the wordlength of z is also reduced by one automatically.
The reduction of the wordlength of z does not affect the overall precision yet it
reduces area requirements. Using this approach, the optimizer may omit the sets
of variable wordlengths which lead to unnecessary area overhead and improves

the optimization efficiency.

Note that with a zero optimization vector (that is, when all the operator pa-
rameters are zero), the operators produce bit-exact results without generating any
error. In a wordlength minimization process, the number of bits being removed
is small compared with the original variable wordlength [CCL99]. Based on this
observation, the optimized parameters should be close to the zero. Settings all
the parameters to zero is therefore used as an initial guess for optimization and

it usually leads to fast convergence.

3.6.4 Example of Optimization

To demonstrate the optimization procedure, the program in Figure 3.1 is used as
an example with the same dataset as that in Section 3.5.1, which contains 1000
entries of random values quantized to eight binary digits in the range [—0.75, 0.25)
for each of the two inputs. The aim of the optimization procedure is to minimize
the area of the implementation with a minimum output SNR of 35 dB. The cost
function in Equation A.1 (constructed using a Bessel function, details given in
Appendix A.7) with £, = 1.0, kg = 0.5 (kg was reduced by half because there are
two outputs in the sample program), k4 = 1.0, k, = 6.7x 1072 and k, = 1.0x 1073

was used. Optimization constraints are the SNR requirements at the outputs
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being greater than or equal to 35 dB. This search space is multi-dimensional and
discontinuous. The optimizer uses the downhill simplex method of Nelder and
Mead [NM65] because it does not require the computation of derivatives and is

suitable for such a search space.

The resultant implementation has SNRs of 35.51 dB and 38.23 dB at outputs
x and y respectively with an estimated area of 187. The operator parameters and
the precision formats of their inputs and outputs are listed in Table 3.3. In this
table, the operator parameters are ordered as {inTruncation0, inTruncationl,
outTruncation0, outExpansion0}. The runtime error analysis is summarized in
Table 3.4. These results can be compared with the unoptimized implementation
obtained by setting all parameters to zero (results in Tables 3.1 and 3.2). The
unoptimized implementation has output SNRs 38.38 dB and 43.41 dB and an

estimated area of 760.

3.7 Generation of VHDL Description

The output of the fp design flow is a VHDL description that implements the algo-
rithmic description and uses the set of parameters derived from the optimization
procedure. The generation of the VHDL description involves four steps, namely
the declaration of the entity, the instantiation of components inside the entity,

the insertion of stage latches, and the insertion of control circuitry.

The VHDL description begins with the declaration of the entity. As described
in Section 3.4.1, a module corresponds to an entity in the VHDL description. It
follows that the inputs and outputs of the module are respectively mapped as

input and output ports of the entity.

Next, the VHDL descriptions that implement the operators with the specific
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Operator Operator parameter Precision format

Input 0 | Input 1 | Output 0
fIno {N/A, N/A, 0, 0} N/A N/A (9,8)
fInl {N/A, N/A, 0, 0} N/A N/A (9,8)
fAddo {0, 0,0, 0} (9,8) (9,8) (10,8)
fMulo {1, 2, 2, 0} (8,7) (7,6) (12,11)
fSub0 {4, 1, 0, -1} (8,7) (9,7) (8,7)
fMull {3, 1, 4, 0} (9,8) (7,6) (11, 10)
fAdd1 {2,0,0,0} | (10,9) (10,8) (12,9)
fMul2 {2,0, 5, -1} (9,8) (8,7) (10, 10)
fAdd2 {2,1,0,0} | (10,7) (9,7) (10,7)
f0ut0 {0, N/A, N/A, N/A} | (10,10) N/A N/A
fOutl {0, N/A, N/A, N/A} | (10,7) N/A N/A

Table 3.3: The parameters and precision formats of the operators after optimiza-

tion.
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Runtime analysis
Input or output
Precision format | Mean error | Maximum error SNR

£In0.out0 (9,8) | 1.988 x 1073 3.895 x 1073 | 44.54 dB
fInl.out0 (9,8) | 1.993 x 1073 3.900 x 1073 | 44.52 dB
£Add0. out0 (10,8) | 3.981 x 10~* 7.586 x 107 | 43.73 dB
fMul0. out0 (12,11) | 3.471 x 103 1.563 x 1072 | 30.50 dB
£Sub0. out0 (8,7) | 3.660 x 107* 1.686 x 1072 | 41.33 dB
fMull.outO (11,10) [ 2.144 x 104 9.831 x 1073 | 32.37 dB
fAdd1.out0 (12,9) | 7.792 x 1073 2.085 x 1072 | 39.06 dB
fMul2.out0 (10,10) | 1.182 x 1073 8.354 x 1072 | 35.51 dB
fAdd2. out0 (10,7) | 1.662 x 1072 3.212 x 1072 | 38.23 dB
fOut0.1in0 (10,10) | 1.182 x 1073 8.354 x 1073 | 35.51 dB
fOut1.in0 (10,7) | 1.662 x 1072 3.212 x 1072 | 38.23 dB

Table 3.4: Runtime mean quantization errors, maximum quantization errors and

SNR of the inputs and outputs after optimization.
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configurations derived from the optimization procedure are individually gener-
ated. The VHDL generator carries out this task by passing these configurations
to the module library. It is described in Section 3.8 that the module library is re-
sponsible for the generation of VHDL descriptions in additional to the calculation

of latency, throughput and estimated area.

Operands in the implementation need to be time-aligned (Section 3.5.3). Af-
ter the instantiation of operators, the VHDL description generator inserts stage
latches at appropriate locations. Depending on the target device, the module li-
brary can be configured to use a shift register LUT (SRL) (for Virtex series) or a
read-only memory (ROM) primitives with linear feedback shift registers (LFSR)
(for XC4000 series) [Xil00g, Alf96] to implement the stage latches.

As the final step, proper control circuitry for the sequencing of operators is
inserted. The control circuitry is implemented as a one-hot encoded finite state
machine (FSM). The input control signal, ctrl, is set high when there is an input
to the module. This signal passes through a shift register with a size equal to the
latency of the module. All of the operators are connected to this shift register at
the offset identical to the accumulated latency (Appendix A.5) of the operator.
Equivalently, each of the operators receives a high control signal in the clock
cycle when their operands are valid, and it may make use of this control signal
to initialize an operation. The output of the shift register, done, is a signal
that indicates valid outputs. Figure 3.9 demonstrates the insertion of the control

circuitry for the implementation in Figure 3.7(b).

3.8 Module Library

The module library serves two purposes. During the optimization procedure, it

is used by the optimizer to determine area, throughput and latency of individual



Chapter 3. fp — From Floating-Point Algorithms to Fixed-Point Hardware 66

L, cycles

L, cycles

L, cycles

L, cycles

a b ctrl

Figure 3.9: Control circuitry inserted for the implementation in Figure 3.7(b).
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modules with a given set of parameters. The library is also used to produce

VHDL descriptions of operators.

The fixed-point library (described in Section 3.5) is used to model the fixed-
point arithmetic operations and is independent of the resultant architecture (for
example, a pipelined or a multi-cycle implementation). In contrast, the module
library is architecture-dependent. More specifically, the module library may con-
tain multiple implementations of the same arithmetic operation, each of which

has different area, latency and throughput.

The module library is essentially a collection of different implementations
of operators. Depending on the performance requirements, users may pick an
architecture for each class of operator used in the algorithmic description from
the module library and pack them into an archive, known as the customized
module library, for use in the design flow. This modular design allows users to
quickly explore different implementations and their tradeoff in area, latency and

throughput.

Due to the modular design, the module library is also hierarchical. An im-
plementation of an operator can make use of other operators as sub-operators.
For instance, an FIR filter operator may use addition and constant multiplica-
tion sub-operators. This hierarchical design enables the efficient development of

complex operators.

3.9 Summary

A tool for the automatic translation of floating-point algorithms into fixed-point
hardware called fp was presented. fp translates all the floating-point variables in

an algorithm to fixed-point and optimizes their wordlengths so that the resultant
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implementation satisfies performance requirements in terms of precision, area,

latency and throughput.

During optimization, the fixed-point operators are parameterized and the pre-
cision of every inputs and outputs can be individually adjusted. As compared with
the standard technique where only the wordlengths of variables are parameter-
ized (equivalently, only the wordlengths of operator outputs can be adjusted),
the approach used in the fp explored a larger space for optimization. Also, in
the standard technique the parameters are directly applied as wordlengths of
variables. In contrast, the parameterization of operators in fp specifies the reduc-
tion or expansion of wordlengths. This method splits the effects of propagated
and generated quantization error, and both of them can hence be independently

adjusted.

In Chapter 4, the extension of fp to support digit-serial architectures will be
described. In Chapters 7, 8 and 9, three applications of this tool, namely post-
rendering 3D warping, an electronic cochlea and a systolic array for the DCT
are presented. As will be shown in these applications, large and complex design

spaces can be efficiently explored with fp and higher productivity can be achieved.



Chapter 4

Variable-Radix and
Variable-Wordlength

Architectures

Traditional digit-serial implementations use variables and operators with a com-
mon fixed radix or digit size [PW90, HP95]. This chapter describes the conflict
between the traditional digit-serial and the multiple wordlength approaches. In
order to combine these two design methodologies, an architecture in which the
variables and operators can have different wordlengths and radices was devel-
oped. This architecture is known as the variable-radix, variable-wordlength ar-
chitecture. A description of the extension of fp to support the variable-radix,

variable-wordlength architecture is presented.
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4.1 Conflicting Design Methodologies

Traditional digit-serial implementations use a common radix or digit size for all
variables and operators (an implementation with a radix r is equivalent to having
a digit size of log, 7). As described in Section 2.4, digit-serial architectures make
use of a time-multiplexing technique so that the same computational logic is
reused and different bits of the operands are processed in different clock cycles.
Suppose the two’s complement representation of a variable has w bits and is
divided into d-bit digits (radix-2¢). Then, at least n = [w/d] digits are required
to form a complete representation of the variable. In digit-serial architectures,
an operator often needs to identify when the first digit of an operand is entering
the operator. To achieve this, every variable has an associated control signal.
The logic level of this control signal is high only when the first digit is being
transmitted. This mechanism is depicted in Figure 4.1. c¢lk is the clock signal,
x is a radix-2¢, w-bit, n-digit variable and ctrl, is its associated control signal.
Z(e) indicates the a-th bit in the datapath of z. x,()p"” is the b-th bit of the two’s
complement representation of the p-th value of x in the ¢-th digit. Note that ctri,
is high only when the first digit is being transferred on the datapath (¢ = 0).

Digit-serial architectures have the following properties:

e The size of a two’s complement digit-serial operator is strongly dependent
on its radix. For example, the size of an adder is proportional to the radix,
and that of a multiplier has a square dependence on the radix. The larger

the radix r, the higher the area requirements of the operator.

e The throughput of an operator (the number of clock cycles taken between
consecutive inputs are taken) depends on the number of digits n. A variable
requires at least n clock cycles for its two’s complement representation to be

transmitted over the datapath, and n clock cycles are required to complete
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Figure 4.1: The transmission of a radix-2¢, w-bit, n-digit variable z and its

associated control signal ctrl,.
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an operation.

e An operator for a w-bit variable, where w mod d # 0, w > d, requires
the same area and clock cycles as that of an operator for a ([w/d] x d)-bit

variable.

For a fixed wordlength implementation (w being fixed for all variables), the
tradeoff between area and throughput can be addressed by adjusting the overall
digit size. This is because the wordlength of a variable is the product of its

number of digits and digit size (n = [w/d]).

Unfortunately, when applying digit-serial computation to a multiple word-

length implementation of a fixed radix r, some problems arise:

e Resources are not fully utilized: Suppose that two operators A and B
have a common radix but their bit widths are w4 and wg respectively. If
w4 > wpg, operator A takes significantly more clock cycles (n4) to complete
its calculation than operator B (ng) (n4 > ng). Hence, unless all operators
have a common bit width (as in a fixed wordlength implementation), there
will be idle cycles for some operators. This effect is in more pronounced if
the deviation of bit widths among operators is large (a common occurrence
in multiple wordlength implementations, such as in the implementation of

the DCT presented in Chapter 9).

e Tradeoffs between area and throughput: If the radix is fixed, the op-
erator (C') with the largest bit width, we, has the largest number of digits,
ne, and the throughput of a system is limited to n¢. In order to increase
throughput while preserving the precision of the implementation, the radix
may be increased so that no = [we/r] is reduced. However, this increases
the area requirements of all operators because the radix is a common pa-

rameter. Therefore, the area overhead to increase the throughput is large.
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4.2 Combining the Two Design Methodologies

To overcome the above mentioned problems, an architecture where each variable
can have a different wordlength as well as a different radix is proposed. In this
approach, the number of digits n remains fixed for all the variables and operators

in the implementation.

The precision format of a variable is hence parameterized by a triplet (w, f, d).
As before, w and f are the total wordlength and the fractional wordlength re-
spectively and d is the radix of the variable. In general, w > 0, f is an integer
and d > [w/n]|. When d > w/n, sign-extension is carried out on the variable

concerned.

As an example, the representation of a variable with precision format (22, 5, 8)

and n =3 is

digit 2 digit 1 digit 0
D16016D16D15b14b13b12b11 D10bobsbrbebsbabs babybo.b_1b_ob_sb_sb_s
. . > v g
sign extension fractional part

The subscripts of b refer to their exponents in base 2. For instance, if the most
significant bit of digit 1 is one, its partial value is 2!9 = 1024. Since the wordlength
of the variable is 22 bits but 24 bits (3 digits x 8 bits) are required in the digit-
serial implementation, two sign-extension bits are inserted in the most significant
digit.

This variable-radix, variable-wordlength architecture has the following fea-

tures:

e Higher utilization of resources: The number of digits n is common to all
variables and operators throughout the system. This ensures all arithmetic
operators have the same throughput and maximal resource utilization is

guaranteed.
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e Operators have the same throughput: Since all the operators have the
same number of digits, they take the same number of cycles to complete

and hence no bottleneck can occur.

e Tradeoff between area and precision can be smoothly explored:
In contrast to the traditional digit-serial architecture, radices of individual
variables can be increased or decreased independently and does not change
those of other variables. Area overhead of increasing the wordlength of a
variable is hence localized. This is in contrast with the traditional digit-
serial architecture, in which a global area overhead is imposed if the th-
roughput of the implementation must be retained. A more cost-effective
tradeoff between performance and resource requirements may possibly be

achieved.

The drawbacks of this approach are:

e Operators expect operands with the same radix: Most two’s com-
plement arithmetic operators require that their operands have the same
radix. This requires extra hardware to convert variables from one radix to
another. Fortunately, as discussed in Section 4.3, the property that FPGAs
are register-rich and the ratio of storage elements to computational elements

is high (Section 2.1) enable an efficient implementation of the converters.

e Complicated design space: Since d > [w/n] (but not necessarily d =
[w/n], as will be described below), the digit size of every variable needs
to be determined. The digit size, being an additional parameter to be
considered for every variable, means that finding a good solution requires

searching a large design space.

In the traditional digit-serial architecture approach the radices are the same
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Figure 4.2: The two cascaded adders, A and B, used to illustrate the variable-
radix, variable-wordlength architecture being a generalization of the traditional

digit-serial architecture.

for all variables in the system. This variable-radix, variable-wordlength archi-
tecture is a generalized form of the traditional digit-serial architecture. The two
cascaded adders, A and B, in Figure 4.2 are used to illustrate this generalization.
Let the precision formats of z, y and z be (9,4), (11,8) and (14, 8) respectively.
To ensure an implementation produces the same result as a floating-point imple-
mentation, the precision formats of u and v should be respectively (12,8) and
(15,8). Let n = 3, the triplet parameterization of z, y, z, u and v can be (9,4, 3),
(11,8,4), (14,8,5), (12,8,4) and (15,8, 5) respectively, in which the total width
of the datapath (but not necessarily the area requirement) is minimal. In this

case, the bit width of operator A is four and that of B is five.

In this example, the deviation in dynamic range of the variables is not signif-
icant, and the variable-radix, variable-wordlength architecture may not offer im-
provements over the traditional serial architecture. Hence, the fp kernel may ap-
ply the following set of parameters during optimization, so that the resultant im-

plementation becomes a traditional digit-serial architecture: z.outTruncation0 =
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—1 (the fractional wordlength of x increases by one bit), z.outExpansion0 = 3
(the integer wordlength of x increase by three bits), y.outExpansion0 = 4 (the
integer wordlength of y increase by four bits) and A.outExpansion0 = 2 (the
integer wordlength of u increase by two bits). The resultant wordlengths of all
variables would become 15, therefore they have a common digit size of 15/3 =5
(radix-32). This example also illustrates the usefulness of negative “truncation”

and positive “expansion” parameters (Section 3.4.4).

To identify whether the variable-radix, variable-wordlength architecture may
offer a better area-efficiency during the optimization procedure, the area occu-
pied by the conversion modules (Section 4.3) is also taken into account during
area estimation. The optimization procedure applies different combinations of
the following strategies to every operator, evaluates the area-efficiency of the cor-
responding implementation and determines how a better implementation can be

achieved:

e Apply conversion modules at inputs and outputs of the operator, so that
the bit width of the arithmetic core and hence the core area is optimized.
The cost of this strategy is the area and perhaps latency overhead imposed

by the conversion modules.

e Utilize an arithmetic core with a larger bit width, such that no conversion
modules are required (at the expense of an increase in the area of the

arithmetic core).

e Choose a compromise between the above two strategies so that some inputs
and outputs undergo radix conversions, while the others remain unchanged.
In this case, the arithmetic core is not of the minimal area, but the area

overhead imposed by the conversion modules is reduced.
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Usually, in a variable-radix, variable-wordlength implementation, all three strate-

gies mentioned are applied to different operators.

Similar to the traditional digit-serial architecture, the variables in the variable-
radix, variable-wordlength architecture have associated control signals. The con-

trol signal is set high when the first digit of the variable is being transmitted.

4.3 Conversion Modules

Conversion modules are used to translate the precision format of a variable (spec-
ified by the triplet (f,w,d)) from one to another. A conversion module is com-
posed of registers and multiplexers. The inputs are latched into the registers
which connect to multiplexers. The multiplexers perform the conversion of the

precision format.

The latency of a conversion module is critical to its design. Suppose the
latency [ is known and assume the input datapath propagates through a shift
register (with a width equal to the input digit size). The synthesis tool simulates
this shift register for every clock cycle since the [-th cycle after the input enters the
module, and derives the mapping between the contents of the shift register and the
input’s two’s complement representation. The conversion module is constructed
using this information by multiplexing the appropriate bits in the shift register
and input bits to determine each output bit. In the final step, unused registers
(those with zero fanout) are removed and the multiplexers are simplified. Details

of these algorithms are given in Appendix A.8.

As an example, Figure 4.3 shows the conversion module for a three-digit vari-
able = from a (12,3,4) format into (15,4,5) format. The input datapath is

a = {az,ay,a1,a0} and ctrl is the control signal associated with a which re-
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sets the counter A, when it is high. Aj, Ay, A; and A are latches and the
output datapath is b = {by, b3, b, b1, b9}. When the first digit of z is available
at a (that is, a3 = xg, ag = ©_1, a3 = x_5 and ay = x_3), ctrl is high. In
the next clock cycle, Az, Ag, Ay and Ay are latched with the values of g,
x 1, x_o and x_3 respectively, and A, is reset to zero since ctrl was high in
the previous clock cycle. Consequently, the outputs of the multiplexers and
hence b = {A3z, Ay, Ay, Ag, 0} = {xg,2_1,2_9,2_3,0} (zero-padding is carried
out). Similarly, b = {ag, Az, Ao, Ay, Ao} = {25, 24, 23, 22,21} when A, =1 and
b = {A;z, A3, A3, A9, A1} = {xg,25,x8,27, 26} when A. = 2 (sign-extension is

carried out).

As can be observed, the ratio of combinational logic and registers is suitable
for FPGA implementations. Also, conversion modules can be placed at inputs
and outputs of operators which reduces the spatial separation between them.
Generally, this architecture produces little impact on the overall system clock

rate.

4.4 Extending fp to Support the Variable-Radix
Variable-Wordlength Architecture

In order to support the variable-radix, variable-wordlength architecture, the sim-
ulation, optimization and hardware generation procedures in fp were updated in

the following manner:

e The optimization procedure was updated so that it is able to control the
precision formats (the three elements of the triplet) of variables by adjusting
the operator parameters. The optimizer is also able to control and optimize

the number of digits n (discussed in Section 4.2).
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Figure 4.3: The module for converting a three-digit variable from a precision

format of (12, 3,4) to (15,4, 5).
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e The simulation procedure was updated so that the area estimation proce-
dure includes the conversion modules and the latency calculation is includes

the conversion modules (discussed in Section 4.3).

e The module library was updated to include a module for the conversion

modules.

4.5 Summary

This chapter described the integration of multiple wordlength and digit-serial
design methodologies into a single design environment. The efficient utilization of
hardware resources in the traditional digit-serial architecture was addressed using
a variable-radix, variable-wordlength architecture in which the number of digits
is fixed, but variables can have different wordlengths. An empirical study of the
utility of the variable-radix, variable-wordlength capabilities of fp was explored

in an implementation of DCT presented in Chapter 9.



Chapter 5

Pilchard — Improving the
Interface between PC and FPGA

Improvements in VLSI technology have led to microprocessors operating at over
1 GHz and FPGA devices with capacities of several million equivalent transistor
gates. Unfortunately, current bus technology has not kept pace with these im-
provements. Nowadays the performance of an FPGA-based coprocessor system
is often not limited by the speed of the FPGA circuit, but by the interconnecting
bus between the CPU and the FPGA board.

This chapter presents an FPGA reconfigurable computing (RC) platform
called Pilchard. For an FPGA-based coprocessor system in which the FPGA
and the CPU should be tightly-coupled, having a high data rate is particularly
important and Pilchard was designed to improve this so as to eliminate the bottle-
neck of data transfer between the two entities. Design considerations of Pilchard
is first discussed. Its hardware and software components followed by an extensive

performance evaluation are then presented.

In this work, the design of the PCB and device driver is the work of Dr. Philip
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Leong, while the design of the PC-FPGA interface and the application program-
ming interface (API) is the work of the author.

5.1 Pilchard Design Considerations

Modern CPUs operate at over 1 GHz internal clock frequencies, with 100 to
400 MHz 64-bit I/O. These clock rates produce I/O requirements that saturates
the bus which connects the memory to the CPU. The sustained I/O bandwidth
of a CPU is usually over 500 Mbytes/sec.

With the latest FPGA devices, FPGA design can now operate with external
clock frequencies over 100 MHz with 64-bit I/O and up to 200 MHz internal clock
rates. With low-voltage differential signaling (LVDS), up to 311 MHz external
I/O can be achieved [HB01]|. The sustained I/O bandwidth of an FPGA design
is usually around 300 Mbytes/sec, but can be as high as 2 Gbytes/sec.

However, when an FPGA is used as a coprocessor to a typical PC, the th-
roughput is on the order of 10 to 100 Mbytes/sec. The limited bandwidth arises
from the interconnecting bus between the two devices. The majority of PCs use
the 33 MHz, 32-bit PCI Local Bus and the CardBus interface, both having a max-
imum bandwidth of 132 Mbytes/sec and a typical bandwidth of 60 Mbytes/sec.
Server class machines are equipped with the higher speed, higher bandwidth
66 MHz 64-bit PCI64 Local Bus (maximum bandwidth 528 Mbytes/sec), but the
sustained transfer rate depends on the chipset and the peripherals connected to

the bus (the bandwidth is shared among all the peripherals attached).

The PCI Local Bus is not considered an ideal interconnecting bus for FPGA-
based coprocessors. The disadvantages of the PCI Local Bus for this application

are:
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e The PCI Local Bus is distant from the CPU in the PC architecture as com-
pared with the Front-Side Bus (FSB) and the memory bus. The processor
and the FPGA coprocessor are not tightly-coupled.

e The 33 MHz clock rate and 32-bit datapath has a maximum throughput of
only 132 Mbytes/sec.

e The bandwidth provided by the PCI Local Bus is shared among many

devices, such as disks, network interfaces and audio devices.

e The typical bandwidth that a single device can obtain is considerably lower

than the 132 Mbytes/sec maximum throughput.

In any balanced PC, the memory bandwidth is higher and of a lower latency
than that of any peripheral bus (the PCI64 and PCI Local Buses, the Accelerated
Graphics Port (AGP) and the Industrial Standard Architecture (ISA) bus). This
is because memory accesses are made much more frequently than I/O requests.
As an example, the standard dual inline memory modules (DIMM) used even in
low-end PCs operate at either 100 MHz or 133 MHz with 64-bit data, providing
a maximum bandwidth of 1064 MB/sec. In the next generation of PC, more
advanced memory interfaces will be deployed. For instance, the double data
rate (DDR) synchronous dynamic random access memory (SDRAM) interface,
which achieves double the date rate of SDRAM by supporting data transfer on
both rising and falling edges of a 133 MHz clock, has a maximum transfer rate

of 2128 Mbytes/sec [Tra00a].

To address the PC to FPGA bandwidth issue, a DIMM-based RC platform,

Pilchard, was developed with the following objectives:

e achieve higher bandwidth and lower latency than the traditional PCI Local
Bus or CardBus based RC systems;
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e unlike the PCI Local Bus in which complicated handshakings are involved in
transactions (bus mastering, direct memory access (DMA) and interrupts),
Pilchard uses a simple register-based interface which has minimum interface

hardware requirements;

e use the Linux operating system, allowing user mode applications to access

the FPGA via a character device driver or memory mapping;

e able to take the advantage of Intel Pentium write-combining (WC) feature

via programming the Memory Type Range Registers (MTRR) [Int00b].

It is envisaged that the Pilchard system can provide a better platform to facil-
itate the FPGA-based coprocessor approach, as it will be shown that the latency
and throughput between the CPU and the FPGA was improved comparing with
PCI Local Bus based RC platforms.

The development of Pilchard was split into hardware and software parts. In
the hardware part, a printed circuit board (PCB) was designed which can be pop-
ulated with a Xilinx Virtex or Virtex-E device and can be attached to a memory
slot. In the software part, a driver (written as a Linux kernel module) which
supports both ordinary 32-bit and Intel Multimedia Extension (MMX) [Int00c]

64-bit data transfers was developed.

5.2 Pilchard Hardware

The system level design of Pilchard is depicted in Figure 5.1. The main com-
ponents are the FPGA device, a configuration programmable read-only mem-
ory (PROM) interface, a design bitstream download and debug interface, and an

expansion header which is used for connection to a logic analyzer or interfacing
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Figure 5.1: System level design of Pilchard.

to other peripheral or memory devices. The logic for the DIMM interface and

clock generation is implemented in the FPGA. The board was designed for Xil-

inx Virtex and Virtex-E series FPGAs. A photograph of the populated Pilchard

board is shown in Figure 5.2.

Pilchard was designed to be compatible with the 168-pin 3.3 volt, 133 MHz,
72-bit, registered SDRAM DIMM PC133 standard. The PC100 (100 MHz) and

PC66 (66 MHz) standards can also be supported because the pinouts are the
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Figure 5.2: A photograph of the Pilchard board.

same. The PC133 standard supports up to 1 Gbyte capacity which offers an
ample address space for memory mapped 1/0 [Int98d, IBM98|.

The PC133 and PC100 DIMM standards include a mandatory serial presence
detect (SPD) interface which allows a DIMM card to describe its configuration
to the PC [JED]. The basic input/output system (BIOS) of a PC interrogates
the SPD from each DIMM to determine the presence or absence of a card, its
timing parameters and its memory size. It then performs a memory test on
all available memory before proceeding with the rest of the boot process. This
memory test provides an obstacle for a non-memory card, particularly if the card
does not have sufficient memory on board to completely mimic a normal DIMM.
A possible solution would be to modify the BIOS so that it does not perform
a memory test, but this is very difficult in practice when the source code of
the BIOS is not available. Furthermore, this method is motherboard and BIOS

dependent, hence different machines would need to be patched differently.
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The Pilchard board does not have a SPD and all the pins are in a high-
impedance state during boot up. Therefore, the BIOS identifies the slot as an
empty slot and does not perform a memory test on the corresponding DIMM
slot. Once the operating system has booted, the chipset registers of the PC are
modified to enable operation of the DIMM slot. Although this technique is also
dependent on the PC’s chipset, it can be easily done for any chipset which has

adequate documentation of its memory controller registers.

In the context of a memory mapped device, only read and write commands
are needed and the remaining commands sent from the motherboard to the
DIMM [Mic99] can be ignored. The interface to a user’s core design consists of
two parts, namely the PC/ Pilchard interface and the Pilchard/PC interface. The
architecture of the interface is illustrated in Figure 5.3. A SDRAM multiplexes
its address inputs to save pins and hence addresses are decomposed into banks,
rows and columns. Although a typical SDRAM has megabytes of address space,
memory mapped peripherals normally use few registers. Hence in the present
design, the interface interprets only the 8-bit column addresses and ignores the
row and bank select commands. The control uses four signals from the DIMM in-
terface, namely S (Select), RAS (Row Address Strobe), CAS (Column Address
Strobe) and WE (Write Enable), to generate the appropriate board read and
write signals. Both the interfaces can be independently configured as registers,
a BlockRAM or a direct connection. The register configuration supports up to
28 = 256 64-bit registers. The BlockRAM configuration uses two 256 x 32-bit
dual-port BlockRAMs organized in 256 x 64-bit. With dual-port BlockRAMs,
the internal core can operate at a different clock rate than the 133 MHz DIMM
interface. The direct connection configuration is a simple bypass between the in-
put and the output of the interface. The advantage of the register configuration

is that the core has simultaneous access to all memory locations. The advantage
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Figure 5.3: Architecture of the PC-FPGA interface.

of the BlockRAM configuration is its reduced area overhead. The direct connec-
tion configuration requires minimal area (for example, only two Virtex slices are
required if both interfaces are configured as direct connections), but it requires

the core to decode the address bus by itself.

The only clock input to the FPGA is that supplied by the SDRAM interface.
This 133 MHz clock is de-skewed using a high frequency delay-locked loop (DLL)
(Xilinx Virtex CLKDLLHF primitive) within the Virtex chip [Xil00d, Xil00c]. It
can also be divided down inside the FPGA and multiplied by another DLL to
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generate different frequencies. For designs which cannot meet a 133 MHz interface
timing constraint, it is possible to use the Pilchard board at 100 MHz via setting
dual-inline package (DIP) switches or BIOS of the motherboard. Unfortunately,

this also limits the speed of all memory accesses to 100 MHz.

The Pilchard system currently requires connection from another machine via
a Xilinx Xchecker or Multilynx cable [Xil00Oc| for bitstream download. Readback
and single stepping via the Multilynx cable are also supported. Optional PROMs
are also supported so that it is possible that the FPGA is configured automatically
upon power up. It is currently not possible to download a bitstream to the
Pilchard system via the DIMM interface, but intuitively this is achievable by
decoding signals on the DIMM interface to the Select MAP configuration data

pins with external logic [Xil00c].

For debugging and expansion purposes, an expansion header connected to
some general purpose 1/O pins of the FPGA is provided for the connections to a

logic analyzer or daughter boards.

5.3 Pilchard Software

The software components of Pilchard consists of a device driver and an applica-
tion programming interface (API). The device driver configures chipset registers
to enable the DIMM slot where Pilchard resides to be accessible, and modify
the cache control to that specific physical memory range. The API performs a
memory mapping upon initialization, and offers read and write function calls for

data transfers between the PC and Pilchard.

The Pilchard device driver was developed on Linux kernel 2.2.17 and has been

tested with kernel versions up to 2.2.19. Porting of this driver to Linux kernel 2.4
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is in progress. Although the memory management subsystem of the kernel 2.4
was almost rewritten, the code relevant to the Pilchard driver remains unchanged.
Ports of this driver to other operating systems, although not yet tested, should
be possible.

The device driver was written as a loadable kernel module and does not require
any modifications to the kernel source. However, the kernel must be compiled
with support for loadable kernel modules, a feature in all Linux version 2.2 and
succeeding kernel versions. All accesses to the driver and hence the Pilchard
hardware are via a character device with major and minor numbers 240 and 0

respectively.

During initialization, the device driver is responsible for programming the PC
chipset’s memory controller registers to enable the DIMM slot where Pilchard
is populated. This is achieved using the PCI Utilities package from Martin
Mares [Mar00] (the host bridge device (bus 0, slot 0, function 0) contains the
configuration of memory slot population). Re-programming the chipset registers
fools the motherboard into thinking that the slot is populated with a DIMM
memory card and access cycles directed to this portion of the memory space will
generate appropriate signals in the DIMM slot. This operation is chipset depen-
dent, because the address of the registers which specifies how the DIMM slots
are populated and how these registers are encoded varies from chipset to chip-
set. The chipsets that have been tested include the Intel 440LX [Int98c|, Intel
440BX [Int98b] and Intel 815EP [Int0la] chipsets.

For instance, suppose a PC has 128 MB RAM organized as two 64 MB double-
sided DIMM card. Upon booting of the operating system, the chipset registers
would encode this physical memory configuration in specific registers. The device
driver modifies the chipset register, specifying that a third DIMM card, such as
a single-sided 64 MB DIMM card, is installed. Afterwards, the driver initializes
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the base address of the Pilchard memory mapped space, pilbase. This address is
exactly the top physical memory address, which is 0x8000000 (128 MB) in this
example. Subsequent memory accesses to addresses 0x8000000 to OxBFFFFFF
(a 64 MB memory range) select the Pilchard board.

CPU caching of reads and writes to Pilchard registers could lead to incorrect
results. The Intel Pentium Pro, Pentium II and Pentium IIT has a Memory
Type Range Register (MTRR) which allows different memory regions to have
different caching behavior [Int00b]. The MTRR registers are directly accessible
from the Linux kernel via the /proc filesystem [Go099]. The four modes of
MTRR are uncachable (UC), write-through (WT), write-back (WB) and write-
combining (WC). Among these four modes, UC and WC are used. WT and
WB modes offer potentially higher transfer rates but are more difficult to control

because the CPU manipulates the caching internally.

The UC memory type guarantees that all reads and writes will appear on
the system bus in the same order as the program. Furthermore, no specula-
tive memory accesses, page-table talks or prefetches of speculated branch targets
will occur [Int00b]. Although the most conservative, it also leads to the lowest

performance.

The WC memory type allows 32-bit writes to be delayed and later merged to-
gether in write-combining buffers. It is typically used to improve the performance
of frame buffers for graphics. Upon reaching a serializing event such as a read
from an UC location, the write-combining buffer is flushed in an efficient manner.
For example, when a WC buffer becomes full, the processor will evict the buffer
to system memory in a single burst transaction of 64-bit writes [Int00b]. Careful
use of the WC memory type can lead to greatly improved performance (discussed
in Section 5.4). WC was not used on Pilchard for reads since this mode allows

speculative reads which could interfere with memory mapped read cycles that
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have side effects.

Therefore, in normal operations reads are made on UC locations whereas
writes are made on UC or WC locations. This was achieved by setting different
MTRRs mode for different address regions. To support WC writes, a design on
Pilchard must be either insensitive to out-of-order data transfers or has a re-
ordering buffer. For the latter case, the size of the buffer should be at least that
of the WC buffer on the processor.

The use of Pentium III Streaming SIMD Extension (SSE) may further improve
the transfer throughput. The execution pattern of SIMD instructions is similar
to vector machines, in which the same operation is applied on a relatively large
range of consecutive memory locations (SIMD instructions are typically applied
to several hundreds kilobytes of data) [Int00a]. To enable this execution pattern,
memory accesses must be made in burst mode such that data retrieved from
the memory bus is directly fed to the SSE pipeline. Use of these instructions
may provide high bandwidth bursting transfers without corrupting the cache.

However, this has not yet been tested.

The user interface of Pilchard uses the UNIX mmap () system call. User pro-
grams can access the registers on the Pilchard board by performing a mmap ()
call which maps virtual addresses in the user space to the bus address of the
Pilchard board. Following this process, the user can manipulate the registers of
the Pilchard board directly without incurring the overhead of a system call. For
the user program to perform data transfer between the CPU and Pilchard, four

function calls are provided:

e write32(d, a): Write a 32-bit word referenced by the pointer d to the
physical memory address a. This function call fails if @ is not in the memory

range mapped by the Pilchard driver.



Chapter 5. Pilchard — Improving the Interface between PC and FPGA 93

e read32(d, a): Read a 32-bit word from the physical memory address a
and put the word into the memory location referenced by the pointer d.
This function call fails if a is not in the memory range mapped by the

Pilchard driver.

e write64(d, a): Write a 64-bit double-word pointed to by the pointer d
to the physical memory address a. This function call fails if a is not in
the memory range mapped by the Pilchard driver. To achieve this, MMX

instructions are used.

e read64(d, a): Read a 64-bit double-word from the physical memory ad-
dress a and put the word into the memory location referenced by the pointer
d. This function call fails if a is not in the memory range mapped by the
Pilchard driver. Similar to the 64-bit write function call, MMX instructions

are used.

Note that the mode of memory caching used in the function calls depends on
the MTRR mode of the address concerned. If the MTRR modes of 1 MB memory
ranges beginning from addresses pilbase and pilbase+0x100000 are UC and WC
respectively, then a memory access to address b, pilbase < b < pilbase+0x100000
would be made UC, whereas that to address ¢, pilbase4+0x100000 < ¢ < pilbase+
0x200000 would be made WC.

The MMX instruction used to perform 64-bit data transfer is the movq in-
struction. To perform a 64-bit write, a movl instruction is first issued to copy the
32-bit address to a 32-bit general purpose register (GPR), followed by a movq in-
struction that copies the double-word to a 64-bit MMX register. Finally, another
movq instruction is issued to copy the double-word from the MMX register to the
memory location. Similarly, to perform a 64-bit read, a movl instruction is first

issued. Then, two movq instructions are issued to copy the 64-bit data from the
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memory location to an MMX register, and then to the user program memory.

5.4 Performance Evaluation

The performance of the Pilchard board using a Xilinx XCV300-6 FPGA was
compared with a PCI Local Bus (33 MHz, 32-bit) card (a Nallatech Ballyinx
card [Nal]) also using an XCV300-6 device. The PCI card used the Xilinx Logi-
CORE PCI 64 Interface [Xil01b] for its PCI Local Bus controller. All the exper-
iments presented in this section were measured on the same machine, an Asus
CUSL2 motherboard (Intel 815EP chipset) with 800 MHz Pentium III processor
and 32-bit PCI Local Bus slots (the PCI64 card was used in a 32-bit slot in back-
wards compatible mode). All tests were conducted with the DIMM slot operating
at 133 MHz.

Unfortunately, since the Linux driver for the PCI card does not support direct
memory access (DMA), its performance in this mode could not be tested. DMA
would certainly offer better performance for large blocks, but there are large
overheads associated with setting up DMA transactions and leads to very long

latencies.

The size of the interface of Pilchard is much smaller than that of the Xilinx
LogiCORE PCI 64 Interface. A minimal 64-bit Pilchard interface requires only
two Virtex slices to generate the board’s read and write signals. Latching of the
address and data buses are performed in the input-output blocks (IOBs). Regis-
ters and BlockRAMs used for interfacing purposes require additional resources.

In contrast, the LogiCORE interface uses 300 to 350 slices [Xil01b].

As for Pilchard, the PCI card also uses a Linux loadable kernel module device

driver to ensure that the best performance was achieved. All the measurements
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were performed using the Linux kernel function do_gettimeofday() and the

results reflect associated software overheads.

A simple design was used to measure the 1/O performance of the Pilchard
board. In this design, read and write cycles cause the lower and upper 32 bits
of a 64-bit register on the Pilchard board to be incremented. Upon completion
of the benchmark, the number of reads and writes are read back to the PC to
verify that all the data were transferred. The results, measured in Mbytes/sec,

are presented in Table 5.1.

5.4.1 Write Benchmark

The write benchmark was conducted by performing 220 = 1048576 32-bit writes
to blocks of consecutive memory locations on the respective cards. This test was
conducted with MTRRs set to WC and UC on the Pilchard board, and UC for
the PCI Local Bus.

Measurements of write throughput for different 32-bit block sizes are presented
in the first two rows in Table 5.1 and are plotted in Figure 5.6. The PCI Local
Bus interface (the sixth row) is always slower than the Pilchard interface with UC
MTRR, particularly for small block sizes. WC on Pilchard gives a further three
to four-fold performance gain over UC since it is able to combine software 32-bit
cycles and write them using 64-bit transfers. As can be seen from the rightmost
entries of the two rows and Figure 5.6, write performance can be further improved

using the 64-bit write transactions by the MMX movq instruction.

An Agilent Technologies 16700A logic analyzer was used to capture the wave-
forms for UC and WC writes to the Pilchard board. The captures are shown in
Figures 5.4 and 5.5 respectively. In the UC case shown in Figure 5.4, all writes

must occur immediately and no write bursts will occur. The highest performance
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Block size (words)

Benchmark! .

1 2 4 8 16 32 64 | 64-bitt
Pil/UC-WR | 72.80 | 78.22| 81.51| 81.47| 81.46| 81.49| 81.49| 132.88
Pil/WC-WR | 69.83 | 150.02 | 297.53 | 298.28 | 297.93 | 298.08 | 297.80 | 409.64
Pil/RD 25.29 | 28.93| 31.67| 32.65| 32.98| 33.28| 32.76| 52.80
Pil/UC-RW | 29.47 | 35.95| 42.43| 42.42| 42.41| 42.42| 42.42| 74.79
Pil/WC-RW | 24.34 | 36.18| 46.11| 46.11| 46.11| 46.11| 46.11| 120.78
PCI/WR 25.47| 42.45| 61.74| 62.68| 63.17| 63.42| 63.17| N/A
PCI/RD 6.37| 6.53| 6.61| 6.66| 6.67| 6.67| 6.65| N/A
PCI/RW 9.62| 10.07| 10.84| 11.71| 11.90| 11.99| 12.01 N/A

Table 5.1: Measured performance (Mbytes/sec) of Pilchard and a comparison

with the PCI Local Bus interface.

(The benchmarks include Pil/UC-WR:
Pilchard write performance with MTRR set to UC, Pil/WC-WR: Pilchard write
performance with MTRR set to WC, Pil/RD: Pilchard read performance, Pil/UC-
RW: Pilchard read/write performance with MTRR set to UC, Pil/WC-RW:
Pilchard read/write performance with MTRR set to WC, PCI/WR: PCI Local
Bus write performance, PCI/RD: PCI Local Bus read performance, PCI/RW:

PCI Local Bus read/write performance. #*The performance of 64-bit data trans-

fer for any block size is the same.)
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Figure 5.4: Logic analyzer trace showing 64-bit Pilchard read and write cycles to
UC memory regions using the movq instruction. clk is a 133 MHz clock, s, ras,
cas and we are the DIMM interface signals, and read and write are the Pilchard
decoded read and write signals. This trace shows four 64-bit reads followed by

four 64-bit writes.
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Figure 5.5: Logic analyzer trace showing bursting behavior for 64-bit write cycles

to consecutive addresses in a WC memory region. clk is a 133 MHz clock, s,

ras, cas and we are the DIMM interface signals, read and write are the Pilchard

decoded read and write signals; and addr and data show the Pilchard address

and data buses. This trace shows sixteen 64-bit writes which have been merged

in the write-combining buffer into four burst transactions.
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is achieved in the WC case of Figure 5.5 where the start of a burst transfer can
be identified by the write signal being high. In this particular example, it can be
seen that 16 x 64-bit writes are performed in approximately 300 ns which equates

to 426 Mbytes/sec, consistent with the measured results in Table 5.1.

The measured WC performance is six times that of the measured PCI Local
Bus transfer rate. The theoretical maximum bandwidth of a DIMM interface is
1064 Mbytes/sec and the best measured performance using WC and including
software overheads was 400 Mbytes/sec (for movq transfers). This performance

is more than three times the maximum transfer rate of the PCI Local Bus.

5.4.2 Read Benchmark

Similar to the write benchmark, the time taken to perform 220 = 1048576 reads
of UC memory locations in differently sized blocks of consecutive locations was
measured. The read performances for different block sizes are shown in the third

row in Table 5.1 and are plotted in Figure 5.7.

Four 64-bit read cycles can be seen in Figure 5.4 when the read signal is high,
and the throughput can be seen to be approximately 64 Mbytes/sec which is
consistent with a measured value of 52 Mbytes/sec in Table 5.1. It is still unable
to produce burst 64-bit read transactions, but the use of SSE instructions may
enable this feature. The read performance is approximately five times higher than

that of the PCI Local Bus (the seventh row).

Using 64-bit data transfers via movq instructions may further improves the
read performance to about eight times that of the PCI Local Bus. This can be
seen by comparing the rightmost entry of the third row with the seventh row in

Table 5.1.
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5.4.3 Read/Write Benchmark

The read/write benchmark involves alternating writes and reads of data. Two
separate memory regions were used for this test, reads being made on an UC
region and writes to a WC or UC region. Results are shown in the fourth and
the fifth rows of Table 5.1 and the corresponding plots are plotted in Figure 5.8.
This mode is even faster than pure read cycles since writes are faster than reads,

thus improving the overall transfer rate.

As for read and write cycles, using the movq instruction to achieve 64-bit
transfers significantly improves the performance and the results are presented in
the rightmost entries of the two rows. The 64-bit Pilchard read/write transfer
rates was approximately six to ten times faster than the PCI Local Bus (the

eighth row).

5.5 Summary

The PC/FPGA interface is a major bottleneck for current RC platforms. A
solution to this problem was developed in the form of the Pilchard system which
demonstrates the feasibility of utilizing the DIMM slots of a standard PC as
a bus for attaching a RC platform. This was shown to offer greatly improved
bandwidth and latency over the ubiquitous PCI Local Bus. The Pilchard system
is simpler, uses less resources than conventional systems and may enable the
development of reconfigurable systems with lower cost and significantly improved
performance. It may be possible to achieve even higher performance via the
Pentium SSE instructions. These two features are crucial in an FPGA-based

coprocessor system.

As will be presented in Chapters 6 and 8, an implementation of the Interna-
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tional Data Encryption Algorithm (IDEA) cipher and an electronic cochlea on
Pilchard achieve significantly faster throughput than on the PCI or PCI64 Local
Bus. These applications demonstrated the use of the memory bus interface as a

solution to the bottleneck problem which exists in current RC platforms.



Chapter 6

Application I — The IDEA Cipher

A high-performance implementation of the International Data Encryption Al-
gorithm (IDEA) is presented in this chapter. Using a bit-serial architecture to
perform modular multiplication, this implementation occupies a minimal amount
of hardware and has a high clock rate. The key schedule of this implementa-
tion can be modified through bitstream modification (Appendix B) and does not
require the time-consuming place and route (P&R) procedure. The implemen-
tation was developed on the Pilchard platform (Chapter 5) and results showed
significant improvement in encryption/decryption throughput over the PCI Local

Bus.

This chapter gives an overview of cryptography followed by a description of
the IDEA. Implementations and results are then given. Specifically, the method
of modifying the key schedule by bitstream modification and the performance on

Pilchard are highlighted.
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6.1 Background

Cryptography is concerned with the transfer of information between parties so
that only the intended parties can read the data. Despite an assumption that an
adversary may have full knowledge of the algorithms used and has access to the
media where data is transmitted, it is desired that the retrieval of data without

knowledge of a secret piece of information called a key is intractable.

The Data Encryption Standard (DES) algorithm has been a popular secret key
encryption algorithm and is used in many commercial and financial applications.
Although introduced in 1976, it has proved resistant to all forms of cryptanalysis.
However, its key size is too small by current standards and its entire 56-bit key

space can be searched in approximately twenty-two hours [Ele99].

In 1990, Lai and Massay introduced an iterated block cipher (the crypto-
graphic key and algorithm are applied to a block of data at once as a group of
bits in a block cipher) known as Proposed Encryption Standard (PES) [LM90].
Later, the same authors, joined by Murphy, proposed a modification of PES called
Improved PES (IPES) [LMMO91], which improves the security of the original al-
gorithm against differential analysis and truncated differentials [HL94, Knu95,
Bor97]. In 1992, IPES was commercialized and was renamed the International
Data Encryption Algorithm. Some believe that, to date, the algorithm is the best
and the most secure block cipher available to the public [Sch96].

Although IDEA involves only simple 16-bit operations, software implementa-
tions of this algorithm still cannot offer the encryption rate required for on-line
encryption in high-speed networks. Ascom’s implementation of IDEA [Asc99a]
(Ascom hold the patent on the IDEA) achieves 0.37 x 10° encryptions per sec-
onds, or an equivalent encryption rate of 23.53 Mbits/sec, on an Intel Pentium

IT 450 MHz machine. Implementation of IDEA using the Intel Multimedia Ex-



Chapter 6. Application I — The IDEA Cipher 107

tension (MMX) instructions was proposed by Lipmaa [Lip98] achieves 0.51 x 10°
encryptions per second or a equivalent encryption rate of 32.64 Mbits/sec on an
Intel Pentium II 233 MHz machine. A parallelized software implementation de-
rived from Ascom’s implementation running on a Sun Enterprise E4500 machine
with twelve 400 MHz Ultra-IIi processor, performs 2.30 x 10% encryptions per
second or a equivalent encryption rate of 147.13 Mbits/sec, still cannot be ap-
plied to applications such as encryption for 155 Mbits/sec asynchronous transfer

Mode (ATM) networks.

Hardware implementations offer significant speed improvements over software
implementations by exploiting parallelism among operators. In addition, they are
likely to be cheaper, have lower power consumption and smaller footprint than a
high speed software implementation. A paper design of an IDEA processor which
achieves 528 Mbits/sec on four XC4020XL devices was proposed by Mencer et. al.
[MMF98]. The first VLSI implementation of IDEA was developed and verified
by Bonnenberg et. al. in 1992 using a 1.5 um CMOS technology [BCF91].
This implementation had an encryption rate of 44 Mbits/sec. In 1994, VINCI, a
177 Mbits/sec VLSI implementation of IDEA in 1.2 uym CMOS technology, was
reported by Curiger et. al. [CBZ193, ZCB"94]. A 355 Mbits/sec implementation
in 0.8 um technology of IDEA was reported in 1995 by Wolter et. al. [WMSL95],
and later a 424 Mbits/sec implementation in 0.7 pm technology was proposed
by Salomao et. al. [SAF98]. Goldstein et. al. reported an implementation on
the PipeRench FPGA which achieves 1013 Mbits/sec [GSBT00]. A commer-
cial implementation of IDEA called the IDEACrypt Kernel developed by Ascom
achieves 720 Mbits/sec at 0.25 pum technology [Asc99¢]. The single chip device
derived from the IDEACrypt Kernel, called the IDEACrypt Coprocessor, has a
throughput of 300 Mbits/sec [Asc99b].
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6.2 Algorithm

IDEA belongs to a class of cryptosystems called secret-key cryptosystems which
is characterized by the symmetry of encryption and decryption processes, and
the possibility of implying the decryption and encryption keys from each other.
IDEA takes 64-bit plaintext inputs and produces 64-bit ciphertext outputs using
a 128-bit key.

The IDEA block cipher, as depicted in Figure 6.1, consists of eight identical
blocks known as rounds, followed by a half-round or output transformation. In
each round, exclusive-or (XOR), addition modulo 2'° and multiplication modulo
216 +1 (a Fermat prime) operations are applied on 16-bit sub-blocks. The IDEA
algorithm is believed to be of strong cryptographic strength because its primitive
operations are of three distinct algebraic groups of 2! elements, multiplication
modulo a Fermat prime provides desirable statistical independence between plain-
text and ciphertext, and its property of having iterative rounds made differential

attacks difficult.

The encryption process is as follows. The 64-bit plaintext is divided into four
16-bit plaintext sub-blocks, X; to X4. The algorithm converts the plaintext blocks
into ciphertext blocks of the same bit-length, similarly divided into four 16-bit
sub-blocks, Y7 to Y. 52 16-bit subkeys, Zi(r), where ¢ and r are the subkey number
and round number respectively, are computed from the 128-bit secret key. Each
round uses six subkeys and the remaining four subkeys are used in the output
transformation. The decryption process is essentially the same as the encryption

process except that the subkeys are derived using a different algorithm [Sch96].

The algorithm for computing the encryption subkeys (called the key schedule)
involves only logical rotations. Order the 52 subkeys as Zfl), e Zél), Z§2), e

Zé2), . Z§8), cen Zég), ng), e Zig). The procedure begins with partitioning

b
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Figure 6.1: Block diagram of the IDEA algorithm.
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Table 6.1: IDEA decryption subkeys Z’ff) derived from encryption subkeys Zr(i),
where —Z; and Z; ! denote additive inverse modulo 2'¢ and multiplicative inverse

216 4+ 1 of Z; respectively.

the 128-key secret key Z into eight 16-bit blocks and assigning them directly to
the first eight subkeys. Z is then rotated left by 25 bits, partitioned into eight
16-bit blocks and again assigned to the next eight subkeys. The process continues

(r)

until all 52 subkeys are assigned. The decryption subkeys Z';"’ can be computed

from the encryption subkeys with reference to Table 6.1.

In electronic codebook (ECB) mode [Sch96], the data dependencies of the
IDEA have no feedback paths. Additionally, latencies of order of microseconds
are acceptable in practice. These features make the algorithm suitable to be

implemented as a deep bit-serial pipeline.

Of the basic operations used in the IDEA, multiplication modulo 2641 is the
most complicated and occupies most of the hardware. Curiger et. al. [CBK91]
described and compared several VLSI architectures for multiplication modulo
2"+1 and found that an architecture proposed by Meier and Zimmerman [MZ91],
using modulo 2" adders with bit-pair recoding offers the best performance. The

pseudocode for the modular multiplication operation by module 2" adders using
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1 uint16 mulmod(uintl6 x, uintl6 y)
2 {

3 uint32 t;

4 x = (x - 1) & OxFFFF;

5 y = (y - 1) & OxXFFFF;

6 = (uint32) x *x y + x +y + 1;
7 x = t & OxFFFF;

8 y =1t > 16;

9 x = (x-y)+ (x<=y);

10 return x;

11}

Figure 6.2: The pseudocode for the multiplication modulo 2'¢+1 using 2'6 adders

bit-pair recoding.

bit-pair recoding is shown in Figure 6.2.

This algorithm requires a total of six additions and subtractions, one 16-bit
multiplication and one comparison. Nevertheless, in IDEA one of the operands of
a modular multiplication operation is always a subkey, so the second subtraction

can be eliminated if the associated subkeys are pre-decremented.
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6.3 Implementation

6.3.1 The Bit-Serial IDEA Pipeline

The implementation of IDEA presented in this dissertation was targeted for the
Xilinx Virtex FPGA architecture. This design employs a bit-serial architecture
which offers a high degree of fine-grain parallelism and high clock rate in a com-
pact implementation. Applications of this design include Virtual Private Net-

works (VPNs) and embedded encryption/decryption devices.

The bit-serial pipeline that implements a round in IDEA is depicted in Fig-
ure 6.3. The half-round can be constructed in a similar manner. A fully-pipelined
IDEA implementation can be constructed by cascading eight rounds followed by

a half-round.

The implementation of two primitive operators used in IDEA, namely XOR
and addition modulo 2! are straightforward. These two operators have latencies
of one clock cycle and are capable of taking consecutive bit-serial operands. The
multiplication modulo 2'¢ + 1 operator, which is described in the subsequent
paragraphs, has a latency of 35 clock cycles. For the best area-efficiency, stage
latches and constants are implemented using Virtex shift register LUT (SRL)
primitives [Xil00g]. More specifically, a constant is implemented as a SRL16E

primitive, with its output connected to its input to form a cyclic shift register.

Multiplication modulo 2'¢+1 is the most critical operation in IDEA. Choosing
a suitable multiplier is therefore a crucial design issue. An N x N-bit multiplier
generates a 2/N-bit result, and requires 2N cycles to complete. Thus, through-
put of bit-serial multipliers are restricted because the minimum interval between
consecutive multiplications must be at least 2 x N cycles. In IDEA, one of the

operands of every modular multiplication is a subkey and treated as a constant.
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Figure 6.3: Pipelined datapath for one round of IDEA. Circled numbers indicates

latches of that number of stages.



Chapter 6. Application I — The IDEA Cipher 114

Recall in the modular multiplication algorithm that the intermediate result
t is divided into two portions (Figure 6.2, lines 6 to 8). The two portions are
respectively the upper and lower 16 bits of the double-word, which are operands
to subsequent operations. A design that computes the upper and lower words
of t independently is desirable, allowing all the inputs, outputs and intermediate
variables of the operator to be 16-bit long. Using this scheme and duplicating

hardware, the throughput of a modular multiplication operation can be doubled.

To overcome the above mentioned throughput problem, a modified version
of Lyon’s serial-parallel multiplier [Lyo76] was developed. To generate two 16-
bit results in sixteen cycles, the throughput of the multiplier must be doubled.
This is achieved by duplicating the hardware for multiplication, as illustrated in
Figure 6.4. Registers storing the constant are shared among the two multiplica-
tion pipelines. The outputs p and ¢ correspond to the results of two consecutive
multiplications, where the two 32-bit long variables have a time-difference of 16
cycles. The ctrl signal, which is high one clock cycle before the least significant
bit enters the module, toggles the control register. The vector of input variables
Gn_1 ---0G109 1S consequently redirected into the two multiplication pipelines al-
ternately. While the vector is being redirected to one pipeline, logic zero enters
the other pipeline carrying out zero-padding. A timing diagram of the modified

multiplier is shown in Figure 6.5.

To obtain the time-aligned upper and lower words of ¢, a sixteen-stage shift
register is required. The input and output of the shift register are the upper and
lower words of ¢ respectively, sixteen cycles after ¢ is valid. In the implementation
the shift register is implemented as a SRL16E primitive [Xil00g]. The complete
architecture for the modular multiplication operation is shown in Figure 6.6.
Upon initialization, the subkey associated with the operator is passed into the

operator bit-serially. The pre-decremented subkey is shifted into the registers of
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Figure 6.6: The bit-serial architecture for multiplication modulo 2'¢ + 1 opera-

tions. Circled numbers indicates latches of that number of stages.

the multiplier, and at the same time stored into the SRL16E primitive responsible

for key storage.

Utilizing the idea of multiple pipelines, the modular multiplication operation
offers a throughput of sixteen cycles, even though a 32-bit intermediate result
is computed. This scheme doubles the throughput but since sharing of the b

registers can occur, the hardware cost is less than double.

The core implementation of IDEA is obtained by cascading eight identical
rounds of operations shown in Figure 6.3, followed by a output transformation.
For convenient interfacing, four parallel-to-serial converters are inserted before the
first round and four serial-to-parallel converters are appended after the output
transformation. The core takes one 64-bit plaintext once every 16 cycles, yielding
an effective encryption rate of f x 64 + 16 Mbits/sec at a system clock rate of f
MHz. As each round has a latency of 109 cycles, the output transformation has
a latency of 35 cycles and each serial-to-parallel converter at the outputs has a
latency of 16 cycles, the IDEA core has an overall latency of 109 x 8+35+16 = 923

cycles.
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Figure 6.7: Shifting the key schedule into the IDEA core.

6.3.2 Modifying the Key Schedule

In this IDEA implementation, key schedule can be modified by two methods.
The first method is to make all the shift registers (all implemented as SRL16E
primitives) for key storage linked during initialization cycles. Upon initialization,
the pre-computed 52 16-bit subkeys (a total of 832 bits) are passed bit-serially
into the core via the shift registers. This design requires little overhead in routing
and logic requirements. Figure 6.7 illustrates this design. During initialization
Zar 1s set and the subkeys are passed bit-serially from Z;, to the rounds and the

output transformation.

The second method is to utilize the bitstream modification technique (Ap-
pendix B). In this implementation, the subkeys are stored in SRL16E primitives.
Hence, for each design bitstream containing this IDEA core, it is possible to ex-
tract the locations of the corresponding LUTSs for these subkeys. By modifying
the initial contents of these LUTs, an IDEA implementation with a new key
schedule is obtained. There are totally 52 LUTs needed to be modify using the
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bitstream modification technique which takes about 0.12 second.

6.4 Results

With the Xilinx Virtex XCV300-6 FPGA as the target device, the fully-pipelined
IDEA implementation requires 2801 slices, accounting for 91.18% of the to-
tal 3072 slices on an XCV300 device. Enabled by the deeply pipelined bit-
serial architecture, a high clock rate is achieved. The clock rate reported by
the implementation tool was 150.16 MHz, equivalent to an encryption rate of
150.16 x 64 + 16 = 600.64 Mbits/sec at a latency of 923 + 150.16 = 6.146 mi-

croseconds.

This IDEA implementation were implemented using both the Annapolis Wild-
card Reconfigurable Computing Engine [Ann99a] (Chapter 2.5) and Pilchard.
The Wildcard platform has a Xilinx Virtex XCV3000-6 FPGA and a CardBus
interface, while the Pilchard board used a Xilinx Virtex XCV300-6 FPGA.

On the Wildcard platform, the time taken to complete a FPGA to PC transac-
tion was dominated by operating system overheads. When designing the interface
between the IDEA core and the PC, it is crucial that the number of discrete Card-
Bus read and write transactions be minimized and the amount of data transfered
per transaction be maximized. Data is written directly to the core using a burst
mode transfer of 512 64-bit plaintext blocks. The ciphertext is written to consec-
utive locations in the BlockRAM. The results are read by the PC from the IDEA
processor by doing a burst mode transfer of the contents of the BlockRAM. This
interface between the PC and the IDEA core on Wildcard requires an additional
238 slices, resulting in a total of 3039 slices, or 98.93% utilization of the FPGA.

Although the CardBus has a 1056 Mbits/sec (33 MHz, 32-bit) maximum
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transfer rate, its actual data transfer rate using programmed /0O is degraded due
to very large operating system overheads in setting up a CardBus transaction.
The implementation achieved a measured performance of 0.61 x 10° encryptions
per second (39 Mbits/sec). The situation could be improved by using direct
memory access (DMA), but the DMA interface requires approximately 400 slices
and cannot be fit on a Virtex XCV300 with the IDEA core. The DMA interface
was tested in a stand-alone configuration and the measured performance was
142 Mbits/sec. A larger device which can accommodate both the IDEA core and

the DMA interface could achieve this performance.

On the Pilchard platform, the interface between the FPGA and the PC is com-
paratively simpler because it is not necessary to minimize the number of transac-
tions. Plaintext from the PC are stored in a 64-bit first-in-first-out (FIFO). The
IDEA core obtains these plaintext from the FIFO and put the ciphertext into
another 64-bit FIFO for the PC to retrieve. To ensure data are written to the
board in the correct sequence, the UC MTRR mode was used. This interface re-

quires an additional 66 Virtex slices, resulting in a total of 2867 slices, or 93.33%

utilization of the FPGA.

The measured performance of the IDEA implementation on Pilchard was
2.28 x 105 encryptions per second (146 Mbits/sec), a 3.74 times higher through-
put than the same implementation on the Wildcard platform. This performance
can be further improved if burst transfers to the Pilchard card could be effected,

either using the WC MTRR (Section 5.3) or via Pentium SSE instructions.

6.5 Summary

A high-performance implementation of the IDEA is presented in this chapter.

Using a dedicated bit-serial design of the multiplication modulo 26 4- 1 operator,



Chapter 6. Application I — The IDEA Cipher 120

the implementation occupies a minimal amount of hardware. The bit-serial ar-
chitecture enabled the algorithm to be deeply pipelined to achieve a system clock
rate of 150 MHz. An implementation on a Xilinx Virtex XCV300-6 delivers a
throughput of 600 Mbits/sec.

For this implementation, the modification of the key schedule can be done by
bitstream modification which offers improved security. Experiments on Pilchard
showed significant performance improvements over the traditional interfacing
technique. The measured throughput of the IDEA implementation on Pilchard
was 146 Mbits/sec which is 3.74 times faster than the 39 Mbits/sec implementa-
tion on the Wildcard platform.



Chapter 7

Application II — Post-Rendering
3D Warping

The application of fp (Chapter 3) to a post-rendering 3D warping algorithm
is presented in this chapter. An FPGA-based coprocessor approach was used,
in which the most computationally intensive inner-loop (pixel re-projection) is

executed on an FPGA while the remaining in software.

This application demonstrates the use of a variable wordlength design method-
ology to achieve better area efficiencies. It also demonstrates the ability of fp to
obtain multiple implementations with a tradeoff between different precision and

area from a single high-level description.

A literature review on related research in post-rendering 3D warping is first
given. The algorithm chosen to be implemented on FPGA is then described,

followed by its implementation and performance evaluation.
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7.1 Background

Traditional rendering systems use linearly interpolated triangles to render a 2D
graphical image from a complex 3D internal representation so as to obtain realistic
rendering result. The computational requirement is strongly dependent on the
scene complexity. To address this problem, an image-based rendering system was
introduced by McMillan and Bishop [MB95] and after that, post-rendering 3D
warping was proposed [MMB97]. Post-rendering 3D warping provides an order
of magnitude improvement in apparent frame rates over conventional rendering,
with computational requirements not dependent on scene complexity but rather

on the image size.

The idea behind post-rendering 3D warping is illustrated in Figure 7.1. The
inputs to the algorithm are a reference image and its corresponding depth map.
Each pixel is projected to its actual 3D space and then reprojected to the new
view plane. Given the reference image and depth map obtained from geomet-
rical rendering, post-rendering 3D warping produces scenes with quality com-
parable to geometrical-based rendering for small changes in view angle and its
performance is significantly faster. Hence, this technique is typically used in con-
junction with traditional rendering for the smooth transition (small view angle
changes) between key frames [MMB97]. This rendering technique is very effec-
tive and has been an active field of computer graphics research [MB97, SGHS98,
RB98, RAPL9Sg|.

Figure 7.2 shows the inputs and outputs of a simple post-rendering 3D warp-
ing. The algorithm takes an input image (Figure 7.2(a)) and its corresponding
depth map (Figure 7.2(b)). Two different views of the same scene obtained using
simple post-rendering 3D warping are shown (Figures 7.2(c) and 7.2(d)). The

resultant image have dark lines which are caused by under-sampling. This prob-
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lem can be overcame by splat reconstruction or mesh reconstruction [MMB97].
One other difficulty which must be addressed by the 3D warping problem is that
there is no information about objects occluded in the reference image but which
might appear in the new view. This problem, called the occlusion problem, can
be handled by having multiple reference images [RAPL98] or layered depth im-
ages [SGHS98|.

The post-rendering 3D warping algorithm is simple so its hardware and mem-
ory requirements are modest and high bandwidth memory is not necessary. These
two features make it feasible to employ an FPGA-based coprocessor approach,
in which the FPGA renders the images, the host PC displays the warped images
and obtains new view parameters from an user interface. The under-sampling

and occlusion problems were not addressed in this dissertation.

7.2 Algorithm

Typically the 3D representation of the image is generated by a software geomet-
rical renderer. A perspective projection model with image plane is used for the

reference view.

The framework of re-projecting a pixel with respect to a new viewpoint or a
center of projection (COP) is shown in Figure 7.3. Denote the original and the
new viewpoints be o and 7, the new viewplane’s top-left, top-right, bottom-left
and bottom-right corners be A—Og, A—lg , A—Ol> and A—H> respectively. The vectors from

— — — = ,
T to Ago, Aro, Agr and Aq; are named as v_o(]), m, v10 and vq) respectively.

The post-rendering 3D warping algorithm is as follows:

1. Project the pixel from the reference image to its actual 3D position, ? with

respect to the coordinate system centered by the new viewpoint and aligned
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(a) original image (b) depth map

(c) warped image (d) warped image

Figure 7.2: The inputs and outputs of post-rendering 3D warping.
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Figure 7.3: Framework of re-projecting a pixel with respect to a new viewpoint.
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by the new viewplane.

2. Find the projected position of 7', A7 on the new viewplane ?(h, k) =
(1= k)((1 — h)vo + hvrg) + k(1 — h)vor + hony).

3. Equating )\? = ?(h, k) gives three independent equations along the z, y

and z dimensions, hence real numbers h and k£ can be solved.

4. If h,k € [0.0,1.0), then the pixel will be splattered onto the new image
plane at the coordinate (res, x h,res, x k), where res, and res, is the

resolution.

5. Steps 1 to 4 are repeated for every pixel of the input image.

7.3 Implementation

In the hardware fixed-point implementation, it is assumed that the original view-
point is the origin of the 3D space (7 = {0,0,0}). The original viewplane is
parallel to the XY-plane, centers at {0,0,1}, with up vector along the Y-axis
and the size being four unit squares (two units by two units). (Zyeq = {0,0,1}
@ = {0, 1,0}, the four corners of the original viewplane are {—1,1,1}, {1,1,1},
{~1,—1,1} and {1,-1,1}).

The post-rendering 3D warping algorithm was split into two parts. The pro-
jection part projects every pixel to its actual 3D position ? from the depth map.
The 3D projection of the pixel at the ¢-th column and j-th row of the input image
can be obtained by solving ? = +d@, where @ is the normalized vector from
the origin 7/ = {0,0,0} to the coordinate of the pixel on the original viewplane
{i/res, —1,j/res, — 1,1}, d is the depth of the pixel obtained from the depth

map. The results of preprocessing is the 3D coordinate of every pixel in the orig-



Chapter 7. Application IT — Post-Rendering 3D Warping 128

inal image. Only one execution of this part is needed for an input image and it

is done in software.

The re-projection part of the algorithm is required for every change in the new
viewpoint or the new view direction. This part is executed on hardware. The
re-projection of the post-rendering 3D warping algorithm was described by the
algorithmic description as shown in Figure 7.4. In order to simplify the problem,
it is assumed that the up vector of the view direction is always parallel to the Y-
axis. (Q?p = {0,1,0}). As inputs, this function takes the projected coordinates of
a pixel 7, the new viewpoint 7 and the new view direction Uyen. As outputs, the
offsets of the pixel after projected on the new viewplane along the two directions,
h and k, are computed. From the 25-line algorithmic description in Figure 7.4,

about 20000 lines of VHDL descriptions are generated.

In a software implementation, all of the operations are performed using double-
precision floating-point arithmetic. Although the algorithm is very simple, it is
not straightforward to implement it using fixed-point arithmetic since it is dif-
ficult to determine the number of bits required for A, h and k due to the use
of fixed-point division, fractional multiplication and square root functions. The
challenge of implementing this re-projection algorithm in hardware is that the
tradeoff between area requirements and the quality of output image needs to be

considered.

The VHDL description generated from the algorithmic description is used
for the synthesis of a component, namely the algorithm function, in the imple-
mentation, as illustrated in Figure 7.5. The new viewpoint and direction are
obtained from an user interface. The 3D coordinates of every pixel was retrieved
from an external memory and enter the algorithm function to compute the pro-
jected coordinate on the new viewplane. At the same time, their corresponding

red-green-blue (RGB) color values were read from the memory and enter a shift
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1 #define EQ(w, x, y, z) {wl[0] = x; w[1] = y; w[2] = z;}

2 void normalize(fixed *n)

3

4 fixed m;

5 m = sqrt(n[0] * n[0] + n[1] * n[1] + n[2] * n[2]);

6 EQ(n, n[0] / m, n[1] / m, n[2] / m);

T}

8 void warp(fixed *v, fixed *vd, fixed *p, /] inputs

9 fixed &h, fixed &k) /] outputs

10 {

10 fixed vp[3], v00[3], v01[3], v10[3], v11[3], nvp, 1;

11 EQ(vp, vd[2], 0, -vd[01);

12 normalize (vp) ; // mormalize the view vector

13 EQ(v00, vd[0] + vp[Ol, vd[1] + 1.0, vd[2] + vp[2]);

14 EQ(v01, vd[0] + vp[0l, vd[1] - 1.0, vd[2] + vp[21);

15 EQ(v10, vd[0] - vp[0], vd[1] + 1.0, vd[2] - vp[2]);

16 EQ(v11, vd[0] - vp[0], vd[1] - 1.0, vd[2] - vp[2]);
// the vector to the four corners of the new viewplane

17 EQ(nvp, pl[0] - v[0], p[1] - v[1], p[2] - v[2]);

18 normalize (nvp) ;

/] the vector from the new viewpoint to the pizel

Figure 7.4: The fp algorithmic description of the re-projection of the post-

rendering 3D warping algorithm.
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19 1 = (voO[0] * (vi0[2] - vOO[2]) - vOO[2] *

20 (v10[0] - vO0O[0]1)) /

21 (nvp[0] * (v10[2] - vO0O[2]) - nvp[2] *

22 (vi0[0] - v00[0])); // lambda
23 h = (1 * nvp[0] - vOO[0]) / (v10[0] - v0O[0]);

24 k = (1 * nvp[1] - v0O[1]) / (v01[1] - vOO[1]);

25 }

Figure 7.4 (continued): The algorithmic description of the re-projection of the

post-rendering 3D warping algorithm.

register which has exactly the same latency as the algorithm function. Eventually,
time-aligned pairs of new viewplane coordinates and color values are produced
and are written back to the memory. The color values are written to a memory
location indexed by the new viewplane coordinate, hence a resultant image is
formed at the output buffer which can be directly displayed by the host PC. In
order to save external memory requirements, the wordlengths of the 3D represen-
tation of the image was reduced to 16 bits. This constraint made it impossible to
achieve a pixel-exact correspondence between the floating-point and fixed-point

implementations.

In this implementation, bit-parallel multi-cycle arithmetic operators were used.
The choice of bit-parallel operators is due to that division and square root can-
not be implemented efficiently with a digit-serial architecture. Multi-cycle but
not pipelined operators were employed in order to conserve area. Specifically,
the fixed-point division is implemented using restoring-division and the square
root is implemented by completing the square method [Kor95]. These were all

implemented as modules inside fp.
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Figure 7.5: Hardware implementation of the re-projection of the post-rendering

3D warping algorithm.
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7.4 Results

The post-rendering 3D warping routine consists of 39 operations. Note that the
Y-axis component of the view vector vp = {vps, vpy, vp,} is zero (vp, = 0, line

11 in Figure 7.4). When normalizing o (that is, computing vp,/m, vp,/m and

vp./m, where m = ,/vp2 + vp2 + vp?), one multiplication, one addition and one

division operators are unnecessary and thus removed (vp2 = 0 and vp,/m = 0).

The cost functions are weighted sums of two components, one of which is
the estimated area while the other is the reciprocal of sums of output errors.
No constraint was set. Two sets of cost function weights were experimented.
The first set has a larger coefficient for the error component and produced an
implementation with a higher precision (an average of 21 bits per fixed-point
variables). The second set has a larger coefficient for the area component and

produced an implementation with smaller area (an average of 14 bits per variable).

The average errors of outputs h and k (Section 7.2) are respectively 4.191 x
10~* and 5.248 x 10~* for the 21-bit average wordlength implementation, and
9.798 x 10~* and 1.016 x 1073 for the 14-bit average wordlength implementation.
Due to the choice of multi-cycle operators, the throughput of implementations
are limited by the operator with the lowest throughput (the longest latency). The
execution time for the 21-bit and 14-bit average wordlength implementations are

37 and 33 clock cycles per pixel respectively.

The resultant images from the floating-point software and the fixed-point
hardware implementations are shown in Figure 7.6. It was observed that the
quality of the resultant images were dependent on the wordlengths of variables,

as predicted by the magnitude of the output error.

The generated implementations were used with a manually designed memory

interface to produce the complete designs. The designs were synthesized with a
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(a) original image (b) result of floating-point

implementation

(¢) result of 21-bit average wordlength (d) result of 14-bit average wordlength

fixed-point implementation fixed-point implementation

Figure 7.6: Post-rendering 3D warped images obtained from floating-point soft-

ware and fixed-point hardware implementations.
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Average wordlength 21 bits 14 bits

Output error at h 4.191 x 1074 9.798 x 1074
Output error at k 5.248 x 1074 1.016 x 1073
Area 3099 CLBs 2334 CLBs
Verified clock rate 40.0 MHz 41.0 MHz
Latency 37 clock cycles | 33 clock cycles
Maximum frame rate 4.12 fps 4.62 fps

Table 7.1: Summary of post-rendering 3D warping fixed-point implementations.

Xilinx XC4085XL-1 FPGA (contains 3136 CLBs) as the target device. The design
with 21-bit average wordlength algorithm function requires 3099 CLBs, and the
one with 14-bit average wordlength algorithm function requires 2334 CLBs (a
X(C4000 CLB has roughly of the same amount of logic as a Virtex slice).

The maximum clock rate reported by the implementation tool was about
20 MHz, but both designs have been successfully verified at approximately 40 MHz.
With a 40 MHz clock rate and an image resolution of 512 x 512 pixels, the 21-bit
average wordlength implementation achieved a frame rate (measured in frames
per seconds (fps)) of 40 =+ (37 x 512 x 512) = 4.12 fps, while the 14-bit average
wordlength implementation achieves 40+ (33x512x512) = 4.62 fps. These imple-
mentations were verified on the Annapolis Wildforce Reconfigurable Computing

Platform (Chapter 2.5). These results are summarized in Table 7.1.

As a comparison, the performance of an optimized software implementation
running on a Sun Ultra-5 270 MHz workstation was 3.70 fps. The speed improve-
ment obtained by the hardware implementations was limited because limited by
the choice of multi-cycle operators for multiply, divide and square root fixed-point

operators so that the design could fit on the Xilinx XC4085XL-1 device.
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The computational bottleneck in the current implementation can be elimi-
nated by using pipelined operators instead of multi-cycle operators. The pipelined
implementation, with an estimated size of 6000 CLBs, should fit in larger FPGA

devices which are already available.

7.5 Summary

The application of fp in post-rendering 3D warping has demonstrated a floating-
point algorithm written in a general programming language to be directly con-
verted into fixed-point hardware description. The algorithmic description is writ-
ten in the C programming language and can be used in a hardware implemen-
tation with fp as well as in a software implementation with a C compiler. This
property facilitated the FPGA-based coprocessor approach, in which the program
can be used directly for a hardware implementation to gain immediate speedup.
Hardware speedup was limited (1.11 and 1.25 times faster than a software imple-

mentation) due to the choice of multi-cycle operators.

The process of implementing the algorithm in hardware involves floating-point
to fixed-point conversion and the generation of hardware description. With the
multiple wordlength design methodology, the tradeoff between area and perfor-
mance was addressed. Expressing the required tradeoff as a cost function enabled
designer to concentrate more on the higher level algorithmic issues and less on

the implementation details.



Chapter 8

Application III — Electronic
Cochlea Filter Model

The application of fp (Chapter 3) to Lyon and Mead’s electronic cochlea filter
model is presented in this chapter. This model can be used as an accelerator for

a PC or as the front end for embedded auditory signal processing systems.

To efficiently design this application, an infinite impulse response (ITR) filter
operator was developed and added to the fp fixed-point and module libraries. It
demonstrated that users can build their own set of operators on top of the prim-
itives to meet application requirements. Implementations of the cochlea filter
model on Pilchard (Chapter 5) and on a typical RC platform (with a PCI Local
Bus interface) demonstrated improved system performance using a memory slot
interface. This application also shows the benefits of parameterized module gen-
eration which significantly improves productivity and allows designers to explore
the tradeoff between area and precision associated with a fixed-point implemen-

tation.

This chapter begins with a literature review and a description of the Lyon
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and Mead’s cochlea model. The implementation and performance analysis are
given, followed by the application of the electronic cochlea to speech processing

is presented.

8.1 Background

It is clear that biological-based systems perform feats of signal processing that
human being cannot approach using even the most sophisticated computers and
digital signal processing techniques. Generally, biological-based auditory systems
operate with greater functionality, lower power consumption and increased ro-
bustness than their man-made electrical counterparts. This is particularly true
in tasks such as speech recognition where humans are able to process signals far
better than the most sophisticated computer-based systems. A lot can be learnt

from the elegant designs of nature.

The field of neuromorphic engineering has the long term objective of taking
architectures from the understanding of biological systems to develop novel signal
processing systems. This field of research, pioneered by Carver Mead [Mea89] has
concentrated on using analogue VLSI to model biological systems. Research in
this field has led to biologically inspired signal processing systems which have

improved performance compared to traditional systems.

The human cochlea is a transducer which converts mechanical vibrations from
the middle ear into neural electrical discharges, and additionally provides spatial
separation of frequency information in a manner similar to that of a spectrum
analyzer [LM88]. It serves as the front end signal processing for all functions of
the auditory nervous system such as auditory localization, pitch detection and

speech recognition.
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Figure 8.1: Cascaded IIR biquadratic section used in the Lyon and Meads cochlea

model.

Although it is possible to simulate cochlea models in software, hardware im-
plementations may have orders of magnitude of improvement in performance.
Hardware implementations are also attractive when the target applications are
on embedded devices in which power-efficiency and small-footprint are design

considerations.

The electronic cochlea, first proposed by Lyon and Mead [LM88] is a cascade
of biquadratic filter sections (as shown in Figure 8.1) which mimics the qualitative
behavior of the human cochlea. Electronic cochleae have been successfully used
in many auditory signal processing systems such as spatial localization [LM89al,
pitch detection [LM89b], a computer peripheral [LWK94], amplitude modulation
detection [vSM99], correlation [MAL91] and speech recognition [LWL97].

There have been several implementations of electronic cochleae in analogue
VLSI technology. The original implementation by Lyon and Mead was pub-
lished in 1988 and used continuous time subthreshold transconductance circuits
to implement a cascade of 480 stages [LM88, Lyo91]. In 1992, Watts et. al.
reported a 50-stage version with improved dynamic range, stability, matching

and compactness [WKLM92]. A problem with analogue implementations is that
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transistor matching issues affect the stability, accuracy and size of the filters.
This issue was addressed by van Schaik et. al. in 1997 using compatible lat-
eral bipolar transistors (CLBTSs) instead of metal oxide semiconductor field effect
transistors (MOSFETs) in parts of the circuit [vSEV97]. Their 104-stage test
chip showed greatly improved characteristics. In addition, a switched capacitor

cochlea filter was proposed by Bor et. al. in 1996 [BW96].

There have also been several previously reported digital VLSI cochlea imple-
mentations. In 1992, Summerfield and Lyon reported an ASIC implementation
which employed bit-serial second-order filters [SL92]. In 1997, Lim et. al. reported
a VHDL-based pitch detection system which used first-order Butterworth band-
pass filters for cochlea filtering [LTJM97]. Later in 1998, Brucke et. al. designed
a VLSI implementation of a speech preprocessor which used gammatone filter
banks to mimic the cochlea [BNST98]. The implementation by Brucke et. al.
used fixed-point arithmetic and they also explored the tradeoff between word-

length and precision.

Recent advances in FPGA technology have resulted in devices with a density
where it is possible to develop neuromorphic systems on a single device. Many
interesting neuromorphic signal processing systems can be implemented using

FPGA technology, enjoying the following advantages over analogue VLSI:

e shorter design time;

faster fabrication time;

more robust to power supply, temperature and transistor mismatch varia-

tions;

wider dynamic range and higher signal to noise ratios;

better stability;
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e the chips can be reused for different application;

e simpler computer interface.

In this dissertation, an FPGA implementation of an electronic cochlea which
can serve as an accelerator in its own right, or as a front end preprocessing stage
for embedded auditory applications is presented. A module generator which can
generate synthesizable VHDL descriptions of arbitrary wordlength fixed-point
cochlea filters was developed. The module generator was developed with the
fp tool to determine the minimum and maximum ranges as well as the error
statistics of all variables. The range information is used to determine the number
of fractional bits used in the variable’s two’s complement fraction representation.
The error statistics provide information to the designer concerning the accuracy

of the resultant implementation.

8.2 Algorithm

Lyon and Mead proposed the first electronic cochlea in 1988 [L.M88, L.M8&9c].
This model captured the qualitative behavior of the human cochlea using a simple
cascade of second order filter stages which they implemented in analogue VLSI.
In this section a very superficial summary of the Lyon and Mead cochlea model

is given. More detailed descriptions of the cochlea can be found in the work of

Lyon and Mead [LM88] and Pickles [Pic88].

The human cochlea, or inner ear, is a three dimensional fluid-dynamic system
which converts mechanical vibrations from the middle ear into neural electrical
discharges [LM88]. It is composed of the basilar membrane, inner hair cells and
outer hair cells. The cochlea connects to higher levels in the auditory pathway

for further processing.
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The basilar membrane is a longitudinal membrane within the cochlea. The
oval window is the input to the cochlea. Vibrations of the eardrum are coupled
via bones in the middle ear to the oval window causing a traveling wave from
base to apex along the basilar membrane. The basilar membrane has a filtering
action and can be thought of as a cascade of lowpass filter with exponentially

decreasing cutoff frequency from base to apex.

The result of the filtering of the basilar membrane at any point along its
length is a bandpass filtered version of the input signal, with center frequency
decreasing along its length. Different distances along the basilar membrane are
tuned to specific frequencies in a manner similar to that of a spectrum analyzer.
A simplified model showing a sinusoidal wave traveling along an uncoiled cochlea

is shown in Figure 8.2.

Several thousand inner hair cells are distributed along the basilar membrane
and convert the displacement of the basilar membrane to a neural signal. The
hair cells also perform a half-wave rectifying function since only displacements in

one direction will cause neurons to fire.

The outer hair cells perform automatic gain control by changing the damping
of the basilar membrane. It is interesting to note that there are approximately

three times more outer hair cells than inner hair cells.

In order to simulate the properties of the basilar membrane, Lyon and Mead’s
cochlea model used a cascade of scaled second-order low-pass filters with the

transfer function
1

7252 4 érs +1

H(s) = (8.1)

where () represents the damping characteristic (or quality) of the filter and 7
the time constant. In the cochlea filter, the 7 of each filter is varied exponen-

tially along the cascade, causing filters to have exponentially decreasing cutoff
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Figure 8.2: Illustration of a sine wave traveling through a simplified model of an

uncoiled cochlea (adapted from [Jin01]).

frequencies. The () of all the filters is held constant. The outputs of each filter

corresponds to the displacement of different positions along the basilar membrane.

8.3 Implementation

As depicted in Figure 8.1, the Lyon and Mead’s cochlea model is a cascade of
second-order infinite impulse response (IIR) filters. The structure of the IIR filter
plays an important role in determining the area-efficiency of the implementation.
To achieve a highly area-efficient implementation on FPGAs, the IIR filters were
implemented with distributed arithmetic (DA). The implementation of IIR filters

using DA is presented in Section 8.3.1.

In Section 8.3.2, the implementation of the module generator for the electronic
cochlea is presented. With the set of filter coefficients and a sample dataset,
the module generator can produce implementations of electronic cochlea in any

wordlength so that the tradeoff between area and precision can be addressed.
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8.3.1 IIR Filters Using Distributed Arithmetic

DA offers an efficient method to implement a sum of products (SOP) provided
that one of the variables does not change during execution. DA is applicable to
bit-serial, LSB-first architectures. Instead of requiring a multiplier, DA utilizes
a pre-computed LUT, namely the DA ROM. The corresponding bits from the
bit-serial inputs form an address to the DA ROM to yield a partial sum. Ac-
cumulating the partial sums for every inputs bits forms the SOP. Calculation of
SOP by DA offers not only compactness, but also low quantization error com-
paring with ordinary two’s complement arithmetic operations [Gos95, Xil96]. A

detailed description of DA is given in Appendix C.

Equation 8.1 can be converted from the s-domain to the z-domain via a bi-

linear transform. The resulting transfer function has the form

B by + blz_l + 622_2
B 1+ alz* + 02272 ’

H(z)
The corresponding time domain IIR filter can be implemented by the function
y(n) = box(n) + bix(n — 1) + byx(n — 2) + agy(n — 1) + a1y(n — 2)

where z(n — k) is the k’th previous input, y(n — k) is the k’th previous output
and y(n) is the output. The operation is essentially the SOP of five terms, and

can be directly map to a biquadratic section as shown in 8.3.

Figure 8.4 illustrates the actual implementation using distributed arithmetic
on a Xilinx Virtex FPGA. The previous values z(n — 1), z(n — 2), and y(n — 2)
are implemented using shift registers with the number of stages equal to the
wordlength of the variables used. The shift registers are implemented by cascades
of Virtex SRL16E primitives for minimum area. The DA ROM takes x(n), z(n—
1), z(n — 2), y(n — 1) and y(n — 2) as inputs to generate partial sums. As there
are 5 inputs, the required number of entries in the ROM is 2° = 32, leading
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Figure 8.3: The architecture of an IIR biquadratic section.

to an efficient implementation using Xilinx ROM32X1 primitives. The scaling
accumulator shifts and adds the output from the ROM (unscaled partial sum
in bit-parallel organization) at every cycle to produce y(n). In the last cycle of
scaling and accumulation, the parallel to serial converter latches the value at the
scaling accumulator. Since the scaling accumulator has a latency equal to the

wordlength of the variables, the value latched by the converter is y(n — 1).

8.3.2 Module Generator

Given the filter coefficients, the designer may select values of filter wordlength
and the number of bits of the DA ROM’s output. The module generator restricts
the wordlengths of the filters to be the same. In a bit-serial architecture (the
use of DA implies a bit-serial architecture) the throughput cycles is limited by
the variable with the maximum wordlength. Using a common filter wordlength
ensures all the filters have the same throughput and hence the highest overall
resource utilization. Note that all filter sections have the same wordlength but
the allocation of integer and fractional parts used within each filter section can

vary.

To develop this module generator, an fp IIR biquadratic section operator was
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Figure 8.4: Implementation of an IIR biquadratic section on a Xilinx Virtex

FPGA.

designed. Indeed, the sole class of operator used in this cochlea model is the
ITR biquadratic section. Similar to other fp operators, the ITR biquadratic sec-
tion operator has the three basic parameters, inTruncation0, outTruncationO
and outExpansion0 (Section 3.4.4) plus a special parameter daRomWidth which
controls the width of the DA ROM’s output. This module did not utilize the
wordlength optimization feature of fp (Section 3.6) because the wordlengths of
the inputs and outputs of the biquadratic sections are fixed and can be easily de-
rived. Nevertheless, it uses the fixed-point modeling feature of fp to extract the
dynamic range of each variable. Knowing the dynamic ranges of variables, the
minimally required integer wordlength is determined. As the total wordlength
is fixed, maximal fractional bits are therefore assigned to every variable to min-
imize the quantization error. Put in another way, optimal scaling of variables
are obtained. If a sample dataset is supplied, runtime analysis is performed. In
normal circumstances, using broadband noise of the maximum amplitude as the

sample input dataset results in a set of filter scalings that will not overflow for



Chapter 8. Application IIT — Electronic Cochlea Filter Model 146

any reasonable inputs. If the module generator is not supplied with a dataset,
range extraction can be carried out based on worst-case analysis. However, as
explained in Section 3.5.1, worst-case analysis is more conservative and usually

leads to unnecessarily long integer wordlengths.

The core component of the module generator is an algorithmic description
of the cochlea filter model. This algorithmic description is shown in Figure 8.5.
It takes the floating-point coefficients for the biquadratic filters from an exter-
nal data file (coeff.dat), which is obtained using Malcom Slaney’s Auditory
Toolbox [Sla98]. This Matlab toolbox has several different cochlea models, test
inputs and visualization tools. The same toolbox was used to verify the designs

and produce cochleagram plots.

In additional to the filter coefficients, the cochlea model generator takes user
supplied wordlengths for the variables and the width of the DA ROM as inputs.
With this information, the error statistics at every filter output are calculated.
Also, the area of the cochlea model is estimated. If the error or the area does not

satisfy requirements, the user may supply another set of parameters.

After deducing the best representation for each variable, the generator outputs
synthesizable VHDL code that describes an implementation of the corresponding
cochlea model. The fractional wordlengths of the scaling accumulator and the
output variable can be different, so the operator must also include a mechanism
to convert the former to the latter. Since the output of the scaling accumulator is
bit-parallel while the output variable is bit-serial, the parallel to serial converter
can perform format scaling by selecting the appropriate bits to serialize. The

resulting VHDL description can then be used as a core in other designs.

From the 17-line algorithmic description, this cochlea model generator pro-

duces approximately 40000 lines of VHDL code for the case of a cochlea filter
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1 void cochlea(fixed &sample, fixed *results)
/] sample is the input to the first filter

/] results is the array of filter outputs

2 f

3 double coeff[5];

4 int i;

5 FILE xfp = fopen("coeff.dat", "rb");

6 for (i = 0;; i++)

7 {

8 fread(coeff, sizeof(double), 5, fp);

9 if (feof (fp))

10 break;

11 if (i == 0) // the first filter
12 results[i] = iir(sample, coeff);

13 else /] the remaining filters
14 results[i] = iir(results[i - 1], coeff);

15 }

16 fclose(fp);

17}

Figure 8.5: The fp algorithmic description of the cochlea filter model.
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with 88 biquadratic sections.

8.4 Results

8.4.1 Implementations of the Cochlea Model

The cochlea implementations were tested on an Annapolis Wildstar Reconfigur-
able Computing Engine [Ann00] (Chapter 2.5) and Pilchard. The Wildstar plat-
form contains three Xilinx Virtex XCV1000-6 FPGAs and has a PCI64 Local
Bus interface, whereas the Pilchard board was populated with a Xilinx Virtex

XCV1000-6 FPGA.

A series of cochlea implementations, with wordlengths from 10 to 32 bits and
DA ROM width from 10 to 24 bits, were generated in order to present the trade-
off among wordlengths, widths of DA ROMs and precisions. The coefficients of
these implementations were obtained from the Auditory Toolbox using the Mat-
lab command DesignLyonFilters (16000, 8, 0.25), which specifies a 16 kHz

sampling rate, () = 8 and a spacing which gives 88 biquadratic filters.

In order to present the improvement in precision with increasing wordlength
and ROM width, the frequency responses of several different fixed-point imple-
mentations are plotted in Figure 8.6. A full set of results is presented at the end
of this chapter. Figure 8.7 shows impulse and frequency responses obtained from
a software floating-point implementation and a hardware 16-bit wordlength and

16-bit DA ROM width implementation.

It can be observed that the filter accuracy gradually improves with increasing
wordlength or DA ROM width. When wordlengths or DA ROM widths are too

small, there are significant quantization effects that may result in oscillation or
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(a) impulse response of the software  (b) impulse response of the hardware

implementation implementation

(c) frequency response of the software (d) frequency response of the hardware

implementation implementation

Figure 8.7: Impulse and frequency responses of software floating-point and hard-

ware fixed-point (16-bit wordlength, 16-bit DA ROM width) implementations.
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improper frequency responses at certain frequency intervals (as in Figure 8.6(a)).

Figure 8.8 shows the trend of improved quantization error with increasing
wordlength and DA ROM width. With 24-bit wordlength and 16-bit DA ROM
width, for example, the total quantization error is -48.73 dB. This degree of
accuracy is sufficient for most speech applications. The total quantization error

is the sum of the mean errors at every outputs (the filter sections).

Area requirements, maximum clock rates and maximum sampling rates of
these implementations on a Xilinx Virtex XCV1000-6 FPGA, as reported by the

Xilinx implementation tools, are shown in Tables 8.1 and 8.2. For each imple-



Chapter 8. Application IIT — Electronic Cochlea Filter Model 152

ROM Width

Wordlength

12 bits | 16 bits | 20 bits | 24 bits
12 bits 5770 6582 7440 8340
16 bits 6160 6800 7589 8515
20 bits 6914 7343 7874 8602
24 bits 7620 8048 8578 9106
28 bits 8288 8748 9278 9805
32 bits 9297 9716 10245 10771

Table 8.1: Area requirements (measured in number of Virtex slices) of an 88-

section cochlea implementation of different wordlengths and DA ROM width.

mentation, a timing constraint, determined by the corresponding wordlength and
DA ROM width, was supplied to the P&R tools. As a bit-serial architecture
was employed, the effective sampling rate of the implementations are their max-
imum clock rates divided by their wordlengths. With increasing wordlength or
ROM width, an increase in area requirement and a general trend of decreasing

maximum clock rate and sampling rate were observed.

8.4.2 Application to Speech Processing

A 24-bit wordlength, 16-bit DA ROM implementation was used to construct a
cochleagram display application. This implementation was chosen because it is

the smallest implementation that does not exhibit oscillation effects (refer to

Figure 8.6 and Table 8.1).

The block diagram of the cochleagram display on the Wildstar platform is
shown in Figure 8.9. On the Wildstar platform, the host PC accesses the FPGA
via the LAD bus [Ann00]. The host PC writes input data into a buffer via the
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ROM Width
Wordlength
12 bits 16 bits 20 bits 24 bits

12 bits 70.89, 5.91 | 68.03, 5.67 | 64.94, 5.41 | 63.91, 5.33
16 bits 67.74, 4.23 | 67.38, 4.21 | 61.60, 3.85 | 60.24, 3.77
20 bits 66.87, 3.34 | 65.60, 3.28 | 61.02, 3.05 | 59.79, 2.99
24 bits 66.15, 2.76 | 65.58, 2.73 | 60.53, 2.52 | 57.08, 2.38
28 bits 65.00, 2.32 | 63.13, 2.25 | 59.41, 2.12 | 57.01, 2.04
32 bits 64.96, 2.03 | 63.63, 1.99 | 58.00, 1.81 | 56.55, 1.77

Table 8.2: Maximum clock rates and corresponding sampling rates of an 88-
section cochlea implementations (measured in MHz) for different wordlengths

and ROM width (maximum clock rate, maximum sampling rate).

LAD bus. In this design, the buffer is implemented by dual-port BlockRAM
(256 x 32-bit synchronous RAM) so as to provide a larger buffer to reduce the
number of transactions. Minimizing the number of transactions helps to improve
the system performance as the PCI Local Bus initialization and de-initialization
overhead is reduced. The input data stored at the BlockRAM passes through
a parallel to serial converter and enters the cochlea core. Each of the outputs
of the cochlea core undergoes serial to parallel conversion followed by half-wave
rectification to model the functionality of the inner hair cells. The outputs are

accumulated to integrate its value over 256 samples. The accumulated output is

read by the PC and displayed to obtain a cochleagram.

The design of the cochleagram display on the Pilchard platform is shown in
Figure 8.10. Its core design is similar to that of the Wildstar platform, but its
interface is simplified. Since the Pilchard interface does not have the overhead in

setting up a transaction between the PC and the FPGA, the buffer (implemented
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Figure 8.9: System architecture of the cochleagram display application on the

Wildstar platform.

as BlockRAM) became unnecessary and was removed. On the Pilchard platform,
the FPGA is directly connected to the memory bus, hence the SDRAM controller
is implemented inside the FPGA. To ensure the samples are written to the board

in the correct sequence, the UC MTRR mode (Section 5.3) was used.

The cochleagram display was tested with several different inputs. Figure 8.11
shows the cochleagrams produced from swept-sine wave and the Auditory Tool-
box’s “tapestry” inputs, the former being a 25 second linear chirp (400000 sam-
ples) and the latter the speech file of a woman saying “a huge tapestry hung in

her hallway” (50380 samples).

In addition to the cochlea model, the cochleagram display consists of half-
wave rectifiers, accumulators and interface. Due to limited hardware resources

on a Xilinx XCV1000-6 FPGA, only the first 60 out of the 88 cochlea sections
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Figure 8.10: System architecture of the cochleagram display application on the
Pilchard platform.
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Figure 8.11: Cochleagrams of swept-sine wave and “tapestry” inputs.
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were used in order to reduce area requirements. The resultant cochleagram dis-
play application on the Wildstar platform requires 10344 slices and can be clocked
at 52.51 MHz, yielding a sampling rate of 2.19 MHz (or 137 times faster than real
time performance). The same implementation on the Pilchard platform requires
9912 slices and can be clocked at 60.36 MHz, yielding a sampling rate of 2.52 MHz
(158 times real time performance). The reduced area and increased system clock
rate of Pilchard is the result of a simplified interface. Including software and
interfacing overheads, the measured throughput on the Wildstar and Pilchard
platforms were 238 kHz and 398 kHz respectively (the Pilchard implementation
is 1.67 times faster than the Wildstar implementation). As a comparison, the
auditory toolbox achieves a 64 kHz throughput on a Sun Ultra-5 360 MHz ma-
chine. Hardware speedups on the Wildstar and Pilchard platforms are 3.72 and

6.22 times respectively.

It is interesting to compare the FPGA-based cochleagram system with a sim-
ilar system developed in analogue VLSI by Lazzaro et. al. in 1994 [LWK94].
Using a 2 um CMOS process, they integrated an 119-stage silicon cochlea (with
a slightly more sophisticated hair cell model), non-volatile analogue storage and a
sophisticated event-based communications protocol on a single 3.6 mm x 6.8 mm
chip with a power consumption of 5 mW. The analogue VLSI version has im-
proved density and power consumption compared with the FPGA approach.
However, the FPGA version is vastly simpler; easier to modify; has a shorter
design time; and is much more tolerant of supply voltage, temperature and tran-
sistor matching variations. Although qualitative results are not available, it is
expected the FPGA version also has better filter accuracy; can operate at higher

() without instability; and has a wider dynamic range.
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8.5 Summary

An FPGA-based implementation of Lyon and Mead’s electronic cochlea filter and
its application to a real-time cochleagram display were presented. Compared with
analogue VLSI implementations, an FPGA implementation offers shorter design

time, improved dynamic range, higher accuracy and a simpler computer interface.

The FPGA cochlea filter is machine generated. Using the fixed-point modeling
feature of fp, the module generator may take filter coefficients to compile an
application-optimized design with arbitrary precision. Furthermore, the designer
can choose the tradeoff between area and precision which is the most suitable for
their implementation. The module generator can use simulation test vectors to

determine the appropriate scaling for each filter.

The resulting model can be used as an accelerator for cochlea model research
(the implementation on Pilchard is 6.22 times faster than the software imple-
mentation of the Auditory Toolbox on a Sun Ultra-5 360 MHz machine) or as
the front end for embedded auditory signal processing systems. It is believe that
there are many applications of the FPGA cochlea, some including for audio com-
pression, speech recognition, audio and speech visualization, models of human

auditory localization and models of bat localization.

The cochlea filter model was applied to a cochleagram display application.
This application has been tested on both the Annapolis Wildstar and Pilchard
platforms. Results demonstrated increased system performance of Pilchard over
conventional RC platforms with a PCI Local Bus interface, the Pilchard imple-

mentation being 1.67 times faster than the Wildstar implementation.



158

Chapter 8. Application IIT — Electronic Cochlea Filter Model

16-bit DA ROM

b

12-bit DA ROM (b) 12-bit wordlength

b

(a) 12-bit wordlength

implementation

implementation

24-bit DA ROM

20-bit DA ROM (d) 12-bit wordlength,

’

(c) 12-bit wordlength

implementation

implementation

Figure 8.12: Frequency responses of cochlea implementations with different word-

lengths and width of DA ROMs.



159

Chapter 8. Application IIT — Electronic Cochlea Filter Model

ooooo
o8 8 F 8

6-bit wordlength, 16-bit DA ROM

1

(f)

16-bit wordlength, 12-bit DA ROM

e)

(

implementation

implementation

(h) 16-bit wordlength, 24-bit DA ROM

(g) 16-bit wordlength, 20-bit DA ROM

implementation

implementation

Figure 8.12 (continued): Frequency responses of cochlea implementations with

different wordlengths and width of DA ROMs.



160

Chapter 8. Application IIT — Electronic Cochlea Filter Model

= =
= ==
SRS \ﬂ ) = =N om
, N x / \ \
V I

,,,,,,
0000000
B E] ° S 8 8 < g g~ > & & ° 2 & 8 8 8 3

mmmmmmmm

mmmmmmmm

<1
3 SR NAN
| NN = N
E 4//// - \ //
Pr) N\

mmmmmmmmmmmmmmmm

(i) 20-bit wordlength, 12-bit DA ROM (j) 20-bit wordlength, 16-bit DA ROM

0-bit wordlength, 24-bit DA ROM
implementation

(1) 2

implementation
Figure 8.12 (continued): Frequency responses of cochlea implementations with

different wordlengths and width of DA ROMs.

(k) 20-bit wordlength, 20-bit DA ROM



161

Chapter 8. Application IIT — Electronic Cochlea Filter Model

§ 8 ©

mmmmmmmm

L I h
000000
555555

(m) 24-bit wordlength, 12-bit DA ROM (n) 24-bit wordlength, 16-bit DA ROM

implementation

implementation

§ 8 ©

mmmmmmmm

,,,,,
0000000
S 8 2 g 3 8

ooooo
g8 8 F 8

mmmmmmmm

S E]
& 9 °

(p) 24-bit wordlength, 24-bit DA ROM

(0) 24-bit wordlength, 20-bit DA ROM

implementation

implementation

Figure 8.12 (continued): Frequency responses of cochlea implementations with

different wordlengths and width of DA ROMs.



162

Chapter 8. Application IIT — Electronic Cochlea Filter Model

< <
=N = =\
SORSENANNY ) SN
SRS = SN
\ ¢ A\
D N

,,,,,,,
0000000
5 El ° S 8 8 g 2 2 S 8 2 S 3 2

mmmmmmmm

mmmmmmmm

(q) 28-bit wordlength, 12-bit DA ROM (r) 28-bit wordlength, 16-bit DA ROM

<
WMM“r
=%
g2 =N
N = N
3 \
N AR R B\
g //// - \ /
D)) N\ )
‘ X N

mmmmmmmmmmmmmmmm

8-bit wordlength, 24-bit DA ROM
implementation

(t) 2

implementation

(s) 28-bit wordlength, 20-bit DA ROM
Figure 8.12 (continued): Frequency responses of cochlea implementations with

different wordlengths and width of DA ROMs.



163

Chapter 8. Application IIT — Electronic Cochlea Filter Model

< <
=0 = =\
SRS ) SN
SN\ = SN
N AN
D N

,,,,,,,
0000000
5 El ° E 8 8 g 3 2 S 8 8 < 3 2

mmmmmmmm

mmmmmmmm

(u) 32-bit wordlength, 12-bit DA ROM (v) 32-bit wordlength, 16-bit DA ROM

<
WMM“r
=%
SRS\
N = N
3 \
N AR R R\
g //// - \ /
D)) AN
‘ X N

mmmmmmmmmmmmmmmm

2-bit wordlength, 24-bit DA ROM
implementation

3

(x)

implementation
Figure 8.12 (continued): Frequency responses of cochlea implementations with

(w) 32-bit wordlength, 20-bit DA ROM
different wordlengths and width of DA ROMs.



Chapter 9

Application IV — The Discrete

Cosine Transform

In this chapter, the application of fp (Chapter 3) to a systolic structure for com-
puting the Discrete Cosine Transform (DCT) is presented. This application uti-
lizes the ability of fp to generate multiple wordlength and the variable-radix
variable-wordlength architecture (Chapter 4). A series of implementations of the
DCT were obtained from a single description. An almost continuous tradeoff
among precision, area, latency and throughput were obtained through the use of
the variable-radix variable-wordlength architecture, and designers can choose the

most appropriate design via an optimization process.

This chapters begins with an introduction and background concerning the
DCT. The algorithm of the systolic structure for computing the DCT which has
been implemented is then described. The implementations and the results are

presented afterwards. A discussion is also presented in this chapter.
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9.1 Background

The DCT, proposed by Ahmed et. al. in 1974 [ANR74], has become an increas-
ingly important task for image and video signal processing applications due to
its utility and its adoption in standards such as JPEG (Joint Photographic Ex-
perts Group) [PM93], MPEG (Moving Picture Experts Group) [Gal91], CCITT
H.261 [Lio91] and H.263 [ITU95]. Compared with other orthogonal transforms,
the performance of the DCT is very similar to the optimal Karhunen-Loeve Trans-
form (KLT) for highly correlated data [Har76, Lee84]. Its prominence makes
hardware implementations important, particularly in high performance and low

power applications.

Previously reported hardware implementations of the DCT in VLSI tech-
nology can be divided into two main streams: high-throughput and low-power.
High-throughput designs include the 100 million samples per second, 100 MHz
VLSI implementation in 0.8 ym CMOS technology reported by Uramoto et. al.
[UIT*92], and the 150 million samples per second, 150 MHz VLST implementation
in 0.3 pm CMOS technology reported by Kuroda et. al. [KFM*96]. An example
of a low-power design is the VLSI implementation in 0.6 ym CMOS technology
by Xanthopoulos and Chandrakasan [XCO00] which dissipates 4.38 mW at 14 MHz
and 1.56 V, and has a maximum performance of taking 43 million samples per
second at a clock rate of 43 MHz. Hunter and McCanny proposed a system
which takes parameters such as point size and coefficient wordlengths to generate

efficient designs for VLSI synthesis [HM98|.

In recent years, FPGA technology has improved in density so that the DCT
algorithm can be implemented on a single device. A Xilinx XC6200 series-based
implementation was reported by Trainor, Heron and Woods [THW97] which

achieves a performance of 15.36 x 10° pixels per second for 2D DCT image cod-



Chapter 9. Application IV — The Discrete Cosine Transform 166

ing. Bergmann and Chung reported an implementation on a Xilinx XC4010
FPGA [BC97] which achieves 6.21 x 10° pixels/sec for 2D DCT image coding
using the Fast DCT algorithm and 12.44 x 10° pixels/sec using Distributed Arith-
metic. Kropp et. al. proposed a generator for pipelined multipliers on FPGAs
and applied their work on the DCT [KRDP98]. A 2D DCT processor on an
Altera FLEX10K100 FPGA was reported by Mohd-Yusof, Suleiman and As-
par [MYSAO00], which achieves a throughput of 5.53 x 10 pixels per second at a
clock rate of 11 MHz. Naviner et. al. reported a high accuracy implementation

of the DCT on an Altera FLEX10K50 FPGA [NJLDGGO00].

There are three main strategies which are employed in high performance im-
plementations of the DCT. The number of arithmetic operations, particularly
multiplications, can be reduced by converting the DCT to skew-circular convo-
lutions [Lee91] or a direct sum of matrices [FW92]; parallelism is maximized
by systolic structures [CJ90, CW91, HW95a] or distributed arithmetic (DA)
[CS92, FCF93, BC97, PSB99]; and finally, the hardware resources required for
arithmetic operations can be reduced by applying appropriate approximations,

such as replacing multiplications by sequences of shift-and-adds [LO98, Tra0O0b].

9.2 Algorithm

Liu et. al. [LLCL98] proposed an approach which utilizes all three of the above
strategies by transforming the DCT computation into a systolic computation in-
volving discrete moments (DM). The bulk of computation is performed using
addition. Specifically, the algorithm permits minimal area hardware implementa-
tions with reasonable accuracy and the systolic structure maps well to the adder

and register-rich architecture of an FPGA.

The algorithm for computing the DCT proposed by Liu et. al. [LLCLIS|
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centers around setting up the relationship between the DCT and DM. The N-
point DCT is defined by the equation

7(2n+ 1)k

X(k):cka(n)cos N 0<k<N-1, (9.1)

where ¢, equals 1/vV/N if k = 0, \/2/N otherwise.

For each pair of k and n, 0 < k, n < N—1, there exists an integer 7, 0 <7 < N,

which satisfies

T(2n+ 1)k im im
Cos = = | cos o | or cos 5 | -

Define S(k,i) and s(k,i) (i,k=0,1,2,...,N —1) by

2]+ 1)k '
S(k,i):{j|cos%:cos%, 0<j<N-1},
25+ 1)k '
(k) = (] cos TEEDE s T <N -1y,

2N 2N
and xy; (i,k=0,1,2,...,N —1) by

> z(i) = X x() if S(k,i)Us(k i) #0,

Ty = { JES(hi) je€s(ksi) (9.2)

0 otherwise.

T(2n+ 1)k

X(k)=c, Y x(n)cos oI

— wi (9.3)
:cknz;xk,icosﬁ, 0<k<N-1. '

By applying the theorem of extended law of the mean to cos(7wi/N), for
0<i<N-1,

. . 2 . 2p
cos 7L 1 (mi/2N) (mi/2N)

— S B S R (9.4)
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where R; is the Taylor remainder term,

R = , .
€ 2 2p+1)! = 9N

Recalling that N-point DM is defined by the Equation
m, =Y _ fil". (9.6)
i=1
Substituting Equation 9.4 into Equation 9.3 and simplifying yields
p
X(k) = Ck (l‘kﬁ + Zarmk,zr) + Rp, 0 S k S N — 1, (97)

r=0

where

" (_1)T7T2T
" (2N)Z(2r)

N1
My or = Z T i
i—1

N1 . .
B &+ (2p+ V) (mi/2N)%H! i
Rp—CkaEk,iCOS 5 1) 0<& <

=1

Ignoring R,, Equation 9.7 establishes the relationship between the DCT and
DM by referring to Equation 9.6. If my, (k=0,1,...,N—1;r=0,1,...,p) are
available, then each X (k) (k =0,1,..., N—1) can be obtained by computing the
dot product of these moments and the constant vector a,, followed by an addition

with zj o and a multiplication with ¢j.

To compute my,, a transformation known as F, is used. The transformation
is conducted by an architecture called the p-network which resembles a Pascal

triangle. Figure 9.1 illustrates a p-network for the transformation

F,(La 2, 2P aP) = (1, (1T +2),(1+2)%, ..., (1 +2)P " (1 +2)P).
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\ 4 \4 \4
1 1+ (1+x)? (1+ x)P2 (1+ x)pt y
Figure 9.1: The p-network with input vector (1,z,z?%,..., 2P~ 2P), nodes repre-

sent additions.
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Fy(a,az,az?, ... az?~"' az?) and F,(a+b,a+b,a+Db,...,a+b,a+b) are two

special cases of transformation F,,
Fy(a,ax,ax?, ... az’~" azP)
= (a,a(1 +2),a(1+ )% ... a1+ 2" a1+ 2)?),
F,(a+b,a+ba+b,...,a+ba+b)
= F,(a,a,a,...,a,a)+ F,(b,b,b,....b0), (9.8)

and in general,

F;l_l(l, r,2?, ..., Pt o)
- Fp(Fg’_Q(l,:E,ﬁ, I a2 ))
=FE,(... F(L,z, 2%, ..., 2P 1 aP) ..

=(,(n—14+2),(n—1+2)?2...,(n—1+2)" 1 (n—1+2)"). (9.9)

Referring to Equation 9.9 and by substitution,

E-N(1,1,1,..,1,1) = (,n,n?, ... 0P~ nP),

Fg’_l(a, a,a,...,a,a) = (a,na,n’a,...,n""a,nfa).
Let a; (i = 1,2,3,...,n) be a (p+1)-dimensional vector with all its values
being a; (a;(a;, a;, a;, . . ., a;,a;)), from Equation 9.8,

Fy(Fp(an) +an-1) = Fy(Fp(an)) + Fp(an-1)

= F}(a,) + Fy(a,_1). (9.10)

By recursive application of Equation 9.10, the Equation for the p-order mo-
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ment, My, (an, Gn_1,An_2, - . ., a2, a1), is computed.

my = Fy(F, ... (Fy(Fy(Fy(an) + an_1) + an_s) + ... +as) +a1)

— F7N(a,) + P (an 1) + FP % (an o) + - + F2(as) + Fy(as) + &y

n n

n n n
. . .9 p—1 -p
= E a;, E a;t, E a;t ..., E a;? s E a;? .
=1 =1 =1 i=1 i=1

Therefore, the computation of DM consists of n-1 F), transformations and a
vector addition. The relationship between the DCT and DM decomposes the

computation of the DCT into three steps:

1. Pre-computation: =z, (i,k=0,1,2,...,N — 1),

2. Computation of DM: myo, (r = 0,1,2,...,p; k = 0,1,2,...,N — 1),

and

3. Post-computation: X (k) (k=0,1,2,...,N —1).

Computation of zy; from z;, is done using Equation 9.2. For instance, when

N =38,

oo = 2(0) + (1) + 2(2) + 2(3) + z(4) + 2(5) + z(6) + z(7),

Zo,1 = 0,
To2 = Oa
T1,0 = 0,

z77 = x(2) — x(5),
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which can be implemented by registers, adders and subtracters. Computation
of DM is implemented using N-1 p-networks each with 2p + 1 adders at the top
level, and 2p + 1 adders at the output of the cascaded p-network. Finally, X (k)
is computed from Equation 9.7 where a, and ¢, are pre-computed constants and
hence its implementation can use a constant multiplier. To deliver a systolic
structure, pipelined multipliers should be used. Figure 9.2 shows the overall

systolic structure for computing the 1D DCT.

Referring to Equation 9.5, it can be observed that the error term converges
to zero rapidly as p increases. The structure offers a smaller area implementation
which can be traded off with R,,. The choice of p should be around two to four for
a practical hardware implementation. Hardware requirements and the associated
error term [?, for some typical values of p and IV are listed in Table 9.1. The
numbers of adders and multipliers refer to the operators in the systolic array
and the post-computation unit only and does not account for those in the pre-
computation unit. R, was calculated by assuming input values in the range of

[—8.0,8.0).

9.3 Implementation

The implementation of the systolic structure for computing the DCT described
in Section 9.2 was divided into two parts. The first part is the pre-computation
unit which was developed in VHDL. As suggested by Liu et. al. [LLCL98], the
pre-computation unit can be implemented with a special linear array. This linear
array can be more efficiently implemented with a manual design in which the

RTL behavior is specified explicitly.

The second part of the implementation is the cascade of p-network and the

post-processing unit. This part is described in an fp algorithmic description, as
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XN-l,N-l o Xl,N-l‘ XO,N-l

XNfl,N—2 o X1,N—2' XO,N—Z ,,,,,

R ST T

(9]

p-network

I

X1z :

. X(1), x(0)

\

XMX{A vz ol d2p N b2 b 40

p-network

Precomputation Unit

XN-l,l B Xl‘l’ xO‘il.

X(N-1), X(N-2), ..

XN-l,O o Xl,O’ XO

X(1), X(0)

X(N-1), X(N-2), ...,

Figure 9.2: The systolic array for 1D N-point DCT, with p-network blocks as

shown in Figure 9.1 and blank nodes represent additions.
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Number of | Number of
p | N R, R,/max(x)

adders multipliers
2 4 27 4 1.80324 0.22541
2 8 87 4 2.55016 0.31877
2 16 207 4 3.60648 0.45081
2 32 447 4 5.10033 0.63754
3 4 45 5! 0.10594 0.01324
3 8 157 5! 0.14982 0.01873
3 16 381 5! 0.21187 0.02648
3 32 829 5! 0.29963 0.03745
4 4 67 6 0.00363 0.00045
4 8 247 6 0.00513 0.00064
4 16 607 6 0.00726 0.00091
4 32 1327 6 0.01027 0.00128

Table 9.1: The number of adders and multipliers and the associated error bound

of the systolic array for computing the DCT for different values of p and V.
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shown in Figure 9.3. The DCT algorithm was originally targeted for VLSI where
regularity is of the utmost importance. However, for VHDL-synthesized FPGA
implementations, regularity is slightly important. Therefore, a simplification of
the p-network at the top-level was applied. Since the inputs to the p-network at
the top-level are the same variable, the outputs of the first-level adders and sub-
sequently the following levels of adders are of the same value as their neighboring
adders. Therefore, the removal of all adders except those along the diagonal can
be applied. This simplification is depicted in Figure 9.4. The algorithmic de-
scription takes the outputs from the pre-processing unit which contain N values.

It outputs two values, namely

=

-1

1 T(2n+ 1)k
X;(k)=—=) z(n)cos ————
VN = 2N
and N
2 « T(2n 4+ 1)k
Xo(k) = N x(n) cos %

I
=)

n

Since X (k) = Xy(k) if k =0, X(k) = Xo(k) if £ = 1,2,..., N — 1, these two
outputs are connected to a multiplexer which is controlled by a simple counter to
output the correct X (k). fp typically generates 50000 lines of VHDL code from

the 33-line algorithmic description of the DCT algorithm.

The designs were tested on the Wildstar platform [Ann00] (Chapter 2.5). The
results presented in Section 9.4 were obtained using only one of the three Xilinx

Virtex XCV1000-6 FPGAs on the Wildstar platform.

9.4 Results

For all of the experiments, p = 3 and N = 8. The systolic structure thus generated

consisted of 157 adders and 5 constant multipliers. The sample dataset consists of
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© 0 N o o1 »

11
12
13
14
15
16
17
18
19
20

#define N 8
#define p 3
void dct(fixed &xp, fixed *X)

// xp is the pre-processed inputs, X is the outputs

{
fixed x[2 * p + 1];
double a;
int i, j, k;
x[2 * p] = xp[N - 1] + xp[N - 1];
for (i =2 *p-1; i>= 0; i--)
x[i] = x[1 + 1] + x[i + 1];

/] the simplified p-network at the top-level
for (1 =N-2; i>1; i--)

{
for (j = 0; j <= 2 * p; j++)
x[j]1 += xplil;
for (j =2x*p-1; 3> 0; j—)
for (k = 0; k <= j; k++)
x[k] += x[k + 1];
} // the intermediate p-networks

for (i = 0; i <=2 * p; 1 +=2)
x[k] += xp[1];

// the adders immediately after the p-networks

Figure 9.3: The fp algorithmic description of the systolic array for computing the

DCT.
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21 X[0] = xpl0] + x[2 * pl;

22 k=1,

22 for i =2*p-2; 1i>0; i-=2)

23 {

24 a = pow(M_PI, (double) (2 * k)) / pow(2 * N);

25 for (j = 2; j <2 * k; j++)

26 a /= (double) j;

27 if (k++ % 2)

28 a = -a; /] compute multiplier coefficients a,
29 X[0] += a * x[il;

30 } // the bottom-most adders and multipliers
31 X[1] = X[0] * sqrt(2 / N); /] X (k)
32 X[0] /= sqrt(); /] Xo(k)
33 }

Figure 9.3 (continued): The fp algorithmic description of the systolic array for
computing the DCT.
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XN-l,N-l o X1,N-1' XO,N-l

[2n]

2p-1]

XN—l,N—2 o Xl,N—Z' XO,N—Z

¥

Figure 9.4: The simplification made to the p-network at the top-level in the

cascade of p-networks.
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500 entries, 200 of which were extracted from image data (normalized in the range
of [0.0, 1.0)), another 200 were the DCT of image data (in the range of [—8.0, 8.0)),
and the remaining were randomly generated (in the range of [—8.0,8.0)). The
200 entries of transformed image data were included because for 2D image coding
experiments (Section 9.4.2), the DCT implementation is used twice to encode the

input images.

The objective of the experiments was to produce designs which minimize area
subjected to certain error constraints. Nevertheless, it is also possible to mini-
mize the output errors under area constraints with fp. In the experiments, the
sample dataset are assumed free of external quantization error. The error con-
stituted by R, described in Equation 9.5 was neglected during area minimization
(Section 9.4.1). However, R, was taken into account when the image coding

experiment was conducted (Section 9.4.2).

9.4.1 Area Minimization

The fp optimization feature was applied on the algorithmic description shown in
Figure 9.3. Error constraints (mean error) at the output were specified and the
optimization objective was to minimize the area of the implementation. Note
that the operators being adders and multipliers only enabled the algorithm to be

efficiently implemented with a variable-radix variable-wordlength architecture.

There are two sets of results presented in this section. Results in Tables 9.2
and 9.3 were obtained by fixing the error constraints and varying the number of
digits n (recall from Section 4.2 that n is a global parameter for each variable-
radix variable-wordlength implementation). Results in Tables 9.4 and 9.5 were
obtained by fixing n and varying the error constraints. More precisely, the error

constraints were set to 1/256 = 3.9063 x 1072 and 1/64 = 1.5625 x 1072 for the
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results in Table 9.2 and 9.3 respectively; n was set to one (bit-parallel) and eight
(digit-serial, with variable-radix variable-wordlength architecture) to obtain the
results in Tables 9.4 and 9.5 respectively. In the tables, the performance is defined
as the number of DCT operations per second, and the performance to area ratio
indicates the area efficiency which is measured by dividing the performance by

area.

To better illustrate the tradeoff among various conflicting performance mea-
sures, the number of slices (Figure 9.5), frequencies (Figure 9.6), performance
(Figure 9.7) and performance to area ratio (Figure 9.8) against the number of
digits under different error constraints are plotted. It is observable from the plots
that the relationship between the number of digits n and area is not straightfor-
ward. These graphs can be used to determine the minimal area implementation
satisfying certain error and throughput requirements. To more accurately locate
the optimal point, both error and throughput constraints should be specified. For
instance, Table 9.6 shows a series of implementations with mean error constraints

1/256 = 3.9063 x 1072 and varying throughput constraints.

9.4.2 Image Coding

To further evaluate the variable-radix variable-wordlength DCT implementation,
the DCT implementation was applied to the coding of several benchmark images.
The experimental framework is shown in Figure 9.9. The 1D DCT was first ap-
plied on the input images using the DCT core. Due to the separability of the DCT
core, the 2D DCT can be computed using the row-column method. Therefore, the
1D DCT results were transposed and then another 1D DCT using the same hard-
ware was applied, followed by another transposition. In this framework, only the

fixed-point 1D DCTs were performed in hardware and transposition was carried
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Number of digits n 1 2 4 6 8

Maximum error (x1073) 20.277 | 18.271 | 40.161 | 40.161 | 16.725
Mean error (x1073) 3.726 | 2.303 | 3.621 | 3.057 | 2.190
SNR (x10?) 1.301 1.955 1.189 1.278 2.069
Average digit size 12.29 7.59 4.02 3.44 2.64
Maximum digit size 39 15 9 7 3
Minimum digit size 6 4 3 2 2
Average wordlength 21.86 | 20.33 | 19.66 | 19.76 | 18.65
Maximum wordlength 39 23 60 48 42
Minimum wordlength 6 9 9 9 9
Trimmed adders 0 0 0 0 0
Trimmed multipliers 0 0 0 0 0
Amount of resources (slices) 1769 2146 1553 1373 1167
Clock rate (MHz) 66.18 | 64.30 | 55.85 | 74.11 | 95.56
Throughput (clock cycles) 1 2 4 6 8
Latency (clock cycles) 46 58 69 83 85
Performance (x10°) 66.18 | 32.15 | 13.96 | 12.35 | 11.95
Performance/area (x10%) 37.41 | 14.98 8.99 8.90 | 10.24

Table 9.2: Digit-serial DCT implementations with different digit sizes obtained
by area minimization with output mean error constraint set to 3.9063 x 1073,

(frounded up values)
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Number of digits n 12 16 24 32 48
Maximum error (x107?) 40.161 | 40.161 | 36.255 | 8.558 | 16.724
Mean error (x107%) 3.324 | 3.074 | 3.344 | 2.241 | 2.243
SNR (x10?) 1.250 1.359 1.294 2.235 2.037
Average digit size 2.14 1.76 1.29 1.08 1.00
Maximum digit size 3 3 2 2 1
Minimum digit size 1 1 1 1 1
Average wordlength 20.76 2217 | 22.67 | 20.58 21.61
Maximum wordlength 39 42 48 49 48
Minimum wordlength 9 10 9 9 10
Trimmed adders 0 0 0 0 0
Trimmed multipliers 0 0 0 0 0
Amount of resources (slices) 1188 1369 1049 618 771
Clock rate (MHz) 89.60 | 92.40 | 96.76 | 113.11 | 107.95
Throughput (clock cycles) 12 16 24 32 48
Latency (clock cycles) 101 104 125 83 94
Performance (x10°) 7.47 5.78 4.03 3.54 2.25
Performance/area (x10?) 6.29 4.22 3.84 5.72 2.92

Table 9.2 (continued): Digit-serial DCT implementations with different digit sizes

obtained by area minimization with output mean error constraint set to 3.9063 x

1073, (frounded up values)
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Number of digits n 1 2 4 6 8
Maximum error (x1073) 67.505 | 77.127 | 59.855 | 91.105 | 67.505
Mean error (x1073) 8.302 | 13.249 | 13.988 | 13.512 8.321
SNR (x10?) 0.579 | 0.450 | 0.424 | 0.423 | 0.579
Average digit size 10.63 5.09 2.88 2.16 1.99
Maximum digit size 27 14 8 6 4
Minimum digit size 6 4 2 2 1
Average wordlength 14.34 13.83 14.68 15.02 14.49
Maximum wordlength 27 32 32 32 36
Minimum wordlength 6 7 7 8 8
Trimmed adders 117 117 117 117 117
Trimmed multipliers 2 2 2 2 2
Amount of resources (slices) 780 842 845 657 691
Clock rate (MHz) 83.04 | 70.86 | 57.14 | 91.80 | 96.19
Throughput (clock cycles) 1 2 4 6 8
Latency (clock cycles) 21 29 41 50 68
Performance (x10°) 83.04 | 3543 | 1429 | 1530 | 12.02
Performance/area (x10%) 106.47 | 42.08 | 16.91 | 23.29 | 17.40

Table 9.3: Digit-serial DCT implementations with different digit sizes obtained

by area minimization with output mean error constraint set to 1.5625 x 1072,

(frounded up values)
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Number of digits n 1 2 4 6 8
Maximum error (x107?) 73.474 | 73.685 | 67.505 | 83.130 | 67.505
Mean error (x1073) 11.863 | 13.559 | 6.148 | 12.467 | 8.662
SNR (x10?) 0.508 | 0.414 | 0.733 | 0.494 | 0.604
Average digit size 1.37 1.07 1.05 1.00 1.00
Maximum digit size 3 2 2 1 1
Minimum digit size 1 1 1 1 1
Average wordlength 16.00 | 15.76 | 15.75 | 15.70 | 16.06
Maximum wordlength 36 32 35 32 40
Minimum wordlength 7 9 9 6 9
Trimmed adders 117 117 117 117 117
Trimmed multipliers 2 2 2 2 2
Amount of resources (slices) 633 540 465 385 394
Clock rate (MHz) 104.40 | 115.38 | 120.67 | 126.25 | 111.60
Throughput (clock cycles) 12 16 24 32 48
Latency (clock cycles) 64 73 45 55 49
Performance (x10°) 8.70 7.21 5.03 3.95 2.33
Performance/area (x10%) 13.74 | 13.35 | 10.81 | 10.25 5.90

Table 9.3 (continued): Digit-serial DCT implementations with different digit sizes

obtained by area minimization with output mean error constraint set to 1.5625 x

1072, (frounded up values)
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Mean error constraint (x1072) | 0.1953 | 0.3906 | 1.5625 | 6.2500
Maximum error (x1072) 0.856 2.028 6.751 | 22.224
Mean error (x1072) 0.195 0.373 | 0.832 | 3.930
SNR (x10?) 2.501 1.301 0.579 0.151
Average digit size 26.71 12.29 9.59 8.94
Maximum digit size 72 39 27 19
Minimum digit size 12 6 6 5
Average wordlength 26.84 16.33 14.34 12.57
Maximum wordlength 72 39 27 19
Minimum wordlength 12 6 6 5
Trimmed adders 0 0 117 117
Trimmed multipliers 0 0 2 2
Amount of resources (slices) 4013 1769 780 651
Clock rate (MHz) 58.29 66.18 83.04 | 120.50
Throughput (clock cycles) 1 1 1 1
Latency (clock cycles) 47 46 21 21
Performance (x109) 58.29 66.18 83.04 | 120.50
Performance/area (x10?) 14.53 | 37.41 | 104.47 | 185.09

Table 9.4: Bit-parallel DCT implementations obtained by area minimization with

different output mean error constraints. (‘rounded up values)
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Mean error constraint (x1072) | 0.1953 | 0.3906 | 1.5625 | 6.2500
Maximum error (x1072) 0.856 1.672 6.751 | 22.224
Mean error (x1072) 0.195 0.219 | 0.832 2.883
SNR (x10?) 2.502 1.343 0.579 0.180
Average digit size 2.94 2.64 1.70 1.61
Maximum digit size 7 5 4 4
Minimum digit size 4 2 1 1
Average wordlength 21.24 18.65 14.49 14.28
Maximum wordlength 83 42 36 28
Minimum wordlength 11 9 8 7
Trimmed adders 0 0 117 117
Trimmed multipliers 0 0 2 2
Amount of resources (slices) 1595 1167 691 540
Clock rate (MHz) 69.15 95.56 96.20 | 122.01
Throughput (clock cycles) 8 8 8 8
Latency (clock cycles) 111 85 68 51
Performance (x109) 8.64 11.95 12.02 15.25
Performance/area (x10?) 542 | 10.24 | 1740 | 28.24

Table 9.5: Eight-digit DCT implementations obtained by area minimization with

different output mean error constraints. (‘rounded up values)
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Figure 9.5: Plot of number of slices against the number of digits under different

error constraints.
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Figure 9.6: Plot of frequencies against the number of digits under different error

constraints.
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Figure 9.7: Plot of performance, measured in DCT operations per second, against

the number of digits under different error constraints.
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Figure 9.8: Plot of performance to area ratio, measured in DCT operations per

second per slice, against the number of digits under different error constraints.
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Throughput constraint (clock cycles) 8 16 32 64

Maximum error (x1073) 16.724 | 16.370 | 22.349 | 16.370
Mean error (x1073) 2.190 | 2.552 3.087 | 3.046
SNR (x10?) 2.060 | 1.918 | 1.433 | 1.554
Average digit size 2.64 2.64 1.08 1.00
Maximum digit size d 3 2 1
Minimum digit sizef 2 1 1 1
Average wordlength 18.65 22.52 21.12 19.57
Maximum wordlength 42 42 44 39
Minimum wordlength 9 8 8 9
Trimmed adders 0 0 0 0
Trimmed multipliers 0 0 0 0
Amount of resources (slices) 1167 1158 606 599
Clock rate (MHz) 95.56 88.09 | 111.98 | 120.53
Throughput (clock cycles) 8 14 30 39
Latency (clock cycles) 85 99 84 84
Performance (x10) 11.95 6.29 3.73 3.09
Performance/area (x10%) 10.24 5.43 6.16 5.16

Table 9.6: DCT implementations obtained by area minimization under differ-
ent throughput constraints and output mean error constraint 3.0963 x 103,

(frounded up values)
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Figure 9.9: Framework for image coding experiments.

out in software. The 2D DCT results from the hardware implementation were
then correlated with a software floating-point implementation, and the results are
shown in Table 9.7. The benchmark image Airfield was chosen and applied the
inverse DCT on both the hardware and software DCT results. Resultant images

are shown in Figure 9.10.

In Figure 9.10, simulation SNR refers to the SNR based on simulation of
sample dataset, actual SNR refers to the SNR based on comparison of images
obtained from floating-point and fixed-point implementations and is measured in
dB. Simulation SNR and actual SNR were measured separately because during
simulation (described in Section 9.4.1) the errors contributed by R, were ne-
glected, and the image coding experiments require two 1D DCTs, and therefore

contain twice the 1D DCT fixed-point errors.

9.5 Discussion

In general, implementations employing variable-radix variable-wordlength archi-

tecture have consistent properties with traditional digit-serial implementations.
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Constraint?

SNR?

Airfield

Airplane

Bridge

Couple

Crowd

0.001953

251.811

0.9998392

0.9997353

0.9998078

0.9997098

0.9997772

0.002604

212.835

0.9995402

0.9988759

0.9990135

0.9994490

0.9995638

0.003906

118.936

0.9995167

0.9992529

0.9992773

0.9993545

0.9994785

0.007813

66.271

0.9989709

0.9988271

0.9987446

0.9987056

0.9989653

0.015625

42.413

0.9948467

0.9906164

0.9939893

0.9912205

0.9931685

0.031250

24.577

0.9837934

0.9822585

0.9814566

0.9765656

0.9824283

0.062500

20.155

0.9831877

0.9714933

0.9807353

0.9704832

0.9773544

Constraint?

SNR#

Harbour

Lax

Lena

Man

Peppers

0.001953

251.811

0.9996340

0.9995413

0.9997498

0.9997479

0.9998022

0.002604

212.835

0.9998601

0.9991282

0.9997892

0.9992854

0.9998324

0.003906

118.936

0.9991240

0.9989422

0.9995340

0.9994413

0.9995960

0.007813

66.271

0.9982936

0.9976151

0.9989699

0.9988836

0.9991613

0.015625

42.413

0.9879892

0.9858949

0.9927063

0.9923737

0.9944384

0.031250

24.577

0.9716344

0.9560052

0.9822122

0.9794762

0.9857037

0.062500

20.155

0.9615852

0.9555060

0.9737961

0.9739921

0.9792801

Table 9.7: Correlations between DCT results obtained from hardware fixed-
point and software floating-point implementations under various algorithm per-
formances. (TThe constraint set was mean error constraints at outputs. *The

SNR at the output based on simulation of the sample dataset.)
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(a) floating-point DCT (b) fixed-point DCT
(251.811, 44.520, 4013)

CERS e SR

(¢) fixed-point DCT (d) fixed-point DCT
(212.835, 39.489, 1956) (118.936, 38.408, 1769)

Figure 9.10: Resultant images obtained from software floating-point and hard-
ware fixed-point DCT image coding, followed by floating-point inverse DCT (sim-

ulation SNR, actual SNR measured in dB, slices in a bit-parallel implementation).
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(e) fixed-point DCT (f) fixed-point DCT
(66.271, 32.520, 751) (42.413, 27.660, 734)

(g) fixed-point DCT (h) fixed-point DCT
(24.577, 24.091, 664) (20.155, 19.664, 651)

Figure 9.10 (continued): Resultant images obtained from software floating-point
and hardware fixed-point DCT image coding, followed by floating-point inverse
DCT (simulation SNR, actual SNR measured in dB, slices in a bit-parallel im-

plementation).
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For instance, the effects of increasing number of digits are reduced area, increased
clock rate and increased latency. However, the plots in Section 9.4.1 show that
relationships among area, frequency, performance and area efficiency is complex.

The data was analyzed in an attempt to understand the cause of such behavior.

9.5.1 Tradeoff between Area and Number of Digits

In Figure 9.5, a general trend of decreasing area with increasing n can be observed.
The insertion of conversion modules for variable format conversions resulted in
area overhead when the number of digits, n, was increased from one (bit-parallel).
Therefore for n = 2, resource requirements are usually greater than n = 1. To
achieve a net decrease in resource requirements, n must be further increased so
that the area reduction by folding operators into a lower radix can compensate

for the conversion module overhead.

When the implementation was bit-serial (n = 48 for a mean error constraint
of 3.9063 x 1072 as in Table 9.2, n = 32 for a mean error constraint 1.5625 x
1072), the decrease in area is significant since conversion modules can now be
implemented solely with registers and do not require multiplexers. As can be
seen from Figure 9.5, when the specified n is larger than that required for a bit-
serial implementation, area increases because unnecessarily long stage latches are

inserted into the circuit.

The above analysis can be justified by a best-fitting polynomial curve for the
data of slices required against number of digits. The plot is shown in Figure 9.11.
Intuitively, area decreases with increasing n (more parallel implementation) until
n becomes unnecessarily large. Hence, a concave function should result which
decided the choice of a best-fitting polynomial curve of degree two. Using the
data shown in Table 9.2, the best-fitting function obtained is A = 0.7n% —58.8n+



Chapter 9. Application IV — The Discrete Cosine Transform 197

2200

20001 *

1800

Number of dices

| | | | |
0 5 10 15 20 25 30 35 40 45 50
Number of digits (n)

0 | | | |

Figure 9.11: Best-fitting polynomial curve of degree two for the plot of number of

slices against number of digits, with mean error constraint set to 3.9063 x 1073.

1087.6, which reaches its local minimum when n = 39.5. This can be compared
with the results in Table 9.6, where a minimal area implementation with 599 slices

was obtained when n = 39. The corresponding implementation is a bit-serial one.

9.5.2 Tradeoff between Clock Rate and Number of Digits

It can be observed from Figure 9.6 that the maximum clock frequency of the
resulting implementations generally increases with increasing number of digits n.

The exception is when n was increased from one to an integer less than four, a
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drop in maximum frequency was observed.

Digit-serial architectures with smaller radix often offer higher clock rates due
to shorter ripple-carry chains. The variable-radix variable-wordlength architec-
ture has a similar property but it can be seen in Figure 9.6 to be a weak function
of n. This is because conversion modules become more complicated with in-
creased n and require more control circuitry, becoming a bottleneck. Several
optimization techniques such as pipeline stage insertion have been implemented,
but it is still difficult to establish a relationship between these two parameters
as in a traditional digit-serial implementation. The drop in frequency when n is
between two and four is mainly caused by the increased area of conversion mod-
ules. Normally for FPGA implementations, routing produces most of the delay
in the critical path. Area has a large effect on consuming routing resources, so it

directly affects the maximum frequency.

9.5.3 Tradeoff between Performance and Number of Dig-
its

The variable-radix variable-wordlength architecture has a property that the th-
roughput is controlled by the number of digits n. A variable of n digits takes at
least n cycles for its data bits to pass through the associated data wires since it

is multiplexed in time.

The overall performance (number of DCT operations per second) is deter-
mined by two factors, the number of clock cycles to complete a DCT operation
(or equivalently, the maximum number of cycles between adjacent inputs or out-
puts) and the maximum clock rate of the implementation. As can be seen from
Figure 9.7, the first factor has the dominant effect on performance, hence it is

observed that the performance drops with increased number of digits. The dip in
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the performance curves in Figure 9.7 around n from two to four can be explained

by the corresponding drop in the frequency seen in Figure 9.6 discussed earlier.

9.5.4 Tradeoff between Area Efficiency and Number of
Digits

Figure 9.8 shows the plot of area efficiency (number of DCT operations per second
per slice) versus the number of digits. The curves, compared with the previous
ones, contain more local minima and maxima. This is because area efficiency is

determined by two conflicting factors, namely area requirements and performance.

Certainly better area efficiencies implies better implementations, but imple-
mentations that achieve high area efficiency may not satisfy certain design con-
straints in practice. For instance, implementations on the left side of the curves
may not satisfy area constraints, whereas those on the right side may not satisfy
throughput constraints. Therefore, one possible design approach is to analyze the
curves and pick an implementation that offers the minimal area while satisfying

all the design constraints.

9.5.5 Effects of Output Error Constraints

By allowing larger errors at the outputs, the control of fixed-point quantiza-
tion and computation errors can be relaxed, hence providing a larger space for
area minimization. The curves in Figure 9.5 shows the area requirements un-
der different error constraints. When the mean error constraint is less than or
equal to 1/128 = 0.007813, there is a significant reduction in area due to trim-
ming of operators. More precisely, when the error constraint was relaxed say to

1/64 = 1.5625 x 1072, the number of trimmed operators becomes 117 adders and
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2 multipliers. The removal of multipliers with small coefficients (for the above
case, the multipliers with coefficients a, and a,_;) does not affect the precision
of output X (k) with respect to the error constraint as the partial sums they pro-
duce are relatively small. Trimming of these multipliers consequently allowed the

removal of their preceding adders hence contributed in significant area reductions.

Trimming of operators not only results in area reduction but also in latency
reduction. Since adders in the Pascal’s triangles are trimmed, latency in the

p-network is shortened, resulting in a significant reduction in the overall latency.

Moreover, the relaxed error constraints allow operators to have reduced pre-
cision and hence reduced wordlength leading to an area reduction. In addition,
higher maximum clock rates are obtained because operators are simplified. With
smaller area and higher clock rate, implementations with relaxed error constraints
thus have higher performance and better area efficiency. This can be observed in

Figures 9.6 and 9.7.

9.5.6 Optimization by Simulation

The proposed approach to optimize an implementation is based on the simulation
of a sample dataset. Although the optimization procedure considers only runtime
error analysis and does not take worst-case analysis into account, it is observed
from the image coding experiments that the performance of the algorithm is

practical for many applications.

In the experiments the runtime maximum and mean error are in the order of
1072, but analysis suggests that worst-case error could be up to the 10°, seven
orders of magnitude more than runtime error analysis. A worst-case analysis is
too pessimistic in practice. Area requirements would be drastically decreased if

optimization is based on runtime error analysis.
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9.5.7 Comparison with Traditional Digit-Serial Architec-

tures

To justify the advantages of employing a variable-radix digit-serial architecture,
the variable-radix DCT implementations were compared with those implemented
using a fixed-radix digit-serial architecture. These fixed-radix implementations
were obtained by setting all variables to be the same wordlength and consequently
of the same radix. The integer wordlengths were adjusted so that overflow does
not occur and the fractional wordlengths were maximized to minimize quantiza-

tion errors.

Fixed-radix implementations with 16-bit, 20-bit and 24-bit wordlengths were
tried. The corresponding runtime mean error at the outputs are 5.705 x 1073,
1.960 x 1073 and 1.956 x 1073 respectively. Area requirements and maximum
clock rates of these implementations are shown in Table 9.8. As can be seen from
the table, there is general trend of decreasing area and increased clock rate with

increased digit size.

To compare with these fixed-radix implementations, three variable-radix im-
plementations were chosen and their performance measurements are listed in Ta-
ble 9.9. These implementations were chosen because their runtime output mean
error and performance are close to the some of the fixed-radix implementations
in Tables 9.8. The comparison of performance and area between the chosen im-
plementations and the fixed-radix implementations are plotted in Figure 9.12.
In this plot, three pairs of implementations were compared (indicated by dotted
lines) and three equi-performance to area ratio lines (the larger performance to
area ratio, the better the area efficiency) were also plotted. The three pairs of

comparing implementation were:

e Variable-radix implementation 1 (mean output error 4.964 x 1073, 14.95 x
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Number of digits? | 16-bit wordlength | 20-bit wordlength | 24-bit wordlength
1 2194, 78.01 4738, 62.13 5765, 57.34

2 1910, 63.92 4070, 51.95 4922, 48.03

4 1230, 58.36 2330, 50.84 2957, 47.67

6 1014, 78.04 2064, 63.10 2285, 60.90

8 913, 84.25 1671, 74.42 1874, 65.05

12 916, 96.62 1568, 75.55 1712, 77.19

16 793, 92.56 1547, 79.20 1681, 78.57

20 N/Af 1323, 99.13 1727, 75.97

24 N/AT N/AT 1474, 87.41

Table 9.8: Area requirements and maximum clock rates of fixed-radix DCT im-

plementations (slices, maximum clock rate measured in MHz). ("Non-applicable

because digit size is greater than wordlength. ¥Digit size is wordlength divided

by number of digits.)
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10 DCT operations per second) was compared with the 16-bit wordlength,
6-digit (radix-8) fixed-radix implementation (mean output error 5.705 X
1073, 13.06 x 10° DCT operations per second). The variable-radix imple-
mentation has a performance to area ratio of 24.04 x 10? while that of the
fixed-radix implementation is 12.83 x 103 (the variable-radix implementa-

tion has 87% improvement).

e Variable-radix implementation 2 (mean output error 1.938 x 1073, 10.83 x
10° DCT operations per second) was compared with the 24-bit wordlength,
6-digit (radix-16) fixed-radix implementation (mean output error 1.956 X
1073, 10.15 x 10° DCT operations per second). The variable-radix imple-
mentation has a performance to area ratio of 5.82 x 10 while that of the
fixed-radix implementation is 4.44 x 10® (the variable-radix implementation

has 31% improvement).

e Variable-radix implementation 3 (mean output error 1.938 x 1073, 6.15x 10°
DCT operations per second) was compared with the 20-bit wordlength, 12-
digit (radix-4) fixed-radix implementation (mean output error 1.960 x 1073,
6.29 x 106 DCT operations per second). The variable-radix implementation
has a performance to area ratio of 5.50 x 10® while that of the fixed-radix
implementation is 4.01 x 10® (the variable-radix implementation has 37%

improvement).

9.6 Summary

An implementation of a systolic structure for the computation of the DCT us-
ing fp tool, in which an optimization approach which automatically translates

floating-point algorithmic descriptions into hardware-efficient fixed-point imple-
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Implementation 1 2 3

Maximum error (x1073) 75.317 8.558 8.558
Mean error (x1073) 4.964 1.938 1.929
SNR (x10?) 78.081 | 250.93 | 251.81
Average digit size 2.12 3.78 2.06
Maximum digit size 4 10 6
Minimum digit size 1 1 1
Average wordlength 15.13 20.17 19.86
Maximum wordlength 36 o8 71
Minimum wordlength 8 12 13
Trimmed adders 117 0 0
Trimmed multipliers 2 0 0
Amount of resources (slices) 622 1861 1118
Clock rate (MHz) 89.72 | 64.98 73.77
Throughput (clock cycles) 6 6 12
Latency (clock cycles) 44 78 72
Performance (x10°) 14.95 | 10.83 6.15
Performance/area (x10?) 24.04 5.82 5.50

Table 9.9:

Variable-radix implementations chosen for comparisons with fixed-

radix implementations. (frounded up values)
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mentations, was described. Using the variable-radix variable-wordlength archi-
tecture, an almost a continuous tradeoff in performance, area, latency and th-
roughput is obtained, thus allowing designers to choose the most appropriate

design for a given application.

Through the use of the variable-radix variable-wordlength architecture, higher
area efficiencies were obtained as compared with the traditional digit-serial ap-
proach. Experiments show as much as 87% improved area efficiency has been

achieved.

Compared with a worst-case analysis, runtime analysis showed that typical
errors were several orders of magnitude smaller at the outputs (for example,
10° for the worst-case analysis, 1072 for the runtime analysis). Given a sample
dataset which is a representative of the input in practice, using runtime analysis

for optimization may provide significantly larger room for wordlength reduction.

Using the module generation approach, a set of 70 implementations of the
DCT of different radices and wordlengths were generated from a single descrip-
tion. These implementations had areas ranging from 366 to 4013 Virtex slices,
with throughputs between 1.62 x 10¢ DCT operations per second and 120.50 x 10°
DCT operations per second. Applying the DCT implementations to 2D image
coding, the resultant images had SNRs between 19.67 dB and 44.52 dB.



Chapter 10

Conclusion

The main objective of this thesis was to develop techniques to improve the ef-
ficiency of FPGA-based coprocessor systems. A tool, called fp, was developed
which provides automatic floating-point to fixed-point translation. It supports
a generalized variable-radix digit-serial computation which provides the flexibil-
ity in controlling the degree of parallelism and the hardware requirements of the
design. The fp tool greatly reduces design time and generates designs which are
too tedious to be designed manually. A memory bus based interface used in a
reconfigurable computer (RC) platform called Pilchard was shown to have a large

performance improvement over the PCI Local Bus.

10.1 fp

Software programming and hardware designs being treated as distinct entities
remains an obstacle in developing a FPGA-based coprocessor system. The design
goal of fp was to bridge between these two entities in a way that software programs

can be translated to hardware implementations with minimum additional effort.
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Using this tool, designers may focus in the higher algorithmic issues and be less

concerned with the details in a hardware implementation.

The primary input to fp is an algorithmic description which is a program writ-
ten in a subset of the C language. The translation from an algorithmic description
to a hardware implementation involves extraction of dataflow, determination of
operator bit-width and radix, and generation of VHDL description. The out-
put of fp is a synthesizable VHDL description that implements the algorithmic
description with fixed-point arithmetic and satisfies user-specified performance

requirements and constraints.

Bit-widths and radices of operators were determined via an optimization and
simulation approach. Unlike previous approaches in which wordlengths of vari-
ables were optimized, fp optimizes the bit widths of operators. This approach is
well suited to FPGAs that are rich in storage and routing resources (correspond-
ing to variable wordlengths). In fp, fixed-point operators are parameterized. The
optimizer tries different configurations of parameters and derives an implementa-
tion that minimizes a user supplied cost function reflecting the required tradeoff
among various conflicting performance measures. The algorithm is simulated
with a sample dataset in every trial, hence a runtime analysis of dynamic ranges

and quantization errors can be extracted.

To further explore the tradeoff among area, latency and throughput, fp can
generate a variable-radix variable-wordlength architecture. This architecture is
considered as a generalization of the traditional digit-serial architecture, and is

capable of providing higher resource utilization, parallelism and area efficiency.

Applications of the tool presented in this dissertation include a post-rendering
3D warping algorithm (Chapter 7), a parameterized electronic cochlea model

(Chapter 8), and a systolic structure of the Discrete Cosine Transform (DCT)
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(Chapter 9).

10.2 Pilchard

Improving the bandwidth and latency as well as simplifying the interface is par-
ticularly an important issue for FPGA-based coprocessors. To address this issue,
an RC platform which communicates with the CPU via the memory bus called

Pilchard was developed.

Measurements showed that Pilchard achieves approximately three times better
write performance and five times better read performance as compared with the
PCI Local Bus in the uncachable (UC) MTRR mode. If write-combining (WC)
MTRR mode is used, the write performance can be as high as five times the that
of the PCI Local Bus. Read and write performances can be further improved by
using 64-bit data transfer, in which a ten times speedup in read performance and

a six times speedup in write performance are obtained.

The applications presented in this dissertation that utilized the Pilchard plat-
form include the International Data Encryption Algorithm (IDEA) cipher (Chap-

ter 6) and the parameterized electronic cochlea model (Chapter 8).

10.3 Applications

The design methodologies developed in this dissertation were applied to four
applications. These applications demonstrated how the proposed design method-
ologies improve upon existing design approaches for FPGA-based coprocessor.
They also showed performance improvements upon purely software-based imple-

mentations.
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The implementation of IDEA cipher uses a dedicated bit-serial design of the
multiplication modulo 2'6 + 1 operator to facilitate a bit-serial architecture. En-
abled by a deeply-pipelined architecture, the implementation achieved a high sys-
tem clock rate (150 MHz) and throughput (600 Mbytes/sec) on a Xilinx Virtex
XCV300-6 FPGA. The key schedule can be changed via direct bitstream modi-
fication which saves on the interfacing logic. This implementation was tested on
the Pilchard and PCI Local Bus platforms and a 3.74 times faster performance

was achieved on Pilchard.

Post-rendering 3D warping involves arithmetic operations in which the bit
widths affect the performance of the algorithm. With fp, a single C description
of this algorithm can generate multiple implementations, each of which has a
different tradeoff between area and performance. Two implementations of the
post-rendering 3D warping algorithm were presented, one having a higher perfor-
mance and the other having a smaller area. They respectively are 1.11 and 1.25
times faster than an optimized software implementation on a Xilinx XC4085XL-1

FPGA.

The proposed design methodologies were applied to develop a module genera-
tor for the Lyon and Mead cochlea filter. It makes use of the fixed-point modeling
feature of fp to estimate the filter precision for a specific bit width, from which
a designer may explore an application-optimized design. An implementation of
the generated module on Pilchard showed 1.67 times higher performance than
the same implementation on the PCI Local Bus and is 6.22 times faster than a

software implementation.

The DCT algorithm discussed in this dissertation involves only additions and
multiplications, and it is well-suited for a digit-serial implementation. Through
the use fp and its variable-radix variable-wordlength architecture, a series of im-

plementations of the DCT, each with a different tradeoff among various conflict-
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ing performance measures (precision, area, latency and throughput), were ob-
tained from a single algorithmic description. These implementations have areas
vary from 366 to 4013 Virtex slices and almost continuous throughputs between
1.62 x 10% and 120.50 x 10° DCT operations per second, with up to 87% improved

area efficiency over the traditional digit-serial architectures.

10.4 Prospects for Research

This dissertation has focused on design methodologies that may more efficiently
facilitate the FPGA-based coprocessor approach. It would be worth investigating

the following refinements to the methodologies presented in this dissertation.

10.4.1 fp

Currently the fp system requires users’ explicit identification of the inner loops for
hardware implementation. This identification may possibly be automated using
profiling techniques, in which the most expensive routines of a program can be
identified and a justification of whether a hardware implementation may offer

performance improvement can be made.

The simulation-based optimization procedure of fp utilizes a user supplied
sample dataset. A careful selection of this dataset is needed and no guarantees
that overflow will not occur for arbitrary inputs can be made. There may be
more sophisticated methods to determine the relationship among the operators

and wordlengths.

Recent FPGA devices have on-chip memory (such as the Virtex BlockRAM
[Xil00c]) and multipliers (such as the Virtex-II 18-bit multiplier [Xil0la]). To

utilize these resources, fp should support mapping operators to these resources.
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10.4.2 Pailchard

The Pilchard board currently requires the bitstream to be downloaded from an-
other machine. It would be feasible and more convenient to configure the FPGA
via the memory bus interface. One possible way to achieve this is to use the
SelectMAP configuration data pins on the FPGA [Xil00c|, and to introduce ex-
ternal logic for the generation of appropriate control signals when certain data

patterns appear on the memory bus.

Streaming SIMD Extension (SSE) instructions may produce memory burst
read (and write) accesses [Int00a] without corrupting the cache and may be a

more efficient method to transfer data to the FPGA board.

The design concept of Pilchard can be applied to the double data rate (DDR)
SDRAM interface [Tra00a] whose bandwidth (2128 Mbytes/sec) is double that
of the PC133 DIMM interface. The feasibility of employing a Rambus DRAM
(RDRAM) inline memory modules (RIMM) interface also needs to be investi-
gated. The RIMM interface has a series of standards (each of which corresponds
to a different data rate), at one side being the RIMM1600 standard which has a
800 MHz data frequency and is 16-bit wide (a bandwidth of 1600 Mbytes/sec),
and the other side being the RIMMS8500 standard which has a 1066 MHz data
frequency and is 64-bit wide (a bandwidth of 8532 Mbytes/sec) [Ram01].

It is envisaged that the Pilchard platform can enable many FPGA applications
previously considered to not be practical due to bandwidth limitations. As an
example, using the SelectLink [Xil00c] communications interface, very high I/O
bandwidth (200 Mbytes/sec per pin) can be achieved and would be superior to the
Myrinet (2 Gbits/sec) and Gigabit Ethernet (1 Gbit/sec) technologies in terms

of bandwidth and latency for point-to-point connections.
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10.5 Closing Remarks

A fundamental limitation of microprocessors is due to the nature that software
programs are essentially sequences of operations chosen from the set of instruc-
tions supported by the microprocessor architecture. The use of FPGA-based
custom computing machines is a potential solution to meet the strict perfor-
mance requirements imposed by real-time and portable applications. An FPGA-
based coprocessor system may offer significant performance improvements upon
a purely software-based design, and with FPGA speed and density constantly
improving and non-recurrent engineering costs for ASICs also increasing, this

approach should become even more attractive in the future.
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fp Implementation Details

This appendix is an extension to Chapters 3 and 4 which presents the imple-
mentation details of fp. Specifically, the algorithms used and the programming

interface are described in detail.

A.1 Dataflow-Extraction Library

To examine how the compilation is carried out through the use of the dataflow-
extraction library, the example program in Figure 3.1 is used. A directed acyclic
graph (DAG) data structure is defined in the dataflow-execution library. Upon
initialization of the program, the DAG structure is empty. There is a class variable
in the fixed class which is a reference to a node in the DAG. This reference is
initialized to NULL at the object constructor. In this program, a and b are inputs,
x and y are outputs and r is a local variable. The fixed objects a and b are
labeled as inputs by the caller before entering function g. This is achieved by
calling an input() method. Similarly, the outputs x and y are indicated by a

output () method.
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(d) line 10, s =1

(g) line 11,7 =2 (h) resultant DAG (i) operators named

Figure A.1: Building a DAG from the algorithmic description in Figure 3.1.
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After a.input () and b.input () calls, two input-type nodes are created cor-
respondingly. The DAG node reference from a and b are updated to point to
these input-type nodes. At line 5 of the program, the first fixed class operation
which is the addition of a and b is issued. After its execution, a new add-type
node is formed. This add-type node points to the nodes referenced by fixed ob-
jects a and b. Furthermore, the DAG node reference from x is updated to point
to this new node. The intermediate DAG after the execution of line 5 is shown
in Figure A.1(a). The intermediate DAGs after executing lines 6 and 7, as shown

in Figures A.1(b) and A.1(c) respectively, are built in a similar manner.

In lines 8 to 12 of the algorithmic function there is a for-loop with two itera-
tions. However, the DAG is only updated in the loop body in lines 10 and 11 as
these expressions involve operations on fixed objects. After the execution of line
10 in the first iteration, a new multiply-type node which points to the references
of y (resolved by the conditional statement) and r is created, as shown in Fig-
ure A.1(d). The DAG node reference from z is then updated from the add-type
node corresponding to a + b to the new multiply-type node. In the next expres-
sion, there are two addition operations. The bracketed addition, a + b is already
computed in line 5. To minimize the number of operators and hence area of the
resultant implementation, elimination of common subexpression is performed by
the dataflow-extraction library for the node a 4+ b in the DAG built so far. The
corresponding node will not be created, but a reference to an existing node is
returned. Essentially, only one new add-type node is created after executing line
11 (Figure A.1(e)). The procedures follow in the second iteration of the loop,
but in this iteration z is updated as x x r because of the result of the condi-
tional statements (Figure A.1(f)). After all the expressions in the function are
executed, a DAG as in Figure A.1(g) is formed. As a final step, after returning

from function g x.output() and y.output() are executed. Two output-type
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nodes pointing to nodes referenced by x and y respectively are hence created.

In the example, the conditional statement does not involve operations on
fixed objects. To support conditional statements on fixed objects, the fixed
class provides ifthen(), ifelse() and ifthenelse () methods. Compound con-
ditional statements are supported, but they should not be specified with the
logical-and (&&) operator in C. This is because in C, the execution of a sequence
of and-ed conditional statements will be “short-circuited” when one of the con-
ditional statements returns true, causing subsequent conditional statements not
to be processed in forming the DAG. Lists of conditional statements are inter-
preted as and-ed conditional statements. By De Morgan’s Law, or-ed conditional
statements can be written as and-ed conditional statements. Examples of these

methods are given in Table A.1.

Note that the example algorithmic function does not have loops with a variable
number of iterations. For such cases, the graph representation must contain
loops that a DAG cannot handle. Due to the choice of using a fully-pipelined
architecture derived from a DAG for throughput maximization, fp only supports

loops where the number of iterations are fixed during compile time.

The output of the dataflow-extraction process, which is a DAG description
of the algorithmic function in C++ code, is generated by a printdag() func-
tion call after building the DAG. The parameters to the printdag() function
call are the name of the functions, followed by the names of the inputs and
outputs. For instance, the DAG description in Figure 3.4 is extracted by the

printdag("g", "a", "b", "x", "y") function call.
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fixed class

Conditional statements implementations Corresponding DAG
double fixed
a, b, w, a, b, w,
X, ¥y, Z; X, ¥V, 2,
if (a > b) w.ifthen(a > b, x);
W= X; y.ifelse(a > b, z);
else
y =2z
double fixed
a, b, c, a, b, c,
X, ¥y, Z; X, ¥V, Z;

x.ifthenelse(a > b,

X =Y; b>c, vy, 2);
else
X = z;
double fixed
a, b, ¢, a, b, c,
X, ¥, Z; X, V, Z;
if (a>b ||l a>c¢) x.ifelse(
x =y + z; I(a > b),
I(a > c),
y + z);

Table A.1: Support of conditional statements in fixed class.
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A.2 Quantization and Overflow Models

The commonly-used quantization models, including rounding and truncation, are
described in Table A.2. Overflow models, namely wrap-around and saturation,
are described in Table A.3. In these tables, the precision format of a variable
is represented as (w, f) (Section 3.4.3), where w is the total wordlength (sum of

fractional and integer wordlengths) and f is the fractional wordlength.

A.3 Error Measurement and Range Estimation

The pseudocode in Figure A.2 is the procedure for extraction of dynamic ranges
and quantization noise with a sample dataset S = {V, V1, Vs, ...}, where V;, is
an input vector of length equal to the number of module inputs, i = {0,1,2,...}.

A detailed explanation is given below:

1. The range of values for every input of the module (FIn objects) are deter-
mined by scanning the sample dataset but these ranges can also be over-
ridden by user. The maximum quantization errors from the external data
sources (the result of floating-point to fixed-point quantization) are also de-
termined. These are set via range () and error () method calls to the input
objects and are used as the initial values for worst-case range extraction and

error estimation.

2. A worst-case analysis flag is set via a WorstCaseAnalysis() function call.
Its effect is that subsequent operator calls (function calls beginning with
an “F”) do not instantiate operators. Instead, the following operations are

carried out:

(a) The inputs of the operator copies the precision format from the outputs
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Model Description
Rounding | The quantized value of ¢ = (qu,~1¢w,—2---¢190) (precision for-
mat (wg, f,)) is obtained by rounding the original value of p =
(Pwp—1Pw,—2 - - - P1Po) (precision format (w,, f,)) to the nearest f,
binary digits (w, > wg, f, > fy and w, — f, = w, — f;). The
quantization algorithm is
q= (qu—l%q—Q .- -(hQO)
. (pwpflpwpﬂ - -pwpquﬂpwp—wq) if Pwy—w,—1 =0,
(Puwy—1Pwy—2 - - - Puy—0g+1Pwy—wy) + 277 i Dy —gp,—1 = 1,
which can be implemented by a wg-bit adder. The maximum
absolute error produced by quantization, Eg,qz, is 2 faml 9~ Jn,
Truncation | The quantized value of ¢ = (quw,~1¢w,—2---¢190) (precision for-

mat (w,, f,)) is obtained by truncating the original value of

P = (Pw,—1Pw,—2 - --P1Po) (precision format (wy, f,)) by f, — fq
LSB-side bits (w, > w,, f, > f; and w, — f, = wy, — f,). The

quantization algorithm is
q= (qu—1qu—2 .- -(hQO)
= (pwpflpwpf% - 'pwpf’qurlpwpqu):

which can be implemented by a omitting the lower f, — f, bits of

the datapath. The maximum absolute error produced by quanti-

zation, Eymeg, 18 2 Ja — 9 fp,

Table A.2: Roundoff and truncation quantization models.
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Model

Description

Wrap-around

When a variable overflows, its overflowed MSBs are omitted.
The overflowed value of ¢ = (qu,—19w,—2 - - - ¢140) (precision for-
mat of ¢ is (w,, f,)) is obtained from the lower w, bits of the
original value p = (pw,—1Pw,~2---P1Po) (precision format of p

is (wp, fp)) (w, > wy, f, = f,). The overflow algorithm is
q= (C]wq—l%qq - ¢1Go)

= (pwqflpwq72 e -plpO):

which can be implemented by omitting the upper w, — w, bits

of the datapath. The error produced by overflow is unbounded.

Saturation

When a variable overflows, the maximum or minimum value
which can be represented is used. The overflowed value of
¢ = (Guy—1Gw,~2---¢190) (precision format (wy, f;)) is ob-
tained from the lower w, bits of the original value of p =
(Pwp—1Pw,—2 - - - P1Po) (precision format (w,, f,)), or the maxi-
mum or minimum value which can be represented. The over-

flow algorithm is

q = (qu—1qu—2 .- -(hQO)

([ (011...1)
if Puwp—1 = 0, (pwp—prp—B . -pwq) 7£ (00 .. 0),
=< (100...0)

if pwpfl = 17 (pwp72pwp73 .. pu)q) 7£ (11 PP 1),

L (pwq—lpwq—Q ... D1Po) otherwise,

which can be implemented by a comparator followed by a mul-

tiplexer. The error produced by overflow is unbounded.

Table A.3: Wrap-around and saturation overflow models.
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1 procedure ErrorMeasurementAndRangeEstimation()

2 input V,minRange,maxRange,extError

3 output error,range

4 begin

5 foreach z in Fin objects

6 x.range (minRange,, maxRange,) ;

7 z.error (extErrory) ;

8 end for // set ranges and quantization errors of every input
9 WorstCaseAnalysis();

10 DAGDescription(); /] worst-case analysis run
11 while true

12 if OperatorTrimming() = 0

13 break;

14 end if

15 end while

16 RuntimeAnalysis();

17 foreach V in S // V is an input vector in S
18 foreach z in Fin objects

19 x.sample (v,) ;

20 end for /] vs is the value in V corresponding to input x
21 DAGDescription(); // runtime analysis runs
22 UpdateError (error) ; // record runtime quantization errors
23 UpdateRange (range) ;  // update runtime mazimum dynamic ranges
24 end for

25 end procedure

Figure A.2: The pseudocode for error measurement and range estimation.
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of the preceding operators to which they connect. If the input “trun-
cation” parameters are non-zero, the precision formats are adjusted
accordingly (Section 3.4.4). The quantization errors at the inputs are

recorded.

The arithmetic core (Section 3.4.1) derives the dynamic range of this
operation and the minimum precision format to produce bit-exact re-

sults.

The outputs of the operator copy the precision formats from the arith-
metic core. If the output “truncation” or “expansion” parameters
are non-zero, the precision formats are adjusted accordingly (Sec-

tion 3.4.4). The quantization errors at the outputs are recorded.

Subsequent ModuleBegin() and ModuleEnd() function calls are ignored.

3. The DAG description is executed via DAGDescription() and a worst-case

analysis of the algorithmic function based on the sample dataset is pro-

duced.

4. Operator trimming is performed (Section 3.5.2).

5. A runtime analysis flag is set via a RuntimeAnalysis() function call. Note

that upon reaching this step the precision formats of all the inputs and

outputs are already derived. In the case that the flag is set, subsequent

operator calls will carry out the following operations:

(a)

(b)

The inputs of the operator take values from the outputs of the preced-
ing operators to which they connect, and reformat the representation

of the value to the precision format that is already set.

The arithmetic core performs the required computation. The bit width

of the operation is the minimally required one which produce bit-exact
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10.

11.

results with respect to the inputs.

(c) The outputs copy the intermediate results from the arithmetic core,
and reformat the representation of the value to the precision format

that is already set.

Subsequent ModuleBegin() and ModuleEnd() function calls are ignored.

. For every input of the module to be simulated, a sample () method is made

and the next sample input vector is taken.

The procedure DAGDescription() isexecuted again. Since the function call
RuntimeAnalysis() is dispatched, the operator calls carries out runtime

analysis of the algorithmic function with an entry from the sample dataset.

. The same set of operations as in the DAG description is performed in

double-precision floating-point representations. The error produced (the
absolute difference between the fixed-point and the floating-point values)
are computed. The error at the inputs and outputs of all the operators are

recorded.

The inputs and outputs contain variables which states the maximum run-

time dynamic ranges so far exhibited. These ranges are updated accord-

ingly.
Steps 6 to 9 are repeated for every entry in the sample dataset.

After all the entries in the sample dataset are processed, the inputs and
outputs of the operators contain the worst-case and runtime analyses of
dynamic ranges and quantization errors using the supplied set of parameters

and the sample dataset as inputs.
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A.4 Trimming of Operators

As described in Section 3.5.2, trimming of operators uses an iterative approach.
The fp kernel invokes the operator trimming procedure by consecutive calls to
OperatorTrimming() until the function returns zero. The pseudocode of the
operator trimming procedure for a module m is shown in Figure A.3. The proce-
dure first checks on each operator whether its outputs are all of zero wordlength
or are connected to trimmed operators. If the first check fails, the procedure
continues to check whether the inputs of the operator are all of zero wordlength
or are connected to trimmed operators. If either case is satisfied, the operator
is trimmed, else, if only one input is of non-zero wordlength and the operator
class is transformable, the transformation is carried out and the operator is also

trimmed. Otherwise, the operator remains untrimmed.

An operator trimming procedure that returns zero indicates that no further
trimming can be made. Afterwards, the simulation DAG is updated accordingly,

so that in subsequent stages of simulation the trimmed operators are neglected.

A.5 Latency and Throughput Calculation

To calculate the latency and throughput for an implementation of the algorith-
mic function, the same DAG description as in error extraction and range esti-
mation is used. However, prior to calling this DAG description, the function call
LatencyAndThroughputCalculation() (Figure A.4) is performed for every op-
erator. The procedure queries the module library for the latency and throughput
of the operator, lat,, and tp,,, and progressively calculates the latency LAT and
throughput TP of the whole module. LAT and TP are global variables, which

are initialized to zero as the first step of this procedure.
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procedure OperatorTrimming()
input m
output trimmed
begin
trimmed = 0;
foreach i in m.operators // i is an operator of m
trim = true;
foreach j in 7.outputs
if j.wordlength # 0
foreach k in j.succeed // k is a succeeding operator of i
if k.trimmed = false
trim = false;
end if
end for
end if
end for
if trim = false
count = 0;
foreach j in 7.inputs
if j.wordlength # 0
and j.precede.trimmed = false
/] j.precede is the preceding operator of i
count = count + 1;
end if
end for

end if

Figure A.3: The pseudocode for operator trimming.
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26 if trim = true or count = 0

27 or (count = 1 and i.transformable = true)

28 trimmed = trimmed + 1;

29 i.trimmed = true; /] operator trimmed
30 if count = 1

31 t.transform() ;

32 end if

33 end if

34 end for

35 return trimmed;

36 end procedure

Figure A.3 (continued): The pseudocode for operator trimming.

In the latency and throughput calculation procedure, the accumulated latency
of an operator is the number of cycles taken from the instant an input vector enters

the module input to the instant the operator’s output result becomes valid.

As an example, suppose an input vector enters the module at the zeroth cycle.
The intermediate results corresponding to this input vector arrives at the inputs
of an operator at the m-th clock cycle. If this operator has an n-cycle latency, then
the outputs from this operator which corresponds to that input vector is valid at
the (m+mn)-th clock cycle. In this case, this operator has an accumulated latency

of m + n clock cycles.

A detailed description of the pseudocode in Figure A.4 is given below:

1. The class name of the operator op and its current parameters are passed

to the module library. The module library returns the latency and the
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sw N

procedure LatencyAndThroughputCalculation()
input op
begin
{lat,,, tpop} = Enquire(op.class, op.param);
/] query the module library
align = 0;
foreach i in op.inputs

align = Max(i.precede.acclatency, align);

// i.precede.acclatency is the accumulated latency of the preceding operator

8
9
10

11
12
13
14

15

end for
foreach 7 in op.inputs
. InsertStageLatch(align — i.precede.acclatency) ;

// insert stage latches for every input whenever appropriate
end for
op.acclatency = align + lat,p; // update the latencies of the operator
LAT = Max(LAT, align + lat,,) ;
TP = Max(TP, tpy);

// update the latencies and throughput of the module

end procedure

Figure A.4: The pseudocode for the calculation of latency and throughput cycles.
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throughput of op.

2. There is a class variable (acclatency) in every operator class indicating the
accumulated latency of every operator in the current configuration. The
procedure interrogates every preceding operator of op and determines the

maximum accumulated latency among these operators (align).

3. Stage latches are inserted individually between every pairs of inputs and

their preceding outputs whenever the operands are not time-aligned.

4. The accumulated latency of op is updated. Since its inputs are valid at the
align-th cycle (align is a local variable in the procedure) after an input
vector enters the module, the accumulated latency of op should be align

plus lat,y, the latency of op itself.

5. The latency of the module, LAT, should have the same value as the maxi-

mum accumulated latency among all its operator.

6. The throughput of the module, TP, is determined by the operator with the
smallest throughput (the largest number of clock cycles between consecutive

inputs). Therefore, TP should updated if TP is less then tp,,.

7. As the final step, if the module has more than one outputs, stage latches

are inserted at the outputs so as to make them time-aligned.

A.6 Insertion of Stage Latches

The time-alignment process, achieved by inserting stage latches between inputs
and outputs of operators, ensures all the operands (the first digit of all the
operands in a digit-serial architecture) enter an operator at the same clock cycle.

The pseudocode for the stage latch insertion procedure is given in Figure A.5.



Appendix A. fp Implementation Details 230

In this procedure, sharing of stage latches among sibling operators (those with

common preceding operator) is carried out in order to reduce area.

A.7 Cost Functions Using the Bessel Function

Referring to Equation 3.3,

k, ,
feon(V') = Fo(Y_ o)+ Ta(A),
z€Z z

f should be minimum when the errors at outputs are at the user specified pre-
cisions. fJ, is increasing along all directions from the minimum point. f/, should
be monotonically increasing with A for A > 0 since the estimated area cannot be

negative.

Cost functions that have the properties described above can be constructed
by the Bessel functions [AS65]. The plot of the Bessel function of the first kind
Jy(x) for v,z =[0.0,10.0) is shown in Figure A.6.

Consider f}, and f/, independently. For some values of z, J,(x) gives proper
functions for f}, or f/,. Specifically, —.J,(4.0) and —J,(0.9), v € R", as shown in
Figure A.7, for the constructions of f}; and f; respectively, are of interests. The

values of x for the Bessel functions were obtained by experiments. Denote

k.,
E= ZSNRZ’
2€Z

by shifting and scaling of —.J,(4.0) and —.J,(0.9) as

feost(V') = fr(E) + fi(4)
= kE(05 — JkeE(40)) + kA(l.O — JkaA(Og)) (Al)

where kg and k4 are respectively the weighting factors of the precision and area

components, k. and k, are respectively the scaling factors for the precision and
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1 procedure InsertStageLatch()
2 input cycles /] cycles of stage latch to be inserted
3 Dbegin
4  sharewith = this.precede;
5 sharedcycles = 0;
6 toshare = null;
7  tosharecycles = +o00;
8 foreach i in this.precede.succeed /] i is a sibling operator
9 if /.inserted = true
10 if sharedcycles < i.cycles < cycles
11 sharewith = i;
12 sharedcycles = i.cycles;
13 end if
// find the sibling operator that offers maximal resource sharing
14 if cycles < i.cycles < tosharecycles
15 toshare = 1;
16 tosharecycles = 1.cycles;
17 end if
// find the sibling operator that should be given resource sharing
18 end if
19 end for

Figure A.5: The pseudocode for the insertion of stage latches.
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20 Connect( this, sharewith, cycles — sharedcycles) ;

21 if toshare # null

22 Connect (toshare, this, tosharecycles — cycles) ;

23 end if /] connect ports and insert stage latches in-between
24 this.cycles = cycles;

25 this.inserted = true;

26 end procedure

Figure A.5 (continued): The pseudocode for the insertion of stage latches.

area measures, kg, ka,ke, ks € RY, the resultant function f/

st 15 suitable for

representing the tradeoff between area and precision. For instance, if a module
has only one output z and this output must have an SNR greater than 40 dB
and the optimization objective is to minimize the area, one can set k, = 1.0,
kp=1.0,k4=1.0,k, =6.7x 102 and k, = 1.0 x 1073, A plot of Equation A.1
with these coefficients is shown in Figure A.8. It can be seen that when E = 40,
corresponding to a SNR of 40 dB at the output, and A — 0, the cost function is
minimized. To prevent implementations with output SNR less than 40 dB being

chosen, it is often necessary to specify an error constraint as well (Section 3.6.2).

A.8 Latency of Conversion Modules

The pseudocode for calculating the latency of a conversion module is shown in
Figure A.9. The procedure takes the input format (wg, f4, d,), the output format
(ws, fp,dy) and the number of digits n as inputs. The goal of the procedure is

to determine which input bits are present on every clock cycle and to compare
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0.4

0.2 y

y=-J V(O .9)

y=—JV(4.O)

-0.6 y

Figure A.7: Plots of the Bessel functions selected for constructing functions fj

and f/;, namely —.J,(4.0) and —J,(0.9).



Appendix A. fp Implementation Details 235

77,
W

7

(/.

\
N

LIATAZ 7
o | G LRE ::.::, _
LR
11777
,,"'l 177777

N\

=
o
|
N
N
NN
N
N

N
N
N
N

N

N
N

[7
[77
111

X
X

N

X
=

o
s
S

X

=
o

NN

X
NS

N
S~

X
N

X
=

Figure A.8: The cost function f!,, with coefficients k, = 1.0, kg = 1.0, k4 = 1.0,
ke =6.7%x 102 and k, = 1.0 x 10°.



Appendix A. fp Implementation Details 236

them with those required at the outputs. The procedure begins by assuming the
latency is zero. If it is found that at any clock cycle the required output bits are
not yet available, the latency is incremented. The procedure continues until all

the output bits are assigned.

To illustrate the construction of a conversion module, the example in Sec-
tion 4.3 is used (from (12,3,4) to (15,4,5)). Its latency was found to be one
cycle. Therefore, referring Figure 4.3, when ctrl is high, a = {xg,z_1,2_9,7_3}.
In the next two clock cycles, a = {4, x3, 29,71} and a = {ag, ar, ag, as} respec-

tively.

The construction of this conversion module begins by introducing a shift reg-
ister which is 4-bit wide (input digit size is four), one-cycle long (latency is one
cycle), and adding three-to-one multiplexers (number of digits is three) before
every output (Figure A.10(a)). The control signal, ctrl, being set high in the
zero clock cycle resets the counter A, to zero in the first clock cycle. On the
first clock cycle, the contents of the shift register and the input corresponds to
{zo,x_1,2_9,x_3} and {x4, x3, X9, 21} respectively, hence the correct bits are con-
nected to the zeroth input of the multiplexers (Figure A.10(b)). This process con-
tinues for the second and the third clock cycle (Figures A.10(c) and A.10(d)). In
this example the shift registers and the multiplexers cannot be further simplified
but in other cases, particularly when the number of digits is large, simplifications

can be made.
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1 procedure LatencyOfConversionModule ()
2 input (i, fo, da), (s, fy, dy)
3 output latency
4 begin
5 latency = 0;
6 1 =0;
7T 1w = —fotd,—1;
8 y=—fotdy—1;
9 while 1#£ n—1
10 ify>uo
11 latency = latency + 1;
/] running out of input bits, need an additional cycle of latency
12 else
13 i = i+1; // found all required output bits in registers or input bits
14 end if
15 T = x+dg;
16 y = y+dp;

17 end while

18 end procedure

Figure A.9: The pseudocode for calculating the latency of a conversion module.
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Direct Modification of FPGA

Design Bitstreams

There are many situations in which FPGA designs can be efficiently reused. For
example, suppose there is an FPGA design for solving a particular problem,
in which the parameters to the problem are defined in the FPGA logic blocks.
To solve the same problem with a different set of parameters, it may not be
necessary to re-synthesize the design. Instead, the same result may be achieved
by modifying the contents of the corresponding FPGA design bitstream. This
reduces the turnaround time by several orders of magnitude. In this appendix, a

technique for modifying FPGA bitstreams is presented.

The appendix begins with a review of the FPGA design flow and the moti-
vation for directly modifying the FPGA design bitstream. First, a description of
how an FPGA configuration is encoded by a design bitstream is given. Following
this, a detailed description is given of a method to modify the FPGA bitstream.

The utility of this technique is explored in a few empirical examples.
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B.1 Background

An FPGA must be configured before it can be used. Configuration is the process
of loading a design bitstream into the FPGA internal configuration memory, so
that the logic resources of the FPGA are programmed to implement a designated
function. The design bitstream defines the programmable contents of all the
components in an FPGA, including LUTSs, registers, routing, I/O pads, delay-
locked loops (DLLs) and possibly on-chip memory (such as the Xilinx Virtex
series BlockRAM components [Xil00c]) and multipliers (such as the Xilinx Virtex-
IT series 18 x 18-bit multipliers [Xil01a]).

The FPGA design flow consists of a number of steps, namely high-level syn-
thesis, technology mapping, placement and routing (P&R), and bitstream gener-
ation. Most of these procedures are computationally expensive, particularly for
P&R which is a non-deterministic polynomial-time (NP) complete problem. The
execution time and memory requirements for a typical execution of the proce-
dures in the FPGA design flow are listed in Table B.1. Results in this table were
obtained from an 1.5 GHz Intel Pentium-IV machine with 512 Mbytes memory
for a design which utilizes 42% resources of a Xilinx Virtex XCV-1000 device (an
implementation of the electronic cochlea model described in Chapter 8). The
synthesis and implementation tools used were Synopsys FPGA Express 3.5 and

Xilinx Foundation 3.3i respectively.

For some problems, the parameters to the algorithm can be solely defined in
the LUTs of an FPGA implementation. Example problem parameters include
the encryption/decryption key of a cryptographic algorithm and the microcode
of a processor. To change these parameters in the high-level description requires
a re-execution of the entire FPGA design flow which is very time-consuming.

An alternative is to directly manipulate the bitstream so that the parameters
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Procedure Execution time | Memory requirements
High-level synthesis 2000 seconds 420 Mbytes
Technology mapping 100 seconds 160 Mbytes
Placement and routing 1500 seconds 260 Mbytes
Bitstream generation 45 seconds 165 Mbytes

Table B.1: Execution time and memory requirements for typical executions of

the procedures in the FPGA design flow.

encoded in the logic are modified accordingly. This is achievable provided that,
first, the format of the design bitstream is known and second, the mapping of
the logic to the physical locations in the logic cell (LC) array of the FPGA is
known. Using direct bitstream modification, a design needs to go through the
procedures in Table B.1 only once. Intuitively, bitstream modification should
take much less time because the bitstream is relatively small in size (for example,
a Xilinx XCV1000 bitstream has 823515 bytes) and the process usually involves

simple modifications to a small number of locations.

Previously the format of most design bitstreams was not documented, mainly
to prevent reverse engineering of designs, with the exception of the Xilinx XC6200
series FPGA. The Xilinx XC6200 series FPGA supports runtime reconfiguration,
either partial or non-partial, and its bitstream format is documented [Xil97]. The
idea of runtime reconfiguration is to divide an application into a series of stages
and implement them as separate circuit modules executing sequentially on the
FPGA device. In the case of partial reconfiguration, transition of configurations
can be accomplished by downloading only the concerned portion of the updated
bitstream. Design methodologies for runtime reconfigurable systems have been

an active research topic [HH95, HW95b, BDH"97, LSC96, LSC97, LM98]. In
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these work, the primary focus is to derive efficient strategies of scheduling the

circuit modules for executing on the FPGA device.

An advantage of runtime reconfiguration is reduced turnaround time because
different pre-synthesized modules can be chosen to form an implementation and
re-synthesis is therefore not needed. The technique of direct bitstream modifica-
tion has the same objective. It is similar to runtime reconfiguration, in which the
bitstream are directly manipulated to reduce turnaround time, but the former
changes the contents of bitstreams before downloading to the FPGA device while
the latter changes part of the FPGA configuration during runtime by downloading
a partial reconfiguration bitstream. Direct bitstream modification is applicable
to any FPGA device which its bitstream format is known. In contrast, partial
reconfiguration is applicable only to FPGA devices which have a reconfiguration

interface.

There has been some research work that makes use of the knowledge con-
cerning the formats of bitstreams and directly modifies the bitstreams so as to
eliminate the need of re-synthesis. Previous work of bitstream modification for
the Xilinx XC6200 series FPGAs includes the implementation of the global sat-
isfiability (GSAT) algorithm by Wong et. al. [WYLL99] and the satisfiability
solver by Abramovic, Sousa and Saab [ASS99]. Both the implementations have
the Boolean equations (known as clauses) stored in LUTs. If the problem itself
does not require as many clauses and variables as the hardware supports, the
unused hardware can be left on the device without affecting the functionality.
This is to say, it is only required to modify the part of the design bitstream that

are related to the LUTs which encoded the Boolean equations.

The bitstream configurable clause evaluator for satisfiability (SAT) problems
on Xilinx XC4000 series FPGAs by Leong and Chung [LC99] uses an approach

similar to the above works, in which the Boolean equations are encoded solely in
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LUTs. As the design bitstream format of Xilinx XC4000 series FPGAs was not
disclosed, in this work the relevant locations in the bitstream to be modified were
located by matching the resultant bitstream with the high-level description. The
Data Encryption Standard (DES) implementation by Patterson [Pat00] stored
the encryption key in LUTs and modified the bitstream of a Xilinx Virtex device
via the JBits Application Programming Interface (API) [GLS99].

Unfortunately, the Xilinx XC6200 series has been discontinued and the largest
capacity it offered is insufficient for many applications (the largest Xilinx XC6200
series device, XC6264, has 82000 system gates versus four million for the Xil-
inx Virtex-E XCV3200E). The bitstream format of Xilinx Virtex series is doc-
umented [Xil00e] and it is relatively easy to modify design bitstreams directly
to reduce turnaround time. The research that utilized this technique include an
implementation of the walk-SAT (WSAT) algorithm [LSW*01] and two imple-
mentations of the International Data Encryption Algorithm (IDEA) [CTLLO1].
In this dissertation, one of these IDEA implementations (the bit-serial implemen-

tation) was presented in Chapter 6.

B.2 Configuration Bitstream

The configuration bitstream of an FPGA is essentially a concatenation of the
configuration data of all programmable components. In practice, the bitstream
also has tags, control words and cyclic redundancy checksums (CRCs) for vali-
dation, so that the FPGA device can identify malformed bitstreams and prevent

them from being used and possibly damaging the device.

Taking the Xilinx Virtex series as an example, its configuration bitstream is
organized in frames. Frames are read and written sequentially during download

and readback operations. The size of a frame depends on the capacity of the
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device. Multiple frames form a configuration column and the concatenation of
these columns forms the main body of a design bitstream. The bitstream header
includes the configuration rate, readback capability, the clock to be associated
during bitstream download and other miscellaneous information. At the end is a
16-bit CRC checksum of the polynomial X' + X1 4+ X2 + 1. To minimize the
area overhead for the configuration logic, the configuration memory of adjacent
components are linked to form a large shift register during configuration. This also

explains why the design bitstream is organized as a concatenation of configuration

rows [Xil00f, Xil00e].

B.3 Bitstream Modification

Bitstream modification, as described in this dissertation, involves modifying the
parameters to a problem. There are two stages in bitstream modification. In
the first stage, the locations of the LUTs and BlockRAMs to be modified in the
bitstreams are extracted, while in the second stage these locations are updated

with the new parameters and the CRC checksum is recomputed.

B.3.1 Location Extraction

The stage of location extraction proceeds as follows:

1. The vendor’s implementation tools are used to generate a circuit description
of the design suitable for machine parsing. For the Xilinx tools, such a tool
is called ncdread and the circuit descriptions have an extension .ncd. The
circuit description contains the mapping between variables in the HDL or

schematic and the physical locations of their corresponding LUTs [Xil00b].
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2. Locate the physical locations of the LUTs corresponding to the variables
which need to be changed. This is achieved by referring to the circuit

description.

3. During routing, the four inputs of a LUT may be permuted for optimization
purposes. The set of new data, if necessary, should be permuted in the same

way as the router did before modifying the bitstream.

To illustrate this procedure, the design bitstream for the bit-serial implemen-
tation of the IDEA cipher (Chapter 6) is used as an example. The target device
of this design is a Xilinx XCV300-6 FPGA. In this implementation, the variable
round_0/addconst_0/k is the output of a shift register LUT (SRL) primitive,
and this LUT stores one of the 16-bit subkeys of the IDEA cipher with an original
value of OxE81A. The relevant output of ncdread is shown in Figure B.1. Note
that the name of the output is derived from the hierarchical VHDL description.

From the output of ncdread, it can be observed that this SRL primitive is
located at the zeroth slice of the nineteenth row, twenty-eighth column of the
configurable logic block (CLB) array. The initial content of an SRL primitive is
always stored at LUT G (corresponds to pin Y, as shown in line 20). The content
of the LUT in this bitstream is shown in line 7, after the string G:#RAM:D=. This
LUT location is referred as C LB_R19C28.50.G.

If the storage element concerned is not an SRL primitive but is a ROM primi-
tive, then it is necessary to identify whether the required content is stored in LUT
F or G. This can also be achieved by parsing the output of ncdread. An extract
of the output of nedread, as shown in Figure B.2, is used as an example. Lines 22
and 23 shows the mappings between the variable names in high-level description
and the output pins of the Virtex slices. Outputs X and Y correspond to LUTSs
F and G respectively.
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1 NC_COMP:2969 - <round_0/addconst_0/k>

2 site = CLB_R19C28.50

3 Config String: <CYSELF:#OFF CYSELG:#OFF

4 CKINV:1 COUTUSED:#0FF YUSED:0 XUSED:0 XBUSED:#OFF
5 FSUSED: #0FF YBMUX:#(0FF CYINIT:#OFF DYMUX:#OFF

6 DXMUX: #0FF CYOF:#0FF CYOG:#OFF F:#LUT:D=0

7 G:#RAM:D=0xE81A RAMCONFIG:1SHIFT REVUSED:#O0OFF

8 BYMUX:BY BXMUX:#OFF CEMUX:#OFF SRMUX:SR GYMUX:G
9 FXMUX:F SYNC_ATTR:#0FF SRFFMUX:#0FF INITY:#OFF
10 FFX:#0FF FFY:#0FF INITX:#OFF>

11 23 pins -

12 pin 1 - BY: <round_0/addconst_0/k>

13 pin 4 - CLK: <clk_BUFGPed>

14 pin 12 - G1: <GLOBAL_LOGIC1_110>

15 pin 13 - G2: <GLOBAL_LOGIC1_110>

16 pin 14 - G3: <GLOBAL_LOGIC1_105>

17 pin 15 - G4: <GLOBAL_LOGIC1_105>

18 pin 16 - SR: <round_0/addconst_0/const_0/ken>

19 pin 17 - X: <GLOBAL_LOGICO0_119>

20 pin 20 - Y: <round_0/addconst_0/k>

Figure B.1: An extract of the output of ncdread showing the mapping of a vari-

able in the high-level description and its physical location. The storage element

concerned is an SRL primitive.
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1

2

3

4

5

6

7

8

9

10 GYMUX
11 INITY
12 23 pins -
13 pin 4 -
14 pin 6 -
15 pin 7 -
16 pin 8 -
17 pin 9 -
18 pin 12
19 pin 13
20 pin 14
21 pin 15
22 pin 16
23 pin 19
24 pin 22

NC_COMP:207 - <round_0/w2> site = CLB_R20C28.S0
Config String: <CYSELF:#OFF CYSELG:#OFF
CKINV:1 COUTUSED:#0FF YUSED:#OFF XUSED:#OFF
XBUSED : #0FF F5USED:#0FF YBMUX:#OFF CYINIT:#OFF
DYMUX:1 DXMUX:1 CYOF:#OFF CYOG:#OFF
F:#LUT:D=((("A1*A2)+(A1% (A4Q~A2)))QA3)
G:#LUT:D=(("A1*(A3%A4))+(A1x((TA2% (A3+A4))+
(A2% (A3%A4))))) RAMCONFIG:#OFF REVUSED:#OFF
BYMUX : #0FF BXMUX:#0FF CEMUX:#OFF SRMUX:SR

G FXMUX:F SYNC_ATTR:ASYNC SRFFMUX:0
LOW FFX:#FF FFY:#FF INITX:LOW>

CLK: <clk_BUFGPed>
F1: <round_0/addconst_0/add_0/acc<1>>
F2: <round_0/addconst_0/k>
F3: <wi2>
F4: <ctrl<0>>

Gl: <round_O/addconst_0/add_0/acc<1>>
G2: <ctrl<0>>

G3: <wi2>

G4: <round_O/addconst_0/k>

SR: <N_reset>

X: <round_0/w2>

Y: <round_0/addconst_0/add_0/acc<1>>

Figure B.2: An extract of the output of ncdread showing the mapping of a vari-

able in the high-level description and its physical location. The storage element

concerned is a ROM primitive.
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To verify the physical location which has been extracted, the contents of the
LUT can be retrieved using readlut, a tool developed in this research work. For
instance, executing readlut idea.bit 4 11 0 F would return the value of the

LUT at location CLB_R4C'11.50.F.

To locate the bits in a design bitstream correspond to a LUT, the tool first
analyzes the header of the design bitstream to identify which Virtex device the
design bitstream is intended for. From this, the tool looks up the number of
words in a frame, F'L, for the bitstream of this specific device. Next, using
FL, the row and column numbers, and the slice and LUT numbers, it calculates
the frame major and minor addresses, the frame word index and the bit index
(MJA, MNA, fm_wd, fm_wd.bit_idx). With these values, the actual offsets
of the bits corresponding to the desired LUT are computed [Xil0Oe]. Note that
this offset refers to the start of the configuration data in the design bitstream.
The design bitstream also contains packet headers and other non-configuration
packet data. The tool ignores these non-configuration bits to identify the actual
offsets of the bits with respect to the design bitstream [Xil00f]. As an example,
the bit offsets (with respect to the design bitstream file) of the bits corresponding
to CLB_R17C23.50.G on a Xilinx Virtex XCV300 device are 125083 + 7 x 672,
i={0,1,...,15}.

If the storage element is a ROM primitive, the design tools may permute
the inputs of the LUT for optimization purposes (the ROM contents are also
changed accordingly). To address this problem, the LUT content may be set to
a special value, such as 0x3569, during synthesis. For four-input LUTs, there are
4! = 24 possible permutations. As shown in Table B.2, with this special value any
permutation can be identified by a lookup of the value stored in the bitstream.
For instance, if the value stored in the bitstream is 0x16AD, then the first and

the third inputs are swapped, and the second and the fourth inputs are swapped.
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Permutation | LUT content || Permutation | LUT content
{a,b,c,d} 0x3569 {a,b,d,c} 0x3659
{a,c,b,d} 0x1D69 {a,c,d, b} 0x16D9
{a,d,b,c} 0x1E65 {a,d,c,b} 0x16E5
{b,a,c,d} 0x5369 {b,a,d, c} 0x5639
{b,¢c,a,d} 0x4769 {b,¢,d,a} 0x4679
{b,d,a,c} 0x562D {b,d,c,a} 0x526D
{c,a,b,d} 0x1B69 {c,a,d, b} 0x16B9
{¢,b,a,d} 0x2769 {¢,b,d,a} 0x2679
{¢,d,a,b} 0x16AD {¢,d,b,a} 0x1A6D
{d,a,b,c} 0x1E63 {d,a,c,b} 0x16E3
{d,b,a,c} 0x364B {d,b,c,a} 0x346B
{d,c,a,b} 0x16CB {d,c,b,a} 0x1C6B

Table B.2: The contents of a LUT before and after permutation of input bits,
with 0x3569 being the original LUT value and {a, b, ¢, d} being the original per-

mutation.

These special values can be obtained by picking four hexadecimal digits from 3,
5, 6,9, A and C (the four-digit binary representation of these values have two
ones and two zeros), and concatenate them in any order to form a four-digit

hexadecimal number.

The output of the first stage is a table containing the physical locations and

permutations (if any), for every entry in the list of LUTs to be modified.

B.3.2 Bitstream Updating

The steps involved in updating the bitstream are as follows:
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1. Obtain the physical locations of the set of LUTs to be modified from the

first stage. Obtain also the set of input permutations (if necessary).

2. Write the new data to the bitstream. The offsets in the bitstream to be writ-

ten are calculated by the documentation provided by the vendor [Xil0Oe].

3. Re-compute the CRC checksum and write it back to the bitstream.

Having the table containing the physical locations and permutations of the
list of LUTs to be modified, the second stage is relatively a straightforward pro-
cess. A tool called writelut was developed to perform this task. For example,
executing writelut idea.bit 13 2 1 G A47D would put the value 0xA47D to
the LUT at CLB_R12C2.51.G. The mechanism of locating the bits that cor-
respond to a LUT in writelut is similar to that of readlut. When modifying
the last LUTSs, a crc parameter should be supplied to the writelut tool, such as
writelut idea.bit 13 2 1 G A47D crc. This will update the LUT concerned,
as well as updating the 16-bit CRC of the bitstream. The algorithm for computing
the CRC checksum uses the algorithm provided by Xilinx [Xil00e].

B.3.3 Experiments and Applications

The extraction stage is carried out once for every design and the updating stage is
carried out whenever the design should be modified with a new set of parameters.
Experiments on a 333 MHz Intel Pentium II machine show that the first stage
takes approximately five seconds to locate the physical locations and permuta-
tions of 2200 LUTs. The second stage requires less than one second. Compared
with the traditional synthesis and implement procedures which requires time in
the order of tens of minutes, bitstream modification enjoys a three orders of

magnitude speedup.
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The four-input LUTs in a Virtex LC can be configured as a 16-bit ROM
primitive. A Virtex slice, which includes two LCs and two storage elements,
can be configured as two 16-bit SRL primitives [Xil00g]. In a traditional FPGA
design, these primitives are considered as the storage elements for constants.
In this work, these primitives were identified as changeable cells through direct

bitstream modifications.

The WSAT implementation [LSW*01] mentioned in Section B.3 utilizes an
array of LCs configured as ROMs, each of which formulates a function of three
literals. This architecture enabled the modification of the design bitstream to
solve other 3-SAT problems (SAT problems with each clause containing at most
3 literals). The IDEA implementations [CTLLO1] (the bit-serial implementation
was presented in Chapter 6) have the key schedule initially stored in SRL prim-
itives. Hence, an implementation with a different key schedule can be obtained

by modifying the initial SRL contents.

B.4 Summary

The use of bitstream modification to improve turnaround time in the FPGA
design flow was presented. This technique first constructs a “template” which
contains the algorithm to be implemented and with the parameters locked to
specific LUTs. Using vendor’s tools the mapping between the variables in the
high-level design and the low-level LUT physical location are be tracked. Hence,
it is possible to modify the bitstream directly to obtain an implementation for
the same problem with a different set of parameters. This technique obviates the
need for the time-consuming FPGA design flow for any compilation following the
first one. Experiments showed a three orders of magnitude speed improvement

can be obtained.



Appendix C

Distributed Arithmetic

Distributed arithmetic (DA) is a computational algorithm that perform multi-
plications with LUTs. Specifically, DA is targeted for sum of products (SOP)
operations with one variable unchanged during execution, an operation widely

used in DSP filtering and frequency transforming functions [Xil96].

To derive the DA algorithm, consider the SOP, S, of N terms
N-1
S =Y ki (C.1)
i=0

where k; is the fixed weighting factor and x; is the input. For two’s complement

fractions, the numerical value of z; = {Zj%;1 ... Tin-1)} is

T; = —Ti + Z.’L‘ib X 2_b. (02)
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Substituting Equation C.2 into Equation C.1 yields

S:—(.ZEUOXko—f—LEl()Xkl—i—...—Fx(N_l)g Xkal) X20
+ (.3501 X ]{)0 + 11 X kl + ... —|—¢’17(N,1)1 X I{)Nfl) X 2_1

+ (LE(]Q X k(] —+ X9 X kl + ... +I(N,1)2 X kN—l) X 2_2

+ (x(](n—l) X ]{)0 + xl(n_l) X kl + ...+ x(N—l)(n—l) X I{)Nfl) X 27(77'71) (C3)

The organization of the input variables are in a bit-serial, LSB first format.
Since z;; € {0,1} (: = 0,1,...,N =1, j = 0,1,...,n — 1), each term within
the brackets of Equation C.3 is the sum of weighting factors ko, ky,..., kn_1.
On every clock cycle, one of the bracketed terms of S can thus be computed by
applying xg, 21, ...,2nx_1 as the address inputs of a 2V-entry LUT. The contents
of the LUT are pre-computed from the constants k; (i = 0,1,..., N—1), as shown
in Table C.1. The output of the LUT is multiplied by a power of two (a shift
operation) and then accumulated. After n cycles, the accumulator contains the

value of S.

DA is particularly suitable and lead to a very high area efficiency for FPGA

architectures bacause:

e The DA LUTSs can be efficiently implemented using the embedded memory
(distributed RAM for the Xilinx FPGAs) on an FPGA (particularly true
for the SOP of four or five terms, in which their implementations can use

ROM16X1 and ROM32X1 primitives respectively).
e A DA operator uses minimal area (the use of LUTs saves multipliers).

e Bit-level parallelism is elaborated.
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Input bits (by_1...babi1bg) | LUT address LUT content
0...000 0 0
0...001 1 ko
0...010 2 k1
0...011 3 ko +
0...100 4 ko
0...101 ) ko + ko
0...110 6 ko + k1
0...111 7 ko + Ky + ko
1...111 N ko ki + . 4+ Ekyg

Table C.1: Contents of a DA LUT. For each address, the terms k; for which b, = 1

are summed to yield a partial sum.
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—>
—> m »
| (men)-bit n-bit
n-bit serial DA LUT ain n R parallel n-bit serial
inputs m x ROM 32X 1 caling " toserial output
accumulator
N > convertor
—
mn

Figure C.1: Implementation of the SOP of five terms using DA.

As an example, Figure C.1 shows the implementation of the SOP of five terms
using DA. Let the inputs and outputs be n bits and the width of the DA LUT
be m bits (the LUT content in Table C.1 are quantized to m bits). The scaling
accumulator sums over the m-bit partial products for n cycles, hence its bit width
is m+n bits. At the n-th cycle after the inputs, the most significant n bits of the
scaling accumulator are latched to a parallel to serial converter. As a result, this
operator has a latency of n cycles and its critical path is its (m + n)-bit scaling

accumulator.
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