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Australia 

Population: 23M (2013) 
Europe: ~743M (2013) 
Beijing: 21M (2013) 
 



Sydney 
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Population: 
4.6M 
 



The University of Sydney 

(Old part of campus – not our building) 
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Population: 49,000 
from 130 countries 
 



Computer Engineering Laboratory 

› Work focuses on using parallelism to solve computationally demanding 
problems   
-  Develop novel computer architectures and computing techniques.  

-  Understand tradeoffs between ASIC, FPGA, GPU and microprocessor 
technologies 

-  Improve designer productivity 

-  10 postgrads, 3 postdocs 

›  Applications 
-  Computational Finance 

-  Signal Processing 

-  Biomedical Engineering 
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Some of our Past Work 
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Pilchard DIMM FPGA board (2001) 

Structured ASIC (2009) 

Cube 64 FPGA board (2006) 

GECCO Industrial Challenge (2013) 

ImageCLEF Liver CT Annotation (2014) 



Machine Learning 
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Hedging of Foreign Exchange Risk 

› Three year ARC Linkage project started 2012 sponsored 
by Westpac 

› Apply parallel computing and machine learning 
techniques to better understand and manage exposure to 
FX risk 

-  Interface to scalable cloud computing resources 
- Predict customer flow and exchange rates 
- Develop hedging strategies and market models 

› Enable Australian banks to better quantify and manage 
risk, making them more competitive in global FX markets 

8 



Clustering of Irregular Time Series 
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Grammar Based Feature Generation 

›  Technical indicators have been widely used as input features to ML 
algorithms. 
-  Technical indicators are a type of  “Feature extractors”. 

›  The number of technical indicators selected is not the same with 
some overlap between different works. However, the choice is 
generally ad-hoc. 

›  Can automatic  feature generation using an expert defined 
framework produce better/competitive features? 
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Application of Feature Generation to Index 

Prediction 
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Feature Selection using mRMR + Integer 
GA 



Hedging of FX Risk 

› Using stochastic model predictive control (quadratic optimisation) 
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Classification in Biological Data 

›  Automatic subject-independent anomaly detection for freezing of gait detection in 
Parkinson’s Disease 

›  Online sorting of muscle action potentials from a needle EMG recording into active 
motor units 
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Hardware Design 
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Online FPGA-based Anomaly Detection 

›  Three year ARC Linkage project announced 2013 sponsored by Zomojo 

› Online hardware-assisted machine learning systems which reduce latency 
and energy consumption by 10-1000x 

-  FPGAs which integrate network and decision logic 

›  Improved classifiers, regression and outlier detection algorithms with 
emphasis on latency with applications in network monitoring, high speed 
signal processing, and machine prognosis 
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Custom  
Hardware 

800 MHz  
ARM Core 10 Gigabit  

Ethernet 

FPGA 

Signals from network 

Platform Power 
(mW) 

Latency 
(uS) 

Energy 
(10^-5 J) 

Our 
processor 

26880 28 75 

NIOS II 15120 58428 88344 

DSP 2025 54926 111123 

CPU (Intel) 36818 238 876 



MapReduce FPGA Environment (MrFe)  

› Combine Chisel and Apache Spark to create a heterogeneous 
MapReduce platform for programming FPGAs 
-  Functional programming, Fault tolerance, HDFS, existing MR libraries,  
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Interfaces for Quantum Computing 

› Converting data/signals 

interfacing to quantum 

computing (qubits). 

› Major challenge is to deal with 

CMOS integrated circuit 

design at very low 

temperature, 4K 
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GPS Tracking 
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Nobody had recorded entire flight path of masked booby (nutritional data) 



Wildlife Tracking 

› We developed first device capable of recording 20 hours of continuous 
video and used it to record masked boobies (alas, no GPS) 

› Develop improved low-power video+GPS using microcontroller 

› Understand nutrition of animals in wild 
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Masked Booby Diving 
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Cow Nutrition 
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MCALIB - Measuring Sensitivity to Rounding 
Error with Monte Carlo Programming  

Computer Engineering Laboratory 
School of Electrical and Information Engineering 

The University of Sydney 
(work by Michael Frechtling) 

 

Philip Leong 



›  Introduction 

›  Theory 

›  Implementation 

› Results 

› Conclusion 

Overview 
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› Dynamic error analysis methods effective at detecting rounding error 

›  Implementation limited 
-  Often requires significant modification to existing source code 

-  Non-scalable 

-  Significant expertise required for implementation 

›  Implementation of automated solution  
-  Monte Carlo arithmetic (D.S. Parker UCLA) for runtime validation of 

sensitivity to FP rounding errors 

-  Changes to software and storage are not required 
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Rounding Error Analysis 



› Monte Carlo Programming: 
-  C library implementing MCA supported by source to source compilation 

-  Variable precision MCA supporting both single and double precision IEEE 
formats 

-  Inspect the accuracy of floating point variables in existing programs 

-  Impose new semantics on existing arithmetic primitives 
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Rounding Error Analysis 
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›  IEEE-754 operations are not associative 

›  Simple example (Knuth) using 8 significant digits: 
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Associativity 



›  IEEE-754 rounding errors are biased: 

›  Simple example: 

›  Test              using the following conditions: 
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Rounding Errors 
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Rounding Errors – IEEE754 

Figure: D.S. Parker UCLA 



› Catastrophic cancellation is a major loss of significance in 
FP operations 
-  Occurs when subtracting similar values 

› Consider             where           and  

› Relative error is highest when  
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Catastrophic Cancellation 



› MCA implemented using the inexact function: 

› Where: 
-  A 

-      is a positive integer representing the virtual precision 

-     
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Monte Carlo Arithmetic 



-  Define floating point operation     in terms of the inexact 
function: 

-  Results are different each time the program is run -> multiple trials turns 
execution into a Monte Carlo Simulation. 

-  Results may be analyzed statistically    
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Monte Carlo Arithmetic 



34 

MCA Associativity 

Figure: D.S. Parker UCLA 

Standard error σ/√n gives a measure of the error in the mean.  



›  Zero expected rounding error: 
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MCA Rounding errors 

Figure: D.S. Parker UCLA 



›  For large values most of the digits of the result will be different 
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MCA Catastrophic Cancellation 

Figure: D.S. Parker UCLA 
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MCALIB Tool 
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›  Translation of C FP operators to MCA operations  
-  Compiler to translate any C-based source code. 

-  MPFR library to facilitate MCA operations. 

-  Storage requirements of all FP variables remain unchanged 

-  Variable precision MCA – arbitrary precision of MCA operations at any 
point during execution 

-  Run time control of MCA implementation type – can select input (precision 
bounding) perturbation, output (random rounding) perturbation. 



MCALIB – Source to Source Compilation 
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› C Intermediate language (CIL) by Necula (UCB) used to translate C 
FP operations to calls to MCALIB library 
-  Translations to C source code defined in set of OCaml modules 

-  FP operations translated by first lowering source to single assignment 
statement form, then converting FP operations to calls to MCALIB library 

-  E.g. the FP multiplication: 

-  Translated to the following call to the MCALIB library function: 



MCALIB – Source to Source Compilation 
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› MCALIB implementation of binary FP operation: 
-  Extend input operators to working precision using MPFR 

-  Apply inexact operation 

-  Round results to original precision 



MCALIB – Library Implementation using MPFR 
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›  Inexact operation: 
-  Implements simplified random sampling 

-  Using gcc RNG – Uniform absolute random values used 



MCALIB – Performance Decrease 
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› Using MCALIB all FP operations are implemented using MPFR – 
SW based FP implementation 
-  Results in significant decrease in FP performance 

›  Performance testing conducted using LINPACK 
-  System used: 

-  Intel Core 2 Duo Processor (2 GHz) 

-  3.7GB Ram 
-  Array sizes between 50x50 and 200x200 

-  Average IEEE-754 performance – 1718 MFLOPS 
-  Average MCALIB performance – 0.585 MFLOPS 

›  Approximately 3000x decrease in FP performance but trivially 
parallelisable 



MCALIB – Performance Decrease 
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Expected number of significant digits 

›  For a p-digit binary floating point system, the log relative error is 
proportional to p  
-  This is the ideal case 

 

›  Sterbenz noted that the number of sigificant digits in result is linear 
with p 

›  Parker showed total significant digits in set of MCA results 



›  Previous work was limited in analysis 
-  Determining number of significant figures in results 

-  Qualitative analysis of mean, standard deviation 

› We define sensitivity to rounding error using two measurements 
-  Number of significant figures lost due to rounding, K  

-  Minimum precision to avoid an unexpected loss of significance, tmin  
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MCA Results 



› Chebyshev polynomial - Orthogonal polynomials used in 
approximation theory 

›  Focus on Chebyshev polynomials of the first kind: 

› May be expanded to: 
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Example – Error Detection & Optimization 



›  Expanded form automatically translated to use MCALIB 

›  Testing performed using virtual precision, (t), values between 1 and 53 
using a step of 1 

› N = 100 executions performed for each t step, (min. sample size). 

›  For each t value, results are summarized by calculating relative 
standard deviation 

› Normality not assumed – Anderson-Darling test used to check normal 
distribution of results, (results grouped by t). Non-normal data sets 
removed from computation of K and tmin. 

›  Absolute mean plotted to ensure user is warned if mean approaches 
zero 
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Example – Error Detection & Optimization 
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Example – Error Detection & Optimization 



›  Sensitivity to rounding error detected 
-  Worst case result occurs at z = 1.0 

-  Loss of significance for worst case input of 24.02 digits, minimum required 
precision of 19 bits 

-  Single precision FP is insufficient 

› Can determine precision required to obtain results normally expected 
from single precision FP (p=24) 
-  Use worst case result, K = 24.02 

-  Determine optimized precision: 
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Example – Error Detection & Optimization 
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Example – Optimized Result 



›  Summation algorithm – widely used algorithm to sum a series of 
floating point values: 

›  Several algorithms available for implementation, including the Naïve, 
Pairwise and Kahan summation algorithms: 
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Example – Error Detection & Algorithm Comparison 



› Can compare algorithm implementations using MCALIB 

›  Algorithm implementations automatically translated to use MCALIB 

›  Execute N = 100 trials for virtual precision values, (t), between 1 and 
53 

› Results analysis methods provide measure of sensitivity to rounding 
error for each algorithm 

› Can perform quantitative comparison of algorithm implementations 

› MCA plots provide fast visual comparison of algorithm implementations 
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Example – Error Detection & Algorithm Comparison 
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Results for Individual Algorithm Implementation 
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Comparison of Algorithm Implementations 



› Comparison of more complex implementations (linear solvers): 
-  LINPACK benchmark 

-  LU Decomposition w. Back Substitution implementation from Numerical 
Recipes in C 

› Results used to compare sensitivity to rounding error and Single vs. 
Double precision performance  
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Comparison of Algorithm Implementations 
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Comparison of Algorithm Implementations 
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Comparison of Algorithm Implementations 
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Non-Normal Result Data 

›  All result data tested for normal distribution before results analysis is 
performed. 
-  Data grouped by virtual precision (t) for testing 

-  Anderson Darling test used 

-  Non-normal data removed and not used in analysis 

›  L-BFGS Optimization – Iterative optimization algorithm 
-  Precision analysis (MCALIB) tampers with convergence of results 

-  Example of non-normal data 

-  Anderson Darling test flags 47 out of 53 data sets as non-normal 

-  Non-normal data sets have been included in example result to demonstrate 
the effect on analysis 
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Non-Normal Result Data 
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›  Implementation 

› Results 

› Conclusion 
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Overview 



Conclusion 

›  MCALIB gives quantitative 
measurements of sensitivity to 
rounding error 

-  Takes arbitrary C source and 
generates summary graph  

›  Applications in data analysis: 
-  Dirty data 

-  Missing data 

-  Inexact Data 

-  Sensitivity analysis 
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›  Family of automated rounding error analysis tools  
-  Floating to fixed point conversion 

-  Range analysis 

-  Mixed precision analysis 

-  Interval Arithmetic 

› MCA operator analysis 
-  Proof of correctness of implementation  

›  Speed improvements  
-  Use quasi-Monte Carlo methods to increase the rate of convergence 
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Future Work 



›  Variance Reduction Techniques: 
-  Reduce the required number of samples using variance reduction 

techniques as used in Monte Carlo Methods 

-  Quasi-Monte Carlo Methods – Use low discrepancy sequences to increase 
the rate of convergence. 
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Future Work 


