A Flexible Arithmetic System for Simulation

TSOI Kuen-Hung

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in

Computer Science & Engineering

(©The Chinese University of Hong Kong
November 2007

The Chinese University of Hong Kong holds the copyright a$ thesis. Any
person(s) intending to use a part or the whole of the masemmathis thesis in a
proposed publication must seek copyright release from thenDof the Graduate
School.

Abstract

Custom hardware accelerators are commonly used in siroalsyistems requiring
high computational power. Such applications often have deta dependencies,
allowing implementation using parallel datapaths. Fohsuoblems, optimization

of the datapath of the circuits leads to significant improgeta in overall perfor-

mance.

The Computer Arithmetic Synthesis Technology (CAST) framek, developed
in this work, allows one to quickly explore the design spaciaree dimensions: the
number system, the operator architecture and the confignmaftindividual opera-
tors. It utilizes sophisticated arithmetic algorithms aaconfigurable architectures,
captured in the object libraries. The final result is an oéd datapath satisfying
user requirements, and the output can be controlled atelifféevels.

To demonstrate its ability, the CAST framework is used tolangent a number
of simulation systems including the datapath for the formegutation pipeline of
N-body simulation and Monte Carlo simulation for interester financial deriva-
tives. A novel multiplier generator and an efficient randonmiver generator are
also presented as basic building blocks for simulation. eTiogr, these tools pro-
vide an easy way to describe simulation system in a numbéersymdependent
manner, and generate implementation to satisfy differerfopmance, area and ac-

curacy constraints.

Statement of originality

The work presented in this thesis was carried out by the awhinang his doctoral
program in the Department of Computer Science and Engimgefihe Chinese
University of Hong Kong, between 2003 and 2007, under thestipervision of
Prof. Philip H.W. Leong.

The ideas and experiments presented are original with éroepstated explic-

itly below.

e The implementation of CAST framework including modelingdwaare com-
ponents as C++ objects, embedded simulation functioryitgeneration and

performance evaluation are work of the author.

e The floating-point and logarithmic operators are based ernFRLIB pack-
ages from Aremnaire project at ENS Lyon [aELO6]. The elermgntunc-
tion approximation is based on the STAM algorithm [SS99a] developed
jointly by the author and Chun Hok HO. Other arithmetic litbea in CAST

are the work of the author.

e The three dimension multiplier (TDM) part of the parallel ltplier genera-
tor is based on the three-greedy algorithm [SMOR98] from Pastelling et

al.

e The architecture and implementation of the alternating gnerator RNG

are joint efforts of the author and lvan Ka Ho LEUNG.

e The interfacing and performance benchmarking of the N-Hodye pipeline
are the work of Jackson Ho Chuen YEUNG. The architecture iaapteimen-

tation of the pipeline core are the work of the author and GHak HO.

e The bit width optimization of the Monte Carlo core is the warikthe author
and Chun Hok HO. The other parts of the system are done by Gliang

Zhang and others.

Contents

1

Introduction 1
1.1 Motivation 1
1.2 Hardware Accelerated Simulation 5
1.3 Objectives e 7
1.4 Contributions 9
1.5 ThesisOrganization, 10
Background and Review 12
2.1 Introduction 12
2.2 Modern Reconfigurable Platforms 12
2.3 FPGADesign Methodology 14
2.3.1 Xilinx Core Generator 16
2.3.2 Floating-Point Module Generator using ASC 7 1
233 FPLIB. e 17
2.3.4 PAM-BloxI/m 18
235 JHDL e 18
23.6 Handel-C 19
2.4 Hardware Acceleration on Simulation Systems 19
2.4.1 Floating-Point N-Body Simulation 20
2.4.2 Space Plasma Simulator 20
243 ReCSIPSystem 21

244 GRAPEProject.

25 Summary ...

CAST - A Framework for Flexible Datapath Exploration

3.1 Introduction
3.2 Computer Arithmetic
3.21 FixedPoint
3.2.2 Floating-Point
3.2.3 Logarithmic Number System
3.2.4 Elementary Functions
3.3 Overviewof CAST
3.3.1 Implementation.
3.4 Arithmetic Operator Library
3.5 Unified Arithmetic OperatorClass
3.6 Summary

Mullet - A Multiplier Generator

4.1 Introduction
4.2 Parallel Multiplier Structure oL

4.2.1 Partial Product Generators (PPGs)

4.2.2 Partial Product Summers (PPSs)
4.3 Mullet Architectureo
44 Results. e
4.5 Summary e e e e e

A Novel Random Number Generator

5.1 Introduction
5.2 Background
5.2.1 Oscillator Sampling based Physical Noise Source

5.2.2 Alternating Step Generator

5.3 Architecture and Implementation 62

53.1 ClockDoubler 64
54 Results. 66
541 NISTTestSuite. 67
5.4.2 Diehard TestSuite 68
543 TestUOlTestSuite 69
55 Summary 69
Monte Carlo Simulation 70
6.1 Introduction 70
6.2 Computation ofr via Monte Carlo Simulations 72

6.2.1 MC Arithmetic System and Wordlength Determination .73

6.2.2 Determining FractionSize 74
6.3 The BGM Model, Interest Rate Cap and Monte Carlo Simutati . 75
6.3.1 Hardware Architecture 78
6.3.2 BGM Number System and Wordlength Determination . . . 80
6.3.3 BGM Core Architecture 81
6.3.4 Pipelined Path Generation 83
6.3.5 Cap Pricing and Post-Processing Implementation84
6.4 SummMary e 86
N-Body Simulation 87
7.1 Introduction 87
7.2 TheN-body Problem 88
7.3 Coprocessor Implementation 88
7.4 Conclusion 91
Experimental Results 92
8.1 Monte Carlo Simulator 92
8.2 N-body Simulator 96

Vi

8.2.1 ArithmeticLibrary 96

8.2.2 N-body Coprocessor 98

8.3 Summary 102
9 Conclusion 104
Bibliography 106

Vil

List of Figures

11
1.2

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

4.2
4.3
4.4

4.5
4.6
4.7

Currentdesignpractice. 3

Improved design practice. 4

FPGA Structure. o e e e e e e e 13
FPGAdesignflow. 15

Input partition of STAM. 29
Structure of simplified STAM with three segments. 31
Example circuit and the object hierarchy. 33
Datapath of the floating-pointadder. 36
Datapath of the floating-point multiplier. 37
Simplified datapath of the LNS addition operatidbp. 38
Floating-point STAM datapath. 93

A 4-bit parallel multiplier showing the partial prodgenerator and

SUMMEN. . . . o o o e e e e e 45
Radix-4 MBE circuit. 46
TDM model and 3-greedy scheme. 47
Assignments of 6 HWM units to a partitioned design.Bad as-
signment with longer delay.) Good assignment with shorter delay. 50
MBE components:) MBE3 MUX; b) MBE4 multiplicand generator 50
WS schemeof PPS. 51
Signed multiplicationfor TDM. 52

viii

4.8

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

6.3
6.4
6.5
6.6

7.1
7.2

8.1

8.2
8.3
8.4
8.5
8.6

Performance of different multiplier schemes for difetrinput sizes. 55
Oscillator sampling using D-type flip-flop. 61
Alternating step generator. 2 6
Proposed PRNGccircuit. 63
Xilinx Virtex ring oscillator implementation. 64
Clock doublercircuit. 65
Poker test results as a function of the clock doublerydela 65
The system architecture block diagram. 73
Quantization error as a function of fraction size for dimint and
floating-point implementations of thesimulation. 75
The system architecture block diagram for BGM-simolati. . . . 79
Quantization error as a percentage with varying fractiae. 80
The Primitive Processing Loop Architecture for BGM Core . . . 82
The 2-D data flow arrangement for the BGM Simulation. 85
Top level block diagram showing the architecture of tygrocessor. 90
Architecture of the force pipeline. 90
Memory usage o&DD, MUL andz~3/2 (number of Virtex-Il 18-Kbit
BlockRAMS). 97
Frequency comparison of ti@®D, MUL andz—%/2 operators. 98
Area utilization of theADD, MUL andz—>/2 operators. 99
Area comparison of N-body implementations.101
Performance comparison of N-body implementations. 102
Quantization error for force calculation in the N-bodgldem. . . . 103

List of Tables

1.1 Dimensions for Optimization 2

1.2 ConstraintFactors 2

3.1 Summary of arithmetic operators available in the cuIGXST sys-

M. . . e e e e 41

4.1 Performance of 52x52 multiplier for all possible schemé&he
speed is the minimum clock period its unit and the area is the
LUTcount. 54
4.2 The calibration table of Virtex | FPGA 56

5.1 Comparison of poker test results with and without a cldalbler. . 65

5.2 Implementation summary (Xilinx XCV300E-8). 66
5.3 NIST RNG test result summary forthe PRNG. 67
5.4 Diehard RNG testresultsummary. 68
6.1 Latency of arithmetic operatorsin CAST. 74

6.2 Results obtained from optimizing the wordlengths ofgh#hmetic
operators. The pairs (a,b) refer to (integer wordlengthctional
wordlength) and (exponent wordlength, fractional wordké) for

the fixed and floating-point cases respectively. 81

8.1 Optimized Implementation forBGMcore 39
8.2 Synthesis results for tesimulation with Virtex-11 Pro XC2VP30FF896. 94

8.3
8.4
8.5
8.6

Synthesis results for the BGM-simulation using a VitigRro XC2VP30FF896. 94

Device utilization summary for BGM-core modules

Comparison of Speed-up fersimulation

Comparison of Speed-up for BGM-simulation

Xi

94

Chapter 1

Introduction

1.1 Motivation

Simulation is a process to imitate real processes in ancaatienvironment with
the aim of extracting characteristics and projecting tssaf the modeled pro-
cesses. Simulation can be applied to many areas includiegcs; finance and
entertainment. For example, it has been used to study clpbsisics problems
such as heat distribution [Met93, ZHB7], pressure reactions [LRN)1], wave
systems [SSLO1], aerodynamics [Cho97], particle dynarii&svi02], typhoon
prediction [DJWO03] and quantum phenomena [CLS02]. Othiensific studies that
utilize simulation include chemistry [GJS03] and medicalec[PDAO1]. Besides
scientific applications, simulation is also used in finahsectors to address prob-
lems in pricing [Fu95], risk measurement [MS01] and marketdption [EM96].
With the rapid growth in the entertainment market, it is alsportant to apply
simulation to create more realistic experiences in bothsfiind games [BHW96].
Since the systems will spend most of their time processing ttiaough a fixed
flow in a main loop, optimization via hardware acceleratioayngreatly improve
the overall system performance. In such a situation, a migedl datapath is con-
structed to perform the required computation. Throughisfieation, it is possible
to achieve much higher performance than software due teased levels of paral-

lelism and higher memory bandwidth.

Chapter 1 Introduction

Table 1.1Dimensions for

Optimization

Number Representatio

n2’s complement, fixed-point, floating-point,
logarithm numbers, etc.

Pipeline Stages

Deep pipeline v.s. low latency

rces
ne
ve

Radix Bit serial, digit serial and bit parallel

Precision Tradeoffs between precision and hardware resou

Arithmetic There are many different ways to perform the san
arithmetic computation, e.g. ripple carry, carry-sa
or carry look-ahead for adders.

Synthesis Algorithms | Different optimizations such as common

sub-expression removal, resource scheduling, et

)

can be applied

Table 1.2Constraint Factors

Timing Many designs require operation above a given minimum
frequency
Area A finite amount of hardware resources are available

Power Consumption For embedded systems, the power consumption may
be an important concern

data to processing elements

Special Device This may include internal memory blocks, internal
requirements dedicated multipliers and I/O pins
Bandwidth Communication channels limited the rate of distributing

In general, the datapath is a directed graph of arithmetaraiprs. In every

portion of the system, their timing and precision requirataenay be different and

the available degrees of freedom are shown in Table 1.1.6A¢@ime time there are

issues that constrain the

choices of implementation assioable 1.2.

Various systems have been developed to generate desighis ispace using

high level language to circuit synthesizers, or a set ofroizted libraries for circuit

construction. The problems associated with these work flanesthat developers

either sacrifice control over implementation details omsbi®o much effort at low

levels while losing the focus of optimization at the systawel. Fig 1.1 shows

the current design practice. There is no easy way to optiaidesign in various

Chapter 1 Introduction 3

Figure 1.1 Current design practice.

start

[list design constrai%ts

!

[check available resour}:es
%[improve design: ‘

change algorithm | -
draft desig

set parameters faor
every operator
T

=
[implement desig%

|
[get design performa%oe

!

) - yes
all constraints fulfilled? —
[improve design: L
r

change paramete | no

possible to fulfill constrain
under current algorithm?

no

done

dimensions within a set of given constraints.

The number of iterations required may depend on the expagiand skills of
the hardware designer. In addition, such skill must be gatlaequently to adapt
to new technologies as they become available. On the othnet, blae arithmetic
algorithms and the specifications of the target hardwartéopras are well defined.
A major design challenge is to link up these two domains aeié to find the
suitable solution.

Productivity can be improved if there is a method to handighsiasks under
a single framework. The idea is to store the arithmetic atigors in a modular
and parameterized form. Information of both the arithmatgorithm and hard-

ware platform can be stored in extensible libraries. Mstace used to evaluate

Chapter 1 Introduction 4

Figure 1.2Improved design practice.

start
|

[enter design constraings

{

[enter target information

{

reconfigure using
new parameters

[improve design: }

change algorithm i
[improve design:lS
change parameter

all constraints fulfilled~

yes

no

need user modification?

no

yes

report done
status

the current configuration and the result is fed back to imette design. The sys-
tem can optimize the design by changing parameter valueseaedaluating until
pre-defined constraints are met. Figure 1.2 shows the inegrdesign practice.

To maximize reuse and shorten development time, a methazhokecting exist-
ing blocks to form larger blocks is needed. Such a featuosvalicomplex systems
to utilize optimized building blocks. To dissociate the erddying hardware infor-
mation from the description, a uniform interface should bedifor connection and
configuration. Furthermore, the description should be mple as possible so that
development and learning time is reduced. As new arithnadgjorithms become
available, it must be able to easily adapt them in the system.

Another important part of the system lies in user configoratiAn interface is

Chapter 1 Introduction 5

required to minimize efforts when switching operators cargying parameters of
the operators. Through the common interface, users caifgp®ee constraints to
the top-most and/or any sub-blocks. Also, a method is redquio propagate the
constraints and configuration from top level to submodufeb® design. Finally,
to enable optimization, the system must have a fast and @ecway to evaluate the

current configuration.

1.2 Hardware Accelerated Simulation

A common scenario for simulation is to model real world sgstgiven their initial
condition, environment and inputs. The system reportastatformation while
processing input data and changing internal states. ThisuBually requires the
ability to process large amounts of data within limited tifreene. When computer
systems are used to perform simulation, the computing poftbe system is often
a limit to the scale or resolution. Several common charesties associated with

simulations are summarized below:

Parallelism Most real world systems contain objects which act and icteran-
currently. In a computer simulation, parallelism shoulekploited to reduce
execution time. In many systems, the data being processeidd@pendent

of one another, increasing the permissible amount of pedisath.

Large and frequent input Many simulation systems require multiple streams of
inputs and generate and update a large set of internal stdtissrequires ef-
ficient ways to access large amounts of data with high bartwparticularly

for parallel systems.

Computationally Intensive The speed and quality of the simulation are dominated

by the computing power of the system in a given time frame.

Simulation has been studied and applied since the earlyafaysnputers. The

advance of computer technology and the increase of availahputing power

Chapter 1 Introduction 6

allow more simulation systems to be built-in computer safev These systems
have become increasingly complicated and the timing reqents tighter. Per-

sonal computers and work stations often lack the computingep to handle large

and real time simulation process. Common techniques tdexate simulation sys-

tems are briefly discussed below.

Microprocessors To address the performance issues of serial/single thysad s
tems, parallel and distributed architectures based oromiocessors or digital sig-
nal processor (DSP) have been proposed. The systems atepadtinto modules
which can be assigned to different processing elementsramegsed concurrently.
These methods utilize parallelism to improve overall penance. Limiting factors
include load balancing, network bandwidth and commuricetioverhead.

ASICs Application Specific Integrated Circuits (ASICs) are cdpabf the
highest performance and even large-scale distributed &id Eblutions cannot
compete with fully customized ASIC designs [Mak05]. For tixgatapaths and
predictable data access patterns, a custom ASIC design aaimine the utiliza-
tion of the given silicon resources by providing customaabf arithmetic for the
required accuracy, fine grain parallelism and point-taapimiterconnections of pro-
cessing elements. The drawbacks of the ASIC solution irchugh initial cost and
long development time. It is also difficult and costly to et modify, extend and
improve the design.

Reconfigurable platform This is a middle ground between ASICs and mi-
croprocessors. Often a pure software implementation owectional off-the-shelf
processors cannot fulfill the demands of today’s sophittgimulations and an
ASIC solution is too expensive. Reconfigurable platformferofhe potential of
ASIC-like performance without the high initial cost. In $iiesearch, they are pro-
posed for hardware accelerated simulation systems anccb&va a higher level of
performance than distributed and DSP solutions, with lavest than an ASIC de-
sign. Some characteristics of a reconfigurable platforninmukation are presented

below.

Chapter 1 Introduction 7

Since the reconfigurable platforms provide a high degreeeddom in de-
signing parallel architectures, fine grain parallelism barefficiently represented.
Most simulation systems are highly customized and dompétific. The amount
of reuse is limited and the design cost of ASIC cannot be dmsattover a large
number of users. Reconfigurable platforms are suitableuch fow volume, high
performance application domains.

New algorithms for both scientific and financial simulati@mde implemented
on the reconfigurable platform without major changes in thgsgcal hardware.
This also helps in exploring the behaviors of different medarchitectures and
simulation algorithms. The parameters and models undestwthe simulation pro-
cess is executed are subject to change. In a reconfiguraiferph, these changes
can be made as easy as in software implementations whiletaimaig perfor-
mance.

For reconfigurable platforms, the tools to synthesis theare design for a
simulation accelerator are relatively easy to master aexjpensive. Small changes
in the design, simple modification of the configuration anglaeement with new
libraries can be performed by experienced users.

With all the above advantages, reconfigurable platform$ao®ming popular
for accelerating simulation problems [HGG5, GVH06, BTLMO06]. This poses the
need for an overall optimization framework. Optimizatiaandoe done at several
levels including the architecture, arithmetic and the patiha. The complete system
must be considered since local optimization of individeakls may lead to a poor

global solution.

1.3 Obijectives

For accelerating simulation systems on reconfigurabldqgutas, a framework for
designing data paths which considers system design anorpenfice optimization

of the final circuit is needed. The main objective of this wisko design and

Chapter 1 Introduction 8

implement a framework which can be applied to construct aded simulation
systems for real world designs. The framework proposedided the following

functionalities:

e Methods to enter datapath designs at an abstract level. @sigrdentry is
based on the conventional object-oriented C++ languageaserd can control

details concerning each individual operator.

e A means to verify the functional correctness of the desigthatsoftware
level. The verification method uses the same descriptiandveork as de-
sign entry and thus can be performed by users with little Ward design

experience.

¢ A library of components ranging from simple logic primits/éo optimized
elementary function generators. Besides arithmetic epesavhich are the
most useful building blocks for constructing simulatiorssgms, auxiliary

units such as random number generators are included.

e An interface for specifying configuration and constraintste operators.
This also ensures a correct interface between arithmegiatgrs in different

number systems.

The most significant feature of this work is the ability to ttap computer arith-
metic and reconfigurable hardware design expertise in desirgmework and uti-
lize this information to improve the performance of the dasi Several levels of
optimization are applied in the system.

The highest level of optimization is performed at the arighimlevel in which
the representation and the number systems used the desigoraidered. Knowl-
edge of computer arithmetic and understanding of the sitionlanodel are required
for this task. By providing arithmetic operators in diffateaumber systems and a
unified interface for using these operators, developersoastruct an efficient sim-

ulation system with minimal effort.

Chapter 1 Introduction 9

The second level of optimization is performed when consimgandividual op-
erators. The framework provides a simple way to select sesdor implementing
an operation after the input and output representation éas fixed at the previous
level of optimization.

The third level of optimization is performed after the typeastructure of the
individual operators have been fixed in the system. Due feréifit requirements
on precision and limitations on physical resources, thevidith of each operator
can be fine tuned for further optimization.

There are many dedicated hardware resources available demmaeconfig-
urable computing platforms. Understanding the availgb@ind usage of these
resources can help to further improve the design. The framewill try to op-
timize designs by automatically utilizing resources adaug to the target platform
specifications.

The framework also allows users to specify requirementsandtraints such as
available resources and allowed inaccuracies in the eegtittan then automatically
determine a suitable instance of the rendered design.

In summary, one can use the framework to quickly exploresthifit designs. It
provides a means to evaluate designs based on simulatiastinthtion. Based on
this evaluation, users can modify the design by settingehfit parameters at the
design entry description. The unified operator interfagaificantly simplifies the

task of mixing operators from different libraries.

1.4 Contributions

This research work contributes to the knowledge on efficiztapath generation
for simulation applications. It is useful for acceleratisighulation system on re-

configurable platform. The major contributions are as feio

e A novel framework, Computer Arithmetic Synthesis Techiggl¢CAST), for

designing and optimizing arithmetic datapaths which argrgortant part of

Chapter 1 Introduction 10

simulation systems. By combining the knowledge of both cotaparith-
metic and datapath design, the framework helps to improgesiimulation

process on reconfigurable platforms.

¢ A novel and efficient construction for a uniform random numgenerator
(RNG) [TLLO7] which combines the unpredictable nature oéalthardware
RNG with the efficiency of a pseudo RNG in a compact design.s Timit

provides the primary inputs to many simulation systems.

e A set of arithmetic operator building blocks [THYLO04, TLO&]gether with
auxiliary functions for interfacing and optimization. Bhimportant part of
the framework allows users to explore and optimize the desigvarious

dimensions.

e The proposed framework was applied to two practical siniat the N-
body problem [THYL04] and Monte Carlo interest rate simigia{ZLH*05].
The achieved results demonstrate the power of the framewmakalso ad-

vance the state of the art in these applications.

1.5 Thesis Organization

The thesis is organized as follows. In Chapter 2, the recordlge platform is
introduced and current design practices with related reeean hardware acceler-
ated simulation systems are reviewed. In Chapter 3, baakgrtheory on number
systems and datapath optimization are discussed and thisdgft the proposed
framework are presented. In Chapter 4, a parallel multiglenerator is used as
an example to demonstrate the usage of the framework. Int€hapa novel uni-
form random number generator is presented. Then in ChaptideGapplication
of the framework to a Monte Carlo interest rate simulatorresspnted to show the
framework’s ability to optimize for a given output precisioChapter 7 presents

an N-body force simulator which was optimized at the numlystesn level. The

Chapter 1 Introduction 11

results of implementing the framework and these exampkegiaen in Chapter 8.

Finally, Chapter 9 presents conclusions of this research.

Chapter 2

Background and Review

2.1 Introduction

This chapter provides background on Field Programmable Gaty (FPGA) de-
vices, high level design methodologies and hardware a@atels for simulation
systems.

The chapter is organized as follows. In section 2.2, thecbasihitecture of
modern reconfigurable devices is presented. Then in set®ndifferent ap-
proaches for improving FPGA design flow are presented. Fimalsection 2.4,

previous related research on hardware accelerated sionuggistems are reviewed.

2.2 Modern Reconfigurable Platforms

The basic structure of an FPGA is a 2-D array of Configurablgi¢. Blocks (CLB)
surrounded by programmable interconnect switches. Inbiel€LB, there is a set
of primitive function elements including lookup tables (T)) flip-flops (FF) and
other simple logic gates. The process of mapping a desig@AFplatform in-
volves configuring the CLB to perform some logic sub-funetémd specifying the
connections between them through programmable switchodgs This informa-
tion is stored in configuration memory which can be prograshimethe user using

an standard interface such as JTAG. Changing the designriscags of changing

12

Chapter 2 Background and Review 13

Figure 2.1 FPGA structure.

CT.B N CT.B A
PRM PRM CLB ﬁfﬁ
CLB| A CLB/VA/ SLUTE TFr
PRM PRM
CLB| | CLB|/A

the content of the configuration memories and no modificaifgrhysical elements
or rewiring in silicon is required. Inside the CLB, connecis between primitives
are controlled by multiplexers (MUX). The connections betw CLB are relatively
flexible and made via Programmable Routing Matrices (PRMI)lars lines; how-
ever, they are limited in capacity. A block diagram of a genEPGAs is shown in
Figure 2.1.

Today’s advanced FPGA chips also offer special embedde#$kuch as large
memory blocks (BlockRAM) and fast carry chains between @l logic blocks
[Xil02]. Dedicated multipliers and other DSP related blsdan also be found.
Some features of FPGA designs compared with other VLSI w@olgies are listed

below:

e Fast design to product time. Both the time for circuit depebent and pro-
gramming the FPGA device are short compared with the redjuinee for

layout and manufacture in ASICs.

e Easy simulation and debugging. Software simulators andglgdys provide

efficient methods for finding bugs and estimating perfornear8ince silicon

Chapter 2 Background and Review 14

level verification and testing have been done by the FPGA flaature, only
simulation and verification on a functional level are reqdiin most FPGA

based designs.

e It is possible to use the same FPGA hardware platform for nuhifigrent
applications. This makes designs more flexible, extensibtecost effective.
This characteristic of FPGA also makes it suitable for lowtgototyping of
early designs which are subjected to change. In fact, FPGAs@anmonly

used for design verification of ASICs in industry.

e The design can be upgraded after deployment without haedkgptacement.
It is also possible for skilled and experience end users fwonre and opti-

mize the design for specific applications.

The traditional FPGA design flow is shown in Figure 2.2. Dasgtry can be
either schematic capture or synthesis via a Hardware OxtggriLanguage (HDL).
The schematic flow is more intuitive for small designs while HDL flow provides
an efficient way to implement and manage large and complagmies

In the synthesis flow, a netlist is generated describing agéIfunctions and
their interconnections. The functions are then mappededatic primitives of the
target FPGA platform. The placement of logic primitives amating of connections
are altered to find an optimized solution which will meet tbastraints stated by
the designer. The implementation process generates &ehitstrepresenting the

configuration of the FPGA, which can be downloaded to the.chip

2.3 FPGA Design Methodology

In this subsection, current FPGA design methodologies egsepted. These in-
clude library generators and high level language syntheble advantages and

disadvantages of each method are also discussed.

Chapter 2 Background and Review

Figure 2.2FPGA design flow.

Design Entry

[Schematic Captur% [HDL Language%

Design Verification
(Simulation)

|

Implementation

Mapping [Floorplanning}
Reports [=——

{Place & Routg%

{Bitstream Generatioa

{ Design Downloa@

Chapter 2 Background and Review 16

2.3.1 Xilinx Core Generator

Module generators are able to generate customized desangtieir input param-
eters. For example, the Xilinx Core Generator library foGA2 [Inc02] provides
highly optimized libraries for the fixed-point multipligah, multiply-accumulate,
division and Coordinate Rotation Digital Computer (CORD&perations. Besides
the arithmetic operations, peripheral interfaces and comdesigns such as FIFO
are also provided. In the Core Generator system, userst $ekeenodule to be
generated and configure the parameters through a grapberainterface (GUI). It
provides a wide range of parameters for each module induthe size, functions,
I/O, resource constraints and even placement informalibwe. generated modules
are usually in format of Xilinx proprietary format used iretiXilinx back end tool
chain.

The advantages of this kind of vendor-provided module ganers the achiev-
able optimization through detailed low level customizatid his requires knowl-
edge of dedicated hardware available and physical layotiteodevices. To achieve
the same performance using conventional hardware descrilginguages (HDL)
such as Verilog and VHDL is time consuming. Also, it is difficto maintain and
improve the resulting circuits.

Unfortunately, the number of modules provided by this kiridvendor pro-
vided system are limited. For arithmetic system, operaoch as constant coeffi-
cient multipliers, square root and logarithmic number eystomputation are not
included. In such libraries, there is usually little flexityi in the numerical rep-
resentation which is usually fixed or floating-point. The figuration parameters
for the modules are mostly concerned with target platfortmaigation rather than
numerical algorithms. The most important point is that ¢hegstems only opti-
mize and generate individual modules and lack the abiliyotasider the complete
design. Developers are required to interface these desaretiules to form a com-

plete design, and optimization on the system level may recagveral iterations of

Chapter 2 Background and Review 17

reconfiguration and regeneration of these modules.

2.3.2 Floating-Point Module Generator using ASC

Flexible floating-point module generators have been deesldLTMO03] using a
different approach. This system relies on the A Stream ClampASC) [Osk06]
for low level circuit generation. Users can use the arithengperators, such as the
‘+’ and ‘x’ symbols, in C++ language directly for circuit descriptiofihe ASC
will then be used to compile the program into correspondiBGR netlist. Num-
ber representation and format of floating-point data aratetkas custom types and
classes in C++. Parameters can be configured to control sigie hmormalization,
rounding and bit width of the generated modules. These peteasare automat-
ically determined based on the required optimization aptishich is selected by

users from among throughput, latency and area.

2.3.3 FPLIB

A similar idea of providing a parameterized module genetasnl been done at the
HDL level. FPLIB [aELO6], developed in the Aremnaire prdjat ENS Lyon, is
a library for hardware operators for floating-point and ldten number systems
(LNS). The library utilizes thgenericparameter in VHDL for configuring the bit
width of the generated modules. Besides the common opsrsiich as add, sub-
tract, multiply, divide and square root, the library alsoydes a set of conversion
operators for bridging different number systems or opesatdth different preci-
sions.

The above examples of module generator systems can impRG&A Flesign
productive and performance. They configure the module basquhrameters ei-
ther specified explicitly by the user or implicitly from akestt level optimization
requirements. The major disadvantages of these systers ladk of global op-

timization on the datapath. Also, users have limited cdrdver the optimization

Chapter 2 Background and Review 18

process. The ability for users to extend and improve the tesduway depend on

different back ends and involve modification of the toolaiselves.

2.3.4 PAM-Blox I/

PAM-Blox [MMF98] was one of the first module generators whadlowed pro-
grammed generation of circuits from C++. A recent extend®&M-Blox || [Men02],
has been reported in 2002. In the system, complicated tsrsuch as constant co-
efficient multipliers, Booth multipliers, CORDIC units amaplemented in PAM
objects. To implement a circuit, the user should first erterdesign in a structural
connection of different objects provided in the PAM. Theteys then generates a
circuit in Xilinx netlist format representing the datapaththe C++ program. The
final configuration stream will then be produced by Xilinx ggaand route tools.
Higher level design is performed by combining such desiomgtin a structural
manner.

The PAM system improved productivity by freeing develodeosn traditional
HDL. But the system only generates individual modules ahégystem level con-
cerns such as interfacing between modules remain the ddisvelopers. Also, the
modules in the PAM are rigid in both size and function. Simdasigns with little
variations require creation of different objects. Finadliynulation and verification
require external tools that operate on the generated néthss makes it difficult to

debug the circuit by relating the netlist and C++ descripgio

2.3.5 JHDL

In 1997, the JHDL [HBH 99] project was initiated in the Configurable Computing
Laboratory at Brigham Young University. It uses the Javaisge for design en-
try in which functional blocks are treated as objects. Theelolevel libraries are

tightly coupled with the primitives in Xilinx FPGAs. The abaction level increases

Chapter 2 Background and Review 19

as higher level libraries are device independent. Userslesign the complete dat-
apath in JHDL using a structural description. The APIs focwt construction are
very similar to the HDL description with input/output pontérfaces and eonnect

method to connect the objects’ ports. Auxiliary tools suslaaimulator, schematic

extractor and state machine generator are also provided.

2.3.6 Handel-C

High level synthesis algorithms are also used to speed ugetrelopment on FPGA
platform. The Handel-C [Pag96] language from Celoxica cegept a C-syntax
like description and generate the corresponding circultdike the JHDL system,

Handel-C is a behavior language for circuit generation éhasethe custom com-
piler analyzing the extended syntax in the user programufsition and debugging
tools are also provided in the integrated developing envirent (IDE). This helps
to realize and verify an existing algorithm on hardware withexperience in hard-
ware development. This can also benefit experienced demaldpr rapid proto-

typing and evaluation of system architecture. The Handsjs@ax is based on the
ANSIC-C standard with extensions. The extensions help tionoge circuit perfor-

mance by allowing users to specify hardware related inftionasuch as variable

bit width and parallel constructs.

2.4 Hardware Acceleration on Simulation Systems

Examples of simulation systems accelerated using deditaelware are reviewed

in this section.

Chapter 2 Background and Review 20

2.4.1 Floating-Point N-Body Simulation

An N-body simulation system using optimized floating-painits was implemented
by Lienhartet al. in 2002 [GAMOZ2]. Using a 16-bit significand floating-poinpire-
sentation, the system can achieve about 3.9Gflops at 65MEXdimx XC2V3000
FPGA. The system built is to perform the computation of sredtparticle hy-
drodynamics method (SPH). The authors prefered floatingtpwer logarithmic
arithmetic as the latter required a large ROM to implemenleasl In the design,
the resource utilization is dominated by the adder, divated square root oper-
ators. With the help of Xilinx Block Multipliers, a single #ing-point multiplier
consumes abowt5% of the total FPGA resources. The complete design fit9i
of the logic resources. Results also show that a 22-bit imptgation will be two

to three times larger than the implemented 16-bit version.

2.4.2 Space Plasma Simulator

In 2003, Popoola and Gough developed a system to simulagp#oe plasma using
FPGAs for acceleration [PG03]. The design included a sa €&PU and some
co-processing units such as FFT and floating-point singlea®mputation. The
results show that the accelerated system is several ortleragmitude faster than a
software implementation. The system uses the 1D electiostade to investigate
various phenomenon in space plasmas. In a single iterdtiensystem needs to
assign positions and velocities of the particles to the apcampute the electric and
magnetic fields at the nodes; compute the force field; andaalate to obtain new
particle positions and velocities. For a simulation inéhgdhundreds of thousands
of particles, the system utilized three parallel co-preges units to off-load the
computationally intensive tasks of the controlling prames The improvement of

this parallelized design increases as the number of pest&ulated is increased.

Chapter 2 Background and Review 21

2.4.3 ReCSIP System

Reconfigurable platforms have also been used in biochemgsehrch. In 2004,
Masatoet al. [YOFAO4a] constructed a stochastic biochemical simulatsed on
Gillespie’s First Reaction Method (FRM) using a high thrbpgt floating-point de-
sign. Equipped with a Xilinx XC2V6000 FPGA chip, the ReCSiRtem can run
105 times faster than an AMD AthlonXP2800+ processor. Thefdtne grain pro-
cess with heavy intra-process communication in the sinaranake it inefficient
in distribute or cluster systems. The core of the platforra et of four parallel
reactor modules, each including 6 floating-point multigdjé floating-point adders
and a random number generator. Using ov&l of the FPGA area and operating
at 76MHz, the system outperforms both AlthlonXP2800+ andrX2.8G Dual pro-
cessors by utilizing a 27 stage pipeline and multiple paraiimulators in a single

chip.

2.4.4 GRAPE Project

The GRAPE project in Japan [Pro05] in 2005 performs doubégipion calcula-
tions of gravitational N-body simulations in high speed.eThodified SIMD ar-
chitecture is suitable for integration of over 1,000 preoeg elements on a single
ASIC and targets execution speeds exceeding 1 Petaflop&SHAPE project has a
long history of developing platforms for N-body simulatiorhe previous GRAPE
systems are based on the idea of deep pipelines and magsvallel architectures.
Examples are GRAPE-2 [TTJD91], GRAPE-4 [MTES97] and GRAFEAFKOO].
For example, the GRAPE-6 project in 2002 delivered up to &pEflof computing
power. The 1.8M gate GRAPE-6 processor was fabricated usizigim tech-
nology. With 6 parallel pipelines, a single processor caviole 31Gflops using
a 22.5MHz system clock. The bottleneck of the GRAPE-6 systethe intra-
processor communication. Various approaches were desgltmpreduce the im-

pact of bandwidth limitations in the system. The final GRA®Eystem includes

Chapter 2 Background and Review 22

dedicated network board to connect 4 host computers andob@gsor boards as a
computer module and 4 modules are connected through a Gighlernet Switch.
The new GRAPE-DR [Mak05] system proposed another appraachifher
computing power. Over 1,000 processors, which are extregi@lple yet fully pro-
grammable, will be connected through hierarchical brosiieaduction networks in

a single chip.

2.5 Summary

As shown in this chapter, the reconfigurable device is anliexdeplatform for ac-
celerating simulation systems when high computationalgzaan be achieved by
hardware parallelism, deep pipelines and efficient inti@ssor communication.
The hardware accelerators range from single chip FPGA img@he¢ation to large
scale multi-core, multi-chip designs. It is shown that theardware accelerators
can achieve better results than pure software designsngimm high-end proces-
sors. Various tools and development environments have fregosed to improve
productivity by providing optimized libraries or high ldway/nthesis. While having
achieved their objectives, these tools have limitationghendegree and level of

achievable optimization.

Chapter 3

CAST - A Framework for Flexible
Datapath Exploration

3.1 Introduction

To efficiently explore the design space for simulation peofd, a unified framework
is needed to express the various design and implementadtaisiof the hardware.
In a traditional design flow, hardware description langsa@DL) such as VHDL
and Verilog are used as the primary design entry method.€eTlheguages are well
defined and wildly adopted in industry. A developer can usé kbdescribe and
control every detail of a design and achieve highly optimiresults. The major
disadvantage of the HDL flow is that it is too low level and tooah effort is spent
on design details.

To address the above problems, new methodologies have begospd. Most
of them can be classified into two classes: high level langsggthesis tools [Pag96,
BH98, HLTT02] and library generators [XilOOb, MMF98]. The first methisdto
translate a conventional high level computer languagd) asaC and Java into an
equivalent hardware circuit. The second method providest@nface for user to
configure the parameters of a predefined library set and genidre desired circuit.
Some examples of these methodologies have been presei@bdpter 2.

Both methods provide an abstraction of the hardware desailsan efficient

23

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 24

interface for developers. Each have different emphasigleasbacks.

e The main advantage of the first method is the familiarly ofgoamnming
tools. Most developers know how to program in high level lzamges and one
can easily port an algorithm from existing software to haatewvith mini-
mum modification. However, such simplicity does not gereehagjh perfor-
mance results in general. Developers either need insati@ad information
such as parallel constructs or they have to depend on thedsle®ptimiza-

tion algorithms of the tools.

e The library generator approach is usually specialized éotatn applications.
For example, there are generators for floating-point atietnCORDIC com-
putation, lookup tables for approximation, etc. The perfance of the gener-
ated circuits depends on the configuration entered by ugéngde achieving
high quality for individual modules, the overall perforntaof the complete
design may not be optimal due to the lack of a high level undeding of the
problem. Also, the flexibility is usually limited in the gerag¢or and new or

customized algorithms are difficult to add to the system.

To address the above problems, the Computer Arithmetid®gid Tool (CAST)
was developed. It is a framework for datapath design andnigdiion using an ob-
ject oriented approach.

One of the major features of CAST framework is to allow userswitch and
mix different number representations. Fixed-point, flogtpoint and logarithmic
number systems are supported and these are explainedltter¢hapter. A lookup
table based algorithm is presented for approximating ehéang functions. These
are examples of computer arithmetic knowledge capturelddr©AST framework.

The features and implementation of the CAST framework i3 pissented here.
We will explain the usage and internal architecture of CA§Tekamples. One of
most valuable parts of CAST is the arithmetic operator lardhe implementation

of each operator and a unified interface for using them iseites!.

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 25

This chapter is organized as follows. In section 3.2, sémeraber systems with
their attributes and applications are presented. Sect®will give an overview of
the implementation details of CAST. Section 3.4 presenés afoperators in differ-
ent number systems implemented in the CAST library. A unifiedfiguration and
creation interface for these operators is presented ind®e®t5 Finally, Section 3.6

concludes this chapter on the CAST framework.

3.2 Computer Arithmetic

In this section, a brief review of the fixed, floating and lattanic number repre-
sentations is presented. More detailed descriptions céounel in computer arith-
metic textbooks such as Koren [Kor93], Flynn [WF82, Fly(R&rhami [Pat00] or
Ercegovac [ELO4].

3.2.1 Fixed Point

Unsigned integers are used to represent the nonnegategenst AnN-bit un-
signed integer has a ranffe 2" — 1] and can be described in binary form, with

being thei’'th binary digit:
U= (UN_luN_g Ce 0), U; € {0, 1}

This represents the number
N-1
=0
The two’s complement representation is the most widely ssée@me for in-
tegers. The representation is similar to the unsigned @ngegxcept that the most

significant bit has a weighting ef2"V~!. A two’s complement integeX of differ-

ent N can be represented in binary form, withthei'th binary digit as

X = (.TN_ll’N_g c. 0), X; € {0,1}

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 26

X has arange df-2V-! 2V=1 — 1] and represents

N-2
X = —IL’N_12N_1 + Z IL’ZQi
i=0

The two’s complement integer representation can be genedalo represent
fractional numbers by scaling. A two’s complement fractisrrepresented as a
pair (N, F')z, whereN is the word length in bitsF" is the fractional word length
and the subscripgf shows that it is an integer representation. The most sigmific
N — F bits of the number represent the integer part and the rentafiibits are
the fractional part of the number

integer fraction
Y = (aN_1 ce aFZLF_l ce CLG)

This corresponds to a scaling of the two’s complement integesentation by the
factorS = 2-F and the two’s complement fraction numtérepresents

N-2
Y =27 x (—ayoa 2V 4D 20

=0
Note that the two’s complement fracti¢V, 0)7 corresponds to the two’s comple-

ment integer case ar{dV, N)7 has arange gf-1, 1).

3.2.2 Floating-Point

Floating-point numbers are an approximation to the reallbmemnand offer wider
dynamic range than fixed-point numbers, at the expense ateelprecision and
larger implementation complexity and area. In the IEEE #addard [IEE85] for-
mat, three fields are used to represent a floating-point nuarizkit can be repre-
sented as the paftV, F') » whereN is the total word length/" is the word length
of the significand (also known as the mantissa) and the sipbs€rshows that the
pair represents a floating-point number. The most signifib#ms a sign bitA, the

following J(= N — F — 1) bits, b; encode the exponent field and the remaining

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 27

I bits ¢; encode the mantissa fiedd

A B C

- -

Z:(Qo bJ_l...bocF_l...b(D.

A represents the sigsiwhere

+1 if ap = 0
S =

—1 if ag = 1
The unsigned integerB and C' are encoded representations of the exponent and
mantissa respectively. The exponétis stored in a biased representation with
E = B — (277! —1). For normalized numbers} # 0 and the significand is
represented b/ = 1+ C x 2=, This is a two's complement fractiqi” + 1,)1
with the most significant bit being implicitly set to 1. B = 0, it is called a

denormalized number, and there is no implicit 1 in the)7 fraction.

The number represented is given by

(S %28 x M if (0< B <2 —1)
;) Sx27x (M=1) if(B=0)
S x 0o if (B=27—1andC =0)
NaN if B=27—1andC # 0).

3.2.3 Logarithmic Number System

The logarithmic number system (LNS) is a special case ofifiggtoint in which
the mantissa is always 1 (i.e. only the sign and exponensfeaie used). It has the
advantages of simplified implementation at the expensedxfaed precision. For
an N bit LNS number(N, F')., the most significant bit is a zero flag, Z is zero
if the number is zero (since there is no log of zero), othezvgist. The next most
significant bit is used for a sign bit and the rest of the nunibtire base 2 logarithm
of the magnitude of the number to be representdadVin- 2, F') 7 two’s complement

fraction format. IfF is the value of this two’s complement fraction afids defined

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 28

as for floating-point, then

0 if Z=0
L:
L=Sx2F ifz=1

The LNS is good for applications where large dynamic rangeeesd. The im-
plementation of multiplication and division in LNS is verifieient compared to
floating-point. Unfortunately, computing addition and sabtion requires large

lookup tables.

3.2.4 Elementary Functions

In many systems, there is a need to compute elementary dmscsuch asin, log
andexp To achieve the high throughput requirements in hardwacelacators,
table lookup methods are used instead of iterative algosths in software im-
plementations. The main idea behind the table lookup apmation algorithms
is using the Taylor Expansion. If a functigiix) has continuous derivatives up to

(n + 1)™ order, then

fl@) = f<a>+f/<a><x_a>+w+...
+f("’(a)§c—q)”+Rn
"L f9(a)(z — a)
_ ; ()Z(! >+Rn)

where

(z —u)"

_ 7 e
R, = /af (u) - du
f(

= n+a)<(i)f1;! a)"! for a<é<uzx

To reduce the required hardware resources and/or compuiadiwer, only the
first few terms in the Taylor series are used to approximateuhction. The se-

lection of ¢ will affect the error introduced and a carefully selectedan be used

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 29

to introduce symmetry in the lookup table as explained ldfer = 0, the series is
call a MacLaurin Series.

The Symmetric Table Addition Method (STAM) [SS99a] methaabwleveloped
for this approximation. The STAM uses the first two terms & Taylor series to
approximate a functiorf(x) asf(\;) [SS97]. In the STAM, a set of lookup tables
are constructed and the precision of the output is maximized

Assume that thex-bit input, x, of the function to be approximated ranges in
[0, 1). Itis first partitioned inm segments as shown in Fig 3.1 where- >7 " ;.

In the description below, we follow the original STAM notai in whichz; is an
n-bit number with all bits in other segments are masked to.Zers different from

thes*" digit notation in fixed-point representation in Section.3.2

Figure 3.1Input partition of STAM.

No 1 Ny | e— Mm-1—
0. X0 Xy | e X m-1
1 t 1 o
1 2—1))) .) =~y

The ranges of; are shown here:

0 <xp <1—27

0 S z; S 2_102'71 _ 2—102'

(3.2)

wherep; = 35 _ 1.

We then select mid points in the rangescaf

5, = (2771 — 27P%) /2 (3.3)

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 30

Leta = xzo+ z1 + Y, 9; and use the first two terms of Taylor Expansion:

f/(l’() + 51 + Z(SZ)(Z T — Z&)
= ao(wo, 1) + Z ai—1(zo, ;) (3.4)

where
ai—1(zo, z;) = f'(xo + 61 + Z%)(% —0;) 2<i<m
2

Functionsz; are evaluated by table lookup method with much less entritisel
table compared with direct lookup for functigiiz). The final step is to sum the
outputs of all the small tables as the approximated result.

The number of entries in table is 2" in a direct implementation. This
size can be reduced by half using the symmetric nature ofabke.t First, we
notice thatd, — x; equals the bitwise inversion af. This is obvious by listing all
the binary patterns aof,. Then we notice that;(x¢, 20; — x;) equals the bitwise
inversion ofa; (zo,x;). This can be shown by replacing by 25, — z; in a; =
f'(o 4 01 + 325" 0k) (i — 7).

From the above two properties, the table can be reducedftdasatiginal size.
Only the bits from thep, + 1** to thep,,; — 1** position are used to index the
lookup table. The," bit is used the transform the index and result. The transform
is simply the bitwise XOR of the index and the result with thé bit.

Full details including table size reduction achieved andreanalysis can be
found in [SS99a]. A simplified STAM design using only thregmsents is shown
in Figure 3.2.

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 31

Figure 3.2 Structure of simplified STAM with three segments.

A
o]
\j

Ny n, n,-1
\ A4
XOR
n,-1
A \ \ \
Table Table
ag(%g: X;) a, (%o X,)
sign(a,) p,-1
Po v
| XOR cle—
Py
4 4
Adder
p
\

f(x)

3.3 Overview of CAST

The CAST system is a framework for building optimized ari#tio and logic cir-
cuits in hardware in which circuits are treated as objedir@onnected by wires
(which are also objects). Object-oriented features of the¢ @rogramming lan-
guage are used to allow module generators to interrogagetsbior information
such as their state and delay. Simulation and generatiogrfiasizable VHDL
code can be performed by direct execution of the program. aprof this envi-
ronment, a module library which provides a computer arittiengcheme that is
independent of numerical representation, number formabgaerators is available.

The underlying circuit description is a structural one bindm primitive elements.

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 32

To use the CAST system, developer instantiates objectstlier@AST library and
assign values to these objects. The C++ language is used ©ABT system.

In the CAST system, hardware components are modeled as Jeet®kvhich
have configuration attributes. By controlling these atii@s, users can modify the
datapath without concern as to the internal structure ateifate of the circuits.
The CAST system also provides an interface to simulate thetoacted circuit in
software level. This can verify the functional correctneéthe design in its early
stages. The resulting circuit is generated in structuraD/Hodes which can be
passed to the hardware vendor’s tool chain directly.

The CAST system also has a built-in simulation feature. kiiteah, search al-
gorithms are embedded in the system to obtain optimizedtsdsu both individual

modules and the overall design.

3.3.1 Implementation

Two libraries are used in CAST. One is utility library whichresponsible for sim-
ulation and rendering of the circuits. The other is a prieitnodule library which
consists of logic gates, adders, multiplexers, registdtcs, They can be connected
together to form arbitrary designs and a circuit is modeked graph of intercon-
nected objects. An example of a design to computeax+bis givenin Figure 3.3.
In this example, the testbench modtheéncludes three primitive modulesy mul,
my_dff andmy.add A component booker, also shown in the figure, is responsible
for logging the creation of all primitives. In the object faechy, the composite
moduletb is called by the top level CAST system and is the parent ohadleé sub-
modules. When the parent is to be simulated/rendered, dénying children are
simulated/rendered automatically.

Two methods are used to simulate a circsit:mcl k() for registering values
at clock edge; andi meva() for the combinational parts of the circuit. For prim-

itive modules, thesi meva() method is a set of expressions relating the outputs to

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 33

Figure 3.3Example circuit and the object hierarchy.

| A% HODbj Compo 3
| P=AB | P |
X -8 | A HObj
| my_mul P=A+B| Sl—=Y |
| B%@ HObj B :
i Q my_add |
| —=|>CLK |
| my_dff |
e th|

CAST main

<Compo>tb

<HObj>my_dff

[<HObj>my_add} my_add
my_mul

my_dff
[<HObj>my_muI] component_book

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 34

the inputs. Thesi meva() method in a composite module calls themeva()
methods of the submodules iteratively according to deparids derived from the
interconnection graph. When tlsé meva() method of the composite object re-
turns, the circuit is in a stable state and the value of argrinédiate signal can be
examined.

The simulation function of the CAST system helps designedebug logic at
a software level in the early stages of development. Foripvienmodules, it is
the library designer’s duty to ensure the simulation beltheesame as that of the
generated VHDL circuit. CAST will ensure the consistencywsen the simula-
tion and implementation for designs formed from an intermation of primitives.
Writing a testbench is also easier since the stimuli can bated using standard
C++ functions.

The following example creates the adder object of Figure Be8orms a sim-
ulation and generates a VHDL description and testbenchy.ddd’ will be the

instance name of the adder and the p&stB andSwill be generated automatically.

/| create adder

my _add=new Add_n("ny_add", 2+*n);
/'l connect /0O

connect (nmy_mul - >P, mny_add- >A);
connect (ny_dff->Q my_add->B);

/1l simulate 1 clock cycle

tb.simcl k();

[l print out result
simresult(add->S);

/'l generate VHDL (i ncluding testbench)
th.gen();

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 35

When a module is created, the constructor first saves a lopglaf the configu-
ration, e.g. the adder widtln. Then theci r cui t () method is called to construct
the circuit. Finally, the current object is registered wparent.

To generate the VHDL code for a circuit, tigen() method is used. In this
method, the I/O ports are first created, and then the comp®taeir instances and

interconnections are generated in a manner which avoidafdrreferences.

3.4 Arithmetic Operator Library

CAST was designed to be extensible with a view that it can bd tssupport many
different number systems, arithmetic operators and imptaation schemes. In the
current prototype, the fixed-point, floating-point and LN@&nber systems can be
used and the operators supported are addition, subtraotidtiplication andz—3/2,
those being required for the N-body problem.

The implementation of the-, — and x operators for the fixed-point system
follows the standard two’s complement integer methods. #rmon ripple carry
adder/subtracter using the fast carry chain was used fati@ald Different addi-
tion schemes such as carry select and carry lookahead fpmlordlengths can be
integrated into the CAST system by overriding tfen() function of this operator.

The input/output format and precision of the addition/sadtion fixed-point op-
erators are the same and no pre/post-processing is reglirdek case of multipli-
cation of two(N, F')7 two’s complement fractions, a2 /N, 2F")7 result is obtained.
In CAST, the operators default to using the same format fouti and outputs and
so in order to convert the result back(y,)7 format, it must be scaled &
and the least significadt bits used.

The floating-point operators are implemented in a manneitasito the IEEE
754 standard [IEE85] except that Not-a-Number (NaN) ansbdealized numbers
are not implemented. The round-to-nearest mode is used fmperations and the

size of exponent and fraction is parameterized.

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 36

Figure 3.4 Datapath of the floating-point adder.
exp(x) exply) X y

x' Swap
__________________________ \1/_ e e — -
- T=1 shittright |
sign(x’) 7 sign(y’)
\9 2' complemen}t 2' complemen}tJ
V V
exp(x’)

normalization |
rounding

v

sign(x+y) exp(x+y) frac(x+y)

The floating-point adder accepts two inpyts and /2 and returns the sum in
the same format. The implementation is pipelined with anleyeof 3 cycles. In
the first cycle,f1 and /2 are swapped if the exponent 6t is smaller than that of
f2, and the difference between the exponentg bfind f2 are calculated. In the
second cycle, the significands are aligned. the intermediatn is computed and
the position of the leading one is determined using a pyi@itcoder. In the final
cycle, the result is normalized and rounded and the exparwrected to produce
the output.

The floating-point multiplier accepts operanfsand /2 and returns the product
in the same format as the inputs. In the first cycle, the sigmshksalculated and

the intermediate exponent and product are also computdtelsecond cycle, the

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 37

Figure 3.5Datapath of the floating-point multiplier.
sign(x) sign(y) exp(x) exp(y) frac(x) frac(y)

L J ¢ by |
@ exp(x)+exp(y)-bias fixed point

multiplier

normalization

S __v____¢___

rounding
sign(x*y) exp(x*y) frac(x*y)

intermediate resultis normalized. In the third cycle, tbgult is rounded to produce
the output.

The LNS implementation used in CAST is based on the open saode of
the Aremaire project [aELO6]. The LNS operations accept amodiuce numbers
in the format described in Section 3.2. The multiplicatior.NS is performed by
summing the two exponents and setting the zero flag apptelytialhe sign bit
is computed as the XOR of the sign bits of the two inputs as énflitmting-point
case. The LNS addition of = log,(z) andY = log,(y), ADD. , is computed by
making use of the following identity [Kor93]:

Z = logy(x £+ y) =log, (z(1 +y/x))
= logy(x) + logy(1 4 2'82(v/))

= X +log,(1£2"%)

The implementation usé&s — X to index a lookup table which generates, (1 +
2Y=X) and this table is constructed in Xilinx devices using distred16 x 1 LUT
RAM rather than BlockRAM. When thg input is negative, a subtraction must be
performed and thus th&DD_| module must include tables for botht 2'°g2(Y=X)

andl — 2=(Y=X) Figure 3.6 shows a block diagram of the datapath for the LNS

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 38

Figure 3.6 Simplified datapath of the LNS addition operati&mD_| .

sign(x) sign(y) X Y
sign abs(Y-X)
LUT for LUT for
addition subtraction
=~ f(sign(x), sign(y), op)
sign(x+y) X+Y

addition operation. In the actual implementation, extraggng logic is included
for the case that” — X is negative. To perform a subtraction, the sign bit of the
second input is inverted prior to being passed to the additiodule.

A class implementing the Symmetric Table Addition MethodA$1) [SS99b],
which can approximate any twice differentiable functioraisilable to construct
operators such as3/2 [HTY *03] which is useful in the N-body simulation. STAM
offers very good flexibility but the tables can become lafg@gh accuracy is re-
quired.

In the N-body force pipeline application example in Chagtdunctionf(z) =
=%/ is needed to be evaluated. Computing the funciiof? in LNS is done by
using shift and add operations to multiply the LNS numberb$.- The fixed-point
implementation is computed directly using STAM. For flogtimoint, STAM can
only be directly applied to the significand part of the numbKrthe number is

represented by = (1.f) x 2F wheref is the fraction and® is the exponent, the

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 39

Figure 3.7 Floating-point STAM datapath.

sign exponent fraction

even/odd

fixed point STAM
|

V

w X Vo
I\J@
> f)

0 1
n-af s |
shift count normalize
!
rounding
sign exponent fraction

floating-point case can be handled using [HT08]:
fx) =272 = ((1.f) x 2B)™3/2 = (1.)32 x 2738/2

A fixed-point STAM module forz=%/2 is used to calculatél. f)=3/2. If the expo-
nentE is even, multiplication b2 ~3%/2 can be achieved by simply multiplying the
input’s exponent by-3E/2. If E is odd,z~%? can be rewritten as(1.f)~%/2 x

2= ([=3E/2]+1) » 9=1/2_|n [HTY*03], a floating-point multiplication was used to
handle the exponent of the odd exponent case. In the curesigrd a fixed-point
multiplier, as shown in Figure 3.7, was used to optionallytiply by 2-/2 and the
2~ (1=38/2]+Eo term (wherek, is the least significant bit of E) is added to the expo-
nent. The new scheme results in a more compact circuit amingltes the need for
a normalization step before floating-point multiplicatiofo improve throughput,
pipeline registers were inserted and a 3 clock cycle latamtogduced.

A set of modules for converting between number systems veasdsveloped.

Chapter 3 CAST - A Framework for Flexible Datapath Explayati 40

When converting from floating to fixed-point number systemshift amount is
computed from the exponent. The fractional part (and thdiamfl’ of the signifi-
cand) will be shifted according to the shift amount. The fiesult should be two’s
complemented if the sign bit is set. When converting fromdii@ floating-point,
the absolute value of the number is passed to a priority esxdodind the position
of the most significant set bit. Then the number is shiftedtofthe significand and
the exponent calculated. For conversion from LNS to theifiggpoint system, the
significand 2/7<(!N9) 'wherefrac(LN S) is the fractional part of the LNS number,
is computed using a lookup table. The integer part of the LbKsdo the exponent
after addition of the bias. In conversion from floating-gdoLNS, the integer part
of the LNS is formed by subtracting the bias from the expon€he fractional part
of the LNS is computed by a lookup table of the, () function.

For all three number systems, operators may cause overfiderfiow. In the

current hardware implementation, these special casesalandled.

3.5 Unified Arithmetic Operator Class

A class of general arithmetic operators was developed.r Alfie description of a
circuit is constructed, the library provides an easy wayhange the configuration
of arithmetic operators in the circuit. Configuration of greaator includes the num-
ber system, the number format and latency allowed. Thigmmébion is supplied as
parameters when the object is created. For example, to uBebdrexponent and
23-bit fraction floating-point adder with 3 clock cycle laty, the module is created

as:
ADD f("nmy_add", this, 8, 23, 3);

The operator interface for different number systems is eahifin a single class:
CAST_ADD, CAST_MUL, etc. The class includes operators from the parameterized

fixed-point, floating-point and LNS libraries. As an examjlee following code

Chapter 3 CAST - A Framework for Flexible Datapath Explavati

41

Table 3.1Summary of arithmetic operators available in the currenSTAystem.

a, b, ns

a, b, ns

a, b, ns

ADD SUB MULT x3/2
Fixed Pt.| ADD _n() SUB.N() MUL _n() POWM15n()
width width width width, segments,
guard bits
Float Pt. | ADD f() SUBf() MUL _f() POWM15f()
exp, frac exp, frac exp, frac exp, frac, segments,
guard bits
LNS ADD () SUBLI() MUL _l() POWM151()
int, frac int, frac int, frac int, frac
Unified | CAST.ADD_n() | CAST_SUB.n() | CAST_-MULT _n() | CAST_.POWM15n()

a, b, ns

Key - segments, guard bitsfrom configuration file according to widtkexp, frac:
width of exponent and fractionint, frac: width of integer part and fractional part
of exponentns: number system selectioa: width of fixed-point, exp of floating-
point, int of LNS.b: frac of floating-point, frac of LNS.

segment creates an LNS adder:

CAST_ADD(" ny_add",

this,

8, 23, LNS);

Table 3.1 is a summary of the available arithmetic operdimrshe different

number systems as well as the attributes bounded to thesstose

A latency parameter may be used to select different impléatiens. User can

guery the latency of any object using tdel ay() method. When different op-

erators for different number systems and/or precision aesglutheir latency may

change e.g. fixed and floating multipliers may have diffetatgncies. When as-

sembling a datapath, the user is responsible for matchelgténcy of the operators

by inserting delay elements.

The unified operator class thus provides a consistent agerto the arithmetic

library and encapsulates the internal details of their sgitgand implementation

in a manner that one can use the library with minimal knowéedgout its imple-

mentation.

Chapter 3 CAST - A Framework for Flexible Datapath Explavati 42

3.6 Summary

In this chapter, we presented background on number systaththa STAM al-
gorithm for approximating elementary functions. An undgnsling of these arith-
metic systems is necessary for building hardware accelsr&br simulation sys-
tems which involve large numbers of arithmetic operations.

We also introduced the CAST framework and showed its theufeatand in-
ternal structure. The operators for different number sgstand approximation
algorithms are implemented within CAST. This process aasticomputer arith-
metic knowledge. Users can use the operators through adimferface. They can
be used without detailed knowledge of their implementatiborthermore, as an
generic interface is presented, users do not need to spbkeifrithmetic system to
use. This can be inferred by optimization, the computerdiegiwhich system is

best suited to a given application.

Chapter 4

Mullet - A Multiplier Generator

4.1 Introduction

Multipliers are one of the most important operators in siioh applications. Al-
though a wealth of knowledge exists about parallel mukiptiesign, the best ar-
chitecture is dependent on the desired multiplier size haddchnology which is
used. For example, for a small multiplier, the partial prdyPPs) might be best
generated using a simple AND structure and ripple carry @daged to accumulate
them. For larger sizes, a Wallace tree might be faster. Eurtbre, the crossover
point where the Wallace tree is faster depends on the VL&h@ogy used as well
as whether the design is on an application specific integjreteuit (ASIC) or a
field programmable gate array (FPGA).

Many different parallel multiplier architectures have bgeoposed in the liter-
ature (e.g. [Kor02, ELO4]). High speed multipliers typigaleduce the number of
PPs in the partial product generator (PPG) stage via Boetiteding and reduce
the number of logic levels in the partial product summer (RB8g tree structures.
Different kinds of adders can also be used in the PPS stagae $&GA devices
have hardwired dedicated multiplier units and practicaltiplier module genera-
tors should use them when appropriate. Given the bewilgerimber of choices, it
is difficult even for an expert to find an optimal multiplierttvout investing a large

amount of time to the task.

43

Chapter 4 Mullet - A Multiplier Generator 44

In this chapter, we describe an automatic multiplier getoeraalled Mullet
(MULtpLIEr Tool) that can generate multipliers which arengioinations of sim-
pler primitive elements. Mullet is built on the CAST framek@and becomes part
of the CAST system as a library generator. A search througtdifierent com-
binations can easily explore tradeoffs. Furthermore, tl®sizing a number of
designs and recording their performance, Mullet can detexits own timing, area
and power model parameters and calibrate itself. To thedfesir knowledge, no
other multiplier module generator is able to consider athaflse issues in a unified
manner. This will demonstrate how the CAST system can be tesbdlance the
performance and resource cost and utilize special featnrdse target platform.
We apply this system to the generation of parallel multiglier Xilinx Virtex FP-
GAs [Xil04b] and show, as in the result chapter, that the ipligrs generated by
our tool are better than those of the Xilinx CoreGeneratal ¥8T tools for large
multiplier sizes.

The rest of this chapter is organized as follows: In Secti@)we present par-
allel multiplier architectures which are used as primitalements in our tool. In
Section 4.3 we describe the features and architecture ofeMul'he implemen-
tation details and performance results are show in Sectibn Binally we draw

conclusions about this work in Section 4.5.

4.2 Parallel Multiplier Structure

In this section we introduce the generation and optimizatibparallel multiplier
constructs in the CAST system.

We assume that inputs are in two’s complement format and werpe parallel
signed multiplication of am-bit multiplicand A with anm-bit multiplier B. The
resulting product is n + m bits in size. Figure 4.1 shows the basic architecture of
a 4-bit parallel multiplier. The multiplier can be brokervgwointo two independent

units, the PPG and PPS.

Chapter 4 Mullet - A Multiplier Generator 45

Figure 4.1 A 4-bit parallel multiplier showing the partial product geator and
summer.

b, b b b Multiplier B

sign Ext a a a a Multiplicand A

= P P B Py PP

*) <—— P PPy R PP

I) Ié._.ipzs Pas Pay _p_zc_i_-~ PP,
) _Pyz Py Pay B! PPs

4.2.1 Partial Product Generators (PPGS)

AND scheme

In Figure 4.1, the partial product8F, — P P; are computed by forming the
bitwise AND of b; with A, i.e. PP; = b; A. Using this method, the number of PPs
generated isn and the length of each PP#is We call this method for generating
the partial products thAND scheme. For signed multiplication, the PPs should be

sign extended as shown in the figure.

Modified Booth Encoding (MBE)

The modified Booth’s algorithm [Boo51] considers multipleskof B. If two
bits are considered (radix-4), the partial products areegead according to a cod-
ing table. Figure 4.2 shows the circuit for the modified Boetitoding (MBE)
PPG, with a lookup table being used to produce the apprepmaitiplexor selec-
tion according to three bits of multipligs. PP, is formed from bitsBy;. 1, Bs; and
Bs;_1 (B-1 = 0) so only[m/2] partial products are generated, half as many as for
the AND scheme. The scheme can be generalized to higheesmdixadix-8 MBE
scheme requiring onlym /3] partial products. This is, of course, at the expense of a
more complex partial product generation scheme. Varidr@goth’s algorithm can
further improve performance by introducing more compkcaéncoders [Mac61]

and conditional-sum adders [YJOO].

Chapter 4 Mullet - A Multiplier Generator 46

Figure 4.2Radix-4 MBE circuit.
Multiplicand (A)

Multiplicand Generator

4.2.2 Partial Product Summers (PPSs)

Weighted Sum (WS)

The PPs produced by a PPG must be summed in order to form theefiuet.
A straightforward way to do this is to use an array of addef®tm the weighted
sum of the PPs as show in Figure 4.1.

The array can be constructed using simple carry ripple ad@RAs) or faster
schemes such as carry look-ahead or carry select adderstippter adders, the
critical path is the Manhattan distance from the LSB of th&t ##P to the carry out
from the MSB of the last PP. This delay can be modeled as a chay of length

n + m and is shown as the dotted line in Figure 4.1.

Three Dimensional Method (TDM)

The three dimension method (TDM) proposed in [OVL96] and {3RA8] uses
compressor trees to sum the partial products and a delagdiadpscheme so that
signal delays are minimized in a globally optimal manner.daxh weight, trees are
used to produce two equal weight bits of output, shown ascatitines connected
to the final adder of Figure 4.3(a).

In general, the delays from different inputs to the outpdits compressor may
be different. An optimal method for interconnecting the goassors to reduce the

global delay for the TDM has been reported by Stelling [SMBR®nfortunately,

Chapter 4 Mullet - A Multiplier Generator 47

Figure 4.3TDM model and 3-greedy scheme.

t,
Ro

111237
[22237]
337

[8]

(a) TDM model for PPS. (b) Three-greedy scheme for 9 in-
puts example.

the computational requirements are extremely high, matkilsgmethod unsuitable
for schemes in which a search over many different multiplisrapplied. Instead,
we employ the three-greedy algorithm [OVL96, SMOR98] whiztbduces multi-
pliers of similar quality but is several orders of magnitdaster. The implementa-
tion of the algorithm can be described by the simplified pseode in Algorithm 1.
Figure 4.3(b) shows an example of using the three-greedyitign to compress
9 inputs. Circled numbers represent the order of compreg=ueration and num-
bers beside the signals represent the delay of the line. dlagglof the inputs to the
compressorsare (1,1,1,1,1,1,2,3,7). The updated aleitgiut delay list after each
compressor was generated are also shown on the right. ltecardn that inputs
which have large delay are placed in positions with minimwetag to the output.
The technique just described uses 3:1 compressors butahibe generalized to

deal with arbitrary compression ratios.

Chapter 4 Mullet - A Multiplier Generator 48

Algorithm 1 Simplified pseudocode for the TDM method.

createblist[2n|[]; // store bits with same weight
initial blist with bits in partial products with same weight
for (1 :==0;1 < 2n;i++) do
sortplist]i]);
end for
for (1 :==0;i < 2n;i+ +) do
while size_of (blist) > 2 do
new compressor X;
connect first k bits frondlist[4] to input of X;
remove first k bits fornblist|];
evaluate output delays of X;
put X_Sum intoblist|[i];
put X_Cout intoblist[i + 1];
sortplist[i));
end while
end for

4.3 Mullet Architecture

Mullet combines the primitive elements described in theviongs section to create
multipliers of arbitrary size. In this section, the architge of Mullet is described
in detail.

To isolate the PPG and PPS parts of a multiplier circuit, veaite a general-
ized PP object in CAST. APP object represents a partial product which has no
logic or circuitry associated with it. i.e. it simply comtaithe signals associated
with a particular partial product. The attributes asse@dawith thePP object in-
clude the weight of the LSB and the maximum delay from the primnput of
the circuit, which is used in the TDM design. The weight imf@tion is used to
ensure correct alignment in the PPS and the delay informétiosed for optimiza-
tion of the circuit such as required in the TDM approad?P objects are stored
in a list when the PPG component is generated. This objeettexd implementa-
tion scheme provides a clean and uniform interface betwse®PPG and PPS and

allows new algorithms and/or architectures be easily ohetl

Chapter 4 Mullet - A Multiplier Generator 49

Hardware Multipliers (HWMSs)

Modern FPGA devices such as the Xilinx Virtex-11 have dethdahardware
signed multipliers of fixed input size [Xil04b]. These do sk the logic resources
of the FPGA and are usually faster than a similar multipliefitdfrom logic re-
sources. The HWM element is represented as a primitive binjé€AST. For the
Xilinx Virtex Il devices considered in this work, the mulligr is 18 x 18-bit signed
multiplier which can be used asl@ x 17-bit unsigned multiplier. Larger multipliers
can be constructed from HWMs.

In order to break a large multiplier into smaller ones thdaeysfirst partitions
the multiplier and multiplicand into several smaller bigseents. If the input seg-
ment includes the MSB, it is signed extended to 18-bits. @itse, a 17-bit (or
smaller) unsigned HWM is used. For maximum speed and minirfagic uti-
lization, a HWM should be used wherever possible. Unforteigathe number of
HWM resources on an FPGA device is limited and there are dfitrations in
which the user may want to save some of the HWMs for other pdrtise design.
Figure 4.4 shows examples of the assignment when only six HWit$ are avail-
able. Example) is a random assignment with longer delay compared tyitthich
follows the assignment method described. In Mullet, the cae specify how many
HWMs to use. The system will assign the HWMs to the least ficant segments
first and thus reducing the critical path delay of the circuit

If the size of a sub-multiplier is small, a simple AND/WS mplier is smaller
and faster than a HWM. This sub-multiplier occurs frequesthce the inputs are
not always a multiple of the width of HWM unit. A calibratiorrqredure was

created to find the size of multiplier under which the AND/W&ame is preferred.

Modified Booth Encoding

Mullet currently supports radix-4 and radix-8 MBE primgiywhich are called
MBE3 and MBE4 respectively since they scan 3 and 4 bits at a.timthe MBE3
example, the A output is generated by shifting the inpditand has no logic delay.

Chapter 4 Mullet - A Multiplier Generator 50

Figure 4.4 Assignments of 6 HWM units to a partitioned desighBad assignment
with longer delayb) Good assignment with shorter delay.

I
I I |

Dedicate MUL unit

|
General Logic
I I el

Figure 4. 5MBE componentsa) MBE3 MUX; b) MBE4 multiplicand generator

A
0 A2A 0 -A-2A

NEG]

xel

4A2A 3A A 0 -A-3A -2A-4A
a) b)

Output—A is generated by 2's complementingand requires an-bit adder. The
—2A output is generated by shifting theA value. The total cost of multiplicand
generator is an n-bit adder in MBE3 and a 5-to-1 MUX. The PPegaion for
MBE4 is also shown in the figure.

For MBE4, the multiplicand generator needs to prodtel and+4A. The
+4 A is computed with a simple shift operation frah2 A. £3 A requires one more
n-bit adder level so the total delay introduced is two levéis-bit adder. The MUX
for MBE4 includes two MBE3 MUXes in parallel and an extra 24dMUX.

Chapter 4 Mullet - A Multiplier Generator 51

Figure 4.6 WS scheme of PPS.

PPG
PP list [PPo[PP [PP,[PP3] [PPy[PR:] PR
PPS using WS

Mullet will first generate thet multiplies from the multiplicand. It then seg-
ments the multiplier B according the number of bits to be sedn(currently 3 or

4). The final step is to make connections to the MUXs.

Weighted Sum (WS)

The weightsumobject in Mullet will accept two PP objects and output a PP
object. The circuit forweightsumis dynamically generated in CAST according
to the width and weight of the two inputs. The inputs will bepegpriately sign
extended and aligned before they are summed.

After the PPG circuit is created in the module generatoRBbB are available in
a list pp_list. Mullet will first sort the list in ascending order of weighthe first
two PPs are removed from the list and added to form a new PFhvidhizppended
to the list. This process is continued until there is only BiReleft in the list which

is the final produc® of the multiplier. This process is illustrated in Figure 4.6

Compression Tree

The most simple compressor iSa 1 compressor implemented as a full adder.
There are different ways to implement the full adder whicwdi¢o different area
and delay models. In [SMOR98], the full adder delays are neabias an XOR gate
count where the carry out delay is 1 XOR gate delay and the supubis 2 XOR
gate delays. In most FPGA architectures, this is not trudaltreeir implementation
using a 4-input LUT and fast carry logic.

We can build larger compressors by interconnecting starnlarl and3 : 1

Chapter 4 Mullet - A Multiplier Generator 52

Figure 4.7 Signed multiplication for TDM.
b3 b2 b1 Q) TDM

tree at
3 5 1 9 column 3

XXX L F X Ko RoR1P1oRhs 1

+g 53 52 S_L % carry from
+ 1

column 2
final result: P;PgPsP,P5P,P; P,

negative vector

L
XXX XX X, X

6574773727170

compressors. CAST will make use of LUT4 and F5 primitiveshia FPGA to
optimize area and speed when implementing the high ratigpoessors. The delay
model for these compressors is determined by the numbereislef LUT required.
The original TDM algorithm was proposed for unsigned muditgtion. We
modified the algorithm to accept signed numbers. The finalycbfor signed mul-
tiplication can be constructed by subtracting the negateaor formed from the
MSBs of allPPs. We embedded this subtraction in fRBA by inserting inverters
and adding one extra bit to the LSB column. The design is @éurtiptimized by
starting from the first signed bit instead of the LSB as showirigure 4.7. By
feeding the resulting vector as the TDM input, we can compigeed multiplica-
tion using the original TDM components with a maximum ovexthef two extra
input bit per each column. If there are two signed bits in aicol, such as in the
HWM PPGresult, we use NXOR and NAND operators to produce a negated su
and carry for them. The negated sum will be fed into the cticelumn while the
negated carry will be used in the next column. Due to the pabfithePPG, the

maximum carry length in forming the negative vector onlyogsrtwo columns.

Multiplier Generator

The multiplier generator accepts a set of configurationrpatars as input and
generate a multiplier. The PPG can be one of AND, MBE and HWhe PPA can
be either WS or TDM. The choices of PPG and PPA are independent

To implement the TDM algorithm, the system is able to obtaitag and other

Chapter 4 Mullet - A Multiplier Generator 53

information from the circuit objects in the CAST system. Bvebject has its own
delay model which is used to compute the maximum delay at eatgut. These
delays are then propagated through the connections.

New primitive elements for PPG and PPS schemes can be eddiiga After
supplying a CAST module and the necessary timing and areaInmfdrmation,
the new multiplier architecture can be registered in Mudied will be available to
the user to instantiate. The object-oriented nature arahdtgerfaces within CAST

serve to hide unnecessary information.

4.4 Results

Multiplier performance for different input size using dfent schemes are shown
Figure 4.8. All results are collected with the tools set te kiighest optimization
effort. The results were compared with the Xilinx CoreGestegn as well as a mul-
tiplier directly generated using the “*” operator in XST orXdinx XC2V6000-6
FPGA. The correctness of a multiplier can be verified bothibyw#ation in CAST
by compiling the program with a C++ compiler and/or VHDL silation. In the
verification process, we exhaustively test all the possitgats for a8 x 8 multiplier
for all possible configurations by comparing the resultsragaoftware multiplica-
tions. Random input vectors were used to verify larger rplidis. In this section
we present experimental results based on Xilinx FPGA dsvitee VHDL codes
generated by Mullet were first synthesized using the Xiligrt8esis Tools (XST)
and then implemented using the ISE 6.2i tools.

The delays are measured between input and output registdrs multipliers.
The configurations shown in Figure 4.8 are optimized for dp&es shown in the
table, the performance of the generated circuit is betem those from XST and
CoreGen when the input width is large. In our experimentsudis using TDM3
performed better for multipliers larger than 40 bits beeaofsthe reduced number

of logic levels. Xilinx CoreGen can only accept input up to léits, and so no

Chapter 4 Mullet - A Multiplier Generator 54

Table 4.1Performance of 52x52 multiplier for all possible schemelse $peed is
the minimum clock period ims unit and the area is the LUT count.

Configuration speed | area | Configuration speed | area
AND+WS 21.540| 2935 | MBE4+WS 25.035| 6919
AND+TDM3+CRA | 15.563| 7869 | MBE4+TDM3+CRA | 18.963| 9086
AND+TDM3+CSA | 15.597| 8060 | MBE4+TDM3+CSA | 18.761| 8263
AND+TDM4+CRA | 41.872| 10977| MBE4+TDM4+CRA | 58.868| 8467
AND+TDM4+CSA | 40.163| 11111 MBE4+TDM4+CSA | 57.606| 8606
AND+TDM5+CRA | 69.372| 10672 MBE4+TDM5+CRA | 63.443| 8778
AND+TDM5+CSA | 68.121| 10768| MBE4+TDM5+CSA | 63.617| 8903
AND+TDM6+CRA | 35.480| 9903 | MBE4+TDM6+CRA | 58.848| 8125
AND+TDM6+CSA | 37.041| 11535| MBE4+TDM6+CSA | 58.519| 8268
MBE3+WS 29.586| 7033 | HWM+WS 19.711| 362
MBE3+TDM3+CRA | 19.427| 8384 | HWM+TDM3+CRA | 13.891| 469
MBE3+TDM3+CSA | 18.855| 7390 | HWM+TDM3+CSA | 12.977| 522
MBE3+TDM4+CRA | 45.687| 8406 | HWM+TDM4+CRA | 35.486| 587
MBE3+TDM4+CSA | 40.827| 8625 | HWM+TDM4+CSA | 36.702| 697
MBE3+TDM5+CRA | 61.837| 7641 | HWM+TDM5+CRA | 40.434| 619
MBE3+TDM5+CSA | 61.459| 7614 | HWM+TDM5+CSA | 39.890| 708
MBE3+TDM6+CRA | 40.676| 7184 | HWM+TDM6+CRA | 40.612| 965
MBE3+TDM6+CSA | 38.298| 7312 | HWM+TDM6+CSA | 39.831| 1238

comparison was made for multiplier larger then 64 bits. her19 bit multiplier,
our tool uses 1 MULT18X18 HWM while the other two use 4 HWMs eTresulting
speed is faster at the expense of requiring more LUTS.

In practice, we often need to find out what is the best impldateam scheme
for a given sized multiplier. The user may wish to optimize $épeed, area or
both. Using Mullet a user can easily explore tradeoffs aased with different
schemes. A 52x52 bit multiplier is used as an example andethdts agree with
our expectation for different configurations.

A w x w table, wherew is the width of the HWM, records the feedback and
helps making decision of the choice of implementation. Waelecision between
an AND/WS and HWM is made, the Mullet will use the current inpize,n x m,

of the sub-multiplier to address anx w table wherew is the width of the HWM.

Chapter 4 Mullet - A Multiplier Generator

55

Figure 4.8 Performance of different multiplier schemes for differgngut sizes.

Speed (ns)

Area (LUTs)

22

20

18

16

14

12

10 +

CAST (Wl HWM) —+—

XST (W/ HWM) -

CorGen (W/ HWM) ------
CAST (/o HWM) &

XST (Wlo HWM) ——=—

CorGen (w/0 HWM) ---&--

12000

10000

8000

6000

4000

2000

10 20 30 40 70
MUL width (bit)
(a) MUL Speed.
CAST (W/ HWM) —+— 7
XST (W/ HWM) ---x--- ‘
CorGen (w/ HWM) ------
CAST (W/o HWM) ~-&
L XST (W/o HWM) —-m-— i
CorGen (w/o HWM) ---&--
0 70

MUL width (bit)

(b) MUL Area.

Chapter 4 Mullet - A Multiplier Generator 56

Table 4.2The calibration table of Virtex Il FPGA

1 2 3 18
1| AW | AW AW | ...| AW
2 | AIW | AW AW | ...| AW

2.847ns 3.822ns
3 |AW | AW HWM HWM
4.352ns
18| AIW | AW HWM | ...| HWM
3.822ns

The entries in the table can be one{#&ND/WS, HWM, empty. If the entry is
empty, Mullet will call external programs to implement the< m multiplier and
compare the speed with the HWM, selecting the better of tleaind recording the
choice back in the table. Furthermore, multipliers of sin@aber tham x m will be
marked to be AND/WS. Similarly, ifthe HWM is better, all mipliers of size larger
thann x m will be marked to be HWM. The method of caching decisions ioista
the most accurate information when needed and saves cotopuime. Table 4.2
shows an fully marked calibration table with delay inforroatof AND/WS scheme
for the XC2V6000-6 device.

4.5 Summary

In this chapter, we presented a system that can be used teageddferent paral-
lel multiplier structures based on the CAST framework. Thdtiplier generator
utilize the built in area and speed estimation functions ASCT object to evaluate
the generated circuits. These features allow differentcbemethods to optimize
multiplier circuits automatically. Even without the sdairgy algorithms, it can be
used to explore the complete design space in an efficient way.

By isolating the PPG and PPS part, it shows that differentempntation schemes

Chapter 4 Mullet - A Multiplier Generator 57

of a operator can work together within the CAST framework sthty. Both arith-
metic knowledge and FPGA specific features are considered slecting a suit-
able scheme. It is shown that CAST can be used to provide plailievels of

optimization control while hiding the hardware detailstwat unified interface.

Chapter 5

A Novel Random Number Generator

5.1 Introduction

The Random Number Generator (RNG) is an important primithaely used in
simulation as an input source. A physical random number rgéore(PRNG) de-
rives its output from a physical noise source and its outputandeterministic in
nature. Given the importance of random number generatisprisingly few hard-
ware implementations of PRNGs have been reported. Therthigge commonly
used techniques in the literature, namely oscillator sargpdirect amplification
and discrete time chaos. In the oscillator sampling aprgaeriod variation (i.e.
oscillator jitter) in a low frequency clock of low quality ¢eor (Q) is exploited by
using it to sample a high frequency clock. The direct amg@lifan technique dig-
itizes thermal or shot noise, using an amplifier and compardtinally, chaotic
systems are also used to produce PRNGs.

In this chapter, a high performance PRNG which uses a pHysiedom source
to control two linear feedback shift registers in a mannenilsir to that of an al-
ternating step generator (ASG) stream cipher is proposd.approach combines
some of the benefits of both approaches and achieves higigtipat, small area
and good randomness properties. The same approach coubgliedao combine

other weak physical random number generators with a strednock cipher.

58

Chapter 5 A Novel Random Number Generator 59

In 1984, Fairfield, Mortenson and Coulthart [FMC84] devedghe first in-
tegrated RNG based on oscillator phase noise. In the desitnigh frequency
oscillator was sampled using a low frequency oscillatoteAfemoving duty cy-
cle biases via a patrity filter, the flip flop output was fed intinaar feedback shift
register (LFSR) based scrambler. The design generated 217dipg a 1000 Hz
low frequency clock. The Intel RNG is part of the Intel 8xx gbet starting with
the Intel 810 and is implemented in the Intel 82802 Firmwaod Bevice (FWH).
It uses amplified thermal noise to drive a voltage controdisdillator (VCO), and
oscillator sampling is used to detect the phase noise of @@ 16 produce a digital
random source [JK99].

We have previously reported an FPGA design which employslateec sam-
pling [TLLO3]. In this design, a low frequency RC oscillateas used to sample
an internal high frequency clock. The design requires omtgd external passive
components to control the time constant of the RC oscillaRitase noise in the
RC oscillator produced randomized output which was filteredugh a parity fil-
ter. A disadvantage of this approach is that the output salienited by the speed
of the RC oscillator and in order to pass the NIST and Diehestst the maximum
rate was limited to 4.7 kbps. The only other FPGA based implgation was one
by Fischer and Drutarovsky [FD02] which used a variation sfiblator sampling.
Their design was based on the randomness of jitter in an gumalphase locked
loop (PLL) and a decimator was used to ensure that at leassamele affecting
jitter was included in every output data. The design was @mgnted on an Altera
APEX EP20K200-2X FPGA with a 33.3 MHz external clock. With&$h245 MHz
internal clock, it can generate 69 kbps. For FPGAs such ag\teea APEX E
and APEX Il devices which have internal PLLs, this approajuires no external
components. The disadvantage of this approach is that féABPRave this feature.

Physical random number generators based on chaotic systamead to very
compact CMOS implementations. In 2001, Stojanowskal. [SPKO1] imple-
mented an analog chaos-based RNG in g@:8CMOS process utilizing switched

Chapter 5 A Novel Random Number Generator 60

current techniques. The estimated output bit rate of thisgieewas 1 Mbps. An-
drea Gerosat al. [GBPO01] also implemented a RNG based on a chaotic system.
Their design with a pipelined ADC (analog-to-digital corte€) occupied.2 mm?
silicon area and the design can generate 8-bits of data asiOdgviHz clock. Petrie

et al., combined oscillator sampling, direct amplification ansicdéte time chaos to
produce an analog VLSI chip which was robust to power suppigeand substrate
signal coupling [PCO00]. Implemented thum CMOS, the chip produces random
numbers at 1.4 Mbps. The design occupied an areasfnm? and dissipated
3.9 mW of power.

In comparison to the approaches described above, the detganted in this
chapter, an output rate of 400 Mbps was achieved on a Xilin¥/3@—-8 devices
and the design occupies approximately 130 Xilinx Virtexea$. Furthermore, it
was implemented entirely in digital technology with no ertd components.

The rest of the chapter is organized as follows: In Secti@ Background
information about physical random source and Alternatitepp $enerator are pre-
sented. The architecture of the PRNG and its FPGA implertientare presented
in Section 5.3. In Section 5.4, the experiment results agsgated. Conclusions are

drawn in Section 5.5.

5.2 Background

5.2.1 Oscillator Sampling based Physical Noise Source

Oscillator sampling based noise sources typically use affegquency clock £;)
with large phase noise to sample an accurate high frequémdy (@},) and resulting
a random sequencé’() as shown in Figure 5.1. If the phase noiseFpis of the
same order as the period of the high frequency clock, an outpieh is random is
obtained [FMC84]. However, since the output rate of thisrapph is that of the
low frequency clock, the output rate of this PRNG is deteediby the frequency

Chapter 5 A Novel Random Number Generator 61

Figure 5.1 Oscillator sampling using D-type flip-flop.

: ; ‘ D-FF
ro JUTUUU LU T UL T UL

‘ \ : 3 Fh —= D Q ——=Fr
= N N O N R
Fr J‘ ‘ F Fi ——= Clk

of F;. If the frequency off; is increased to improve the output rate, the phase noise
usually decreases, leading to correlations in the output.

There are several factors which affect the randomness ajutput [FMC84].
The first is that the duty cycle df, may not be 50%. In this situatiot;. will have
unequal probability of being zero or one. Avbit parity filter [ECS94, FMC84]
can be used to deskew a non-uniform distribution. If theorafiones to zeros in
the raw random bitstream js: ¢, then the probability that the parity will be one
or zero is the sum of the odd or even terms of the binomial esiparof (p + ¢)".
This sum can be evaluated to calculate the probability ofeaairthe output of the
parity filter and is ((p + ¢) + (p — ¢)"). Sincep+ ¢ = 1, this expression reduces
to 3(1+ (p — q)"). As N increases, this expression tends to 0.5.

The second factor is the selection of clock frequency. Eeoiathe generated
clock will change from time to time due to circuit internabktability and external
noise coupling. If the variation of the period i) is not large enough, there will
be correlation between bits and so the value of the outpubegredicted to some
extent from the previous values. Previous research hasrsti@t, from the proba-
bility density function of guessing the next bit, the stamdaeviation of the period
variation of F; should at least be 0.75 times the period‘pfto reduce bit to bit cor-
relation [FMCB84]. Thus increasingj, and reducing; leads to more randomness.

A third factor affecting the quality of the RNG is the randoousce itself. As
there are both periodic and aperiodic electromagneticenasde a computer sys-

tem, there may be correlation in the output sequence as st i# coupling of

Chapter 5 A Novel Random Number Generator 62

Figure 5.2 Alternating step generator.

ce LFSR1

ASGout
CLK_L L LFSRs
Ce LFSR2

periodic noise from the power supply, clocks, crosstalkyiial effects etc. This

issue is not addressed in this work.

5.2.2 Alternating Step Generator

The ASG is constructed from three LFSRs as shown in FigurfZu288, MvOV97].
The binary output of the selection LFSR (LFSRS in the figuie)ysed to select
whether LFSR1 or LFSR2 is clocked. The output of the ASG isXfdRR of the
output of LFSR1 and LFSR2. The characteristic polynomifld<$R1 and LFSR2
are irreducible and different. In addition, the greatestigwn divisor of the periods
of LFSR1 and LFSR2 should be equal to 1.

Several attacks on the ASG have been proposed. If the coongalynomials
of LFSR1 and LFSR2 are primitive trinomials, the generator be attacked using
the linear syndrome method [ZYR91]. In our design, a high Hang weight poly-
nomial was chosen to prevent this attack. Golic proposedtackabased on the
edit distance [GM98]. This attack requires computing thit @idtance for every
possible pair of initial states of LFSR1 and LFSR2 and is kemat practical for

large shift register lengths (approximately 127 in our yase

5.3 Architecture and Implementation

In the proposed approach, a physical noise source, hareafted the oscillator

noise source (ONS), is produced by oscillator sampling asvshn Figure 5.3.

Chapter 5 A Novel Random Number Generator 63

Figure 5.3Proposed PRNG circuit.

ce LFSR1
CLK 41‘39 LFSR2

The high frequency clockF}, is generated using a 3-inverter ring oscillator im-
plemented in a single Xilinx Virtex slice, while the low fregncy oscillator input
comes from the system clock (133 MHz) in our tested configomat These two
signals are combined using an edge-triggered D-type fljpttoproduce a non-
deterministic but correlated random output. This outpusisd instead of the selec-
tion LFSR of an ASG.

In order to achieve a high output rate, the ONS should produtguts at the
same rate as the system clock. This is normally derived framystal controlled
oscillator and has low phase noise. Hence the system clatkdbe connected to
the clock input of the D type flip-flop (as shown in Figure 5&8)d a high frequency
oscillator connected to the D input. For the FPGA implemiotiaa high frequency
ring oscillator was used. Ring oscillators are commonlyduse phase locked
loops, clock recovery circuits and frequency synthesjzmrshave high phase noise
compared with circuits employing passive resonant compisi®az96]. Thus they
combine the advantages of being implementable entirelyizvéin FPGA and high
phase noise.

It is desirable to make the frequency of the ring oscilla®hah as possible
in order to reduce the correlation resulting from samplimg ting oscillator with
the system clock. A naive implementation would require Xigontables (LUTS)
and hence 1.5 Xilinx Virtex slices [Xil0Oa]. The FPGA implentation used an
additional 2-input XOR gate present in the Xilinx Virtexcdito reduce the imple-
mentation to 1 Virtex slice as shown in Figure 5.4. This hastivantage of higher
speed because wiring is reduced and the XOR gate is fasteathdT.

The LFSRs were implemented using the SRL16 [Xil0Oa] featirdhe Xilinx

Chapter 5 A Novel Random Number Generator 64

Figure 5.4 Xilinx Virtex ring oscillator implementation.

INV2 INV3 INV1
D Q-

CLK
N

vitex Slice J
e P
— INV3 Dq |

§ INV2 |
LUT %
INV1 D Q—— TRNGout

Virtex chip which enables a 1-16 stage shift register to bglémented in a single
LUT.

5.3.1 Clock Doubler

As discussed in Section 5.2, increasing the high frequeftaske F),, improves
the randomness of the ONS output. It is possible to apply ekalloubler to the
output of the ring oscillator as shown in Figure 5.5. The pdkst in the NIST
testsuite [U.S94] was used to observe the effect of diftedetay values for the
clock doubler, and the results are shown in Figure 5.6. Thempi@st is passed if
the result is between 1.03 and 57.4 [MvOV97]. As it can be seerall and large
values of the delay do not result in clock doubling and theegpdkst results are
poor. The poker test results show a significant improvemantiélay values, as
reported by the Xilinx timing analyzer, of approximatehp2s. Table 5.1 shows
a comparison of the best poker test results with and with@lwek doubler. Note
that although the clock doubler offers an improvement, tiNS@utput does not

pass the poker test.

Chapter 5 A Novel Random Number Generator

Figure 5.5 Clock doubler circuit.

Clock Doubler

H >O+ >O+ >Oe— Delay 3
! jﬁ%; D Q— ONs

Figure 5.6 Poker test results as a function of the clock doubler delay.

20000

18000 g
000 [+ R
& 14000 + ;
< +
-
S 12000 | g
wn
. +
= 10000 | g
§ + . + +
s 8000 |- E
i +
S 6000 |- g
A~ ++
4000 - TR g
+ +
2000 | + + + g

17 18 19 2 21 22

Table 5.1Comparison of poker test results with and without a clockideu

Delay(ns)| Poker test result
0 1579.77
2.474 124.013

Chapter 5 A Novel Random Number Generator 66

Table 5.2Implementation summary (Xilinx XCV300E-8).

Design| Period Slices BRAM

Design| (ns)| (% XCV300) | (% XCV300)

PRNG | 7.482 129 (4%) 4 (12%)
5.4 Results

An implementation of the PRNG was synthesized and impleettuming the Xilinx
ISE 8.2i software. The LFSR was inferred as chain of SRL16pgmments on the
device which resulted in very small area cost (only 59 LUTeé b7 FFs as reported
by Xilinx tools). The FPGA platform used was a Pilchard FPGdc[LLCT01]
which employs the SDRAM bus instead of the PCI bus used inexational FPGA
boards. The FPGA device used was a Xilinx Virtex XCV300E-8de The LFSRs
were chosen so as to have a random irreducible connectignguuial of degrees
127 and 129 with approximately the same number of 0 and 1 ciseffs [Gun88,
MvOV97].

The initial states of the LFSRs were random numbers with @pprately an
equal number of 1's and O’s.

Table 5.2 summarizes the resource utilization and perfocmaf the PRNG
including a host interface to read back the data. The highufsacy clock of the
PRNG can operate at over 400 MHz, but experiments descnb#ds paper used
a 133 MHz clock so that the output sequence could be collagtethe SDRAM
interface of the host computer. As reported by the Xilinxitigranalysis tool, the
minimum ring oscillator frequency was 800 MHz.

Since the ONS output of the the clock doubler improves rantss, results
reported below are without the clock doubler (i.e. the delag set to 0). It was
also verified that the implementation passes the below tes¢s an appropriate
delay for the clock doubler was added. This increases cardeléhat the design

will operate correctly even if the delay of the clock doub¢eset to an inappropriate

Chapter 5 A Novel Random Number Generator

67

Table 5.3NIST RNG test result summary for the PRNG.

Test P-value | Pass Rate
Frequency 0.145326| 0.9900
Block Frequency 0.657933| 0.9700
Cusum-Forward 0.383827| 1.0000
Cusum-Reverse 0.867692| 1.0000
Runs 0.289667| 0.9700
Long Run 0.759756| 0.9900
Rank 0.514124| 0.9900
FFT 0.779188| 1.0000
Aperiodic Templates| 0.657933| 0.9600
Periodic Templates | 0.289667| 0.9900
Universal 0.162606| 1.0000
Approximate Entropy 0.924076| 0.9900
Random Excursions | 0.637119| 0.9565
Seriall 0.534146| 1.0000
Serial2 0.262249| 1.0000
Lempel Ziv 0.616305| 0.9900
Linear Complexity | 0.637119| 1.0000

value.

5.4.1 NIST Test Suite

For the NIST test suite (version 1.4), all parameters wer@csording to the rec-
ommendations in [Ruk01] and the test sequences were 1 Mbizén The sample
size, i.e. the number of bit sequences to pass the tests Wagable 5.3 summa-
rizes the NIST test results for the PRNG. The significancellewas chosen to be
the default of 0.01 (99% confidence) to pass a test if its Bevad larger than this
number. ThePass Rates proportion of the 100 binary sequences that passed the

test, It can be seen that the PRNG passes all NIST tests.

Chapter 5 A Novel Random Number Generator 68

Table 5.4Diehard RNG test result summary.

Test P-value
Birthday Spacings 0.310619
Overlapping 5-Permutation (chisqr 66.743792).994677
Overlapping 5-Permutation (chisqr 107.948838).253086
Binary Rank (31x31) 0.155
Binary Rank (32x32) 0.080
Binary Rank (6x8) 0.051318
Bitstream 0.008018
OPSO 0.996754
0QSO 0.011809
DNA 0.050285
Steam Count-the-1 0.066896
Byte Count-the-1 0.040476
parking Lot 0.921990
Min. Distance 0.496703
3D Spheres 0.016095
Squeeze 0.456598
Overlapping Sums 0.080856
Runs up 0.053444
Runs down 0.738119
Craps 0.985720

5.4.2 Diehard Test Suite

Although the Diehard test suite is one of the most compratepsiblicly available
sets of randomness tests, unfortunately there are no wfedl pass criteria. Intel
calculated that the entire 250 test suite passes with a 98¥ideoce interval for P-
values between 0.0001 and 0.9999 [Int99], and this methadsed for our testing.
The Diehard test results are summarized in Table 5.4. Ifiplalp-values are in the
result,the worst case value is presented. The PRNG randquesee passes the
Diehard test.

Chapter 5 A Novel Random Number Generator 69

5.4.3 TestUO1 Test Suite

TestUO1 [LSO07] is a set of C libraries for RNG performanceleation. We de-
veloped programs to test our RNG results using this librdhe random data was
stored in a file and then read in as an external RNG source. 8pwts shows
that our RNG passes thiabbit the Alphabit thenSmallCrushand theCrushtest

batteries (Th@&igCrushtest was not run due the huge data requirement).

5.5 Summary

In this chapter, a new random number generator (RNG) wasdated. This circuit
combines a physical random number source with a high speednstcipher to
produce a physical noise source based random number gemertit small area,
high output rate and good statistical properties. This RNsala& be suitable for
simulation and cryptographic applications. This RNG camnséantiated as black

box in CAST framework as a reliable and fast input for the dated process.

Chapter 6

Monte Carlo Simulation

6.1 Introduction

Monte Carlo simulation (MC) is a technique which makes adargmber of ran-
domized trial runs (each trial calledpath) to infer the probability distribution of
the outcome. MC simulation is often the only tool for tregtotherwise intractable
problems such as the pricing of financial derivatives andrgific calculations on
stochastic processes. Computation speed is a major bimrideployment of MC
solutions in many large and real-time applications.

Previous work on applying reconfigurable computing to ame¢ing Monte
Carlo simulations has been proposed. McCollum et. al. de=itra hardware
design for generating random numbers from arbitrary distibons and applied it
to several MC problems including computationmgfMonte Carlo integration and
stochastic simulation for chemical species [MLBPO03]. Galkhet. al. described
the application of FPGAs to heat transfer simulation [GBA] and Yoshimi et. al.
applied FPGAs to the stochastic simulation of biochemieattions [YOFAO4b].
Cowen and Monaghan presented a generic MC architectuetitaggnainly physics
simulations [CM94], and Postula et. al. reported an MC pseoefor the simulation
of sintering [PAL96]. In each case, considerable speedups siandard software

based implementations were observed.

70

Chapter 6 Monte Carlo Simulation 71

In this chapter, We demonstrate the feasibility of applyieconfigurable com-
puting technology to practical, large scale simulatiorbpemns which require floating-
point arithmetic.

A major issue faced when developing scientific applicatiardigital hardware
is the choice of number representation and wordlength. \bjpqse that a general-
ized, number system independent description of the algurliased on the CAST
framework. Thus the most suitable number representatidraacuracy for a given
application can be found via optimization [THYLO4].

A generic architecture for MC simulation in which an on-chipcessor is com-
bined with a hardware path generator which combines fleildhd speed is pre-
sented. The same design methodology can be applied to atls€3applications.
Moreover, since processor and hardware accelerator ateesame chip, their in-
terconnection does not impose a bottleneck on system peaifure.

The MC design methodology is applied to two different profe the first be-
ing to compute an approximation to The second example is a real-world finan-
cial engineering application, the BGM interest rate mo@&&M97]. In the BGM
example, different paths are calculated simultaneouslkyrder to avoid data de-
pendencies. Using the MC design methodology, with the hetheor and BGM
examples, it shows that the performance of single chip nm&shivhich can be used
to accelerate complex MC simulations.

The chapter is organized as follows. In section 6.2, a gémaechitecture for
Monte Carlo Simulations is presented along with its appilicato an example in
which an approximation t@ is computed. In section 6.3, the BGM model, hardware
architecture and core used in its implementation are ptedenConclusions are

given in section 6.4.

Chapter 6 Monte Carlo Simulation 72

6.2 Computation of r via Monte Carlo Simulations

This section describes a simple MC processor for computiegalue ofr. We use
this method to illustrate the MC architecture; there areothethods for computing
7 that are faster. Imagine a circle of radiusircumscribed by a square with sides
of length2r. If a large number of darts are thrown uniformly at the squéne

proportion of darts which hit inside the circle is given by:

P 2
area of circle _ (6.1)
area of square (2r)2
= 7w/4. (6.2)

The above proportion is the same if only the top right-harattgu of a square cen-
tered at the origin is considered. Thus; i 1, 7 can be approximated by randomly
generating two random numbersandy, x, y € [0, 1), calculating whether the co-
ordinate(z, y) is within the top quarter of a circlert + 3> < 1), calculating the
proportion of trials inside and outside the circle, and fipbjtng this result by 4 to

obtain an approximation te. In pseudocode form, this can be described as:

Step0:h =0

Step 1: fork = 1 to NumBatch
Step 2: x = rand(),y = rand()
Step 3: if ((z°+9°) < 1)

Step 4: h=h+1

4xh
NumBatch

Step 5 ~

and will be referred to as the-simulation.

FPGA technology is used to implement a Monte Carlo simutatith the goal
of reducing the execution time as compared with a traditisafiware implemen-
tation. With a fully pipelined implementation, an iteratioan be computed every
cycle. The hardware architecture of a generic MC engineasvahas a block dia-
gram in Figure 6.1. As applied to thesimulation, the random number generator

block consists of two parallel uniform number generatorglemented using linear

Chapter 6 Monte Carlo Simulation 73

feedback shift registers. The MC core computes steps 3 arfidhé pseudocode,
no post processing is required, and step 5 is implementdeinrn-chip micropro-

Cessor.

Figure 6.1 The system architecture block diagram.

Random Number
Random Number
Generators

Address
Monte Carlo Generate
RAMs CORE Unit
int MC_Simulate_Batches(int NumBatch)
{
/* Simulate batches */ POST
for(n=0; n<NumBatch; n++) {
mc_GenPath(Data); PROCESSING
T l
/* Resulting mean and standard error */ 2 .
...... MlCI‘OpI‘OCCSSOI’
}

UART
Interface

Interface to Host

6.2.1 MC Arithmetic System and Wordlength Determination

Although experience may tell us that a fixed-point impleragoh would be the
most suitable for ther-simulation, for other MC simulations, perhaps those in-
volving variables with larger dynamic range, floating-gaimay be a better choice.
Moreover, even for a fixed-point implementation, the wondigh requirements of
the variables cannot be explicitly determined. In orderddrass this problem, the
CAST framework was used to provide an environment in whiadepffs between
different arithmetic systems of arbitrary wordlength cacompared. It saves de-

sign time, facilitates quantitative comparisons betwea#éarént arithmetic systems

Chapter 6 Monte Carlo Simulation 74

Table 6.1Latency of arithmetic operators in CAST.

Arithmetic | Adder | Multiplier | Divider
Fixed-Point 1 1 3
Floating-Point| 3 3 4

at different precisions and is well suited for designingftiily pipelined datapaths
of MC cores. Table 6.1 shows the latency of operators for ifierdnt number
systems.

In the CAST system, fixed-point numbers are representedas templement
fixed-point fractions. Floating-point numbers are simitaformat of the IEEE 754
standard except that the size of the exponent and fractepamameterized; there
are no denormalized numbers, and a round-to-nearest sasemed. Since the
resource requirements for high precision LNS adders anttaibrs in CAST is
very high [THYLO4], only fixed and floating-point number sgsts were considered

in this application.

6.2.2 Determining Fraction Size

To evaluate the minimum amount of resources required toyp®et least 4 decimal
place accuracy (as required in financial applications)QAST library is used to
generate the C++ code for a bit-exact simulation of the diffefixed and floating-
point operations provided by the arithmetic library, paetenized by the number
format (i.e. integer, exponent and fraction sizes).

In this way, only quantization error and number system acttar differences
between double precision floating-point (used as a refe)esned the simulation of
the quantized hardware implementation. Figure 6.2 showsdbults. According
to these results, we find implementation schemes which nieimrea subject to
accuracy requirements. The actual implementation selatded 17 bits for the

multiplier fraction and 21 bits for the adder fraction.

Chapter 6 Monte Carlo Simulation 75

Figure 6.2 Quantization error as a function of fraction size for fixearp and
floating-point implementations of thesimulation.

0 T T T T T T T T T T T T T T T 1
4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22

-10

201 M

IS B
I \\-\‘*ﬁk- . =

-90

Quantization Error (dB)

Fraction Size

6.3 The BGM Model, Interest Rate Cap and Monte

Carlo Simulation

Interest rates fluctuate over time and since nearly all evanactivity is depen-
dent on this instrument, there is considerable interestodeting for valuing and
hedging purposes. The BGM model [PPVRO05] is commonly useduse of its
theoretical elegance and ease of calibrdtion

Interest rate caps can be explained by first considering tarfipeate loan where
interest rate is updated periodically (e.g. every 3 moralesprding to the market
rates. A cap is an option which gives the holder the right ickstith a specified
rate if the market rate goes higher than it. This provideariasce to the borrower
against rises in interest rates.

Within the BGM framework, the price of a cap or other intenedée derivative
is usually computed using Monte Carlo simulation since difscult to apply other

approaches under the BGM model. An advantage of Monte Cemlolation is its

IHull [Hul00] provides a good introduction to financial deafives. See section 4.5 for forward
interest rate, section 20.3 for caps and section 22.3 fantanduction to the BGM model and other
interest rate products.

Chapter 6 Monte Carlo Simulation 76

applicability to pricing a large range of derivatives, atightforward implemen-
tation directly from the stochastic model rather than reqgifurther derivation
(as for tree or finite difference methods). However, it hasdhawback of being
computationally expensive.

DenoteF'(t, t,, t,.1) as the forward interest rate observed at tinfier a period
starting att,, and ending at,,;. Suppose the time line is segmented by the re-
set dateg7}, T, ..., Tv) (called the standard reset dates) of actively trading caps
on which the BGM model is calibrated. In the BGM frameworke tforward
rates{ F'(t,T,,T,+1)} are assumed to evolve according to a log-normal distribu-
tion. Writing F,,(¢) as the shorthand faf¥'(¢,7,,, T,,+1), the evolution follows the
stochastic differential equation (SDE) withstochastic factors:

dF, (1)

0 = i (t)dt + G, (t) -dW(t) n=1...N. (6.3)

In this equation(dF,, is the change in the forward rat&,, in the time intervalit.

The drift coefficientyi,,, is given by

() = Galt) - > %

i=m(t)

(6.4)

wherem(t) is the index for the next reset date at timendt < t,,,;), ; = Tiy1 —1;
ando,, is thed-dimensional volatility vector. In the stochastic termg{$econd term
on the right hand side of Equation 6.3[)5/ is the differential of al-dimensional

uncorrelated Brownian motioiV’, and each component can be written as
AW (t) = eVt (6.5)

whereg,, is a Gaussian random number drawn from a standardized ndristiabu-
tion, i.e.e ~ ¢(0,1.0). A Gaussian random number generator [Knu81] is required
to implement the Brownian motion.

A number of financial derivatives, including caps, knock-@aps, swaps, Bermu-

dan bond options and flexi-caps can be priced under the BGMehjddI00]. To

Chapter 6 Monte Carlo Simulation 77

simplify the example of pricing a derivative with FPGA-bdgrardware, we only
consider caps in this applicatién

The cap consists of a series of caplets in each of which thefplgtween the
floating rate and the cap rate in the standard period is dettigricing the cap via
Monte Carlo simulation, a large number of interest rate paite generated using
pseudorandom numbers according to Equation 6.3 with a diswretization step
size being 0.01 to 0.05 years. In each path, the forwardiatg,) is realized in

each standard period which enable the caplet payoff at#imeto be calculated.
payoff, = principal x 7,, x max(F,(t,) — cap rate0.0) (6.6)

The amounpayoff, is to be received at,,,, and its value at time zera,f is the
amount that would grow tpayoff, with the interest rates fromy to ¢,,.,. Solving
the value ofpayoff, att,, thediscount factorfor discountingpayoff, att,.; back
to ty is given by:

n

1
discountFactor= H .
o (L4 Fi(t))

The payoff of each caplet is discounted back to time zero anthsed to form

(6.7)

the value of the cap under the Monte Carlo trial. The averafigevof the cap in all
the Monte Carlo trials is the price of the cap.

In financial applications, the accuracy requirement onvadéxie prices is gen-
erally four decimal places (1 in 10000), e.qg., if the priratijs $100, the answer of
the cap price should be correct to cents.

The entire Monte Carlo simulation is divided into three sgghamely simu-
lation initialization, BGM path generation and post prairg. The initialization
stage initializes the volatility vectat, reset the Gaussian random number genera-

tors and initializes the Brownian motion generator.

2In general, other derivatives may depend on forward ratésan-standard periods” which do
not coincide with the “standard periods” of the instrumenmtdalibration. The non-standard forward
rates follows another SDE which is not discussed in this text

Chapter 6 Monte Carlo Simulation 78

In the second stage, the BGM paths are generated accordeguation (6.3).

The pseudocode for the main BGM model is described as:

Step 1: forn = CurrPeriod + 1to N
Step 2: factor = 1, F, /(1.0 + 1, F},)
Step 3: i, = factor X &,
Step 4: ﬁn = ﬁn + ﬁn—l

—
Step5: K = (fiy - Gp)dt + (dW - G,,)
Step 6: dF, =k X F},
Step7: F,=F,+dF,

whereCurr Period is the index of the current standard period, indt) = Curr Period+
1 and N are the number of standard forward rates.

The for-loop (step 1) is the main loop of the BGM model. The computation
consists of one division (step 2), one vector addition (d)egnd three vector prod-
uct operations (step 3, step 5) in each iteration offdtrdoop. We use a Taylor
series expansion to implement step 2. In order to maximizallpdsm, the vector
operations are implemented as parallel scalar operations.

Finally, post-processing involves pricing the cap acaoydo Equations 6.6 and
6.7 and calculate the mean and standard error of the geddB@&M paths on the

PowerPC processor. We discuss the details in section 6.3.5.

6.3.1 Hardware Architecture

The MC architecture implementing the BGM model of this syste shown in Fig-
ure 6.3. There are seven major blocks in the system archiged8rownian motion
generator, Volatility vector unit, Datapath core (BGM cpreddress generation and
control unit, Block RAMs, Cap Price post processor and tlezgssor core. The
Brownian motion generator generates th€& vectors according to equation (6.5)
and is driven by three Gaussian random number generatoes D@tapath core is

responsible for the generation of BGM paths and a detailsdrg®ion is given in

Chapter 6 Monte Carlo Simulation 79

section 6.3.3. The Address generation & control unit an&BRAMSs are used for
data storage during the BGM simulation. In order to perfooatprocessing (com-
puting the cap price in our example), a module, placed betilee BGM core and
the processor to accelerate this computation is added. idlebfock is the proces-
sor core which is responsible for coordinating the procesbietween the various
cores as well as postprocessing of the BGM paths for diftdneancial derivatives.
We have used both the Xilinx Microblaze soft processor as asthe PowerPC
processor in the Xilinx Virtex-Il Pro for the and BGM examples respectively. The
CAST framework was used to implement the BGM path core anerdttocks were

implemented using VHDL.

Figure 6.3 The system architecture block diagram for BGM-simulation.

—Qzx

%:—sz

Brownian

%—Ozw

Sigma (Volatility Vector)

’E Address

Generate
BLOCK BGM CORE [& Control
RAMs Unit
int bgm_Simulate_Batches(int NumBatch) i
{ /* Simulate batches */ POST
O Genphbgmbatey, PROCESSING
. i
/* Resulting mean and standard error */ LX .
...... Microprocessor
}

UART
Interface

RS232

Chapter 6 Monte Carlo Simulation 80

Figure 6.4 Quantization error as a percentage with varying fractiae.si
T —e—Fixed Point Arithmetic, integer size = 3

—— Floating Point Arithmetic, exponent size = 8
m \ \\\

10 11 12 13 14 15 16 17 19 20 21 23 24 25 26 27 28 29 30 31 32

O\
A

[

Error Rate (%)

=3
[

0.001

Fraction Size

6.3.2 BGM Number System and Wordlength Determination

A software implementation of the BGM model is made using tR&T simulation
function. Given representative input data, one can detegrtiie quantization er-
ror against a double-precision IEEE software implemeoeftor different fraction
sizes. Figure 6.4 shows how the percentage error chang#sefersimulation for
several different number formats.

Contrast to ther simulation, it is likely that different variables in the BGM
simulation have different precision requirements. Thushien BGM simulation,
each operator is allowed to have a different wordlength, amaulti-dimensional
minimization was performed to find a balance between quaiibiz error and circuit

size. A cost function is defined as:

feost(C1,Ca,.cccn) = a X error_rate(cy, ca, ..Cp) (6.8)

+b X area(cy, ca, ...Cp) (6.9)

wherec; represents the fraction size of operatorrror_rate is the quantization
error of the result if the answer is not correct to 4 decimgltdi In the equation,
area IS an estimate of the required logic resources for the gieafiguration of op-

erators, and andb are non-negative weighting factors for the error and aneage

Chapter 6 Monte Carlo Simulation 81

Table 6.2Results obtained from optimizing the wordlengths of théhanetic op-
erators. The pairs (a,b) refer to (integer wordlength,tioaal wordlength) and
(exponent wordlength, fractional wordlength) for the fixaadl floating-point cases
respectively.

Fraction Size Before Optimization
Arithmetic mul add div acc
Fixed-Point | (2,31)| (2,31)| (2,31)]| (2, 32)
Floating-Point| (8, 28) | (8, 28) | (8, 28)| (8, 28)

Fraction Size After Optimization
Fixed-Point | (2,31)| (2,30)| (2,15)]| (2, 20)
Floating-Point| (3, 22)| (3, 30)| (3,15)]| (3, 15)

respectively. As the BGM application must maintain 4 dedipt@ce accuracy, the
value ofa is typically several orders of magnitude larger tidan

The Nelder-Mead optimization method [NM65] was used to miae the frac-
tion size of the numerical representation. The range fdn eperator during a BGM
simulation is stored in the class and then used to deternmiregpropriate choice
of integer and exponent size in the number representatiorce $nany operators
are used in the BGM core, it is computationally intensiveptimize each of their
precisions individually. A faster but perhaps less optiaggbroach in which some
variables are constrained to the same fraction size is adofperators are cate-
gorized into 4 groups, namely adders, multipliers, accatous and dividers. The
optimization routine varies the fraction size of adder, tiplier and accumulator
to find the configuration which can obtain the desired foulirdatplace precision

using minimal resources. Table 6.2 shows the results addain

6.3.3 BGM Core Architecture

The BGM core implements the path generation loop of the BGMiehas shown
in Figure 6.5. The figure describes the arithmetic operatadrihe pipelined archi-

tecture in detail and corresponds to the pseudocode artimiée

Chapter 6 Monte Carlo Simulation 82

Figure 6.5 The Primitive Processing Loop Architecture for BGM Core.
aw Fin Sigma

Initial % l
Step 2 Vector X/(1+X) Vector

Step 4

\FIFO|

Step 5

Chapter 6 Monte Carlo Simulation 83

In the first initial step, Brownian motion parameté_f/ , the volatility vectors
and the forward raté” are initialized. AsiV andé are vectors, we use a parallel
architecture to implement the vector operations. Theravaoe'Vector” blocks in
the second step to conveli’ andé to scalars. The computation 6% (1.0+ F) is
also performed in this stage. In step 3 and step 4, vegttercomputed according
to Equation 6.4. FIFOs (First-In First-Out) are used to iempént the accumulator
(fin, = jin + jin—1). The depth of the FIFO is decided by the number of BGM paths
being simulated, as described in the following section.

According to Equation 6.3, the change in the forward réfg is computed in
step 5 and step 6. As the BGM core architecture is pipelined)se a delay chain

to adjust the timing of’,,. The result is obtained in the output stage.

6.3.4 Pipelined Path Generation

The Monte Carlo simulation generates a set of independaniora forward rate
paths, and computes their average. As the number of patlerges this results in
a long simulation time.

The architecture of BGM core is organized as a deep pipéelirumly one path
is simulated using the BGM core, data dependencies meaihigipeline must
stall until the output is generated since each iteratiorefalgorithm depends on
the previous iteration. This would result in the pipelinenigemostly idle. A 2-D
data flow arrangement was proposed such that each stage tesnagdifferent path

and all stages operate in parallel. The operation can beidedas follows,

for (i = StartStep; i < StopStep; i + +) {
if (i == NextReset DateStep) [* Record forward rates */
Output forward rate #'(i);
for(n=1;n< N;n++){
for (m = 0; m < NumPath; m + +) {

/* Evolve one time step */

Chapter 6 Monte Carlo Simulation 84

bgm.evolvestedi, n, m);

where, bgmevolve stefd-) evolves one step of the simulation according to the pseu-
docode description from step 2 to step 7 in section 6.3.3.dHt& flow is shown in
figure 6.6. After one processing loop, i.e. one BGM simulastep, all the values
F,, of the BGM paths will be updated:’ () is the forward rate of the model, where

1 Is the iterative stepy is the index of the path and is the index of the forward

rate.

6.3.5 Cap Pricing and Post-Processing Implementation

After generating numbers of interest rate paths, we reaelpdist-processing step
of cap pricing for forward interest rates.

In the Monte Carlo simulation, we use the means and standasdseof the
randomized trial runs to describe the simulation result®esE operations run with

program on the PowerPC. The program is described as follows,

[* Simulate batches */
for (k = 0; k < NumBatch; k + +) {
bgm_GenPath(bgmData);
SumBatchMean+ = bgmData;
SumSqBatchMean+ = bgmData x bgmData;
}
[* Calculate the resulting mean and standard error */
Mean = SumBatchMean/NumBatch;
SqMean = sqrt((SumSqBatchMean—
SumBatchMean x SumBatchMean/

Chapter 6 Monte Carlo Simulation

Figure 6.6 The 2-D data flow arrangement for the BGM Simulation.

1 Step
: 1
te By [EO | FEO FNZ (1)
o | Bo | FO E\;(l)
o | Bo | FO F‘f;)
Fay | B ED) Fe(l)
Fray | BT E (1) F&”‘j(l)
FiM*l(l) F‘ZM—](I) F;M*l(l) F,:/ M(l)
. EY) | B0 FM (1) Fy' ()
2 Step
> R | Eo | EO F”; &)
o | FQ | FO F‘Z(z)
Fe |FO | FO Ej)
. P | BO FH(2) Fy(2)
. E”‘z(z) FvZM 2(2) EM_Z(Z) Fx‘/l _2(2)
Fe) | BT @ Q) Fy M(2>
L o | RO 'O FY'(Q)

M: the number of paths
N: the number of standard forward rates

Chapter 6 Monte Carlo Simulation 86

NumBatch)/(NumBatch — 1.0)/NumBatch);

wherebgm_GenPath(-) is the function to read the path data from the hardware
which generates the pricing cap data with BGM core and thepagessing core
andNumBatch is the number of the simulation batches. In each simulatbcHes,

we generate numbers of paths in parallel with the hardwane co

6.4 Summary

A novel implementation of a FPGA based system for Monte Csirtaulation was
presented. The design used an embedded soft core proaegsibretr with a copro-
cessor core in order to achieve high speed with good fleigibilihe 7 computing
and BGM model can be implemented in the same architecturétéryng the MC
core block which is implemented using the CAST framework.

Using customized low precision floating-point formats, méoating-point op-
erations can be executed in parallel, improving executpmed as compared with
a microprocessor which is essentially serial. In order fg@e precision and area
tradeoffs in the datapath of the coprocessor, differenigdescould be generated
from the same description using CAST. For individual opaain the MC core
block, the performance is evaluated and the configuratiommadified in an itera-
tive manner using a built-in search method.

Using this approach an order of magnitude improvement ifiop@ance for
the 7 and BGM problems was achieved over a purely software baspwagh,
demonstrating the feasibility of applying reconfigurabbenputing to the problem

of accelerating large scale Monte Carlo simulations in iil@gpoint arithmetic.

Chapter 7

N-Body Simulation

7.1 Introduction

The N-body problem is computationally intensive and inesha large number of
arithmetic operations on numbers with large dynamic raigés together with the
fact that relatively low precision is required makes it agoandidate for hardware
acceleration. Using the CAST tool, an FPGA based procesasrd&veloped for
the gravitational N-body problem similar to GRAPE, with teditional advantages
of being flexible in the choice of arithmetic system and mieci.

Besides the bitwidth of individual operators, the numbestssmns were also ex-
plored in this application. Inputs to the N-body problemé&éarge dynamic range
and ax~!* function is to be evaluated in the datapath. LNS numbersitalde
for this class of simulation systems. On the other handetlsealso a large percent-
age of computation based on the add and subtract operatoid) vequire a large
amount of area in LNS. This inspired the idea of mixing difgrnumber systems
in a single datapath. The CAST framework allows tradeoftsvben the different
designs to be quantified much more easily than with previppsaaches.

The remainder of the chapter is organized as follows. Ini&ect.2, the N-
body problem is defined. In Section 7.3, the implementatibparoFPGA based

coprocessor for this problem is presented. Conclusiondraken in Section 7.4.

87

Chapter 7 N-Body Simulation 88

7.2 The N-body Problem

A wide range of physical systems can be studied by modeliagntas an N-Body
problem. The N-Body problem is extensively used in varioeki§ of science such
as astrophysics [MT98] and molecular biology [NS®]. In the N-body prob-
lem, particles are modeled as points in space and the emolafithe system ofV
particles is computed by solving a differential equatiothaf form:
N
CCZ;T); = Z F(x;,x;) (7.2)
=1
whereF (x;, x,) represents the foice between particlasd; and is application
dependent. This force is usually the gravity.
The force is computed using the following equation wheyeandx; are the
position vectors of particlesandj respectivelyr;; = |x; —x;| ande is the softening

constant.

N
X; — X,
F(xi, xj) = ; m (7.2)

N-Body problems are solved using numerical integration lmcl the majority
of the computation time is spent on calculatifigk;, x,). The results after applying
the force on patrticles are their new positions.

There are usually millions of particles involved in N-bodgnslation and the
complexity of the force computation &2 as shown in Equation 7.2. Since the
force calculation part is computational intensive but tlypathm is rather simple,

the computation can be accelerated with hardware assist.

7.3 Coprocessor Implementation

An FPGA based coprocessor handling the force calculationgbdahe algorithm
was built. The arithmetic core of the processor was gengriaten a C++ de-

scription using the CAST system. Since the accuracy reogng for different

Chapter 7 N-Body Simulation 89

simulation runs can differ greatly and depends on the sodata and the nature
of problem being solved, being able to experiment with défe wordlength and
arithmetic systems facilitates better exploration of theign space.

The processor was designed to work together with a host campuhich runs
the NEMO N-body simulation code [NEM]. The host computerdias all com-
putation except the force calculation. Particle positiaressent to the coprocessor
board from a host processor through the board’s interfate cbprocessor com-
putes the force acting on a particleusing Equation 7.2.

The architecture of the implementation is shown in Figule The main com-
ponents are the control, particle memory and the force ipipelThe particle mem-
ory stores the predicted position of all particles while ttwee pipeline calculates
the force acting on each particle. In each timestep, theigieztiparticle positions
are written to the particle memory by the host. For each gartithat is to be
advanced in that timestep, the corresponding index is sethietcoprocessor. The
corresponding particle position is then read from the plrtnemory and stored in
aregister. The force pipeline then begins the calculatsathe positions of alf par-
ticles are retrieved and fed to the pipeline. The host pbiscbprocessor to check
if the calculation has completed and then reads the resuit the coprocessor.

The force pipeline is the most critical part of the design.e Hpeed of the
pipeline directly affects the performance of the systengufe 7.2 shows the dat-
apath of the force pipeline. It is a fairly straightforwardplementation of Equa-
tion 7.2 and is generated by the CAST system.

Although our implementation is similar in architecturetatof GRAPE-3 [MT98,
ABLM98], three features were not implemented in our deskjrstly, all the parti-
cles in GRAPE can be of different mass whereas our implertientassumes they
are of the same mass. Secondly, GRAPE-3 calculates theagramal potential as
well as the gravitational force. In our integration alglonit, gravitational poten-
tial was not used and hence not implemented. Finally, GRBRtas a neighbor

function flag which is raised when two particles are closanta certain amount.

Chapter 7 N-Body Simulation

90

Figure 7.1 Top level block diagram showing the architecture of the oopssor.

Host

Particle Control
memory -
X (2048 x
32) l—‘ I
g ? Force Calculation
Particle S
memory — Fx, Fy, Fz
y (2048 x L, -
X
[%]
- L]
Particle — -
memory z
2(2048x [~ | 2
-
Acclerator
Figure 7.2 Architecture of the force pipeline.
X
ACCU
»{ Dolay |
ACCU
T ——
ACCU

;2
%

K-32)

Chapter 7 N-Body Simulation 91

7.4 Conclusion

The CAST system was applied to the design of a coprocessomgpute the solu-
tion of the N-body problem. From a structural descriptioth&f computation to be
performed, a large number of different designs were simadlat C++ and the cor-
responding VHDL code rendered, each implementation hadifigrent tradeoffs
in precision, area and speed. By constraining the desige tf & certain precision,
it was possible to determine the smallest fractional wargllle which could meet
the accuracy criteria for the fixed-point, floating-poinl& and hybrid implemen-

tations.

Chapter 8

Experimental Results

In this chapter, the experimental results of Monte Carlo BRabtel simulation and

N-body force pipeline are presented.

8.1 Monte Carlo Simulator

The embedded system consists of the PowerPC 405 core, sngpi@M Core-
Connect bus architecture (including the Processor Local @lL.B) and On-chip
Peripherhal Bus (OPB)), the on-chip block RAM, the userdagd other OPB pe-
ripherals (such as UART lite and the Debug module etc). Tipdiggiion program
is stored in the on-chip block RAM.

To implement the design, we used the Xilinx ML310 FPGA depeient board [Xil04a]
with a Xilinx XC2VP30-6FF896C Virtex-Il Pro FPGA [Xil03]. fie FPGA has two
embedded hard core PowerPC 405 microprocessors and trek froardes an en-
vironment for the FPGA system. The entire MC simulation iplemented on the
FPGA and other features of the board such as the FPGA sertatgrmnection and
standard JTAG connectivity are used.

The methodology described in section 6.3.3 was used forfb@ithand floating-
point implementations for the BGM core. Four BGM cores (esponding to the
before and after optimization designs of Table 6.2) werdemgnted and their re-

sulting resource utilization and maximum clock frequea@ee shown in Table 8.1.

92

Chapter 8 Experimental Results 93

Table 8.10ptimized Implementation for BGM core

Configuration Fixed-31| Fixed-Opt| Savings
Frequency (MHz) 57.97 60.07 -

Slices 2,384 2,552 -7.0%
Multiplier 49 49 0%
Block RAM 116 1 99.1%

Configuration Float-28 | Float-Opt | Savings
Frequency (MHz) 61.44 61.56 -

Slices 7,041 5,875 16.6%
Multiplier 48 48 0%
Block RAM 29 1 96.6%

The most significant savings are for the block RAMs used incibrestruction of
the divider in which over 96% of the block RAM can be saved ithbarithmetic
schemes. After optimization, 16.6% of the slices can bedswehe floating-point
implementation since both the size of the exponent andémacan be reduced. One
interesting result is the fixed-point optimized impleméiotarequires more logic
resources after optimization. This is because roundinig isgmplicitly added to
the implementation when conversion between formats argnestj It turns out that
the rounding logic consumes more slices than the eliminagid. However, 99%
of the BlockRAM is saved because of this optimization. ThedBRAM are used
for the lookup tables in the division operator. In additiemen though the fraction
size of the multiplier can be reduced in the floating-poimliementation, the design
tools report the same number of primitive multipliers bessaa primitive multiplier
performs a 17 bit unsigned multiplication and for any frantsize between 20 and
34, the design tool requires 4 multipliers.

According to the analysis of section 6.2.2 and 6.3.2, welsgize the design of
w-simulation with floating point configuration — 8 bits for exgent, 17 bits for mul-
tiplier fraction, 21 bits for adder fraction and one sign hitd BGM-simulation with
the optimized fixed point configuration, as shown in Table.6The synthesis re-

sults ofr-simulation and BGM-simulation with Virtex-Il Pro(XC2VR36FF896C)

Chapter 8 Experimental Results 94

Table 8.2Synthesis results for the-simulation with Virtex-11 Pro XC2VP30FF896.

Number of PPC405s 1 out of 2 50%
Number of SLICEs 4,746 out of 13,696 34%
Total Number 4 input LUTs 6,556 out of 27,392 23%
Number of Block RAMs 22 out of 136 16%
Number of MULT18X18s 18 out of 136 13%
Number of DCMs 3 outof 8 62%
Number of JTAGPPCs 1outofl 100%
PERIOD analysis for net “CLK” 20ns 50MHz

Table 8.3 Synthesis results for the BGM-simulation using a VirtexRro
XC2VP30FF896.

Number of PPC405s 1 out of 2 50%
Number of SLICEs 13,266 out of 13,696 96%
Number of Block RAMs 74 out of 136 54%
Number of MULT18X18s 58 out of 136 42%
Number of DCMs 4 out of 8 50%
Number of JTAGPPCs 1loutofl 100%
PERIOD analysis for net “CLK’ 20ns 50MHz

are shown in Tables 8.2 and 8.3. The details of the deviceatibn summary are
described in Table 8.4.

To compute the speedup of the FPGAsimulation design over software, we
compare execution time for different numbers of paths betwtae FPGA design
operating at 50 MHz and a software implementation on an fell.5 GHz machine

as shown in Table 8.5. The FPGA-based design achieves a &e¢gp factor for

Table 8.4Device utilization summary for BGM-core modules

Number of SLICEs 2,775(20%)
Number of Block RAMs | 16 (11%)
Number of MULT18X18s 40 (29%)
Number of PPC405s -

Chapter 8 Experimental Results 95

Table 8.5Comparison of Speed-up farsimulation

Paths Number 50,000| 500,000| 5,000,000/ 50,000,000
FPGA (Sec.) | 0.0013| 0.0103| 0.1003 1.0003
PC (Sec.) 0.010| 0.130 1.351 12.947
Speedup 7.7 12.6 13.5 12.9

Table 8.6Comparison of Speed-up for BGM-simulation

[Paths Numbef 50,000] 500,000] 5,000,000] 50,000,000

FPGA (Sec.) | 2.63 25.2 242 2400

PC (Sec.) 63 630 6300 63000

Speedup 24.9 25 26 26.2
over 500K paths.

In the BGM-simulation, the hardware BGM core generates fifiyhs in one
simulation batch using the hardware BGM core in a pipeliresghion. Repeated

batches cover the whole simulation. Therefore, numbertaf paths is,
Total NumPath = NumPathper Batch x NumBatch (8.1)

where Num Pathper Batch is equal to 50.

The total simulation time is composed of two parts. One issoomed by the
BGM-core simulation of batches and the other is post-piingsto calculate the
mean and standard error of the generated BGM paths usingabessor in soft-

ware. The total execution time can be calculated as follows,
TotalTime =~ t, x NumBatch + t (8.2)

wheret, andt, are the time consumed by hardware in each batch and software
respectively. According to our simulations usinga/ H = clock, t,, is 2.42ms and
tsis2.12ms.

Tables 8.5 and 8.6 show the FPGA-based accelerator’'s negbsxecution time

Chapter 8 Experimental Results 96

on ML310 board compared with a P4 1.5G Hz machine. The FPG&¢accel-
erator can generate one BGM path6# i.s, and nearly a twenty-fold reduction
in execution time was achieved. Parallel cores on largerAP&n achieve an
even larger speedup. As there are two PowerPC cores in thé& EB&l, it is also
possible to use one PowerPC core for the Monte Carlo sinonl@ind the other to
run embedded Linux. This would enable us to utilize Ethecnenected clusters of
FPGA boards, providing virtually unlimited scalabilitynsie paths can be generated

independently for this type of Monte Carlo simulation.

8.2 N-body Simulator

In this section, results showing the resource utilizatiot performance of the indi-
vidual operators in the CAST library, along with the preaisand performance of
the N-body coprocessor are presented. All of the resulte wienulated using both
the CAST system in C++ and Synopsys VSS for verifying the geed VHDL.
The target device was a Xilinx Virtex-Il XC2V1000FG456-5 fall cases except
those which required more than the 40 block RAMs availabléham device. For
those cases, namely the fixed and floating point implememistivith a fraction
size greater than or equal to 22, results for an XC2V4000tBE®5 are reported.
Performance measurements are based on the reports fronlithelSE 5.2i devel-

opment tools.

8.2.1 Arithmetic Library

Three measurements were used to evaluate the performarice operators: the
maximum frequency as reported by the Xilinx tools, the lagisource utilization
and the BlockRAM memory utilization.

The exponent wordlength of the floating point implementatod the integer

part of the LNS system were fixed to be 8 bits in width. This agunfation is similar

Chapter 8 Experimental Results 97

Figure 8.1 Memory usage oADD, MUL andz~%/2 (number of Virtex-Il 18-Kbit
BlockRAMS).

120

—O—Fix 1.5
100 +

80

—»%—floating "-1.5

60 -

40

Lookup table size (No. of Block Ram)

20

Fraction precison

to the IEEE 754 single precision standard and can operat®uiibverflow in our
simulations. For all 3 number systems, $ldB operations has similar performance
to theADD operation, and therefore they are not shown in the figure.

The number of BlockRAM memory resources required for thé'? operator
are plotted in Figure 8.1. This is determined by the memogypirements of the
STAM tables for both fixed and floating point implementatioAs can be seen in
the figure, since the floating point implementation uses #eelfpoint STAM for its
significand, the memory requirements are identical. FoL 8 implementations,
/2 can be computed by multiplying by -1.5 and no memory res@uee used.

The operating frequency and logic utilization are plottgdiast the number of

fractional bits for different operators and number systeémBigures 8.2 and 8.3

Chapter 8 Experimental Results 98

Figure 8.2 Frequency comparison of ti®dD, MUL andz~3/? operators.

350

—&— Fix adder

—+8— Fix Point multiplier
—&—Fix 1.5

300 + X Floating Adder
Floating Multiplier
— @ - floating 1.5
—+—LNS Adder
—X— LNS Multiplier
--A--LNSML5

250

N
=3
1<}

Frequency (MHz)
-
(&
o

100 +

50 A

Fraction precison

respectively. These tables can be used to compare diffenplementations, preci-
sions and numbering systems in the CAST arithmetic libadlgywing a quantitative
assessment of which approach is most suitable for a givditappn. Note that the
LNS library [aELO6] has a maximum LNS fractional wordlengftl3-bits and this

limitation is carried over to CAST.

8.2.2 N-body Coprocessor

Using the CAST system, implementations of the N-body copssor with different
fractional wordlengths using the fixed point, floating paamid LNS number sys-
tems were made. The exponent wordlength of the floating pwiptementation
and the integer part of the LNS system were fixed to be 8 bitsdithw

In order to show the ability of CAST to deal with several numggstems, an
implementation, similar to GRAPE-3 [OMB3] was built. In this hybrid format, a

similar configuration as GRAPE-3 was used and th(&)al10) fixed point format

Chapter 8 Experimental Results

99

Figure 8.3 Area utilization of theADD, MUL andxz~3/2 operators.

Area (slices)

10000

1000 -

100 +

10 +

aeasaea)

—— Fix adder

—— Fix multiplier
—&—Fix ~1.5
—>—Floating Adder
—X¥— Floating Multiplier
—@—floating "-1.5
—+—LNS Adder

—A— LNS Multiplier
—0—LNS M5

D/D/D/D

e T

10

Fraction precison

T
15

20

25

Chapter 8 Experimental Results 100

was used to represent the position vectors of the particldsalculate the differ-
ence between the position vectors. The difference was thevected to 415,6)
bit LNS format, which was used for all subsequent operatioealculating the par-
tial force. The partial force was converted t@28, 28) fixed point format which
was accumulated to obtain the sum in Equation 7.2.

The implementations were simulated using the CAST systeavatuate their
accuracy. To compare the precision of various implemeontatithe relative mean
squared errof,.(s), introduced in [ABLM98], was used. The relative mean square
error measures the error in force calculation between agbauarticles and is de-
fined as:

- 2
f—f
5,00 = 20

wheref is the force computed by the hardware coprocessoifdadhe reference

(8.3)

value computed using IEEE double precision floating-poritheetic. Since the
relative mean square error depends on the distance betive@marticles, pairs of
particles with varying distance was generated: (= 0) and the errors computed.
The resulting error functiom was plotted againstto obtain the error curves
of Figure 8.6. The average error curve for GRAPE-3 [MT98, AMBS] is also
shown for comparison. The fixed point implementation seffiefrom overflow
for small » and underflow for large: due to insufficient dynamic range for this
problem leading to large errors. Thus we do not consider fpadt to be a good
representation for this problem.

A comparison of the area utilization for different numetiegresentations and
fractional wordlengths is given in Figure 8.4. As expectiixed point has the
smallest area requirements. The LNS system has smalletrenefoating point up
to 8 bits, after which floating point is smaller. The main aogarhead for the LNS
lying in the addition operations which requires a large namtif slices for large
fraction sizes. The hybrid implementation has area betiged and floating.

The reported maximum clock frequency for the different scbg is given in

Figure 8.5. The fixed point implementation has the highestatjng frequency and

Chapter 8 Experimental Results 101

Figure 8.4 Area comparison of N-body implementations.

100000

—a&— Fix N-body
—@— Float N-body
—O—LNS N-body

10000 1 ——Hybrid

1000 +

Area (slices)

100 -

10 A

0 5 10 15 20 25

Fraction precison

the floating point implementation is the slowest. The LNS hylorid implementa-
tions achieve operating frequencies between the two.

If comparable accuracy to GRAPE-3 for the entire input raisgdesired, as
mentioned earlier, the fixed point implementation is notale. This leaves the
floating point(21, 12) =, LNS (21, 11) . and hybrid implementations as candidates.
By comparing their area and frequency requirements in Eg8r4 and 8.5, it can be
seen that the hybrid implementation offers a smaller ardehagher frequency than
the other two candidates. Thus, for the N-body example ptedebased on consid-
erations of precision, and circuit area, the hybrid impletagon appears to be the
most suitable implementation scheme for the Xilinx ViriéxC2V1000FG456-5
device chosen. If, for example, a different device such asr@X/device which
does not have dedicated multipliers, were to be used, tedfts may be different,
and the same methodology could be used to aid in making theheise.

A comparison of area and frequency suggested that the hiybplgémentation
was the best solution. Different constraints on precisasaa and speed may lead

to different choices, easily identified from the graphs ot&d.

Chapter 8 Experimental Results 102

Figure 8.5Performance comparison of N-body implementations.

100

—— Fix N-body
— @ - Float N-body
- - - - LNS N-body
Hybrid

90 4

80 -

70 4

60 | N

50 -

Frequency (MHz)

40 |

30

20 -

104

0

T T T T
0 5 10 15 20 25

Fraction precison

8.3 Summary

From the above results, we see that the datapath generangddAST framework
can improve performance by quickly explore different dedmgdeoffs.

The bit width optimization in the BGM simulation requiresngeating a large
number of datapaths. The built-in search function findsudiscthat balance area
and performance while fulfilling the precision constraintthe use of the CAST
system significantly reduces the development time in treg ca

In the N-body force pipeline example, the hybrid schemefficdit to develop
using traditional design techniques. Mixing different rhen systems in N-body
pipeline is done in the CAST framework with the unified inéexd and built-in num-

ber system conversion objects.

Chapter 8 Experimental Results 103

Figure 8.6 Quantization error for force calculation in the N-body desh.

1.00E+00

1.00E-01

1.00E-02

1.00E-03

1.00E-04 §

Error

1.00E-05 +

1.00E-06

° 8

A 16

o 12

X software
) |=¥=GRAPE3

1.00F-04

1.00E-07

1.00E-08

1.00E+00 §

1.00E-01

1.00E-02

Error

1.00E-03

1.00E-04

¢ 10
A 16
o 23
X 20

==Ne=GRAPE3

1.00E-04

1.00E+00

1.00E-01

1.00E-02

Error

1.00E-03

1.00E-04

1.00E-05

1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03
r

(b) Fixed-point quantization error.

© 8 A 11
o 13 == GRAPE3

%

B

¢

R o OI
B o'
©

1.00E-04

1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03
r

(c) LNS quantization error.

1.00E+00

1.00E-01 4

Error

1.00E-02 -

1.00E-03

O Hybrid ==¥=GRAPE3|

1.00E-04

1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03
r

(d) Hybrid quantization error.

Chapter 9

Conclusion

The CAST system was developed to provide a framework to desigl optimize
datapaths which are treated as arithmetic operator nesworke set of unified
arithmetic libraries and associated helper functions nthgeframework an ideal
environment of building hardware accelerator for simolatsystems on reconfig-
urable platform. Through several application exampledratifation systems, this
thesis demonstrated that the proposed design methodddmgyecused to optimize
datapaths in design in various levels and achieve signtfioggrovements.

In the N-body force pipeline example, it is shown that theetyscan optimize
datapaths by maxing different number systems in a samerdeBigs is the highest
level when optimization is performed and the results showgehmprovement of
using single number system. The unified configuration iaterfof CAST library
components simplifies this optimization process over pevimanual methods.

In the parallel multiplier example, the system’s abilitydptimize individual
operators was demonstrated using different arithmetiordilgns. The example
demonstrated that CAST can be used to evaluate performdnagtlumetic al-
gorithms on target hardware. This helps users decide oalde&itmplementation
schemes, subject to given constraints.

The Monte Carlo simulation system shows CAST’s ability tdimjze data

paths at the lowest hardware level on a reconfigurable pratfaBy fine tuning

104

Chapter 9 Conclusion 105

the bit width of each operator in the design, CAST can autaal generate im-
proved datapaths with smaller footprint while maintainihg required accuracy.

All these achievements are based on the novel idea of cagthath arithmetic
and hardware design expertise in a unified framework andidemsg different
abstract levels in optimization.

In the future, we would like to enhance the arithmetic ligiarCAST by adding
more number representations (e.g. redundant and residubansystems), arith-
metic schemes (e.g. online arithmetic, division, squace etc), and incorporate
existing libraries (e.g. the Xilinx LogiCore library, theGQILA Astra library for on-
line arithmetic [EPMO02] and the floating-point module geater in [LTMO03]) into

the framework.

Bibliography

[ABLM98] E. Athanassoula, A. Bosma, J.-C. Lambert, and JkiMa. Perfor-
mance and accuracy of a GRAPE-3 system for collisionles®d+b
simulations. InMonthly Notices of the Royal Astronomical Society
pages 369-380, Feb 1998.

[aELO6] Aremnaire Project at ENS Lyon. A vhdl library of paratrisable

floating-point and Ins operators for fpga. 2006.

[BGM97] A. Brace, D. Gatarek, and M. Musiela. The market mloaf interest
rate dynamicsMathematical Finance7(2):127-155, April 1997.

[BHO8] P. Bellows and B. Hutchings. JHDL - an HDL for reconfighle sys-
tems. INFCCM '98: Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machingpage 175, Washington, DC, USA,
1998. IEEE Computer Society.

[BHW96] Ronen Barzel, John F. Hughes, and Daniel N. Woodus$ttde motion
simulation for computer graphics animation. QGomputer Animation
and Simulationpages 183 — 197, 1996.

[Boo51] A. D. Booth. A signed binary multiplication technig. Quart. J.
Mechanical and Applied Math4:235-240, 1951.

[BTLMO6] Jacob A. Bower, David B. Thomas, Wayne Luk, and QskBencer.

A reconfigurable simulation framework for financial compiga. In

106

[Cho97]

[CLS02]

[CM94]

[DIWO3]

[ECS94]

[ELO4]

[EMO6]

[EPMO02]

IEEE International Conference on Reconfigurable Computmgl

FPGA'’s (ReConFig)pages 1-9, 2006.

S. Chongwe. Simulation of aerodynamics problem alis&ributed
shared-memory machine. High Performance Computing on the In-

formation Superhighwaypages 93-98, 1997.

Wangiang Chen, Register L.F., and Banerjee S.Ku&ition of quan-
tum effects along the channel of ultrascaled Si-based MOSHEEE
Transactions on Electron Device49:652 — 657, 2002.

C.P. Cowen and S. Monaghan. A reconfigurable MontdeCaus-
tering processor (mccp). IRroceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCpBges
59-65, 1994.

Long D.G., Luke J.B., and Plant W. Ultra high resauatwind re-
trieval for seawinds. I"EEE International Proceedings of Geoscience
and Remote Sensing Symposium (IGAR&®)es 1264— 1266, 2003.

D. Eastlake, S. Crocker, and J. Schiller. Randosminresommenda-

tions for securityNetwork Working GroupRFC 1750, 1994.

M.D. Ercegovac and T. Landigital Arithmetic Morgan Kaufmann,

2004.

R. Even and B. Mishra. Cafe: a complex adaptive finalnenviron-
ment. INIEEE/IAFE 1996 Conference on Computational Intelligence

for Financial Engineeringpages 20-25, 1996.

M. Ercegovac, J. Pipan, and R. Mcllhenny. ASTRA: thAqi
metic scripting tool for reconfigurable architectures. 200

http://unagi.cs.ucla.edu/Astra.

107

[FDO2] Viktor Fischer and Milos Drutarovsky. True randonmmoer generator
embedded in reconfigurable hardware.Phoceedings of the Crypto-
graphic Hardware and Embedded Systems Workshop (CHE8ES
415-430, 2002.

[FlyO1] Michael J. Flynn Advanced computer arithmetic desigiiley, 2001.

[FMC84] R.C. Fairfield, R.L. Mortenson, and K.B. Coultha#n LSI Random
Number Generator (RNG). IAdvances in Cryptography: Proceed-
ings of Crypto 84pages 203-230. LNCS 0196, Springer-Verlag, 1984.

[Fu95] Michael C. Fu. Pricing of financial derivatives viasilation. INnWSC
'95: Proceedings of the 27th conference on Winter simutatiages
126-132, 1995.

[GAMO2] LienhartG., Kugel A., and R. Manner. Using floatipgint arithmetic
on fpgas to accelerate scientific n-body simulationsPtlaceedings
of the IEEE Symposium on Field-Programmable Custom Comguti
Machines (FCCM)pages 182-191, 2002.

[GBPO1] A. Gerosa, R. Bernardini, and S. Pietri. A fully igtated 8-bit,
20MHz, truly random numbers generator, based on a chaosic sy
tem. INSSMSD. 2001 Southwest Symposium on Mixed-Signal Design
pages 87-92, 2001.

[GFAT04] M. Gokhale, J. Frigo, C. Ahrens, J.L. Tripp, and R. MirmidMonte
Carlo radiative heat transfer simulation. Pmoceedings of the IEEE
Conference on Field-Programmable Logic and ApplicatioRBL(),
pages 95-104, 2004.

108

[GJS03]

[GMO8]

[Gun88]

[GVHO6]

[HBH*+99]

[HGG+05]

[HLT *02]

Liang Ge, S. Casey Jones, and Fotis Sotiropoulosnelaal simu-

lation of flow in mechanical heart valves: Grid resolutiomldhe as-

sumption of flow symmetryJournal of Biomechanical Engineering
125:709 — 718, 2003.

J.D. Golic and R. Menicocci. Edit distance corraatiattack on the
alternating step generator. Advances in Cryptology: Crypto '97
pages 499-512, 1998.

C.G. Gunther. Alternating step generators coletddby de bruijn se-
guences. IMdvances in Cryptology: Proceedings of Eurocrypt 87
pages 5-14, 1988.

Yongfeng Gu, Tom VanCourt, and Martin C. Herbordtgroved in-
terpolation and system integration for fpga-based moéalynamics
simulations. InFPL '06: Proceedings of Field-Programmable Logic

and Applicationspages 1-8, 2006.

Brad Hutchings, Peter Bellows, Joseph Hawkins, Scotnidert,
Brent Nelson, and Mike Rytting. A CAD suite for high-perfaance
FPGA design. InSeventh Annual IEEE Symposium on Field-
Programmable Custom Computing Machingsmges 12-24, April
1999.

H.H. Hellmich, M. Geike, P. Griep, P. Mahr, M. Rafanedihd H. Klar.
Emulation engine for spiking neurons and adaptive synapgights.
In IEEE International Joint Conference on Neural Netwqrkages
3261 — 3266, 2005.

C. H. Ho, Philip Heng Wai Leong, K. H. Tsoi, Ralf Ludewigeter
Zipf, Alberto Garcia Ortiz, and Manfred Glesner. Fly - a niable

hardware compiler. I+PL '02: Proceedings of the Reconfigurable

109

[HTY +03]

[HUIOO]

[IEES5]

[Inc02]

[Int99]

[JK99]

[Knu81]

[Kor93]

[Kor02]

Computing Is Going Mainstream, 12th International Confee on
Field-Programmable Logic and Applicationpages 381-390, Lon-
don, UK, 2002. Springer-Verlag.

C.H. Ho, K.H. Tsoi, H.C. Yeung, Y.M. Lam, K.H. Lee, P.H.\Akong,
R Ludewig, P. Zipf, A.G. Ortiz, and M. Glesner. Arbitrary fction
approximation in HDLs with application to the N-body profvie In
2003 IEEE International Conference on Field-Programmabéeh-
nology (FPT) pages 84-91, Dec 2003.

J.C. Hull. Option, Futures, and Other DerivativesPrentice Hall,
2000.

IEEE.|EEE standard for binary floating-point arithmetic: ANHEE
std 754-19851985.

Xilinx Inc. Xilinx Core Generator http://www.xilinx.com/-ipcenter/,

2002.

Intel Platform Security Division. The intel ran-
dom number generator. Intel technical brief 1999.

ftp://download.intel.com/design/security/rng/tedebpdf.

B. Jun and P. Kocher. The Intel random number gener-
ator. White paper by Cryptographic Research |ncl1999.
ftp://download.intel.com/design/security/rng/CR .

D. Knuth. The Art of Computer Programming: Vol. 2, Seminumerical
Algorithms Addison-Wesley, 1981.

I. Koren. Computer Arithmetic Algorithmdrentice Hall, 1993.

|. Koren. Computer Arithmetic AlgorithmsA.K. Peters, 2nd edition,
2002.

110

[LKMO2]

[LLC*01]

[LRN*01]

[LSO07]

[LTMO3]

[Mac61]

[MakO05]

[Men02]

G. Lienhart, A. Kugel, and R. Manner. Using floatimpint arithmetic
on fpgas to accelerate scientific n-body simulationsPtaceedings
of the IEEE Symposium on Field-Programmable Custom Comguti
Machines (FCCM)pages 182-191, 2002.

P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. ddw
M.Y. Wong, and K.H. Lee. Pilchard — a reconfigurable compyplat-
form with memory slot interface. IRroceedings of the IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (MEC
2001.

X. Le, J. Rasty, A. Neuber, J. Dickens, and M. Kristians€alcula-
tion of air temperature and pressure history during the atjmar of a
magnetic flux compression generator. IHEE Conference of Pulsed

Power Plasma Sciengpages 224—, 2001.

P. UEcuyer and R. Simard. TestuO1: A c library for dnyal testing
of random number generatorgo appear on ACM Transactions on
Mathematical Software33, 2007.

J. Liang, R. Tessier, and O. Mencer. Floating Poimituseneration
and Evaluation for FPGAs. IRroceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines (FCGiMyjes
185-194, 2003.

O. L. MacSorley. High speed arithmetic in binary qmiters. Proc.
IRE, 49:67-91, 1961.

Junichiro Makino. Modified simd architecture sti&afor single-chip

implementation, 2005.

O. Mencer. PAM-Blox II: Design and evaluation of C-+mod-

ule generation for computing with FPGAs. PRroceedings of the

111

[Met93]

[MFKOO]

[MLBPO3]

[MMFO8]

[MSO01]

[MT98]

IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM)pages 67-76, 2002.

M. Metzger. Modelling and simulation of transienates in the heat
distribution network. Ininternational Conference on Systems, Man

and Cybernetigspages 136—-141, Oct 1993.

Junichiro Makino, Toshiyuki Fukushige, and Mas#aga. A 1.349
tflops simulation of black holes in a galactic center on GRARPHN
Supercomputing '00: Proceedings of the 2000 ACM/IEEE aenfse
on Supercomputing (CDROM)age 43, Washington, DC, USA, 2000.
IEEE Computer Society.

J.M. McCollum, J.M. Lancaster, D.W. Bouldin, and[@> Peterson.
Hardware acceleration of pseudo-random number generiati@im-
ulation applications. IfProceedings of the 35th Annual Southeastern

Symposium on System Theggges 299-303, March, 2003.

Oskar Mencer, Martin Morf, and Michael J. Flynn. PABlox: High
performance FPGA design for adaptive computing. In Kenmneth
Pocek and Jeffrey Arnold, editorlEEE Symposium on FPGAs for
Custom Computing Machinepages 167-174, Los Alamitos, CA,
1998. IEEE Computer Society Press.

J. Moody and M. Saffell. Learning to trade via direeinforcement.

IEEE Transactions on Neural Network2:875 — 889, 2001.

Junichiro Makino and Makoto Taiji. Scientific Simulation with
Special-Purpose Computers - the GRAPE systdotm Wiley & Sons
Ltd, 1998.

112

[MTES97]

[MvOV9I7]

[NEM]

[NM65]

[NSE*+99]

[OME*+93]

[OskO6]

[OVL96]

[Pag96]

J. Makino, M. Taiji, T. Ebisuzaki, and D. Sugimot@rape-4: A mas-
sively parallel special-purpose computer for collisioNabody simu-
lations. InApJ 48Q pages 432—-446, 1997.

A.J. Menezes, P.C. van Oorschot, and S.A. Vanstddandbook of
Applied CryptographyCRC Press, 1997.

NEMO - A Stellar Dynamics Toolbox. Inhttp://bima.astro.-

umd.edu/nemo/

J. Nelder and R. Mead. A simplex method for functiommiization.
Computey 7:308—-313, 1965.

T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and BnEgreen.
Molecular dynamics machine: Special-purpose computemfaecu-
lar dynamics simulations. IMolecular Simulationpages 401-415,
1999.

S. K. Okumura, J. Makino, T. Ebisuzaki, T. Fukushige t@, D. Sug-
imoto, E. Hashimoto, K. Tomida, and N. Miyakawa. Highly dara
lelized special-purpose computer, GRAPE-3Fleld Programmable

Logic and Applicationsvolume 45, pages 329-338, 1993.

Mencer Oskar. ASC: A Stream Compiler for ComputinthWwPGAs.
IEEE Transactions on Computer-Aided Desig006.

Vojin G. Oklobdzija, David Villeger, and Simon S. Wi A method for
speed optimized partial product reduction and generatidasb par-
allel multipliers using an algorithmic approadiEE Trans. Comput.
45(3):294-306, 1996.

|. Page. Constructing hardware-software systeam & single de-
scription. Journal of VLSI Signal Processingj2(1):87-107, 1996.

113

[PALO6]

[Pato0]

[PCO0]

[PDAO1]

[PGO3]

[PPVRO5]

[Pro05]

[Raz96]

A. Postula, D. Abramson, and P. Logothetis. The glesif a spe-
cialised processor for the simulation of sintering. Rroceedings of
the 22nd EUROMICRO Conferengqeges 501-508, 1996.

C. Patterson. High Performance DES Encryption irte¥i FP-
GAs using JBits. InProceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCClhges 113—
121, 2000.

C.S. Petrie and J.A. Connelly. A noise-based IC randamber gen-
erator for applications in cryptographyEEE Journal of Solid State
Circuits, 47(5):615-621, 2000.

G. Picinbono, H. Delingette, and N. Ayache. Nonéneand
anisotropic elastic soft tissue models for medical simaiatin IEEE
International Conference on Robotics and Automation (IGRAages
1370 —1375, 2001.

Ben Popoola and Paul Gough. Evaluating the perfoceaih space
plasma simulations using fpga’s. High Performance Computing for
Computational Science - VECPAR 20pages 169-188, 2003.

Raoul Pietersz, Antoon Pelsser, and Marcel vaneRegr-
tel. Fast drift approximated pricing in the bgm model.
Finance 0502005, EconWPA, February 2005. available at
http://ideas.repec.org/p/wpa/wuwpfi/0502005.html.

The Grape Project. http://astrogrape.org, 2005.

B. Razavi. A study of phase noise in cmos oscillattE&E Journal
of Solid-State Circuits31(3):331-343, 1996.

114

[Ruk01] A. Rukhin. A Statistical Test Suit For Random and Pseudorandom
Number Generators for Cryptographic Application®IST Special
Publication 800-22, 2001.

[SMOR98] Paul F. Stelling, Charles U. Martel, Vojin G. Oktiija, and R. Ravi.
Optimal circuits for parallel multipliers. IEEE Trans. Comput.
47(3):273-285, 1998.

[SPKO1] Toni Stojanovski, Johnny Pil, and Ljupco KocarehaBGs-based ran-
dom number generators. Part Il: practical realizatiffEE Transac-
tions on Circuits and Systems — I: fundamental Theory andiégp
tion, 48(3):382—-385, March 2001.

[SS97] Michael J. Schulte and James Stine. Symmetric lipsables for ac-
curate function approximation. In Tomas Lang, Jean-Mideller,
and Naofumi Takagi, editor®roceedings of the 13th IEEE Sympo-
sium on Computer Arithmetigpages 175-183, Los Alamitos, CA,
1997. IEEE Computer Society Press.

[SS99a] James E. Stine and Michael J. Schulte. The symntaiiie addition
method for accurate function approximatiofournal of VLSI Signal
Processing21:167-177, 1999.

[SS99b] J.E. Stine and M.J. Schulte. The symmetric tabl@&iaddnethod for
accurate function approximation. bournal of VLSI Signal Process-

ing, pages 167-177, 1999.

[SSLO1] J. Schulz-Stellenfleth and S. Lehner. Ocean wavgimgaising an air-
borne single pass across-track interferometric K#£E Transactions
on Geoscience and Remote Sensg®y38 — 45, 2001.

[THYLO4] K.H. Tsoi, C.H. Ho, H.C. Yeung, and P.H.W. Leong. Amithmetic
library and its application to the N-body problem. Rroceedings

115

[TLO5]

[TLLO3]

[TLLO7]

[TTID91]

[U.S94]

[WF82]

[Xil0Oa]
[Xil0Ob]

[Xil02]

of the IEEE Symposium on Field-Programmable Custom Comguti
Machines (FCCM)pages 68—78, 2004.

K.H. Tsoi and P.H.W. Leong. Mullet - a parallel mulligr generator.
In Proceedings of the IEEE Conference on Field-Programmabtgd.
and Applications (FPL)pages 691-694, 2005.

K.H. Tsoi, K.H. Leung, and P.H.W. Leong. Compact FR®ased
true and pseudo random number generatorsProteedings of the
IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM)pages 51-61, 2003.

K.H. Tsoi, Ka Ho Leung, and Philip H.W. Leong. A higledormance
physical random number generatdEE Proc. Computers & Digital
Techniques2007. Accepted for publication, March 2007.

Ito T., Ebisuzaki T., Makino J., and Sugimoto D. Aesmal-purpose
computer for gravitational many-body systems: Grape-PASJ 43

pages 547-555, 1991

U.S. Department of Commercesecurity Requirements for Crypto-
graphic Modules Federal Information Processing Standards Publica-
tion FIPS 140-1, 1994.

Shlomo Waser and Michael J. Flynitroduction to arithmetic for

digital systems designersiolt, Rinehart and Winston, 1982.
Xilinx Inc. Virtex 2.5V field programmable gate arrgy2000.
Xilinx, Inc. Xilinx Coregen Reference Guid2000. Version 3.1i.

Xilinx Inc. Virtex-E Extended Memory: Detailed Functional Descrip-

tion, 2002.

116

[Xil03]

[Xil04a]

[Xil04b]

[YJOO]

[YOFAO4a]

[YOFA04b]

[ZHF*07]

[ZLH*+05]

Xilinx Inc. Virtex-1l Pro™ Platform FPGAs: Complete Data Sheet
Oct. 2003. Advance Product Specification, DS083.

Xilinx Inc. ML310 Development Platforn2004.

Xilinx, Inc. Virtex-Il Platform FPGAs: Complete Data She2004.

Version 3.3.

Wen-Chang Yeh and Chein-Wei Jen. High-speed boatbaed paral-
lel multiplier design.IEEE Transactions on Compute#9:692—701,
2000.

M. Yoshimi, Y. Osana, T. Fukushima, and H. Amantochastic sim-
ulation for biochemical reactions on fpga. Pnoceedings of the IEEE
Conference on Field-Programmable Logic and ApplicatioRBL),
pages 105-114, 2004.

M. Yoshimi, Y. Osana, T. Fukushima, and H. Amantochastic sim-
ulation for biochemical reactions on fpga. Pnoceedings of the IEEE
Conference on Field-Programmable Logic and ApplicatioRBL),
pages 105-114, 2004.

Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Kaarh
A.E., and Mueller K. Visual simulation of heat shimmeringlami-
rage. |IEEE Transactions on Visualization and Computer Graphics
13:179-189, 2007.

G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, C. C. C. Chgu
D-U. Lee, R. C. C. Cheung, and W. Luk. Reconfigurable accttera
for Monte Carlo based financial simulation. Rroceedings of the
IEEE International Conference on Field-Programmable Temlbgy

(FPT), pages 215222, 2005.

117

[ZYR91] K. Zheng, C.H. Yeng, and T.R.N. Rao. An improved knsyndrome
algorithm in cryptanalysis with applications. Advances in Cryptol-
ogy: Crypto '9Q volume LNCS 537, pages 34-47, 1991.

118

Publications

Journals

e K.H. Tsoi, Ka Ho Leung, and Philip H.W. Leong. A high perfomta phys-
ical random number generator. IEE Proc. Computers & Didigahniques,

2007. Accepted for publication, March 2007.

Conference Papers

e K.H. Tsoi and P.H.W. Leong. Mullet - a parallel multiplier ggrator. In
Proc. International Workshop on Field Programmable LogatApplications
(FPL), pages 691-694, 2005.

e G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, C. C. C. Cheubg,).
Lee, R. C. C. Cheung, and W. Luk. Reconfigurable accelerdtiomonte
carlo based financial simulation. In Proc. Internationahfécence on Field
Programmable Technology (FPT), pages 215-222, 2005.

e K.H. Tsoi, C.H. Ho, H.C. Yeung, and P.H.W. Leong. An arithrodibrary
and its application to the N-body problem. In Proc. IEEE Sgsipm on
Field-Programmable Custom Computing Machines (FCCM)epafB-78,
2004.

e K.H. Tsoi, K.H. Leung, and P.H.W. Leong. Compact FPGA-basaed and

119

pseudo random number generators. In Proc. IEEE SymposiuFiebt-

Programmable Custom Computing Machines (FCCM), pagesl52dD3.

120

