A Microcoded Elliptic Curve Cryptographic
Processor

LEUNG Ka Ho

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Philosophy
in

Computer Science and Engineering

(©The Chinese University of Hong Kong
August 2001

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.



A Microcoded Elliptic Curve Cryptographic Processor
Submitted by
LEUNG Ka Ho

for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2001

Abstract

Elliptic curve cryptography is a public key cryptosystem based on the el-
liptic curve discrete logarithm problem. The reason for the attractiveness of
ECC is that there is no sub-exponential algorithm known to solve the elliptic
curve discrete logarithm problem. This leads to lower memory requirements,
lower computational requirements and higher security than other public key
cryptosystems.

This thesis describes an implementation of a microcoded elliptic curve pro-
cessor using FPGA technology. This processor implements optimal normal ba-
sis field operations in Fyn. The design is generated by a parameterized module
generator which can accommodate arbitrary n and also produce field multi-
pliers with different speed/area tradeoffs. The control part of the processor is
microcoded, enabling curve operations to be incorporated into the processor
hence reducing the chip’s [/O requirements. The microcoded approach also
facilitates rapid development and algorithmic optimization; for example, pro-
jective and affine coordinates were supported using different sets of microcodes.
The design was successfully tested on a Xilinx Virtex XCV1000-6 device and
could perform an elliptic curve multiplication over the field Fy» using affine
and projective coordinates for n = 113, 155, 173, 281, 371 and 473.

Elliptic curve processor is particularly suitable for resource limited devices



because of its lower requirements of memory and computation. It is applicable
to be implanted into smart cards, cellular phones and other hand-held devices

so that secure communication can be provided.
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Chapter 1

Introduction

1.1 Motivation

The Internet is growing at an exponential rate and has currently over 400
million users compared with 45 million in 1996 [nua]. This figure is predicted
to reach one billion by 2005. In order to facilitate the secure transmission of
funds over the Internet, cryptography must be used. Cryptographyis therefore
a key to enable technology for the Internet and E-commerce systems. RSA is
the most widely used public key cryptosystem today and the RSA algorithm is
licensed by over 700 companies and has an estimated installed base of around
500 million users [rsaa]. Flliptic curve cryptography (ECC) is an alternative
public key cryptosystem to RSA. It was proposed in the mid-1980s and has
become attractive in recent years because of its lower memory requirements,
lower computational requirements and higher security, making it suitable for
smart cards, cellular phones or any other resource constrained applications.
Hardware cryptographic implementations give more efficient performance
than software implementations. It is due to software cryptographic programs
are compiled to run a sequence of instructions dedicated to the specific micro-

processor. Hardware cryptographic implementations can utilize the resources



Chapter 1 Introduction 2

and customize the architecture to maximize the efficiency of the implementa-
tions. Field-Programmable Custom Computing Machines (FCCM) use Field—
Programmable Gate Arrays (FPGAs) which are featured with logic components
and routing resources. FPGAs can be programmed as hardware designs with
different purposes and erased under the field for re-programming.

In the last decade, FPGA technology has considerably improved. A state-
of-the-art Xilinx Virtex FPGA XCV3200E contains 32,448 slices which is
equivalent to 4M system gates, and it has become possible to fit high per-
formance cryptographic systems on a single device. Such a reconfigurable
hardware is particularly suitable for cryptographic applications because of its
high flexibility when compared with traditional ASTC and VLSI designs. There

are several advantages in using a reconfigurable implementation:

e it is possible to implement many different cryptosystems on the same
hardware platform. Therefore it can reduce the cost of development,

and support future algorithms

e the turnaround time of developing a reconfigurable hardware is usually
shorter. Productivity can be increased and more sophisticated algorithm

can be used

o the technology of FPGAs and deep sub-micron are continuous improv-
ing. Therefore faster and larger devices are guaranteed in the future.
These can improve the performance of FPGA designs with nearly no

re-engineering work

o the parameters of the cryptographic algorithm can be changed at any
time. For most cryptosystems, the level of security is defined by the
length of the key. With reconfigurable hardware, the key size can be
easily modified. For example, in an elliptic curve cryptosystem recon-

figurable hardware provides the capability to use parameter dependent
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designs specilized for different key sizes, curve parameters and underlying

arithmetic functions.

1.2 Aims

The main aim of this work was to develop an FPGA based elliptic curve
cryptographic processor using an optimal normal basis. In particular, a design

with the following features was desired:

e use advantages associated with reconfigurable hardware to develop spe-

cialized processors with arbitrary key size which are fast and flexible
e use modular design to allow tradeoffs between space and speed

e provide high performance by minimizing the 1/O overhead and maximiz-

ing the clock rate.

1.3 Contributions

This thesis presents an elliptic curve cryptographic processor using an optimal
normal basis. The work described in this thesis has the following features

which distinguishes it from all previous designs:

o the higher level curve operations as well as the field operations were
implemented on the chip. This makes the I/O bandwidth requirements
several orders of magnitude lower than for chips which only implement

the field operations

e the curve operations are implemented as sequences of field operations
which are programmed in microcode. This allows algorithmic optimiza-

tions to the design to be made without changing the hardware
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a study of the performance of using projective verses affine coordinates

for implementing curve operations was made

o the entire design is generated by a module generator which can generate
arbitrary key size ECC systems. Thus ECC systems of arbitrary size
over an optimal normal basis can be generated (provided they fit on the

FPGA device)
e a detailed profile of instruction usage during execution was made

e the parallelism of the field multiplier can also be controlled by the module

generator, greatly improving performance

e the initialization of the inputs of the curve multiplication to be computed
was performed using bitstream reconfiguration which results in a savings

in hardware and could lead to an improvement in speed.

1.4 Thesis Outline

An introduction to cryptography is presented in Chapter 2. This is followed
with an overview of the background mathematical theory for elliptic curve
cryptosystems in Chapter 3.

Chapter 4 contains a description of previous work related to this research.
Previous hardware and software implementations of elliptic curve cryptosys-
tems will be discussed.

Chapter 5 provides some history and background of elliptic curve opera-
tions. The algorithms applied to the elliptic curve processor is also introduced.
Moreover, security that can be realized by using elliptic curve cryptosystems
is detailed.

Chapter 6 describes the tools and reconfigurable hardware that was used,

including the tools that developed to facilitate the design. In addition, the
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implementation of elliptic curve processor is introduced and the architecture
of the design is discussed.
In Chapter 7, results are presented and conclusion and some recommenda-

tions for future research in this area are given in Chapter 8.



Chapter 2
Cryptography

2.1 Introduction

In this chapter, a brief introduction to cryptography is given. It will cover the
important concepts of secret key and public key cryptosystems which are the
two main classes of cryptosystems.

This chapter begins with an introduction to cryptography. It is followed
by discussing two kinds of cryptosystems, secret key and public key cryp-
tosystems. The details about public key cryptosystems are given next. The
major components, one-way hashing functions, certification authorities, the
discrete logarithm problem, key exchange protocols and digital signatures are

discussed. Finally, a brief comparison of RSA and ECC is given.

2.2 Foundations

Cryptography is a technique used for keeping a message secret during trans-
mission through an untrusted and insecure channel. During encryption, the
original message (called the plaintext) is encoded into an encrypted message
(called the ciphertext). Similarly, the process that retrieves the plaintext from
the ciphertext is called decryption. Encryption and decryption are usually
associated with a key. In a properly designed cryptosystem, the decryption
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Alice Bob
Plaintext Adversary Original
Plaintext
M M
4
Encryption ,| Decryption
E D
] I nsecure channel 7y
Ke Ciphertext C Ky
Key Source Key Source

Figure 2.1: Overview of cryptographic transmission process.

process can be performed successfully only by knowing the right key. The level
of the security of a cryptographic system depends on the algorithm as well as
the key size. Longer keys are less likely to be guessed and for each additional
bit in a key, the time for an exhaustive search is doubled. An overview of a
cryptographic transmission process is shown in Figure 2.1

The transmission process can be formulated as follow.

(M) = C©
Di,(C) = M
Dr,(Ek.(M)) = M

where M is the plaintext, C'is the ciphertext, K, is the encryption key and K}
is the decryption key. Ex(7) and Dg(7) are the encryption and decryption
of 7 with key K respectively.

The aim of the encryption is to make it intractable for an adversary who
is eavesdropping on the insecure channel to deduce the secret message, or in
other words, make it impossible to derive the plaintext from ciphertext without
the decryption key K.

Cryptographic algorithms can be divided into two types, namely symmetric

algorithms and asymmetric algorithms (also known as secret key algorithms
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Alice Bob
Plaintext Adversary Original
Plaintext
M M
A
Encryption . .|  Decryption
%S Insecure channel ?s
Ciphertext C
K p K
Key Source
Secure channel

Figure 2.2: Secret key cryptosystem.

and public key algorithms respectively). Symmetric algorithms make use of
a single key for both encryption and decryption processes (K. = Ky) while
asymmetric algorithms have different keys for encryption and decryption (in

general K. # Ky).

2.3 Secret Key Cryptosystems

In a secret key cryptosystem, the encryption and decryption key are the same
(K. = Ky in Figure 2.1). The decryption process is just the reverse of en-
cryption process with the same key. An example of secret key cryptosystems
is data encryption standard (DES) [MOV99] which has been widely used for
over 20 years. This is illustrated in Figure 2.2.

Secret key cryptosystems can be summarized by the following formulae
where F, and D, are the encryption and decryption processes of the secret key

cryptosystem respectively.

ESJ((M) - C

=

DSJ((C) -
Ds,]&"(Es,I((M)) = M
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Alice Bob
Plaintext Adversary Original
Plaintext
A y
M M
A A
Encryption > Decryption
Ep Dp
I Insecure channel 1 "
Kbpub Ciphertext C pri
Key pair
(Kb pri 1Kbpub )

Figure 2.3: Public key cryptosystem.
2.4 Public Key Cryptosystems

By careful design of cryptographic algorithm, secret key cryptosystems can be
very secure. However, when a secret key cryptosystem is used, the key distri-
bution problem must be addressed. The receiver’s keys must be distributed
in secret and anyone with the key will know the plaintext also. A key could
be distributed through a trusted courier, a phone system or some other secure
channel.

The generation, transmission and storage of keys is called key management.
It is often difficult to provide secure key management, especially in open and
diverse systems with a larger number of users, for instance, the Internet. In
order to solve the key distribution problem, public key cryptosystems were in-
troduced by Whitfield Diffie and Martin Hellman [DH76] in 1976 with different
keys for encryption and decryption.

Figure 2.3 shows how a public key cryptosystem works. Since encryption
keys and decryption keys are different, the keys are generated in pairs, one
which is made public and the other kept private. Suppose Alice and Bob
have their own key pairs. The public keys are denoted with subscript “pub”

while subscript “pri” is used to represent the private keys of each party. Here
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E, and D, are the encryption and decryption algorithms of the public key
cryptosystem. If Alice wants to send a secret message to Bob, she will use the
public key of Bob (K'b,,;) to encrypt the message and then send the ciphertext
to Bob. When Bob receives the ciphertext, he can decrypt the ciphertext by
using his private key (Kb,.;) to get back the original plaintext.

An adversary who only knows Kb, and C' but not Kb,.;, cannot de-
crypt the ciphertext since the cryptosystem is designed to make that process

intractable.

2.4.1 One-way Function

Public key cryptosystems are based on a problem that is difficult to solve.
“Difficult” in this case refers to the computational requirements in finding
a solution. These hard problems are known as a one-way function in the
terminology of cryptography.

A one-way function is a mathematical function that is significantly easier
to compute in one direction than in the reverse direction. It might be possible,
for example, to compute the function in the forward direction in a second but
to compute its inverse could take several million years. A one-way function for
a public key cryptosystems is computational infeasible in the inverse direction
unless one has additional information (known as “trap door”), which makes
the inverse computation easy. The trap door, in fact, is the private key of the

cryptosystem.

2.4.2 Certification Authority

Although public key cryptography solves the key management problem, it
does not address the problem of someone using fake key to pretend to be
someone else. To solve this problem, certificates are used. Certificates are

digital documents used to bind a public key to an individual. They allow
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verification of the claim that a specific public key does, in fact, belong to a
specific individual.

Certificates are issued by a certification authority (CA), a trusted central
administration. A company may issue certificates to its employees, or a uni-
versity to its students. If a person wants to get someone’s public key in order
to send message to them, they can check the certificate of the key. If he be-
lieves that the certificate was issued by the CA, they can trust the public key
belongs to that person.

The most widely accepted format for certificates is defined by the ITU-
T X.509 [CCI88]. A detailed discussion of certificate formats can be found
in [Ken93].

2.4.3 Discrete Logarithm Problem

The discrete logarithm problem (DLP) is a one-way function that based on
the difficulty of finding a logarithm in a group (see Section 3.2 for a reviews of
group theory). The DLP has been extensively studied and has been the basis
of several public key cryptosystems. It is defined as follows.

Given elements g and y in a group G, (an introduction to group theory is
given in Chapter 3), the discrete logarithm problem involves finding a non—

negative integer x such that

g =Y.

Some efficient algorithms for the discrete logarithm problem have been
reported. They include the Pollard’s rho algorithm of logarithms [Pol74],
the Pohlig-Hellman algorithm [PH78] and the index-calculus methods [HR82].
The index-calculus algorithm is the most efficient method known for com-
puting discrete logarithms. It is a sub-exponential time algorithm for some

groups [MOV99] but not elliptic curves.
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2.4.4 RSA vs. ECC

The most commonly used public key cryptosystem is RSA. It was developed
by Ron Rivest, Adi Shamir and Leonard Adleman in 1977 [RSAT78]. It is an
algorithm that depends on a one-way function involving the factorization of
a large integer n. Here n is a product of two large prime numbers, p and q.
The one-way function of RSA is to calculate n relatively easily if p and ¢ are
known. However, it is intractable to compute p and ¢ if only know n (this
problem is the problem of factorization n).

Elliptic curve cryptography is another public key cryptosystem. Both RSA
and ECC can provide secure communications, however, ECC has advantages
over RSA or even other commonly used public key cryptosystems. RSA is
based on the integer factorization problem while ECC is based on the discrete

logarithm problem [OdI84]. ECC has the following advantages over RSA:

o ECC always has a shorter key length than any known public key cryp-
tosystems with similar strength of security. Strength of security is said

to be in term of the time to break the cryptosystem

e ECC is probably more secure than RSA, the largest RSA and ECC chal-
lenges solved being 512-bit and 108-bit respectively. The solution to
108-bit ECC challenge is believed to be the largest effort ever expended
in a public-key cryptography challenge. It took four months and involved
approximately 9,500 machines. The amount of work required to solve the

problem was about 50 times of the 512-bit RSA [cer].

Figure 2.4 shows how long should it take to break the RSA and ECC
cryptosystems of different key length [cer]. The hard problem of RSA is fac-
torization of a large integer while solving the discrete logarithm problem is
needed to break ECC. For the same security level, the key size of ECC is much

shorter than RSA’s (Figure 2.4). In other words, ECC provides a more secure
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7000 —
6000 -
5000 - RSA
4000 -

3000

Key size(bits)

2000 —

1000 —

N . .~ —— ECC
0 T T T 1
10000 1E+8 1E+12 1E+20 1E+36

Tinme to break (M PS years)

Figure 2.4: Time to break the keys of ECC verses RSA.

cryptosystem for the same key length as RSA. In practice, 160 to 192-bit ECC
keys are used nowadays. However, the acceptably secure key size depends upon
applications. Current commercial systems which use 1024-bit RSA for com-
mercial transactions and 2048-bit RSA for high security applications [rsab].
Then roughly correspond to 134-bit and 173-bit ECC respectively [LVO00].

2.4.5 Key Exchange Protocol

Public key cryptosystems can be used to securely transmit a common key
between 2 parties. The protocol is shown in Figure 2.5. First, Alice generates
a random key K. After that she uses Bob’s public key to encrypt K and then
sends the ciphertext to Bob. Bob can retrieve the key K by decrypting the
ciphertext with his own private key. By using this method, Alice and Bob can
compromise on a common key K. Afterwards, they can communicate with one

another by using a secret key cryptosystem with the key K.

Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol was developed in 1976 [DHT76] and

it allows two parties to exchange a secret key over an insecure channel. The
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Alice Bob
Random Adversary Key generated
generate a key by Alice
A A
K K
A 3
Encryption »  Decryption
Ep Dp
I Insecure channel 1 b
KByt Ciphertext C Kb
Key pair
(Kb pri 1Kbpub )

Figure 2.5: Key exchange protocol.

protocol is as follows.

Suppose Alice and Bob want to agree on a shared secret key k. First of
all, there are public parameters p and ¢ < p where p is prime. In addition,
there exists k such that ¢* =n mod p for every n € {1,... ,p — 1} (modular

arithmetic is discussed in Chapter 3):

1. Alice generates a random private value a € {1,... ,p — 2}, calculates ¢*

mod p and sends it to Bob

2. Bob generates a random private value b € {1,...,p — 1}, calculates ¢’

mod p and sends it to Alice

3. Alice computes ¢** = (gb>a mod p while Bob computes ¢"* = (g“)b
mod p

Since ¢** = ¢** = k, Alice and Bob now have a shared secret key k.
An adversary who eavesdrops on the channel can capture p, g, ¢* and ¢° but

not k. To deduce k, they would have to solve the discrete logarithm problem.

2.4.6 Digital Signature

One important application of public key cryptography is digital signatures. A

digital signature of a document is a piece of information based on both the
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document and the signer’s private key. The functions of digital signatures are
similar to traditional hand-written signatures. They have followings similari-

ties:

o Authentication: a digital signature guarantees that the signer is the orig-

inator of the item

e Unforgeable: a signature is a proof that the signer deliberately signed

the document
o Not reusable: a digital signature cannot be moved to another item
e Unalterable: after the item is signed, it cannot be altered

e Cannot be repudiated: the signer cannot claim that he didn’t sign it

later

For a person to sign a document, they can encrypt the document with their
private key. The signed document (ciphertext produced by encrypting the
document) is then sent together with the original document to the receiver. If
others want to verify the signature of the signer, they can use the signer’s public
key to decrypt the signed document and compare the decrypted document with
the original document. If they are the same, the document must have been
signed by the particular signer. On the other hand, the signer cannot deny
that they signed the document in case they are only person that can produce
a digital signature for that document.

In order to improve the efficiency of the authentication process for digital
signature, signers usually do not sign the message directly. A hashing func-
tion is applied to the original message and produced a string, the message
digest (MD). The message digest is usually considerably shorter than the orig-
inal message. The signers can sign the short message digest instead of the long

message making the verification process faster. However, the hashing function
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Figure 2.6: Digital signature with message digest.

must be designed carefully so that it is hard to find two messages that are
hashed to the same message digest.

The digital signature scheme shown in Figure 2.6 has the problem that
a plaintext message is sent through an insecure channel. Figure 2.7 shows
the digital signature process with message digest and encryption. In this case,
Alice encrypts the message before it is sent to Bob and only encrypted messages

are sent.

2.5 Secret Key vs. Public Key Cryptography

Besides the key management problem, secret key and public key cryptosys-
tems have different computational requirements. Slow cryptosystems can be a
bottleneck for a computer system. Therefore the speed and the efficiency of a
cryptosystem are important considerations.

A software RSA implementation, RSA Data Security’s cryptographic toolkit
BSAFE 3.0 [rsaal, has a throughput for public key operations of 21.6 kbits
per second with 512-bit key length and 7.4 kbits per second with a 1024-bit
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Figure 2.7: Digital signature with message digest and encryption.

key length on a 90 MHz Pentium machine. The fastest reported RSA hard-
ware [SV93] has a throughput greater than 600 kbits per second with a 512-bit
key length and 165 kbits per second with key size of 1024 bits.

DES is much faster than RSA. In software implementation, a DES crypto-
graphic engine had been reported in [Bih97]. Its speed is 137 Mbits per second
on a 300 MHz Alpha 8400 processor. In hardware implementation, DES is also
much faster than RSA. In [Pat00], an implementation of DES on an FPGA is
reported with a throughput of over 10 GGbits per second with clock rate of 168
MHz. Therefore, in order to transmit a large amount of information, secret
key cryptosystems are preferable.

Public key cryptosystems solve the key management problem while secret
key cryptosystems have a higher throughput rate. In practice, a hybrid method
is used. Figure 2.8 illustrates a practical system. Before the actual transmis-
sion of the data, Alice and Bob first agree on a common, session key K, using
a public key cryptosystems. Since the key size is usually much shorter than
the plaintext, the key exchange process will not take a long time. After that,

the transmission of secret information is done using a secret key cryptosystem.
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Figure 2.8: Practical cryptography.
2.6 Summary

In this chapter, an introduction to secret key and public key cryptosystems was
presented. The algorithms and the applications of public key cryptosystems
were detailed and a comparison between RSA and ECC was presented.

Secret key cryptosystems are efficient but there is a problem of key distri-
bution. Since public key cryptosystems solve the problem of key distribution,
a hybrid cryptosystems is preferred so that high speed and secure communi-
cations can be provided.

The key exchange protocol and digital signatures are the two main ap-
plications of public key cryptosystems. Key exchange is used to negotiate a
session key between the sender and receiver. Digital signatures can be imple-
mented using public key algorithm to perform a digital equivalent of a personal

signature.
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Mathematical Background

3.1 Introduction

Elliptic curve cryptosystems use underlying operations which are based on
abstract algebra and in particular finite fields. In this chapter, an overview
of the abstract algebra required to understand the elliptic curve processor is
presented. Finite fields have applications in coding, error correction and an
cryptography [Kob87a, 1.N94].

This chapter begins with introduction to groups, rings and fields. The two
representations of elements (polynomial and normal basis) are then presented.

Finally, operations in an optimal normal basis are discussed in detail.

3.2 Groups and Fields

A binary operation + on set S is a mapping from S x S to S. That is, + is a
rule which assigns to each ordered pair of elements from S.
A group (G,+) consists of a set of numbers GG together with a binary

operation + on (G which satisfies the following three axioms:

o Closure: for all a,b € G, a+be G

e Associativity: the group operation is associative. That is, (a + b) + ¢ =

a+ (b+c) forall a,b,c € G
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e Identity: there is an identity element 0 € G such that ¢ +0 = 0 + «a for
all a € GG

o Inverse: for each a € (G there exists an element —a € G, called the

inverse of a, such that —a +a =a+ (—a) = 0.
The group G is said to be abelian (or commutative) if
e at+b=b+aforallabecCG

Note that addition group notation has been used for the group operation. If the
group operation is multiplication, then the group is said to be a multiplicative
group with identity element is denoted by 1 and inverse of a is a™".

The notation #G will be used to denote the number of elements in a group
. A group is said to be finite if #G is finite. The number of elements in a
finite group is called its order.

A ring (R, +, x) consists of a set R with two binary operations arbitrarily

denoted + (addition) and x (multiplication) on R, satisfying the following

axioms:

e (R,+) is an abelian group with identity element 0

e The operation x is associative. That is, (¢ x b) x ¢ = a x (b x ¢) for all

a,b,c e R

o There exists an identity 1 € R with 1 # 0 such that ] xa =ax1=a

fora € R

e The operation x is distributive over + i.e. a X (b+¢) = (a X b) + (a X ¢)

and (b+c¢) xa=(bxa)+ (cxa)forall a,b,ce R

The ring is a commutative ring if « x b = b x a for all a,b € R
A field is a commutative ring in which all non-zero elements have multi-
plicative inverses, i.e. for every a # 0,a € F there exists an element a™! € F

such that a ' xa=a x a™' = 1.
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3.3 Finite Fields

A finite field is a field F' which contains a finite number of elements. The order
of F'is the number of elements in F' (#F).

Let F, be the finite field with p elements. If p is a prime number, then it
is called a prime field. Numbers in the field F, can be represented by {0,1}.
If p = 2" (called binary finite field or Galois Fields), numbers in Fyn» can be
represented as n-bit binary numbers. The field Fyn (or GF(2")) has particular
importance in cryptography due to its binary nature. It leads to particularly
efficient hardware implementations. Elements of the field are represented in
terms of a basis. Most implementations either use a polynomial basis or a

normal basis. Finite field F}, is of characteristic p while Fi» is of characteristic

q.

3.4 Modular Arithmetic

If a, b and n are elements in a field I, then a is said to be congruent to b

modulo n if there exists k& € I such that a = nk + b. 1t is denoted by
a=b modn

in which b is called the remainder of a divided by n.

I
—_

The multiplicative inverse of @ modulo n is an € F such that ax =

mod n. If  exists, then it is unique and inverse of a is denoted by a~".

3.5 Polynomial Basis

A polynomial is a mathematical expression consisting of a sum of terms, each
term including a variable or variable raised to a power and multiplied by a

coefficient. The simplest polynomials have one variable, shown as follows

At + ap1 2" A b aga? + apat + apa®
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where a;’s represent the coefficients and x represents the variable which is a

complex number. An example of a polynomial is
2° 4+ 22 + 722 4+ 92 + 2.

Polynomial basis arithmetic operates the polynomials in a field of order p
according to the same powers of the variable  with the coefficients are modulo

p. Suppose another polynomial
23+ 522 + 3249
in Fig is added to the above example.

(2 + 22 + 72* + 92 + 2) + (2° 4+ 52® + 32 + 9)

= 2>+ 22+ 2+ 222+ 22 4+ 1.

For polynomial basis arithmetic, if the coefficients are modulo a prime
number, it is said to be a polynomial basis over a finite field. However normal
basis arithmetic (described in the next subsection) is used in the work because

it leads to more efficient hardware implementations.

3.6 Optimal Normal Basis

A normal basis is more suitable for hardware implementation than polyno-
mial basis because operations are mainly comprised of rotation, shifting and
exclusive-OR operations which are very efficient in hardware. Moreover, there
is an optimal normal basis which is a special case of normal basis with mini-
mum complexity. Therefore for the implementation described in this thesis, a
normal basis was chosen. It will be discussed in this section.

Suppose 3 is an element in the field F,m, the polynomial representation is

B=ax" + -+ azr+ a
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where n < m.

A normal basis can be formed using the set

(6", 687,87, Y.

A finite field of characteristic 2 (i.e. p = 2) is chosen because of its binary
nature. Every element A in the field Fy» can be uniquely represented in the

form

n—1
=S
=0
where a; € Fy and 3 € Fyn.
There are several operations among the elements over Fyn. They are ad-

dition, squaring (element multiplies itself), multiplication and inversion (se-

quences of addition and multiplication) which are discussed below.

3.6.1 Addition

Suppose A, B are elements in the field Fyn

n—1 ‘

2’L

A: E azﬂ y
=0

n—1
B=> b3
7=0
Addition is defined by
n—1 ‘ n—1
A+ B= (Z aﬁ?’) + (Z w”) : (3.1)
1=0 7=0
Since every power of (3 is linearly independent, Fquation 3.1 can be written as

n—1

A+ B=Y(a;+b)p*

=0
where a;, b; are added modulo 2. Note that there is no carry in finite field arith-
metics. So the addition can be implemented as a bit-wise exclusive-OR (XOR)

operation.
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3.6.2 Squaring

Since every power of 3 is linearly independent, then

n—1 2
A? = ( a¢521>
1=0

Moreover,

(77) =5" =5

Therefore squaring an element over Fy» involves shifting each coefficient up to
the next term and rotating the most significant coefficient down to the least

significant position that is, rotate left operation.

3.6.3 Multiplication

Multiplication over field Fy» is defined as follows. Let

n—1
A = Z aiﬁzlv
=0
n—1 ‘
B = Y bp"
=0
and
n—1 n—1 ‘ n—1 ‘
C=AxB=>Y Y ab#p”=> cp”
i=0 j=0 =0
therefore

52i52j = Z )\ijkﬁzk (3.2)
k=0
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where A;;; € {0,1}. Then multiplication can be written to be

—_
—_

Cp = )\ijkaib]‘ (33)

7

n—

Il
=]
.
Il
=]

where 0 < £ < n — 1. By raising both sides of Equation 3.2 to the power of
271 then

n—1
(52152J)2_ S Z il j— zkﬁ Z )\ijk52k_l- (3.4)
k=0
Equating the coefficients of 32" in the above equation, yields
)\ijl = )‘i—lJ—LO for all 0 S i,j,l S n — 1. (35)

Therefore Equation 3.3 can be written as

—_
—_
,_.

n—1L n—

—1n
cr = Nk i—koib; = Z Z Xijo@itibit- (3.6)

7 =0 7=0

Il
=]
.
Il
=]

An optimal normal basis (ONB) [MOVW89] is one with the minimum num-
ber of nonzero terms in Equation 3.3, or equivalently, the minimum possible
number of nonzero terms in A;; for a specific k. This value was proved to be
2n — 1 [ABV89] and since it allows multiplication with minimum complexity,
such a basis normally leads to a more efficient hardware implementation.

Derivation of the A;;; values in Equation 3.3 is dependent on n. There
are two types of optimal normal bases [MOVWR&9], Type I and Type II. For a
Type I ONB, there exists an optimal normal basis in Fyn if

1. n+11is a prime;
2. 218 a primitive in F, 4.

Rule 2 means 2 raised to any power in the range 0 to n modulo n + 1 must
result in a unique integer in the range 1 to n.

On the other hand, for a Type IT ONB, an optimal normal basis exists in
Fon if



Chapter 3 Mathematical Background 26

2 3 4 5 6 9 w 11 12 14 18 23
26 28 29 30 33 35 36 39 41 50 51 52
53 58 60 65 66 69 T4 8 & 83 86 89
90 95 98 99 100 105 106 113 119 130 131 134
135 138 146 148 155 158 162 172 173 174 178 179
180 183 186 189 191 194 196 209 210 221 226 230
231 233 239 243 245 251 254 261 268 270 273 278
281 292 293 299 303 306 309 316 323 326 329 330
338 346 348 350 354 359 371 372 375 378 386 388
393 398 410 411 413 414 418 419 420 426 429 431
438 441 442 443 453 460 466 470 473 483 490 491
495 508 509 515 519 522 530 531 540 543 545 546
554 556 558 561 562 575 585 586 593 606 611 612
614 615 618 629 638 639 641 645 650 651 652 653
658 659 660 676 683 686 690 700 708 713 719 723
725 726 741 743 746 749 755 TH6 761 765 771 772
774779 783 785 786 791 796 803 809 810 818 820
826 828 831 833 834 846 852 858 866 870 873 876
879 882 891 893 906 911 923 930 933 935 938 939
940 946 950 953 965 974 975 986 989 993 998

Table 3.1: Values of n < 1000 with an optimal normal basis.

1. 2n +1 is prime, and either
2a. 218 a primitive in Fy, 1, or
2b. 2n + 1 =3( mod 4) and 2 generates the quadratic residues in Fy, 1.

Similarly, rule 2a means that every 2¥ modulo 2n+1, in the range 1 to 2n (0 <
k <2n—1). Therefore 2 is called the generator for all the possible locations in
the 2n + 1 field. Rule 2b means that even if 28 mod 2n + 1 does not generate
every element in the range 1 to 2n, however, half of points in the field of form
by rule 2a can be hit. It is because V25 mod 2n 41 can be taken. The points
generated by rule 2b are in the form of perfect squares. [Rie87, Ros98a]

An ONB exists in Fyn for 23% of all possible values of n < 1000 [MOVW89].
Table 3.1 lists these values.
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Table 3.2: Multiplication table, A;;x, of Type I ONB in GF(2%).

The multiplication table A;;; can be constructed by a k-fold cyclic shift to
Aijo [MOVW89] using Equation 3.5. However, Ao is derived differently for the
two different types of ONB described above. For the Type I ONB, A;;o = 1 iff

i and 7 satisfy one of the two congruences [Ros98a],

204921 = 1 mod n + 1,
o (3.7)
224+ 27 = 0 modn+ 1.

The multiplication table of Type I ONB in GF(2*) is shown in Table 3.2.
Aijo of the table are built according to the two congruences 3.7. For example,
Ao = 1 since 2! 4+ 22 =1 mod 5. Due to the fact that the two congruences
are symmetric in ¢ and j, if A;;o equals to 1, then Ao equals to 1.

Table 3.2 shows how to construct A;; for k in the range 1 to n — 1 from

Aijo (Equation 3.5). For example, the solid line in Table 3.2 shows that

)\000 = )\111 = )\222 = )\333-
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The subscripts of A;j; are modulo n therefore, for instance,
A130 = A201 = Aziz = Ao23

shown by the dotted line.
For a Type II ONB, A;;z = 1 iff 1 and 7 satisfy one of the four congru-

ences [Ros98a,

201927 = 2 mod 2n + 1,
201927 = —92% mod 2n + 1,
o (3.8)
20 921 = 2k mod 2n + 1,
20 927 = -2 mod2n +1.

Therefore, \;;o = 1 iff i and j satisfy one of the four congruences 2° £ 2/ = +1
mod 2n + 1 [MOVW&Y].

Table 3.3 is the multiplication table of Type I ONB in GF(2°). Tt is con-
structed according to the Equations 3.8.

The lines in Table 3.3 show the cyclic shift relations on the multiplication
tables. The solid and dotted lines represent

Aooo = A111 = Az22 = Aszzz = Agaa
and

)\440 = )\001 = )\112 = )\223 = )\334

respectively. Note that GGF(2*) and GF(2°) are ONB so that the number of
‘I’s in every column of the table is less than or equal to 2n — 1 [MOVW&9].
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Table 3.3: Multiplication table, Az, of Type IT ONB in GF(2%).

Using Type IT ONB as an example, Equation 3.6 can be expressed as,

)\010 )\100 )\130 )\230 )\240
—_——

—— — = —
¢t = apbipp + a11iby + arykbsin + aoyrbsir + Ao rbag
+ asyibiyr + asprboyr + aarikboyr + dagrbatr (3.9)
—— e N e N’
A310 A320 A420 A440

where 0 < k < 4 and all subscripts are modulo 5. The corresponding A of each
product term of a and b are highlighted. Therefore ¢; can be calculated by the
appropriate shifting of @ and b and the multiplication can be computed in n

cycles.
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3.6.4 Inversion

Inversion of a is denoted by a~! and is defined as below
aa”' =1 modn

where a and n are elements in field F'. The algorithm used for inversion is

derived from Fermat’s Theorem [Men93]
at=a""" = (a2n_1_1)2 (3.10)

for all @ # 0 in Fyn. The method used was proposed by Itoh and Tsujii [IT8S8],
based on the following decomposition which minimizes the number of multi-

plications (squarings are much cheaper in a normal basis). If n is odd, then

1= (2 1) (27 4 1)

and

X ot 2"7_14-1
Tl = <a2 ’ —1> (3.11)

n—1

and can be computed using one field multiplication provided a* * ~!

is given.
The cost of squaring is ignored because it is insignificant compared with mul-

tiplication. On the other hand, if n is even, then
o= (2 1) 41 =2 (27 - 1) (27 1) +1

therefore

azn_l_l _ a2(2n2;2—1) (2712;24—1){—1 (312)

which takes two field multiplications if a? z !

is given. By decomposing the
power of a in Equation 3.11 and 3.12, an inversion can be expressed as a series

of squarings and multiplications.
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An example showing the recursive decomposition of an inversion to mul-

tiplications is now presented. Consider the field Fyizs and element a € Fyirs,

a # 0. Recall Equation 3.10,

For clearer illustration, only the exponent part is shown. So

Iteration 6) 217 —2
( )
(Tteration 5) 2% —1
Tteration 4 243 _q
( )
(Tteration 3) 2% —1
Tteration 2 210 _ 1
( )
(Tteration 1)  2° —1
Tteration 0 22 1
( )

2(2% — 1) (2% 4 1)
(29— 1) (29 4+ 1)
20228 — 1) (22 + 1)+ 1
202 — 1) (20 + 1) + 1
(27— 1) (2 +1)
2(22—-1)(22+1)+1
2-1)@2+1)=(2+1).

and so an inversion over Fyira takes 10 field multiplications.

‘ [teration ‘ e ‘ r ‘ decimal of r ‘ Calculation ‘
0 6 10 2 2 —1=02-1)(2+1)
1 5 101 5 25 —1=2(22-1)(224+1)+1
2 4 1010 10 20 -1 =(2°-1)(2°+ 1)
3 3| 10101 21 22 1 =202 -1) (2" +1)+1
4 2| 101011 43 28 1 =222 -1) (2" +1)+1
5 1] 1010110 86 26 1 =02 -1)(28 +1)
6 0 | 10101100 172 2173 — 2 =2(2% — 1) (2% 4+ 1)
Table 3.4: Intermediate values of s and r during inversion (n = 173

101011013).
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The field inversion can be expressed in pseudo-code as

INPUT: k€ Fyn
OUTPUT:l = k=, 1 € Fyn

1. Set s+ |logyn] —1
2. Setp+k
3.  For i from s downto 0
3.1 Set r « shift n to right by s bit(s)
3.2 Setqg<+p
3.3 Rotate ¢ to left by [r/2] bit(s)
3.4 Set t « multiply p by ¢
3.5 If last bit of r is set then
3.5.1 Rotate t to left by 1-bit
3.5.2  p <+ multiply t by k
else
3.5.3 pt
36 s+s—1
4.  Rotate p to left by 1-bit
5. Set [+ p
6. Return !

2P —1= (22 —1)( 2%, +1) +1 (3.13)
351 p 3.3 34 3.5.2

Table 3.4 helps to understand the algorithm where s represents which iter-
ation is being performed (in reverse order), r is the shifted value of s in line 3.1
of the algorithm. Equation 3.13 illustrates the intermediate calculations for
iteration 1. The algorithm starts by initializing s which represents the total

number of iterations and r in line 3.3 helps to calculate the squarings shown in
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Equation 3.13. After that, in line 3.4, a multiplication is needed to calculate
the “+17 of Equation 3.13. Then the value of r is checked, if r is odd, an extra
squaring and multiplication is required (line 3.5.1 and 3.5.2).

The total number of multiplies M required to perform an inversion in Fyn

using the above algorithm is
M(n) = [logy(n — 1)] +v(n— 1) — 1

where v(z) is the number of nonzero bits in the binary representation of x.

3.7 Summary

The operations of elliptic curve cryptography is based on calculations in a finite
field where there are two representations of the elements. An optimal normal
basis leads to a more efficient hardware implementation, and was chosen for
the elliptic curve processor. Optimal normal basis is the special case of normal
basis such that it gives minimum hardware complexity. The design presented

in this thesis assumes a key size n which has an ONB.



Chapter 4

Literature Review

4.1 Introduction

This chapter begins with reviewing previous notable hardware elliptic curve
implementations. They are divided into two categories, field processors and
curve processors. Field processors can operate field operations while curve
processors can operate curve operations as well. Afterwards, previous software

elliptic curve implementations are described.

4.2 Hardware Elliptic Curve Implementation

4.2.1 Field Processors

Previous implementations of ECC processors have mostly implemented copro-
cessors for performing the underlying field operations. An optimal normal
basis multiplier over Fyse: was reported in 1988. It used 90,000 transistors and
occupied 0.3 inches on a side. This chip together with a Motorola DSP 56000
was used to implement a complete ECC system which could calculate 5 points
a second on a supersingular curve [AMV93]. In 1993, the same team developed
a processor for operating over the Galois field Fyiss [AMV93]. Their multipli-

ers of the processor was operated on normal basis. A coprocessor was built by
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restricting the functionality of the device to the bare minimum necessary to
implement the elliptic curve system. The coprocessor used 11,000 transistors
and could operate at 40 MHz [AMV93]. The size of the coprocessor is less
than 15 percent of the area of the smart cards available at that time. This
implementation was intended to be compact yet secure.

A compact super—serial multiplier for FPGAs is reported in 1999 [OP99].
Their design offers fine—grained scalability and is a sliced design which can
trade off performance and area. In a polynomial basis over Fhyier. They first
implemented a serial multiplier (SM) which contains k slices and computes
G F(2%) multiplication in k cycles. The super-serial multiplier (SSM) emulates
the operation of the serial multiplier using a smaller number of slices but
requires more clock cycles. Tt uses m (m < k) slices and computes GF(2F)
multiplication in k x [k/m] cycles. The SSM was reported to use 2.76 times
less function generators, 6.84 times less flip—flops and 5.78 times less CLBs
than the SM.

A multiplier for dual-field arithmetic was introduced by Grofischadl [Gro01].
They used a redundant representation (two n-bit binary numbers to represent
a n-bit binary number) to address the carry propagation problem. The esti-
mated number of clock cycles for a multiplication in GF(p) is 1.5n (where n
is the number of bits), while m clock cycles are required in GF(2™).

All the above implementations are Galois field processors which have the
disadvantage that a high bandwidth interface is required to supply the copro-
cessor with its data. As an example, a curve multiplication may require several
thousand field operations which must be sent to a field processor. For a curve
processor, these overhead of the transfers is avoided. Another limitation of
previous designs is that the field operations are restricted to certain groups
(i.e. the subfield and extension fields of Fyiss) and these cannot be changed

without fabricating a new chip.
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4.2.2 Curve Processors

A FPGA based processor for elliptic curve cryptography in a composite Ga-
lois field Fgnym was developed by Rosner [Ros98b]. It could perform elliptic
curve operations over a composite Galois fields GF((2")™) in a polynomial
basis representation. Moreover, it was developed on a reconfigurable FPGA
platform, it is possible to easily change all algorithm parameters such as curve
coefficients.

A scalable, FPGA-based elliptic curve processor over G'F(p) was reported
by Orlando and Paar [OP01]. Their processor uses a new type of high-radix
Montgomery multiplier which allows precomputation of frequently used values
so that the complexity of the multiplier is reduced. The frequency of operation

of the processor is 40 MHz on Xilinx Virtex-E FPGA.

4.3 Software Elliptic Curve Implementation

A fast key exchange using an elliptic curve system was reported in 1995 [SOOS95].
It is a software implementation using the group of points on an elliptic curve
over GF'(2'5%) in a polynomial basis representation. This software implementa-
tion was optimized by a fast inversion algorithm, “Almost Inverse Algorithm”.
In fact, it is an optimized version of the Euclidean algorithm which only takes
about three multiplication times for an field inversion. The implementation
was tested on two platforms, on a SUN SPARC TPC (25 MHz, 32-bit archi-
tecture), it performed a elliptic curve multiplication in 124 ms and on a DEC
Alpha 3000 (175 MHz, 64-bit architecture), it took 9.9 ms.

In 1997, Guajardo and Paar reported three new efficient algorithms of
the implementations of elliptic curve cryptosystems [GP97]. They are one
high—level algorithm for point multiplication on elliptic curve and two low—
level algorithms for finite field inversion and multiplication. For the point

multiplication, they introduced a new approach that works in conjunction with
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the k—ary and the sliding window methods. Their method can be applied to
elliptic curve over any field, however they described their new approach with
non-supersingular elliptic curves over G F'(2%). Tt was based on the adapted
version of left—to—right k-ary exponentiation algorithm stated in [MOV99].
The algorithm was modified so that it applied to EC. A new approach to
point doubling operation was introduced. It allows computation of 2¥P =
(xg, yx) directly from P = (a,y) without computing the intermediate points
2P, 22P,.-. 2"=1P. Such direct formulae can be obtained by substituting xs,
y3 in Equation 5.6 into one another. By doing that, the point doubling, so
as the multiplication, can be accelerated. For the two new purposed finite
field operations, they work on ECs over a composite Galois field GF((2")™).
The new inversion algorithm is based on the idea in [IT88] but is optimized
for a polynomial basis representation and for field of characteristic two. The
algorithm reduces inversion in the composite field to inversion in the field
GF(2"). On the other side, the new multiplication algorithm is based on the
Karatsuba—Ofman Algorithm (KOA) to polynomials over G'F'((2")™).

There is a full ECC package in [Ros98a] that was used to evaluate the per-
formance of the design in this thesis. This package implemented main protocols
in cryptography, for example, ElGamal key sharing [MOV99], IEEE P1363
MQV key sharing [ieee], digital signature algorithm (DSA) [ieee], Nyberg—
Rueppel signature algorithm [ieee], etc. The package is an optimized software
implementation for both polynomial and optimal normal basis representations.
Optimizations include efficient scalar multiplication using a balanced binary
expansion [Kob91] and the “Almost Inverse Algorithm” [SO0OS95] described

above.
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4.4 Summary

In this chapter, previous hardware and software implementations of elliptic
curve cryptosystems were presented. There are two kinds of hardware imple-
mentation namely field processors and curve processors.

Field processors have the disadvantage that a high bandwidth interface
is required to supply the coprocessor with its data. Previous curve proces-
sors have concentrated on GF(p) and the author is not aware of any curve

processors which operate over G'F'(2").



Chapter 5

Introduction to Elliptic Curves

5.1 Introduction

The chapter begins with a background to elliptic curves. It is followed by
a discussion of the curve addition and curve doubling operations on elliptic
curve over real numbers. Afterwards, elliptic curve over finite fields as well as
their operations are detailed. Finally, elliptic curve operations applied to the

discrete logarithm problem and key exchange protocol are shown.

5.2 Historical Background

Elliptic curves were first discovered after the 17th century in the form of Dio-

phantine equation [ST92]

2 3
y —ax" =c

for ¢ € Z. In 1955, Yutaka Taniyama asked some questions about elliptic
curves, i.e. curves of the form y? = 2° + ax + b for constants a and b [RS97]
and Hellegouarch studies the application of elliptic curves for solving Fermat’s
Last Theorem in 1971 [Hel71]. Elliptic curves were proposed for cryptographic
purposes by Koblitz [Kob87b] and Miller [Mil86] in 1985. The discrete log-

arithm problem over the group of points on an elliptic curve over finite field
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is an attractive one way function because there is no sub-exponential attack
known for solving this problem. The advantages of EC over other public key

cryptosystems had been discussed in Section 2.4.

5.3 Elliptic Curves over R’

Elliptic curves E over the real numbers (R) are sets of points in the form of

(x,y), ¥,y, as,a6 € R that satisfy the equation

2

y? = 2% + asr + a (5.1)

together with a special point O, called the point at infinity which is an identity
element. The variables x and y represent a point on elliptic curve and cover a
two dimensional (affine) coordinate plane, R x R. Elliptic curve F over R? is
said to be defined over R, denoted by E(R). Elliptic curve over reals can be
used to form a group (E(R),+) consisting of the set of points (z,y) € R x R
together with an addition operation + on FE(R).

Figure 5.1 shows a plot of an elliptic curve over R.

y2-x3+3x-3=0
T

I I I I I I I
-6 -4 -2 0 2 4 6
X

Figure 5.1: Plot of elliptic curve y? = 2% — 3z + 3.
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5.3.1 Curve Addition and Doubling

The point addition (ESUM, also known as curve addition) operation + is
defined on the set F(R) of points (z,y). By the rule of identity, the point at
infinity O is the point that added to any point on the elliptic curve, gives the
same point. Therefore for all P = (2,y) € E(R),

P+O=0+P=P

For each point P(z,y) € F(R), the square root of Equation 5.1 gives

+y = /12 + agx + ae.

Therefore two y-coordinate values are given by each unique value of = to Equa-
tion 5.1. The point (2, —y), denoted —P € E(R), is called the negative of point

P and specified as
P+ (—=P)=(2,y)+ (z,—y) = 0. (5.2)

Addition on E(R) is defined geometrically. Suppose there are two distinct
points P and @, P,Q € E(R). The law of addition in the elliptic curve group
is P+Q = R, R € E(R). The geometric relationship is shown in Figure 5.2.

In order to find the point R, first connect the points P and () by a line
L. By simultaneously solving equations L and F, an equation of degree three
is derived with exactly three solutions. Therefore the line L is guaranteed to
intersect the curve F on a third point, say —R € F(R). The point R can be
obtained by negating the y-coordinate of —R.

In the case that the two points are P and —P (Figure 5.3), the line con-
necting P and — P intersects the elliptic curve at a third point which is the
special point O lying on every vertical line in the coordinates plane.

In an operation of point addition, if points P, € E(R) are added where
P = (@, then the tangent line to the elliptic curve at point P is taken instead
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y27x3+3 x-3=0
T

Figure 5.2: Addition of EC points.

(shown in Figure 5.4). For this case, it is a point doubling (EDBL) operation
where R = 2P.
In order to express the definition of point addition and doubling mathe-

matically,

= (xlvyl)v
Q = (x27y2)7
kR =P + Q = ($3,y3)

where P,Q, R € F(R), and

T3y = 02—1’1—1'2,
ys = O(x1 + x3) — y1,
0 = L2705 paq

Tog — X1

or

3:1;% + aq

2y
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/3

\ , , \
i a 4 6

Figure 5.3: Addition of points P and —P EC.

The algorithm of curve addition on F(R) can be expressed as follows.

INPUT:  Elliptic curve E(R) with parameters a4, as € R,
Points P = (21,11) € E(R) and Q = (29,y2) € F(R)
OUTPUT:R=P+ @, R=(23,y3) € R

1. If P =0, then set R + ) and return R
2. IfQ = O, then set R + P and return R
3. If zy = x4 then
3.1 Ify; =y, then
321 Set § ¢ 2t
else set R < O and return R, "y = —y»
else set § «— Z=1L
4. Set x5 ¢+ 0% — 2y — 25
5. Set ys « O(z1 + 23) — 1

6. Return (z3,y3) =R
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I I I I
6 -4 -2 0 2 4 6

Figure 5.4: Doubling of EC point.

5.4 Elliptic Curves over Finite Fields

Elliptic curve cryptography is based on the elliptic curve over finite fields.
There are two finite fields which are particularly attractive, they are prime
fields (F,) and binary finite fields (Fyn). The derivations of elliptic curve

equations from the Weierstrass equation is given in Appendix A.

5.4.1 Elliptic Curves over F, with p > 3

A prime field F, is generated using a large prime p [LN94]. The operations
of elliptic curve over Fj is similar to F(R). Instead of calculations on real
numbers, the calculations modulo a large prime are taken. Therefore an elliptic
curve F is defined over F,, denoted by F(F,), if ,y,a4,a6 € F, and 4aj +

27a2 # 0 satisfying the equation
y2 = z° + agx + ag.

Points on this curve form a group. Therefore the elliptic curve group
(E(F,),4+) is set of points (x,y) (for x,y € F,) and an operation + (addi-

tion) which satisfies the axioms in Section 3.2.
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The order of a point A on F(F,) is the smallest positive integer r such that

A+ At -+ A=0.

r times

The order of the curve is the number of points on E(F},), denoted by #F(F,).
By Hasse’s theorem [Kob87a, Men93], #F(F,) = p+ 1 — ¢, where [t| < 2,/p.

5.4.2 Elliptic Curves over Fy.

A non-supersingular elliptic curves F defined over a finite field Fya (character-
istic = 2), denoted by FE(Fyn), is the set of solutions, (z,y) for x,y € Fan, to

the simplified forms of the Weierstrass equation
v 4 arxy + asy = 27 + axx’ + aqr + ag (5.3)
where ay,ay, a3, aq, ag € Fyn, namely
v+ oy =2 + aa’ + ag (5.4)

where ag # 0 and x,y,as,a6 € Fyn. Again, an identity element (point of
infinity) O, is included in both curve. Elliptic curve £ over Fy. also forms a
group (F(Fyn),+) that satisfies the axioms in Section 3.2.

The curves of Equation 5.4 are called non-supersingular curves and are
suitable for cryptographic applications [BSS99]. From a hardware implemen-
tation perspective, ECs over Fyn are thought to be very practical. The benefits
of using ECC are:

o ECC offers the highest security per bit of any known public key cryp-

tosystem so a smaller memory can be used

e ECC hardware implementations use less transistors, as an example, a
VLSI implementation of a 155-bit ECC processor has been reported
which uses only 11,000 transistors [AMV93], compared with an equiva-
lent strength 512-bit RSA processor which used 50,000 transistors [PT1D92].
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5.4.3 Operations of Elliptic Curves over Fy»

A non—supersingular elliptic curve F over Fyn, F(Fyn) was selected for the
implementation of elliptic curve processor. E(Fsn) is the set of all solutions to
the Equation 5.4 with coordinates in the algebraic closure of E(F5n) [Men93],
where ay,a6 € Fyn and ag # 0. Such an elliptic curve is a finite abelian
group [Men93]. The number of points in this group is denoted by # E(Fsn).
The processor was implemented in two different coordinates systems, affine
and projective coordinates. For different coordinates systems, the computation

of the curve operations are also different. They are discussed in next section.

Elliptic Curve Operations in Affine Coordinates

The elliptic curve cryptosystems that will be used are based on the discrete
logarithm problem over F(Fyn) and the basic computation which must be
made is curve multiplication. Curve multiplication is expressed as a sequence
of point additions and point doublings. Similar to EC over real numbers, point
addition and point doubling are defined geometrically. It is hard to represent
an elliptic curve over a finite field graphically, however, the method of finding
the point of addition and doubling are the same as shown at Section 5.3.1.

Assume a non-supersingular elliptic curve K over Fyn given in affine coordi-
nates and P, @) are two points on F(Fyn). Let P = (21,y1), @ = (22,y2), then
negative of P is —P = (x1,y1 + 1) € E(Fn). From [SOOS95], if Q # —P,
then P4+ Q = R = (x3,y3) € E(Fan).

If P#Q

_ 1ty
0 = 916’/1+Z’2’
T3y = (92—|—(9—|—:1;1—|—:1;2—|—a2, (55)

ys = (w1 + 23)0 + 23 + y1.
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Otherwise if P = ()
H = z—i + 24,
r3 = 0% 40+ ay, (5.6)
ys = (w1 +23)0 + 23 + 1.
Therefore, in affine coordinates, both point addition (ESUM) and point
doubling (EDBL) require two multiplications and one field inversion (note that
field inversion is far more expensive than field multiplication). The following

algorithm shows curve addition on F(Fyn) in terms of affine coordinates.

INPUT: A non-supersingular elliptic curve F(Fyn) with parameters as, ag € Fan,

Points P = (x1,11) € E(Fyn) and Q = (22,y2) € F(Fan)
OUTPUT:R=P+ @, R= (23,y3) € Fan

1. If P =0, then set R + ) and return R
2. IfQ = O, then set R + P and return R
3. If zy = x4 then
3.1 Ify; =y, then
3.2.1 Set@%i—ll—l—xlandxg%@z—l-@—l-ag
else set R < O and return R, " ys = 21 + y1
else set 8 % and x5 < 02+ 0 + x4 + 19 + a9
4. Set ys + (w1 + 23)0 + 23+ 11
5. Return (z3,y3) = R

Elliptic Curve Operations in Projective Coordinates

A non-supersingular curve E(Fsn) can be equivalently viewed as the set of all
points E’(Fyn) in the projective plane P?( Fyn) which satisfy [Men93]

yzz + ayz = 22 4 aga?2? + ag2’. (5.7)

By using projective coordinates, the inversion operation which is needed in

ESUM and EDBL operating in affine coordinates can be eliminated and it is

covered in next section.
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Conversion Between Affine and Projective Coordinates

For any point (a,b) € E(Fyn) in affine coordinates can be viewed as a 3-tuple
(x,y,2z) € E'(Fyn) in projective coordinates with @ = a, y = b and z = 1.
Moreover, a point (tz,ty,tz) in projective coordinates with ¢ # 0, is regarded
as the same point as (z,y, z). Therefore the conversion methods between affine

and projective coordinates are given as follows

M(a,b) = M'(a,b,1)
N'(p,q,7) = N’ <}—?,g,1> :N<}—?,g> for r 40

rr rr

where M, N are point in affine coordinates and M’, N’ are projective points.

Curve Operations in Projective Coordinates

The method of formulating the equations of addition and doubling in projective
coordinates is the same as for affine. In fact, conversion is taken on each
projective point and then applied to Equation 5.5 and Equation 5.6.

Let P'=(x1:y1:21) € F'(Fan), Q' = (22 :y9: 1) € F'(Fon) and P! # —Q'
where P, Q)" are in projective coordinates. Since P’ = (x1/z1 : y1/z1 : 1), one
can apply Equation 5.5 to point P(x1/z1,y1/21) and Q(x2,y,) for F(Fyn) in
affine coordinates to find P' + Q' = R'(2% : y5 : 1). Then

, B* B A

T3 = F—I_Z—I_Z_l—l_az’
Bl’l U1

ys = Z(Z—l—l-xg)—l-xg—l-z—l

where A = (2221 + 21) and B = (y221 + y1) [Men93]. In order to eliminate the
inversion operations, the denominators of the expressions for =5 and yj; have
to be eliminated. By setting z3 = A%z and from the property of projective
coordinates, x3 = x4z3 and ys3 = y4zs, if P+ Q' = (x3: y3: 23), then

x3 = AD,

ys = CD+ A*(Bxy + Ay),

Z3 = A321
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19

Affine Projective

Operation ESUM ‘ EDBL | ESUM ‘ EDBL
Field Multiplication 2 2 13 7
Field Inversion 1 1 0 0

Table 5.1: Number of field multiplications and inversions for affine and pro-
jective point addition and doubling.

where C'= A+ B and D = A*(A + aqz1) + 21 BC.

Similarly, the formulae for 2P = (a3 : y3 : z3) are,

T3y =

Ys =

Z3 =

AB

Y

:L'AllA + B(l‘% + 121+ A),

A3

where A = xyz; and B = agz{ +x]. The resulting point can be converted back

to affine coordinates by multiplying each coordinate by z3'. Note that there is

no inversion operation when calculating in projective coordinates. Therefore

inversion can be eliminated by performing curve multiplication in projective co-

ordinates and using only one inversion after a series of additions and doublings.

The number of field multiplications and field inversions for curve addition and

doubling are shown in Table 5.1.

5.4.4 Curve Multiplication

Multiplication (EMUL) is defined by repeated addition, i.e.

Q

This can be computed using the following “double and add” algorithm.

= cP

= P+P+...4+P

¢ times
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For affine coordinates,
INPUT: P € FE(Fy) and ¢ € Fyn
OUTPUT: Q = ¢P

L oe=Y"620b€{0,1},b,, =1,m <n
2. Set Q)+ P
3. For i from m — 1 downto 0
3.1 Set @ « Q+ @ (Affine EDBL)
3.2 Ifb; =1 then
3.2.1  Set @ «+ Q + P (Affine ESUM)
4. Return Q

For projective coordinates,
INPUT: P € FE(Fy) and ¢ € Fyn
OUTPUT: Q = ¢P

L. 02220622276260717bm:1,m§n

2. Convert P to projective representation, P’
3. Set Q « P’
4. For ¢ from m — 1 downto 0

4.1 Set Q'+ Q'+ Q' (Projective EDBL)

4.2 Ifb; =1 then

4.2.1  Set Q) + Q"+ P’ (Projective ESUM)

5. Convert @' to affine representation )
6. Return @)

which requires m+v(c)—2 point additions where v(¢) is the number of nonzero
bits in the binary representation of e.
The disadvantage using in projective coordinates is that extra registers are

needed to store the intermediate results. However, it trades off an inversion
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Elliptic Curve
Mul tiplication

( EMUL)
Elliptic Curve Elliptic Curve
Addi tion Doubl i ng
(ESUM ( EDBL)

Fi el d Squaring Field Addition

Field Field
Ml tiplication I nversi on

Figure 5.5: The hierarchy of elliptic curve operation.

for more multiplications and other less expensive finite field operations such
that the overall performance can be improved.

The hierarchy of elliptic curve operation is shown in Figure 5.5. Curve
multiplication is computed via curve additions and doubling which are in turn

computed from field operations.

5.5 Elliptic Curve Discrete Logarithm Prob-
lem

ECC is based on the discrete logarithm problem applied to elliptic curves over
a finite field (Section 2.4.3), known also as the elliptic curve discrete logarithm
problem (ECDLP) which is defined as follows.

Given () and Y, find z for which

Q =zY

where x € {1,... ,#Y — 1} and @, Y are points on elliptic curve F(K), K is
a finite field.

There is currently no known sub-exponential time algorithms to compute
x given @) and Y [BSS99]. Although the index—calculus method is a sub-

exponential time algorithm for solving the discrete logarithm problem, it is
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not applicable to multiplicative groups in a finite field [BSS99] such as the
elliptic curve group. The most efficient algorithm known is the Pollard-p
method [Pol75]. Tt is parallelized and the expected running is v/7n/(2r) with r
processors [OW99]. However, the running time is still exponential in n. There-
fore the methods for computing ECDLP are much less efficient than those for
factoring or DLP (Section 2.4). As a result, ECC provides shorter key sizes

than others public key cryptosystems with the same security level.

5.6 Public Key Cryptography

The elliptic curve cryptosystem is a public key cryptosystem. In order to
communicate with others using ECC, parties must know the public key of one
another. Before the communication, ECC key pairs are generated. The key
generation process includes following steps.

First define a set of elliptic curve domain parameters (F(K), ), #Q) where
E(K) is particular elliptic curve defined over finite field K, @) is a base point
on E(K) with its order #Q):

1. Select a random number z where 1 < x < #Q — 1,
2. Compute P = z(),
3. Then P is public key and z is private key.

Suppose Alice wants to send a secret message M to Bob using ECC. Public
parameters are the elliptic curve F over finite field K and @) is a point on E(K).

Private key of Bob: x, where 1 < a < #Q — 1.

Public key of Bob: (P, @), where P = 2Q) and P € F(K).

Alice generates a random integer z € K and calculates the curve multipli-

cation

A(za,ya) = 2Q
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and
T(z4,y:) = zP.

In addition, Alice has to embed the message, that she wants to send to
Bob, onto the elliptic curve F(K). Suppose K = Fyn and the message is
expressed in a binary number. It can be obtained by changing the ASCII
message to binary number directly. For Fyn, the longest message that can
be embedded in E(Fyn) is of size n — 5 bits [Ros98a]. Then a n-bit binary
number (z,,) is formed by the message with length n — 5 bits and 5 “don’t
care” bits that can be changed freely. This n-bit binary number is substituted
into Equation 5.4 to solve y (y.,) using arithmetic on Fyn. In the case there is
no solution, the 5 “don’t care” bits can be incremented and another attempt to
solve the equation is made until y is found. Then the z,, and y,, form a point
(T, Ym) on E(Fyn) [Kob93]. In this case, Alice and Bob must compromise
on the distributions of the “don’t care” bits. It is safe to disclose these to
the public and it does not affect the cryptographic strength. To embed the
message to F(K'), Alice gets a point

and, calculates
Bl 1) = (212, i)

(A, B) is the ciphertext and is sent to Bob.

Bob receives a ciphertext which is comprised of two parts (U, V'), where
U= (2y,ys) and V = (z,,y,).
He can decrypt the ciphertext by

2U =22Q = 2P =T(xy,ys)



Chapter 5 Introduction to FElliptic Curves 94

Alice Bob
Common Adversary Common
Parameters P, E Parameters
P E 7 P.E

A A

— b

Secret integer Insecure channel Secret integer
Ca Cs

A

CBx P

Figure 5.6: Diffie-Hellman key exchange scheme.

and
Ty
Ty = —,
T
_ W
Ym = —-
Yi

Therefore Bob can get the point (2, ¥ ). Since Bob also knows the loca-
tions of “don’t care” bits, he can retrieve the message M by eliminating the

bits.

5.7 Elliptic Curve Diffie-Hellman Key Exchange

The discrete logarithm problem can be used as the basis of various public key
cryptographic protocols for key exchange, encryption and digital signatures.
Elliptic curve Diffie-Hellman key exchange scheme is the elliptic curve analogue
of Diffie-Hellman key exchange (Section 2.4.5). An example is given below.
Suppose that Alice and Bob wish to agree on a common key which is used
for encryption using a traditional secret key algorithm such as data encryp-
tion standard (DES), but need to do so over an insecure channel such as the

Internet. Then the following Diffie-Hellman (DH) procedure (illustrated in
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Figure 5.6) can be used with a public elliptic curve over finite field K, F(K)
and point P € E(K).

1. Alice generates a secret random integer ¢4 € 1,...#G — 1 and sends the

point ¢4 x P to Bob

2. Bob generates a secret random integer cg € 1,...#G — 1 and sends the

point cg x P to Alice

3. Alice and Bob can both compute the key k = ¢4 X (egx P) = c¢gx(cax P)

An adversary, Carol eavesdropping on the channel, can only gain the in-
formation F(K), P, ca x P and ¢g x P. For Carol to be able to compute
k, she must solve the elliptic curve discrete logarithm problem and the best
known algorithm takes fully exponential time. Alice and Bob, however, need

only compute elliptic curve multiplications which are comparatively easy.

5.8 Summary

In this chapter, an introduction to elliptic curves over real numbers and finite
fields were presented. The basic operations, curve addition and curve doubling
of elliptic curve were also described. Afterwards, the elliptic curve discrete
logarithm problem on which ECC is based as well as the elliptic curve Diffie-
Hellman key exchange were presented. There is no known sub-exponential
time algorithm to solve this problem while there are efficient algorithms to

solve the factorization problem used by RSA.
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Design Methodology

6.1 Introduction

In this chapter, the hardware platform and tools used to develop the elliptic
curve processor is introduced. The implementation of elliptic curve proces-
sor (ECP) and its architecture of are also detailed.

At the beginning of this chapter, the computer—aided design (CAD) tools
that used are discussed. In next section, the hardware platform that was used
to implement the processor is introduced. Finally, the implementations of
each component of the processor is discussed. The features of the processor,
for instance the parallel multiplier, microcode implementation and module

generator, are demonstrated in this chapter.

6.2 CAD Tools

The ECP was developed using the Very High Speed Integrated Circuit Hard-
ware Description Language (VHDL) [Ska96]. It is a language that is used to
describe hardware architectures. A considerable advantage of using VHDL is
that simulation can be done before the real hardware is built. The chosen

implementation platform was an Field Programmable Gate Array (FPGA).
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FPGAs are re-programmable via a software downloadable bitstream and pro-
vide a short turn around time and low cost. The synthesis and implementation
tools will generate a bitstream from the VHDL description that can be down-
loaded to the reconfigurable hardware. The synthesis and implementation
tools used were Synopsys FPGA Express™ 3.4 and Xilinx Foundation™ 3.2i
respectively.

The development cycle is shown in Figure 6.1. FPGAs are suitable for
hardware prototyping because they provide a short turnaround time. If the
simulation of the VHDIL description does not work properly, the code can
be corrected and simulated again immediately until the simulation is correct.
This can improve the efficiency of the design process. During the synthesis
process, the synthesis tool takes the VHDL code as input and generates a
netlist. Afterwards, implementation software reads the netlist and maps the
logic to the components in the target FPGA. Then the “place and route”
tools place the components in the FPGA and route the connections within the
design. Finally, the implementation tool generates the bitstream file of the
design for a specific FPGA. The bitstream can be downloaded to the FPGA
to configure it, after which the FPGA will perform the function.
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Figure 6.2: Xilinx SRAM-based FPGA structure.

6.3 Hardware Platform

6.3.1 FPGA

An FPGA is an integrated circuit (IC) that can be programmed after manu-
facture. Since it is re-programmable under field, it is a kind of reconfigurable
hardware. Typical architecture of an FPGA comprises an regular array of
configurable logic blocks (CLBs) with routing resources for interconnection and
surrounded by programmable input/output blocks (I0Bs). CLBs provide the
functional elements for constructing logic while IOBs provide the interface
between the pins of the package and the CLBs. FPGAs are widely used as
a prototype before fabricating a VLSI design, or can be used directly in a
product.

The elliptic curve processor is built on the Xilinx Virtex™ FPGA. It is
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Figure 6.3: Structure of Xilinx Virtex IOB.

manufactured in a 5-layer-metal 0.22 um CMOS process. Designs on Virtex
can achieve synchronous system clock rates up to 200 MHz [Xil00]. Figure 6.2
shows the basic structure of Xilinx SRAM-based FPGAs. CLBs in the FPGA
are arranged in rows and columns and between them are routing lines con-
nected with programmable switch matrix. By programming the switch matrix,
the 1/O of CLBs can be routed and connected together.

The structure of Xilinx Virtex IOB is shown in Figure 6.3. The three D-type
flip-flops are synchronized on the same clock while two are for input and output
together with the other one is for the control to the output tri-state buffer.
The input signal can be routed to internal logic either directly or through an
input flip-flop. A programmable delay element at the D-input of the input
flip-flop is to eliminate the pad-to-pad hold time. Moreover, by configuring
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Figure 6.4: Simplified structure of Xilinx Virtex CLB.

the threshold voltage V;.; at the input buffer, the device can support designs
with different voltage level. Similarly, the output from internal logic can be
routed to the pad either directly or through the optional output flip-flop. All
I/O pins not involved in configuration are set to high impedance state so that
the internal logic is isolated.

The basic building block of the Virtex FPGA is the the logic cell (LC). A
LC includes a 4-input function generator, carry logic and a storage element.
Fach Virtex CLB contains four LCs, organized in two slices (Figure 6.4). The
4-input function generator are implemented as 4-input look-up tables (LUTs).
Each of them can provide the functions of one 4-input LUT or a 16x1-bit
synchronous RAM (called “distributed RAM”). Furthermore, two LUTs in a
slice can be combined to create a 16 x2-bit or 32x1-bit synchronous RAM, or
a 16x1-bit dual-port synchronous RAM [Xil00].

Also within the Virtex chip are dedicated several large blocks of special
memories, called Block SelectRAMs or BlockRAMs. They are configurable as
single-ported or dual-ported in widths from 1 to 16-bits [Xil00]. These were
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Figure 6.5: Wildstar block diagram.

used in the ECP for the storage of microcode and for communications with

the host (discussed in Section 6.4.3).

6.3.2 Reconfigurable Hardware Computing

The hardware platform that used to implement the elliptic curve processor
is Annapolis Micro Systems Wildstar™ bhoard [Ann99]. Tt is a PCI board
consisting of 3 Processing Elements (Xilinx Virtex XCV1000-6 [Xil00]). The
Virtex FPGA XCV1000-6 has 128 kbits of BlockRAM (arranged as 16 x 8—kbit
blocks). In addition, there are 6144 configurable logic blocks (12288 slices). It
is equivalent to more than one million system gates.

Figure 6.5 shows the block diagram of the Wildstar board [Ann99]. The
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three Processing Elements (PEs) are connected to a Local Address/Data bus (LAD
bus) which is used for communicating with the host computer. PE1 and PE2
are connected to on-board memories. Mezzanine memory card can be installed
on the Wildstar board to provide extra memory which is shared between three

PEs. The elliptic curve processor described in this thesis used PEO only.

6.4 Elliptic Curve Processor Architecture

A block diagram of the elliptic curve processor is shown in Figure 6.6. The or-
ganization is similar to a traditional microcoded central processing unit (CPU)
in that it consists of an arithmetic logic unit (ALU), a register file, a microcode
sequencer and microcode storage. To compute a curve multiplication, the curve
parameters are first initialized by bitstream modification (Section 6.7). The
resulting bitstream is downloaded to the FPGA and the microcode is down-

loaded via the PCI interface (Figure 6.6). The ECP then computes a curve
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multiplication, while the PC polls a status signal. When the multiplication has
completed, the PC can download the result from the register file (Figure 6.6).
Major differences between this architecture and a conventional CPU are that
the datapath is n-bits wide and the ALU performs operations based on Fjn
arithmetic instead of integer arithmetic (see Section 3.6). Three registers A,
B and (' are particularly for multiplication use and it will be discussed in next

section.

6.4.1 Arithmetic Logic Unit (ALU)

As discussed in Chapter 3, there is no carry propagation in the arithmetics
based on Fyn. Therefore the ALU of elliptic curve processor is simpler and
faster than an integer ALU. The complexity is determined by the Fy» multiplier
since multiplication is the only operation that involves registers.

The multiplication is defined by Equation 3.6 and is given below

—1n
Cp = Z Z anH_kb]‘_Hg. (61)

,_.

It can be rewritten as

n—1 n—1
Cr = E b]-l—k E )\ijoai-l—k

with all subscripts are modulo n.
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Define a function of the cyclic permutation

n—1

Fi(k) = bigr Y Aijodtisn

=0
again with all subscripts are taken to be modulo n. For cyclic relationship, j

is set to be equal to k, therefore

n—1
F(k) = bgk Z )\ikoaﬂ_k. (62)
1=0

The function F' in Equation 6.2 defines the connection between registers A, B
and C'.

Figure 6.7 shows the 1-bit register used for register B in the multiplier and
a similar circuit is used for register A. It is just simply a D-type flop-flip in
order to operate the cyclic shift on register A and B. Figure 6.8 shows the
circuit used for calculating the ¢; of Equation 6.2 [AMOV91].

In each cycle, the ¢;’th cell computes sum of inputs from register A and
then adds with the input from register B. The addition operation is imple-
mented simply as an XOR function (Section 3.6.1) and the squaring function is
implemented as a rotate left operation (Section 3.6.2). Therefore Equation 6.2

is calculated in the cell ¢, every clock cycle.
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for the case n = 5.

In each cycle, the A, B and C' registers are rotated as shown in Figure 6.9.

The result being that after n cycles, the contents of register C' are the desired
product of the A and B inputs [AMOV91]. It should be noted that an optimal

normal basis reduces the number of interconnections and fanout of signals in

the multiplier to the minimum possible, resulting in reduced area and increased

speed over a non—optimal normal basis. In fact, the maximum fanout for a; in

Figure 6.9 is 4 [AMOV91].

Figure 6.10 shows an example of multiplier when n = 5. By Table 3.3 and
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Equation 6.2, the connections of cell ¢ is defined by F/(k) below

F(0) bo(
F(l) bg(al —|—Cl4)
F(Q) b4(a0 —|— Cll)
F(g) bl(a4 + Clo)
F(4) bg(al —|— Clg)
Hence,
cr = bplags1) + brgr(ar + apys) + bpy2(arts + apya)

+brys(arsr + apre) + bpra(@rz + apya)

where 0 < k& < 4 and all subscripts are modulo 5. The result is the same as

Equation 3.9.
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Figure 6.11: Multiplier element of a parallel multiplier.

The ALU can be easily parallelized. To increase the parallelism by a factor
p, the multiplier logic can be duplicated p times. As an example, Figure 6.11
shows the case for p = 2. The multiplication requires [%W cycles of parallel
multiplication plus an extra cycle to form a final rotation. Therefore the total
number of cycles required for a multiplication is [2] 4 1.

n
P

6.4.2 Register File

A 16 xn-bit dual-port synchronous register file is constructed from the 16 x1-bit
distributed RAM feature of the Xilinx Virtex series logic cell (see Section 6.3).
This gives an eight-fold reduction in resources over RAMs based on latches. It
is used for storing the parameters, for example, ¢, P in Equation 5.8 and a,,
ag in Equation 5.4. These parameters can be downloaded to the register file
by the bitstream reconfiguration discussed in Section 6.7.

Figure 6.12 shows the structure of the register file. In order to give out two
n-bit data at the same time, the register file contains two sets of 16 x n-bit
distributed RAMs. For data consistency, both of them share the same input
data bus and write address bus. However, read address buses are different so

that contents of different registers can be accessed simultaneously.
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6.4.3 Microcode

The ALU plus register file form a Fy» processor similar to previous designs
[AMV93]. However, for performing elliptic curve cryptography, higher level
elliptic curve multiplications of Section 5.4.4 are required. This could be im-
plemented as a finite state machine [Ros98b] or in microcode. The implemen-
tation described in this thesis opted for a microcoded approach which has the

following advantages in a FPGA implementation:

1. the microcode is stored in Xilinx Virtex BlockRAMs and do not use logic
resources of the FPGA (as explained in Section 6.3). The microcode se-
quencer in this design is very simple and has a small overhead. Since the
critical path of the ECP is in the datapath, the microcode implementa-

tion of the control does not affect the overall performance

2. the microcode can be changed without requiring re-compilation of the
elliptic curve processor. The microcode can be altered directly by the

host PC program

3. algorithmic optimizations to the processor can be performed entirely in

microcode

4. a microcoded description is a higher level abstraction than a finite state
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Operation Clock Cycles
| | |

NOP 1
XOR 1
Rotate left, ROTL 1
Shift right, SHFR 1
|
1
1

Field Multiplication, MUL [2]+1

Transfer register value, TFR

=S

Jump Instructions

JKZ, JC7, JMP

Table 6.1: Clock cycles required for each instruction using a p-way parallel

ALU.

machine and hence easier to develop and debug.

The instruction set of the processor is shown in Table 6.1. Apart from
instructions which directly control the ALU, there are three types of jump
instructions: JMP — jump unconditionally, JKZ — jump if the least signifi-
cant bit of K register is zero and JCZ — jump if the COUNT register is zero.
The K register stores the parameter ¢ of Equation 5.8. If the least signifi-
cant bit of K is set, then an ESUM (Section 5.4.3) is performed. Otherwise,
EDBL (Section 5.4.3) will be performed and K register will be rotated by 1
bit. In addition, the COUNT register is initialized to all ‘1’s. It is used to keep
track of the multiplication process. It is rotated along with K register and is
used to indicate the end of a multiplication. Note that the K and COUNT
registers are in the register file.

Each instruction is 16 bits in width and the format of instructions is shown
in Figure 6.13. The instruction width was dictated by the choice of a 12-bit
address (the current implementation has < 512 lines of microcode and hence
fits into 9 bits). Since there are 9 different operations which are encoded
into 4 bits, 16 bits are required. Most instructions accept a source register
and a destination register in operandl and operand?2 respectively. The jump

instructions have a 12-bit jump address.
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Figure 6.13: Instruction format.

TFR operandl b| a operand2

15 11 5 4 3 0

Figure 6.14: TFR instruction format.

There are three special registers A, B and C' which are involved in mul-
tiplication of a field element (as shown in Figure 6.9). Before multiplication,
the operands are transferred from the register file into A and B using a TFR
instruction (Figure 6.1). When bit 5 of a TFR instruction set, operand1 will
be transferred to register B. Similarly, if bit 4 set, the contents of register
operandl will be transferred to register A. Note that bits 0-3 of the TFR in-
struction to the multiplier are unused. The NOP instruction was used in earlier
versions of the processor to fill a branch delay slot caused by pipelining of the
fetch and execute parts of the microcode sequencer. The final implementation
does not have pipelining and these NOP instructions could be removed. As will
be shown in Table 7.4, the result of leaving the unnecessary NOP instructions
in the microcode does not lead to a significant performance degradation.

The state transition diagram of the microcode sequencer is shown in Fig-

ure 6.15. It is implemented as a simple state machine.
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6.5 Parameterized Module Generator

The strength of a cryptosystems is determined by the size of the cryptographic
key. In order to provide elliptic curve processors with different cryptographic
strength to suit different requirements, a parameterized module generation pro-
gram was used. The parameterized module generator can generate the VHDL
description of elliptic curve processors for any n with an optimal normal basis.
Hence this scheme advantageously uses the reconfigurable nature of the FPGA
to add the flexibility of being able to choose arbitrary n (compared with fixed
n of previous designs [AMV93]).

Besides generating the elliptic curve processors with different values of n,
the module generator can produce processors with parallelized ALU as stated
in Section 6.4.1. The module generator takes a parameter p which is the level
of parallelism of the ALU. By varying p, different tradeoffs performance can
be made. Therefore this can trade off between area and performance. The
block diagram of parameterized module generator is shown in Figure 6.16.

The module generator is a program written in the Perl programming lan-
guage [WCS96] which takes n and p as an input parameters and produces the
VHDL code of the ECP as output. It first calculates the multiplication table A
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using the process described in Section 3.6.3. It then customises the VHDL code
for the ALU based on the multiplication table and p, resulting in a complete
VHDL description of the ECP. Perl is a language which supports long integer
arithmetic which was helpful in performing the arithmetic required to generate
the A matrix of the field multiplier. Since the ECP design is synthesized from
a behavioral VHDL description, it would trivial to port the design to other
FPGA families (e.g. Altera) or an ASIC. Input of the curve parameters can
be done via the bus interface instead of bitstream reconfiguration for better

portability.

6.6 Microcode Toolkit

For the curve operations such as point multiplication on an elliptic curve are
implemented as sequences of field operations which can be implemented in
microcode. A toolkit was developed to facilitate the microcode development.

A microcode simulator and debugger was written to facilitate development
of microcode programs. It supports all the instructions shown in Table 6.1.
Moreover, breakpoints can be set so that the contents of the registers can be
listed in the middle of the program for debugging. Single stepping is also
supported.

A two pass symbolic assembler was also developed which takes symbolic
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input and produces the binary microcode which can be downloaded to the
processor’s microcode store, BlockRAMs in Virtex. The assembler is written
in the Perl programming language. Its strong string processing features helps

in converting the symbolic assembly program into a binary form.

6.7 Initialization by Bitstream Reconfiguration

In order to perform an elliptic curve multiplication, the values of ¢ and P in
Equation 5.8 as well as the parameters of the curve must be downloaded to
the processor. This is normally done by interfacing the register file to the host
PC via a dual port memory. In this work, a bitstream modification technique
was used to modify the contents of RAMs in which the parameters are stored.
Since the register file consists of the distributed RAMs in Virtex (Section 6.3),
they are placed in arbitrary locations.

In order to modify the content of the registers, the locations of those CL.Bs
which form the register file are determined from the circuit description file.
The NCD file is an circuit description representing the design mapped to com-
ponents in the FPGA. This file is, originally, in binary format. However, it can
be converted into a human readable format by the tools provided by Xilinx.
Therefore the information about the locations of register file can be extracted.

A software program was written which takes as inputs the human read-
able format of NCD file of the design, the register’s initial content file and the
bitstream of the design. It modifies the register contents in the bitstream ac-
cordingly and recomputes the cyclic redundancy code (CRC) of the bitstream.
The resulting bitstream can be downloaded to a Virtex FPGA as usual. The
advantage of this technique is that circuitry to download the parameters from
the host PC to the FPGA is avoided, hence reducing the overall area and
increasing the speed of the processor.

Since only a small portion of the bitstream needs to be modified to change



Chapter 6 Design Methodology 75

the parameters, but the entire bitstream must be downloaded to affect the
change, runtime reconfiguration techniques [BDHT97, XA00] may be a more

efficient approach.

6.8 Summary

In this chapter began with introducing the CAD tools and the design flow of
developing the elliptic curve processor. It was followed by an overview of hard-
ware platform used in the work described in this thesis. The implementations
of the components of the processor were also detailed.

The ECP was developed on a reconfigurable hardware computing platform,
Wildstar, which consists of Xilinx Virtex FPGAs. The device can communicate
with the host system so that data can be transferred between them through
the device interface.

A parameterized module generator was developed which can generate el-
liptic curve processors with different values of n with different levels of paral-
lelism. The design of ALU was based on the cyclic relationship between the
operands and the product (see Chapter 3). The register file of the processor
was constructed by the distributed RAM feature of Virtex which can reduce
the demanded resources. The ECP is programmed by microcode which can
be downloaded from the host computer and are stored in the BlockRAM fea-
ture of Virtex. A microcode toolkit including simulator and debugger, was
developed to facilitate the microcode development. A script was also written
to modify the initial contents of the registers therefore no recompiling of the

processor is needed for different curve parameters.



Chapter 7

Results

7.1 Introduction

In this chapter, the performance of elliptic curve processor with serial multi-
plier is first presented. Then a comparison of the relative merits of affine and
projective coordinates is made. Finally, the results using a parallel multiplier

are given.

7.2 Elliptic Curve Processor with Serial Mul-
tiplier (p = 1)

VHDL code for the elliptic curve processor was generated using the param-
eterized module generator (discussed in Section 6.5) for different values of n
with an optimal normal basis (security considerations were discussed in Sec-
tion 2.4.4). Synthesis and implementation were performed using Synopsys
FPGA Express 3.4 and Xilinx Foundation 3.2i respectively. Table 7.1 shows
the resource utilization and maximum clock rate reported by the Xilinx tools
for designs with different n. As can be seen in Figure 7.1, resource require-
ments are linear with n. Therefore by projecting the graph, the largest n that
can be implemented on XCV1000-6 is 1100. The size of the microcode is less

than 512 16-bit words and does not significantly change for different n.
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‘ n ‘ # of slices ‘ Reported freq (MHz) ‘

113
155
173
281
371
473

1410
1868
2148
3315
4247
5264

31
30
28
26
22
18

Table 7.1: Resource utilization and maximum clock rate for different n on a

Xilinx XCV1000-6. The Xilinx XCV1000-6 contains 12288 slices (6144 CLBs).
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Figure 7.1: Number of slices used for different n.

The ECP was successfully tested on a Wildstar board (see Section 6.3),
the microcode being downloaded to the BlockRAMs by the host PC and the

parameters being downloaded to RAMs by bitstream reconfiguration.

Examples of curve multiplication on the work are shown in Appendix B.

Curve multiplications with n = 113, 155, 173, 281, 371 and 473 were performed

and calculation results (public key @) in Equation 5.8) were compared with the

ECC software package from [Ros98a]. The results were also verified by the

cryptographic algorithm discussed in Section 5.6. Messages were generated

randomly, encrypted using the public keys and then decrypted using the private

key to verify the processor.
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SW time (ms) Speed-up Throughput
n | E4500 | PITI-866 | HW time (ms) | E4500 | PTII-866 kbits/s
113 | 27.6 16 4.3 6 4 13
155 | 63.2 40 8.3 8 ) 9
173 | 86.6 54 11.1 8 ) 8
281 | 281.8 196.2 29.9 9 7 )
371 | 746.3 442.6 63.1 12 7 3
473 | 1490.9 873.2 126.2 12 7 2

Table 7.2: Execution time for elliptic curve multiplication (projective coordi-
nates) and comparison with a software implementation.

The execution time of the processor was compared with that of an op-
timized software implementation of an optimal normal basis elliptic curve
package [Ros98a] running on a SUN Enterprise E4500 with UltraSPARC-IT
400 MHz processors and a PC with Pentium-I1I 866 MHz processor. The re-
sults and the throughput are presented in Table 7.2. It can be seen that the
elliptic processor is approximately 6 to 12 times faster than the software im-
plementation on E4500 and 4 to 7 times faster on Pentium-III. PC to FPGA

communications overhead is negligable.

7.3 Projective verses Affine Coordinates

The projective and affine implementations share the same hardware design
with different microcodes. The total number of cycles required for an elliptic
curve multiplication for various n are given in Table 7.3, where assuming that
the ¢ of Equation 5.8 is a n-bit binary number with half the number of bits set.
The execution time required for an elliptic curve multiplication at the maxi-
mum frequency is shown in Table 7.3. Note that these figures include the time
for host processor interfacing. The implementations using projective coordi-
nates are always faster than using affine coordinates because field inversions

are extremely expensive (Section 5.4.4).
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# of # of HW time | HW time

n | cycles (affine) | cycles (proj.) | affine (ms) | proj.(ms) | P: A
113 148581 134484 4.8 4.3 0.9
155 324717 249879 10.8 8.3 0.77
173 402926 310043 14.4 11.1 0.77
281 1021814 784155 39.1 29.9 0.76
371 2261605 1407005 101.4 63.1 0.62
473 3657560 2267501 203.5 126.2 0.62

Table 7.3: Execution time for projective and affine coordinate implementations
of elliptic curve multiplication.

7.4 Elliptic Curve Processor with Parallel Mul-
tiplier (p > 1)

The dynamic instruction frequencies for a curve multiplication using different
n are shown in Table 7.4. From the table, it can be clearly seen that the
bottleneck is in field multiplication (MUL) which accounts for approximately
90% of the execution time.

The time taken for a curve multiplication using a parallel multiplier is given
in Table 7.5 (n = 113 and 473), showing that a parallel implementation has
an 85% increase in area leading to 530% improvement in speed when n = 113
while an 94% increase in area gives 994% improvement in speed when n = 473.
Figure 7.2 is a plot of normalized performance verses the degree of parallelism
p. As can be seen from the figure, the execution time improves as parallelism
is increased and tradeoffs between area and performance can be easily made.
Improvement is approximately linear for p < 6 when n = 113 and p < 10 when

n = 473.
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Figure 7.2: Normalized execution time for one curve multiplication using a
p-way parallel ALU.

7.5 Summary

In this chapter, the performance of the elliptic curve processor in affine and
projective coordinates and with serial and parallel multipliers were presented.
The ECP had 4-12 times speed up over the software implementation. Projec-
tive coordinates was shown faster than affine coordinates.

A dynamic instruction frequency analysis showed that multiplication ac-
counts for up to 97% of instructions in the ECP. A parallel multiplier improved
the performance of the processor by reducing the number of cycles for mul-
tiplication. For n = 113 and 473, the parallel multiplier up to p = 16 was
tested, the speedup being linear up to p = 6 and 10 respectively.
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Projective Affine
n 113 | 155 | 173 113 | 155 | 173
NOP 291 391 444 291 391 444
(0.22%) | (0.16%) | (0.14%) | (0.2%) (0.12%) | (0.11%)
XOR 616 847 946 784 1078 1204
(0.46%) | (0.34%) | (0.31%) | (0.53%) | (0.33%) (0.3%)
MUL | 128820 242112 | 301368 | 127680 288288 359136
(95.79%) | (96.89%) | (97.2%) | (85.93%) | (88.78%) | (89.13%)
ROTL 673 925 1033 12825 24102 30015
(0.5%) (0.37%) | (0.33%) | (8.63%) | (7.42%) | (7.45%)
TFR 3625 4972 5548 5432 7931 8858
(2.7%) (1.99%) | (1.79%) | (3.66%) | (2.44%) (2.2%)
JK7Z 113 155 173 113 155 173
(0.08%) | (0.06%) | (0.06%) | (0.08%) | (0.05%) | (0.04%)
JCZ. 111 153 171 111 153 171
(0.08%) | (0.06%) | (0.06%) | (0.07%) | (0.05%) | (0.04%)
JMP 111 153 171 111 153 171
(0.08%) | (0.06%) | (0.06%) | (0.07%) | (0.05%) | (0.04%)
SHFR 123 170 188 1233 2465 2753
(0.09%) | (0.07%) | (0.06%) | (0.83%) | (0.76%) | (0.68%)
Total | 134484 249879 | 310043 | 148581 324717 402926
(100%) (100%) | (100%) | (100%) (100%) (100%)

Table 7.4: Dynamic instruction counts (dynamic instruction frequencies in

parentheses) for an elliptic curve multiplication using different n.

n=113 n =473
p-way | slices | cycles | Time (ms) | slices | cycles | Time (ms)
1 1410 | 134484 4.3 5264 | 2267501 126.2
2 1860 | 71204 2.6 6928 | 1150278 69.2
4 1970 | 39564 1.7 7396 | 591666 35.7
6 2076 | 28264 1.2 7872 | 402306 24.5
8 2182 | 23744 1.06 8340 | 312360 19.1
10 2300 | 20354 0.93 8799 | 253246 15.7
12 2434 | 18094 0.89 9288 | 217680 13.8
14 2515 | 16964 0.84 9752 | 192602 13.5
16 2614 | 15833 0.81 10229 | 170340 12.7

Table 7.5: p-way parallel ALU resource utilization and performance for pro-
jective coordinates (n = 113 and 473).
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Conclusion

In this work, a novel architecture for an elliptic curve processor over Fyn using
an optimal normal basis was developed. The processor can perform a scalar
multiplication on elliptic curve, the central operation of elliptic curve cryptog-

raphy. The main results that were obtained are as follows:

o the curve multiplication over Fy» with n = 113, 155, 173 , 281, 371 and
473 was successfully tested on the hardware with reported frequencies

31, 30, 28, 26, 22 and 18 MHz respectively

e curve multiplication in affine and projective coordinates were imple-
mented and tested. Experiments showed that projective implementation
had 10% (n = 113), 23-24% (n = 155, 173, 281) and 38% (n = 473)

improvement over affine.

e projective implementation with serial multiplier gave an 4-12 times im-

provement over an optimized software implementation

e the work with 16-way parallel multiplier (n = 113 and 473) gave 5 and
10 times improvement over the serial multiplier and it gave linear im-

provement when degree of parallelism < 6 and 10 respectively.

The processor used the reconfigurable nature of FPGA devices to achieve

flexibility not attainable in a traditional ASIC. In particular, it was generated
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by a parameterized module generator which can generate field processors us-
ing an optimal normal basis for arbitrary n using a multiplier with different
speed /area tradeoffs. A microcoded approach was used to implement a curve
processor on top of the field processor. Different algorithms can be imple-
mented by changing the microcode and the design has lower 1/O requirements
than the basic field processor. The microcoded processor has the advantage
that a high bandwidth interface is not required compared with previous elliptic
curve processors which only implemented field operations.

With the advantages of smaller key sizes, lower memory and computational
requirements than other public key cryptosystems, ECC lends to sending infor-
mation securely over the Internet where bandwidth and processing capabilities

are limited.

8.1 Recommendations for Future Research

The thesis described an elliptic curve cryptographic processor performing el-
liptic curve scalar multiplication. This is an active area of this research and
new algorithms have been developed with improved efficiency.

An improved method for computing curve multiplication (¢P) using a non—
adjacent form (NAF) [BSS99] has been reported. The expected length of the
NAF is about one-third of the original binary form [BSS99], therefore the
multiplication process can be made three times faster on average although
conversion to NAF form is required.

Another improved algorithm for computing repeated doubling (2!P) can
further improve the performance [GP97]. It can compute 2'P for an elliptic
curve defined over Fy» with only one inversion. It provides a faster computation
for 2' P than consecutive doublings if the cost of inversion is 2.5 times or more

than multiplication (which is the case for the ECP described in the work).
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The elliptic curve processor described in this thesis requires the param-
eters to be loaded into the registers before the calculation started. More
functions could be handled by the processor. For example, generating ran-
dom elliptic curves and elliptic curve point counting can be implemented on
chip. This approach would improve the resistance of the processor to probing
attacks [And01] and reduces the software support required by the processor.

From the design point of view, FPGA devices are very suitable platforms
for implementing cryptographic hardware. With low cost, high speed and
feasibility of upgrading in the field, FPGAs will be used more and more for
cryptographic systems on embedded devices. The work described in this thesis

is just one example of such an application.
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Appendix A

Elliptic Curves in

Characteristics 2 and 3

A.1 Introduction

Elliptic curve cryptography is based on calculation of elliptic curves over finite
fields. The equations of elliptic curves over different fields are different. In
this chapter, it shows the derivations of the elliptic curves of finite fields with

characteristic 2 and 3.

A.2 Derivations

Elliptic curve defined over finite field K, F(K), is given by Weierstrass equa-

tion,
v 4 arxy + asy = 27 + axx’ + aqr + ag (A1)

where ay, asy, as, as, ag € Fon.

Two elliptic curves Fy/K and FEy/ K

Ey g arey+asy = 2 + a2’ + age + g (A.2)

B, : '+ alry + asy = 2>+ a’zxz + dayx + ag (A.3)
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are said to be isomorphic over K, denoted F;/K = FE,/K, if and only if
there exists u,r, s, € K, u # 0, such that (z,y) on E;/K is mapped to
(v?z + r,u’y + u?sz 4+ t) on Fy/K [Men93]. Therefore the change of variables

(2,y) — (vx 4+ r,u’y +u’sz + 1) (A.4)

transforms Equation A.2 to Equation A.3. The transformation A.4 is known
as an admissible change of variables.

Since Fy = F, over K, then the admissible change of variables A.4 yields
the set of equations [Men93]:

ua; = a;+2s

u?aly = ag— say + 3r — s*

uay = a5+ ra;+2 (A.5)
uld) = ai—sas+2raz — (t+rs)ar + 3r? — 2st

wlag = ag+ras+riay+r’ —tas—1* —rta;.

Therefore Fy/K and E,/K are isomorphic over K if and only if there exists

u,r,s,t € K, u# 0, such that satisfy Equations A.5.

A.3 Elliptic Curves over Finite Fields of Char-
acteristic # 2,3

For a field F,, p (a prime) is the characteristic of the field. If the elliptic curve
defined over field K of characteristic # 2, then Equation A.1 can be simplified
by completing the square and thus replace y by (y — ayz — a3) [Sil85]. That
is applying the admissible change of variables

DO | —

(x,y) — (:1;, (y —arx — a3)>

transforming £/ K to

F'/K : y? = 42° 4 byx® + 2bsx + bg
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where

bz = Cl% + 4@2
by = 2a4+ aras

b6 = Cl% + 4@6.
Moreover define

2 2 2
bs = ajag+ dazas — arazay + aza; — aj

Cq4 = b% — 24[)4

ce = —by+ 36byby — 216bg
A = —bibg — 8b3 — 27bz + 9bybybg (A.6)
3
. Cy
— 4 AT
J A (A7)

A of Equation A.6 and j of Equation A.7 are called the discriminant and
J-invariant, j(F), of the elliptic curve. For elliptic curves in the same isomor-
phism class, their values of j-invariant would be the same. Since j-invariant is
defined by inverse of A, it is real if A # 0. Therefore, an elliptic curve is said
to be non—singular (there exists isomorphic curve) if A # 0.

Further if elliptic curve over K of characteristic # 2,3, then the admissible

change of variables [Men93]
x—3by y
H e —
(2, y) ( 26 ,108>
further transforms F’ to
E"|K : y? = 2° — 2Tcqx — Hle.

Therefore for field K of characteristic # 2,3, an elliptic curve over K is the set

of points (z,y) satisfying the equation

v =2" 4 asz + ag (A.8)
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together with O, where z,y € K [Sil85]. Moreover the associated quantities

are

A = —16(4a] + 27ag) (A.9)
i(E) —_1722(4“4)3. (A.10)

A.4 Elliptic Curves over Finite Fields of Char-
acteristic = 2

If K of characteristic 2, then j-invariant of £/K is [Men93]

a1

X
If j(F) # 0, then the admissible change of variables [Men93]

y+ 3

aj

2 2
a aias + a
} 2 3 3 144 3
(l',y) (alx —I_ a 7a1 )
1

transforms F to the curve
FEy/K : y: 4 2y = 27 + axx® + as. (A.11)

For Fy, A = ag and j(Fy) = i
If j(F) = 0, then the admissible change of variables

(z,y) — (2 + a2, y)
transforms F to the curve
Ey/K : y* 4 asy = 2° 4 aqx + ae. (A.12)

For Ey, A = a3 and j(E,) = 0.
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Examples of Curve

Multiplication

B.1 Introduction

In this chapter, examples of curve multiplication performed on the work are
shown. For each example, the parameters (az,ag in Equation 5.4) and the
private key (¢ in Equation 5.8) were randomly generated. The base point (P
in Equation 5.8) was found according to the method described in Section 5.5.
Numbers are presented in hexadecimal form with high order digits on the left

hand side.
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B.2 Numerical Results

Example 1: n=113 bits

a2 : 1£fff 117

a6 : 1£fff 117

Base point P :

b 16c80 3abc107c

y dele 607f7dab

private key c :

c 698a 82651d65

public key @):

b 4f7b 1ef82cb4d

y o 1070c 4970bfb7

Example 2: n=113 bits

a2 : ffff fEffffff

a6 : 400e 1a3faf38

Base point P :

b cc73 99a652ba

y o 9d08 3alcf2d2

private key c :

c 6£18 9£251db9

public key @):

X 985 0QOe2cabce

y o bdfc ae9a446c

i i o s e e i
i i o s e e i

188da158

8e4a1858

5d7a9d36

30£49db9
d5249488

ff£fdbfo1
66484043

df30a35f

a3e11965

04892ca’7

1f30alab

93a9chba

i i o s e e i
i i o s e e i

67fa62d4

a8ba7c60

7d395bac

eaaaabc9

09e2debb

af6dea73

011647ac

2adb772c

510c921f5

18480fd5

49b8d839
41261632
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Example 3: n=113 bits

a2 : 1e8b5 5472af02

a6 : 400e 1a3faf38

Base point P :

b 1c817 0844ae3a

y o 1b87b £a893d86

private key c :

c : 8ele 55dcdfé6f

public key @) :

b 1847e b0a88f63

y 1fe8a b79dd95e

Example 4: n=155 bits

a2 : Tffffff ffffffff
a6 : Tffffff ffffffff

Base point P :

X ¢ 4b2c670 a207432f

y ¢ 1c06f8e abfb07f1

private key c :

c : 4b22557 eTa2lca7

public key @) :

x : 3f601e7 3f983025

y ¢ 2cc9915 7a2c5f40

c70d8cel
66484043

feb71aa8

c50395d1

0e94e98b

22a214f6

658e0ca?2

i i o s e e i
i i o s e e i

050cbaé9

5d8ed4eb

c2569cel

7e6bb129

45ed81f1

fcc01e63

011647ac

fed48497

ffa15a9d

eca35be?2

£3476329
c00£2670

ffffffff fEFEFE~£F
ffffffff fEFEFE~£F

ef6£260d 7403b9bd

ab829d8a 230e5bb3

36c38148 624672ba

98cb4606 7e2bd780

67f2cbla 74d9eb4c
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Example 5: n=155 bits

a2 : 1999999 9999998e

a6 : fffe202 97eeade8

Base point P :

X : 4fceb80 c9954b5f

y : T7fablal 536648al

private key c :

c : 7251db9 0486ec38

public key @) :

x : 104931e 28440337
y o fedb96 17875d96

Example 6: n=155 bits

a2 : 3ad89d a8278400

a6 : fffe202 97eeade8

Base point P :

x : 736b98f 0af0e23d
y ¢ 119bf37 3486733

private key c :

c : 74bd6cb bl1leb9fb

public key @) :

X : 67c3b2d 76af4c68

y ¢ 2d1b76b 9ee7db2f

dbbbc76Db
751a888b

cb803e0b

1778553a

c7bbfa48

e1d9596a

£822efe3

62468427
7535b64e

98645286
75a1a759

aa2008ab

45e8576b
5a3154a7

2af2dfd7

dbbldaec

2c730d492
bd504650

015092561

baablOabe
15¢c3b793

6ebb2e36

ef46£d00

9ec12595
95540844

1421858a

d4cee873

49bf82c6

cd192e17

c4bfcal7

545af31c

9a3e3017

elclbaal

6edbd668

eae8515d

75192e17
771£8507

3bb523ab
£2d44454

58cbb599

e644b23f

7fa69ech
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Example 7: n=173 bits

a2 : 1£ff fEffffff

a6 : 1£ff fEffffff

Base point P :

X 13c5 44136e20

y o 69f 0419abb4d

private key c :

c : 1b e10becOd

public key @) :

X 39d 312e6fda

y 192c 74cb81bb5

Example 8: n=173 bits

a2 : 1 5b3cblail

a6 : 15b04 1d8al2ic

Base point P :

X 1£67 £43f7b75
y o 17af d85d7132

private key c :

c 1d3 d91376fc

public key @) :

X 1113 3d013f5e
y o 707 254df99f

i i o s e e i
i i o s e e i

dacbOeea

d4£94960

953acd8c

6cb507af

a4c959f0

8feb2a3d
74c84653

fcel2bce
673d3a91

d7bblch9

cbedbcbb

eel91c36

i i o s e e i
i i o s e e i

358dcdf6

e4abb01f

a37577a3

b5ed4b2ch
dd1d£342

4cc05920
97b6c30f

46£d7331
b14df784

c7057e80

644dedfe

9¢c79e822

i i o s e e i
i i o s e e i

46ba8547

bfeaefal8

0f1c73bc

312a7930

Oceeaac8

caad4f2bl

4fadff64

4c04248f
74b80d84

24c96flc

c7d949ch
303f6d30

i i o s e e i
i i o s e e i

Ofdalaaf

7d40ae76

2c8e8fd5

9e6477a7

898303c3

7c682af?2

bce86df2

8671debd

e40d836¢c

0c550126

1999397

879aec8b
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Example 9: n=173 bits
a2 : 8 6ca9f209 17£12ab53 06d1c990 9b9e9102 7ab136f2
a6 113f6 3af371d5 28cd33f7 a94d255c ecbaaca7 57186df2
Base point P :
X 47b 7£f4c2633 3f84b65b 82bef409 c9dd884a 751b764f
y o cb0 70e53ae6 c6abdabd 0fabbbc2 4cb9ed7a 60288e8d
private key c :
c: 54 dbaaacf9 a467e7cl f416e71a 8aff78e0 2e¢2346¢cl
public key @) :
X 8f5 e0dd3934 03432022 9d7cb4dd 45b6eda7? 9674c557
y ceb 6faa7d70 46a67747 02190ecf celac463 e2f6bd01



