
A Decimated Electronic Cochlea on a
Reconfigurable Platform

Wong Chun Kit

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

c©The Chinese University of Hong Kong

July, 2006

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

Abstract

Electronic cochlea models are used for physiological modeling as well as in

many signal processing tasks such as pitch detection and speech recognition.

Hardware based electronic cochlea systems offer improved performance, lower

power consumption and smaller footprint over software based systems. Field

Programmable Gate Arrays (FPGA) provide a means to reconfigure cochlea

systems so that they can serve as the front-end signal processing for different

models of the auditory nervous system.

This study is concerned with the efficient implementation of cochlea filters

in digital hardware. It is demonstrated that computations in the low frequency

sections of the cochlea cascade can be reduced by employing decimation. High

performance FPGA-based implementation of cochlea systems with different

levels of decimation were developed. This study also introduces a sequential

processing architecture and evaluates the accuracy, performance and resource

utilization of different implementations using fixed-point and dual fixed-point

arithmetic.

A baseline cochlea employing a sequential processing unit was developed

and could achieve a maximum processing rate of 933 kHz. A variable decima-

tion cochlea was developed to speed up the computations of the cochlea sys-

tems and provided an efficient method to evaluate the aliasing and performance

tradeoffs of a cochlea system by varying decimation used. To demonstrate the

efficiency of dual fixed-point arithmetic, cochlea systems using dual fixed-point

arithmetic were implemented and compared with fixed-point systems.

i

The resulting decimated implementations achieved 173% and 49% speedups

with cutoff values of -60 dB and -80 dB respectively. The DFX designs had a

20-30 dB higher signal to noise ratio than the fixed-point designs. Measure-

ments show that these DFX implementations used 24.9% more logic resources

but the number and size of the multipliers used in both fixed-point and DFX

implementations were the same.

ii

摘要

電子耳蝸模型被使用在生理學上的模型及很多訊號處理任務裡，它

們包括音高偵測和語音識別等。硬件築成的電子耳蝸系統比軟件築

成的會提供更高的性能，更低的耗電量及更少的所佔空間。由於現

場可編程門陣能提供一個方法來重新配置電子耳蝸系統，因此它能

作為不同聽覺神經系統模型的前端訊號處理。

本研究涉及電子耳蝸在數位硬體內的有效實施，和證明了能透

過取樣法來減少耳蝸串聯中低頻部分的計算次數。本研究已開發了

在現場可編程門陣上具不同取樣水平的高性能電子耳蝸及介紹了

一個順序處理式的架構，而且在準確性、性能和資源利用各方面評

估了使用固定點運算法和雙固定點運算法的不同電子耳蝸。

本研究已實現了一個具有順序處理式裝置的電子耳蝸基礎，它

並且能實現 933 千赫茲的最高處理速度，也發開了一個具可變取樣

法的電子耳蝸來加速耳蝸系統內的計算，及通過改變取樣法來提供

一種有效率的方法去評估怎樣平衡取樣法在電子耳蝸中所引致的

失真效果及性能。為了證明雙固定點運算法的效用，在本研究中實

現的電子耳蝸系統使用雙固定點運算法，並且與使用固定點運算法

的系統作出比較。

在運用了負 60 分貝和負 80 分貝截頻點的電子耳蝸中，取樣法

已分別取得了 173% 和 49% 的加速效果，而用雙固定點運算法的電

子耳蝸設計比用固定點運算法的已擁有多20至30分貝的訊號雜訊

比。本研究雖然也測量出用雙固定點運算法的電子耳蝸比用固定點

運算法的多用了 24.9% 的邏輯資源，但是它們使用了相同大小及數

量一樣的乘算器。

iii

Acknowledgments

It would be impossible to complete this dissertation without help of many

people. I would like to take this opportunity to thank them.

Firstly, I want to thank my final year project and Master Degree supervisor,

Prof. Leong Heng Wai Philip for his help and guidance in the past two years.

He shows his generosity and gave me encouragement and numerous ideas for

my research.

I would like to thank Prof. Lee Kin Hong for his suggestions and comments

for improving this work.

I would like to thank my colleagues, Mr. Y.M. Lam, Mr. K.H. Tsoi Brittle,

Mr. M.H. Li Brian, Mr. Y.H. Cheung Ocean and Mr. W.S. Lau for their help

in my research.

I would like to thank my family for their support. This dissertation is

dedicated to my family.

iv

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objectives . 4

1.3 Contributions . 4

1.4 Thesis Outline . 5

2 Digital Signal Processing 6

2.1 Introduction . 6

2.2 Discrete-time Signals and Systems 7

2.2.1 Discrete-time Signals . 7

2.2.2 Discrete-time Signal Processing Systems 9

2.2.3 Linear Time-Invariant (LTI) Systems 10

2.3 Finite Impulse Response (FIR) Filters 13

2.3.1 Introduction . 13

2.3.2 Windowing FIR Filter Design Method 15

2.4 Infinite Impulse Response (IIR) Filters 17

2.4.1 Introduction . 17

2.4.2 Bilinear Transform IIR Filter Design Method 18

2.4.3 Spectral Transformations of IIR Filters 22

2.5 Comparison on FIR and IIR Filters 25

2.6 Digital Signal Resampling . 26

v

2.6.1 Introduction . 26

2.6.2 Resampling by Decimation 26

2.6.3 Resampling by Interpolation 28

2.6.4 Resampling by a Rational Factor 29

2.7 Introduction to Dual Fixed-point (DFX) Representation 30

2.8 Summary . 33

3 Lyon and Mead’s Cochlea Model 34

3.1 Introduction . 34

3.2 Digital Cochlea Model: Cascaded IIR Filters 37

3.2.1 Introduction . 37

3.2.2 Bandwidth and Centre frequencies 38

3.2.3 Zeros and Poles . 39

3.3 Modifications for Decimated Cochlea Model 41

3.3.1 Introduction . 41

3.3.2 Aliasing Avoidance . 42

3.3.3 Coefficient Modification after Decimation 43

3.4 Summary . 47

4 System Architecture 48

4.1 Introduction . 48

4.2 Hardware Platform and CAD Tools 48

4.3 Sequential Processing Electronic Cochlea 51

4.3.1 Pipelining - An Interleaving Scheme 53

4.3.2 Decimation in Sequential Processing Electronic Cochlea . 54

4.3.3 Multiple Sequential Cores 55

4.3.4 Architecture of the DFX Filter Computation Core 55

4.4 Summary . 60

5 Experimental Results 61

vi

5.1 Introduction . 61

5.2 Testing Environment . 61

5.3 Performance of the Sequential Electronic Cochlea 63

5.3.1 Comparisons . 63

5.4 Summary . 69

6 Conclusions 70

6.1 Future Work . 72

Bibliography 73

vii

List of Figures

1.1 Cascaded IIR biquadratic sections used in the Lyon and Mead

cochlea model. 2

2.1 The Block diagram of a FIR filter. 14

2.2 The Block diagram of a N input tap, M output tap IIR filter. . 17

2.3 Mapping of the s-plane onto z-plane using bilinear transformation. 20

2.4 Mapping of the continuous-time frequency axis onto the discrete-

time frequency axis using bilinear transformation. 20

2.5 Nonlinear relationship between the Ω (s-domain) and ω (z-

domain) frequencies. 21

2.6 Mapping of the angular frequencies in the lowpass-to-lowpass

transformation. 24

2.7 Spectra for aliasing problem of sample rate reduction by a factor

of M : (a) Spectrum of original signal; (b) Spectrum of signal

decimated by M . 27

2.8 Avoiding aliasing problem by lowpass filter: (a) Spectrum of

original signal; (b) Spectrum filtered by lowpass filter; (c) Spec-

trum of signal decimated by M 28

2.9 Block diagram of sample rate reduction by a factor of M 28

2.10 Interpolation by a factor of L: (a) Spectrum of original signal;

(b) Spectrum of signal inserted L−1 zeros between each sample;

(c) Spectrum filtered by lowpass filter. 29

viii

2.11 Block diagram of sample rate increased by a factor of L. 29

2.12 Block diagram of sample rate changed by a factor of L/M 30

3.1 Human auditory system. 35

3.2 The basilar membrane inside cochlea. 36

3.3 Centre frequencies of different stages with sampling frequency

16 kHz. 38

3.4 Recursive algorithm of centre frequency calculation 39

3.5 Frequency responses of the electronic cochlea with 169 stages

and sampling frequency 200 kHz. 40

3.6 Decimated electronic cochlea. 41

3.7 Normalized computation rate against cutoff value of a system

with sampling frequency of 200 kHz (169 stages). 43

3.8 Comparison of different coefficient modification methods: (a)

Original frequency response; (b) Modify by spectral transforma-

tion approach; (c) Modify by coefficient regeneration approach. . 46

3.9 Frequency responses of the decimated electronic cochlea with

169 stages, sampling frequency of 200 kHz and decimation cutoff

value of 50 dB. 47

4.1 The simplified structure of Xilinx slice. 49

4.2 Xilinx Virtex-II Pro CLB structure. 50

4.3 The architecture of a second order IIR filter. 51

4.4 Block diagram of the fully pipelined sequential processing elec-

tronic cochlea. 52

4.5 The interleaving scheme for the pipelined electronic cochlea. . . 53

4.6 Multiple sequential processing cochlea cores. 56

4.7 Filter computation module for dual fixed-point n f0 f1. 57

4.8 Dual fixed-point fractional matcher. 58

ix

5.1 Size and timing comparison of different designs. (FIX x y refers

to a fixed-point system with wordlength x bits and fractional

wordlength y bits. DFX x y z is explained in Section 2.7) 62

5.2 Relative SNR of 88 cascaded filters systems of different arith-

metic and wordlength. 65

5.3 Relative SNR of 169 cascaded filters systems of different arith-

metic and wordlength. 66

5.4 Processing rate as a function of decimation level. 68

x

List of Tables

2.1 Comparison between two different fixed-point scalings in DFX:

Scale0 and Scale1 . 31

4.1 Calculation stages for different samples. 55

4.2 Rescaling operations for different situations. 60

5.1 Size and timing comparison of different designs. 63

5.2 Multipliers and BlockRAMs usage for different designs. 64

5.3 Maximum processing rate for different designs. 67

xi

Chapter 1

Introduction

1.1 Background and Motivation

The field of neuromorphic engineering, led by Carver Mead [LM88] in 1980s

has the objective to use Very Large Scale Integration (VLSI) implementations

of biological inspired systems for signal processing. Compared to traditional

systems, the biological signal processing systems proposed by the research in

this field have led to new applications. As the cochlea serves as the front-

end signal processing for all functions of the auditory nervous system such as

auditory localization, pitch detection, and speech recognition, research in the

biological cochlea system is believed to be potentially important in the study

of the auditory system.

The human cochlea acts as a transducer which converts mechanical vibra-

tions from the middle ear into neural electrical discharges, and additionally

provides spatial separation of frequency information in manner similar to that

of a spectrum analyzer. In many signal processing tasks such as speech recogni-

tion, it is clear that the humans can perform better than the most sophisticated

computer-based systems so better understanding of the cochlea may lead to

improved neuromorphic systems.

Although using software systems to simulate cochlea models is possible,

hardware implementations can achieve much better performance. When the

1

Chapter 1 Introduction 2

Figure 1.1: Cascaded IIR biquadratic sections used in the Lyon and Mead
cochlea model.

target applications are on embedded devices in which power efficiency and

small footprint are design considerations, hardware implementations become

even more attractive over software simulation systems.

The electronic cochlea, first proposed by Lyon and Mead, models the hu-

man cochlea as a cascaded series of biquadratic filter sections (as shown in

Figure 1.1). Many audio signal processing systems such as pitch detection

[LM89b], spatial localization [LM89a], computer peripheral [LWK94], ampli-

tude modulation detection [vSM99], correlation [MAL91] and speech recogni-

tion [LWL97] have successfully used the electronic cochlea model.

In 1988, Lyon and Mead published the original implementation of the

electronic cochlea with a cascaded of 480 stages in analog VLSI technology

[Lyo91]. Another analog VLSI version was proposed Watts et. al. in 1992

with 50 stages and improved dynamic range and stability [LWM92]. In 1997,

van Schaik et. al. used compatible lateral bipolar transistor to implement a

104-stage analog VLSI electronic cochlea with great improvement [AvSV97].

In 2005, Sarpeshkar et. al. proposed and implemented a low-power analog

cochlea called the ”Bionic Ear” which is q device mimicking the ear to help

the deaf [SS05].

Although analog electronic cochlea designs are potentially more efficient as

they use the physical current and voltage properties of transistors and avoid

Chapter 1 Introduction 3

digitalization, digital designs have the advantage of insensitivity to environ-

ment changes such as temperature and noise from power supply. For digital

VLSI electronic cochlea implementations, an ASIC design which used bit-serial

second-order filters was reported by Summerfield and Lyon in 1992 [SL92].

In 1997, Lim et. al. used a first-order Butterworth bandpass filter to imple-

ment the cochlea filtering in the VHDL-based pitch detection system [SCLJ97].

Brucke et. al., in 1998, implemented a VLSI speech preprocessor which used

gammatone filter banks to mimic the cochlea [MBK98]. In 2002, a tenth-order

recursive cochlea was implemented by Mishra et. al. using FPGA technol-

ogy [MH02]. In 2003, an FPGA-based module generator that used distributed

arithmetic to implement the biquadratic filters was proposed by M. P. Leong.

Using this module generator, designs with different numbers of inputs, filter

coefficients and precision could be generated [LJL03].

Field-Programmable Gate Arrays (FPGAs) are hardware devices which

can be reconfigured, after fabrication. Functions inside FPGA devices can be

changed by downloading different bitstreams for different applications. The

following are the advantages of FPGAs:

• The electronic cochlea serves as the front-end signal processing for dif-

ferent functions of the auditory nervous system. For auditory nervous

systems with different functionalities, the electronic cochlea should be

modifiable with appropriate configurations such as filters coefficients,

number of stages and wordlength. With FPGAs, it is possible to recon-

figure the cochlea on the chip accordingly.

• Compared with application specific integrated circuit (ASIC) technology,

FPGAs have a shorter development period, better stability and faster

time to market.

Chapter 1 Introduction 4

1.2 Objectives

The Lyon and Mead cochlea model is a cascaded series of biquadratic filter

sections with exponentially decreasing cutoff frequencies (as shown in Figure

1.1). The signals in the low frequency sections of the cascaded series filters

are of lower bandwidth than those in earlier sections since each IIR filter in

the cascade has a lowpass transfer function. Thus a lower sampling rate can

be tolerated in later sections. Traditionally, implementations of the electronic

cochlea have operated at a single sampling frequency, and data is processed at

a higher sampling rate than necessary.

The main objective of this work was to employ decimation to reduce com-

putation in the Lyon and Mead cochlea model, and dual fixed-point arithmetic

to improve dynamic range. The following features were desired:

• develop a hardware Lyon and Mead cochlea in which decimation is used

to reduce computation in low frequency sections.

• design an electronic cochlea with dual fixed-point (DFX) arithmetic

[ECC04] to improve dynamic range.

• devise a sequential electronic cochlea architecture which employs pipelined

infinite impulse response filter stages.

1.3 Contributions

This thesis presents an improved design for an electronic cochlea filter em-

ploying decimation to reduce computation, and dual fixed-point arithmetic to

improve dynamic range. The contributions of this work are:

• a study of tradeoffs in the aliasing and redundant filter computation

reduction through decimation of the Lyon and Mead electronic cochlea

was made.

Chapter 1 Introduction 5

• Comparisons between a standard fixed-point cochlea implementation and

the cochlea with one using dual fixed-point (DFX) arithmetic [ECC04]

which employs a single bit exponents to select between two different

fixed-point representations were made in terms of accuracy, performance

and resource utilization.

• A novel architecture for both pipelined and sequential implementations

which use the new ideas introduced.

• Together, these improvements have led to a family of FPGA implemen-

tations of the Lyon and Mead electronic cochlea model with improved

speed and accuracy over all previous reported designs.

1.4 Thesis Outline

Background information describing digital signal processing which includes

the principle of resampling and the dual fixed-point (DFX) arithmetic are

presented in Chapter 2. Chapter 3 provides a description of Lyon and Mead’s

cochlea model as well as the description of human cochlea. In Chapter 4,

architectures for the implementation of an electronic cochlea are introduced.

Results are presented in Chapter 5 and conclusions are drawn in Chapter 6.

Chapter 2

Digital Signal Processing

2.1 Introduction

In this chapter, the fundamental concepts of discrete-time signals and signal

processing systems for one-dimensional signals are introduced. The design

methods for discrete-time filters and the digital signal resampling are also

detailed.

The discrete-time signals and signal processing systems are introduced at

the beginning of this chapter. In next section, the introduction and the design

method of FIR filters are discussed and followed by the introduction and the

design method of IIR filters. The spectral transformation used in IIR filters

is also described. Then FIR and IIR filters are compared to present the ad-

vantages and disadvantages of each. The digital signal resampling knowledge

involving decimation and interpolation is presented in next section. Finally, a

data representation used in digital signal processing, called dual fixed-point is

introduced in this chapter and compared with the fixed-point to demonstrate

its improved dynamic range.

6

Chapter 2 Digital Signal Processing 7

2.2 Discrete-time Signals and Systems

2.2.1 Discrete-time Signals

The field of signal processing is the science of analyzing and manipulating time

varying signals. Signal processing is mainly divided into two categories, analog

signal processing and digital signal processing, based on whether the processed

signal is continuous-time or discrete-time. The continuous-time signals or ana-

log signals, have continuous waveforms in the time domain and can be rep-

resented by a continuous independent variable. Examples of continuous-time

signals are the continuous voltage and current representations used in analog

circuits. Discrete-time signals are used to describe signals who have quantized

time variables and therefore the value of the signals can only be defined at

discrete instants of time. A continuous waveform cannot be used to represent

a discrete-time signal but used a sequence of values instead. Besides the time

variable of signals being discrete, the amplitude can be discrete. A digital

signal in which both time and amplitude are discrete [OSB98].

Discrete-time processing systems are systems which deal with the transfor-

mation of discrete-time signals: discrete in time but continuous in amplitude.

Digital signal processing systems are the systems which manipulate with sig-

nals that are discrete in both time and amplitude.

From a mathematically viewpoint, a sequence of numbers are used to rep-

resent a discrete-time signal and the time variable is represented as an integer

in the range from −∞ to ∞. A sequence of numbers x, in which the value of

the nth sample is denoted as x[n] is given as:

x = {x[n]} −∞ < n < ∞ for n ∈ I (2.1)

As the time variables of discrete-time signals are quantized, x[n] is only defined

for integer values of n and is undefined for non-integer values of n. By using

Chapter 2 Digital Signal Processing 8

the unit function:

δ[t] =





0, t 6= 0,

1, t = 0.
(2.2)

the value of the nth sample can be generally expressed as:

x[n] =
∞∑

i=−∞
x[i]δ[n− i] (2.3)

In fact, discrete-time signals can be obtained by periodically sampling a continuous-

time signal. The sequences x can be generated by periodically sampling an

analog signal at uniform time intervals. The value of the nth number in the

sequence is equal to the value of the analog signal, xanalog(t), at time nT :

x[n] = xanalog(t)|t=nT = xanalog(nT) −∞ < n < ∞ for n ∈ I (2.4)

where T is the spacing between two successive samples and is called the sam-

pling interval or sampling period. The reciprocal of the sampling period, T , is

called sampling frequency, FT :

FT =
1

T
(2.5)

The unit of sampling frequency is hertz (Hz), and that of sampling period is

second (s). The sampling angular frequency is denoted as ΩT :

ΩT = 2πFT =
2π

T
(2.6)

For example, if the continuous-time signal is:

xanalog(t) = A sin(2πfot + φ) = A sin(Ωot + φ) (2.7)

Chapter 2 Digital Signal Processing 9

the discrete-time signal generated by periodically sampling xa(t) is:

x[n] = xanalog(t)|t=nT

= A sin(ΩonT + φ)

= A sin(
2πΩo

ΩT

n + φ)

= A sin(ωon + φ) (2.8)

where

ωo =
2πΩo

ΩT

= ΩoT =
Ωo

FT

(2.9)

ωo is the normalized digital angular frequency of the discrete-time signal x[n]

with the unit of radians per sample, while the unit of the normalized analog

angular frequency Ωo is radians per second [Mit01].

In discrete-time signal processing, the normalized digital angular frequency,

ωo, has the range from −π to π:

−π ≤ ωo ≤ π

−π ≤ Ωo

FT

≤ π

−FT

2
≤ fo ≤ FT

2

|fo| ≤ FT

2
(2.10)

According to Eq. (2.10), in order to sample an analog signal with the band-

width, fo, the value of sampling frequency used must at least double the signal

bandwidth, i.e. FT = 2fo.

2.2.2 Discrete-time Signal Processing Systems

From a mathematical viewpoint, discrete-time signal processing system is de-

fined as a function that transforms an input sequence with values x[n] into an

Chapter 2 Digital Signal Processing 10

output sequence with values y[n]. It is denoted as:

y[n] = F{x[n]} (2.11)

In Eq. 2.11, the function F is used to represent the transformation operation

for computing the output sequence values from the input sequence values. The

values of the output sequence at each index n depend on the value of the whole

sequence x.

2.2.3 Linear Time-Invariant (LTI) Systems

In the analysis of discrete-time systems, linearity and time-invariance are two

important characteristics. The result of any discrete-time signal processing

system can be more easily modeled if it is linear and time-invariant.

The linear characteristic is defined by the principle of superposition. Lin-

ear systems are systems in which the output is the superposition or sum of

the individual outputs obtained by applying the respective individual inputs

separately to the system. If y1[n] and y2[n] are the responses of a system when

x1[n] and x2[n] are the respective inputs, the system, L is linear if and only if

L{x1[n] + x2[n]} = L{x1[n]}+ L{x2[n]} = y1[n] + y2[n] (2.12)

L{ax[n]} = aL{x[n]} = ay[n] (2.13)

where a is any constant. Eq. (2.12) is called the additivity property and Eq.

(2.13) is called scaling property or homogeneity property. The principle of

superposition is the combination of these two properties:

L{ax1[n] + bx2[n]} = aL{x1[n]}+ bL{x2[n]} (2.14)

Chapter 2 Digital Signal Processing 11

where a and b any constants. If the input of the linear system is the superpo-

sition of many inputs, Eq. (2.14) can be further generalized:

x[n] =
∑

k

akxk[n] (2.15)

and the output of the system would be:

y[n] = L{x[n]}
= L{

∑

k

akxk[n]}

=
∑

k

akL{xk[n]}

=
∑

k

akyk[n] (2.16)

where yk[n] is the corresponding system output to the input xk[n]. According

to Eq. (2.16), if the system is linear and a superposed input is applied, the

system output would be equal to superposing the outputs of respective input

components [OSB98].

A time-invariant system is a system in which a time shift or delay in the

input sequence causes a equivalent time shift in the output sequence [Lyo01].

Suppose a system, F , which transforms the input sequence with values,x[n],

into the output sequence with values, y[n].

y[n] = F{x[n]} (2.17)

The transformation system is said to be time-invariant if applying the shifted

version of the original x[n] input, x′[n] = x[n− ρ], then the output sequence:

y′[n] = F{x′[n]} = F{x[n− ρ]} = y[n− ρ] (2.18)

where ρ is an integer representing a ρ sample time shift. Eq. (2.18) must hold

Chapter 2 Digital Signal Processing 12

for any time shift ρ and any input sequence if the system is time-invariant.

For a linear time-invariant system, by combining its linear property with

the representation of the general sequence as a linear combination of delayed

impulses as in Eq. (2.3), the system can be completely characterized by its

impulse response. Let hk[n] be the response of the system, F , for the impulse

input δ[n− k], occurring at n = k. From Eq. (2.3),

y[n] = F

{ ∞∑

k=−∞
x[k]δ[n− k]

}
(2.19)

By using the principle of superposition in Eq. (2.14),

y[n] =
∞∑

k=−∞
x[k]F{δ[n− k]} =

∞∑

k=−∞
x[k]hk[n] (2.20)

The system response to any input sequence can be expressed in terms of the

system’s responses to the sequence δ[n − k]. The time-invariant property of

the system supports that if h[n] is the response to δ[n], the response of δ[n−k]

is h[n− k]. Therefore, Eq. (2.20) becomes:

y[n] =
∞∑

k=−∞
x[k]h[n− k] (2.21)

The output y[n] can be computed from system’s impulse response, h[n] and

the input sequence x[n] [OSB98]. Consequently, a linear time-invariant system

is completely characterized by its impulse response h[n]. Eq. (2.21) is called

a convolution sum. The output y[n] is called the convolution of the sequence

x[n] with h[n] and the notation is:

y[n] = x[n] ∗ h[n] (2.22)

Chapter 2 Digital Signal Processing 13

The convolution operation is commutative:

y[n] = h[n] ∗ x[n] (2.23)

y[n] =
∞∑

k=−∞
h[k]x[n− k] (2.24)

According to Eq. (2.21) and (2.24), the convolution sum expresses each sample

of the output sequence in terms of all of the samples of the input and impulse

response sequences [OSB98].

Filters are particularly important class of linear time-invariant systems.

Filters can be divided into two kinds: Finite Impulse Response (FIR) and

Infinite Impulse Response (IIR) filters.

2.3 Finite Impulse Response (FIR) Filters

2.3.1 Introduction

FIR digital filters use only the current and past input samples to generate the

current output sample value. None of the filter’s previous output samples are

used and are also called nonrecursive filters. If the duration of nonzero input

values is finite, an FIR filter always has a finite duration of nonzero output

values. Therefore, if the impulse is used as the input of the FIR filter, the

filter’s output will eventually be a sequence of all zeros and hence, a finite

impulse response. Figure 2.1 shows the basic block diagram of an FIR filter of

length N (N -tap). The nth output of a general N -tap FIR filter is:

y[n] =
N−1∑

k=0

b[k]x[n− k] (2.25)

Comparing Eq. (2.24) and (2.25), the output of a general FIR filter, Eq.

(2.25), is the convolution sum of the input sequence and impulse response

Chapter 2 Digital Signal Processing 14

Figure 2.1: The Block diagram of a FIR filter.

sequence of finite length, N . Therefore, the impulse response of a FIR filter is

identical to the FIR filter coefficients.

The discrete Fourier transform (DFT) result from the convolution of a

filter’s impulse response (coefficients) and the input sequence is equal to the

product of the spectrum of the input sequence and the DFT of the impulse

response. Given two time-domain sequences h[k] and x[n] having the DFTs

H[ω] and X[ω] respectively, the DFT of y[n] = h[k] ∗ x[n] is H[ω] ·X[ω]:

y[n] = h[k] ∗ x[n]

DFT

−→
←−
IDFT

H[ω] ·X[ω] (2.26)

Chapter 2 Digital Signal Processing 15

in which IDFT means the inverse DFT. Eq. (2.26) shows the sequence y[n]

resulting from h[k]∗x[n] and the sequence resulting from H[ω]·X[ω] are Fourier

transform pairs. Therefore, taking the DFT of h[k] ∗ x[n] would return the

product of H[ω] and X[ω] which is the frequency spectrum of filter output Y [ω].

In conclusion, convolution in the time-domain is equivalent to multiplication

in the frequency-domain [Lyo01].

2.3.2 Windowing FIR Filter Design Method

The design techniques for FIR filters are based on directly approximating the

desired frequency response of the discrete-time system. The simplest FIR filter

design method is called the window method. The steps to determine the filter’s

time-domain coefficients are:

1. Define the expression for the discrete frequency response H[ω]

2. Apply the expression to the inverse DFT to obtain the time domain h[k]

3. Evaluate the h[k] expression as a function of time index k.

For designing an ideal lowpass filter with cutoff frequency fc, the frequency

response is defined as H[ω]:

H[ω] =





1, |ω| ≤ Mfc/fs,

0, otherwise.
(2.27)

where fs is the sampling frequency and M is the number of samples covering

−fs/2 to fs/2. The result of the inverse DFT of H[ω] is:

h[k] =
1

M
· sin(πkK/M)

sin(πk/M)
where K =

2Mfc

fs

(2.28)

However, this impulse response expression is infinitely long and a practical FIR

filter would require truncation of the impulse response. The new truncated

Chapter 2 Digital Signal Processing 16

impulse response, h∗[k], is:

h∗[k] =





h[k], 0 ≤ k ≤ N,

0, otherwise.
(2.29)

where N is the number of taps (coefficients) of the FIR filter. h∗[k] in fact

is the product of the desired impulse response and a finite-duration ’window’

w[k]:

h∗[k] = h[k]w[k] (2.30)

where w[k] is the rectangular window:

w[k] =





1, 0 ≤ k ≤ N,

0, otherwise.
(2.31)

Recalling that from Eq. (2.26), multiplication in the time-domain is equivalent

to convolution in the frequency-domain, the actual frequency response H∗[ω]

is the convolution of H[ω] and W [ω]. As the DFT of the rectangular window,

w[k], returns a function, W [ω], which contains side lobes, passband ripples

occur in the actual frequency response H∗[ω]. Although increasing the number

of taps can make the filter’s transition region more narrow, it is impossible to

reduce or even eliminate the passband ripples. As long as w[k] is a finite

number of values (i.e. a rectangular window of finite width), there are sidelobe

ripples in W [ω] and passband ripples would be induced in the final frequency

response H∗[ω] by the convolution of H[ω] and W [ω] [Lyo01].

Although passband ripples cannot be completely eliminated, some window

functions which can increase the magnitude ratio between mainlobe and side-

lobes are commonly used in FIR filter design. These include Bartlett, Hanning,

Hamming and Blackman windows [OSB98].

Chapter 2 Digital Signal Processing 17

Figure 2.2: The Block diagram of a N input tap, M output tap IIR filter.

2.4 Infinite Impulse Response (IIR) Filters

2.4.1 Introduction

Infinite impulse response (IIR) digital filters are different from finite impulse

response (FIR) filters because IIR filters involve feedback of the output. While

the output sample of FIR filters depend only on the current and past input

samples, each IIR filter output sample depends on previous input samples and

previous output samples i.e they are recursive filters. As IIR filters are feed-

back systems, theoretically, an impulse input can cause the filter to oscillate

indefinitely. The output of the system can possibly have an infinite duration

even if the input becomes a sequence of all zeros. Therefore, the system can

theoretically have an infinite impulse response [Lyo01].

Figure 2.2 shows the basic block diagram of an IIR filter with N -tap input

Chapter 2 Digital Signal Processing 18

samples and M -tap output samples. That means each output sample of the

IIR filter shown in Figure 2.2 is generated by using N number of input samples

and M number of previous output samples. The nth output of this IIR filter

is:

y[n] =
N−1∑

k=0

b[k]x[n− k] +
M−1∑

k=1

a[k]y[n− k] (2.32)

2.4.2 Bilinear Transform IIR Filter Design Method

Due to the nonrecursive nature of FIR filters, the desired filter coefficients can

be directly determined from the impulse response sequence. However, as IIR

filters use feedback, filters’ coefficients a[k] and b[k] cannot be directly com-

puted from the impulse response. Instead, the transformation of a continuous-

time filter (analog filter) into a discrete-time filter is used to design IIR filters.

The first step in the design of IIR filters is to design a prototype continuous-

time filter using the analog specifications obtained from transformation of

the desired discrete-time specifications. Some approximation methods in the

continuous-time filter design such as Butterworth and Chebyshev are used to

obtain the system function Hc[s] of the continuous-time filter. Finally, by ap-

plying a continuous-time-to-discrete-time spectral transformation to Hc[s], the

system function H[z] for the discrete-time filter would be obtained [OSB98].

Bilinear transformation is one of such transformation method.

The bilinear transformation is an algebraic transformation between the

variables s and z: the entire jΩ-axis in the s-plane is mapped to one revolution

of the unit circle in the z-plane [Lyo01]. As −∞ ≤ Ω ≤ ∞ is mapped onto

−π ≤ ω ≤ π, the transformation between the continuous-time (s-plane) and

the discrete-time (z-plane) frequency variables must be nonlinear.

Assume Hc[s] be the continuous-time system function and H[z] be the

discrete-time system function, the bilinear transformation is to substitute s

Chapter 2 Digital Signal Processing 19

by:

s =
2

Td

(
1− z−1

1 + z−1

)
(2.33)

where Td is called the sampling parameter and should be related to the sam-

pling frequency. But Td is of no consequence in the design procedures if

the design problem is assumed to be always start from the specifications on

the discrete-time filter. When the discrete-time specifications are mapped to

continuous-time specifications and the continuous-time filter is mapped back

to a discrete-time filter, the effect of Td would be canceled [OSB98]. By solving

Eq. (2.33), an expression in terms of the s-domain can be derived:

z =
1 + (Td/2)s

1− (Td/2)s
(2.34)

and by substituting s = σ + jΩ into Eq. (2.34), the magnitude of z is given

by:

|z| =
√

(1 + σTd/2)2 + (ΩTd/2)2

(1− σTd/2)2 + (ΩTd/2)2
(2.35)

If σ is negative (σ < 0), the numerator of the ratio of |z| would be less than

the denominator and |z| < 1. On the other hand, if σ is positive (σ > 0),

the numerator would be larger than the denominator and |z| > 1. Therefore,

when using the bilinear transformation, any poles located on the left side of

the s-plane (σ < 0) would be mapped to a z-plane inside the unit circle. In

other words, any stable s-plane pole of the prototype analog filter would be

mapped to a stable z-plane pole for the discrete-time IIR filter (Figure 2.3).

In the bilinear transformation, the jΩ-axis of the s-plane is mapped onto

the unit circle. By substituting s = jΩ i.e. σ = 0 into Eq. (2.35):

|z| =
√

(1)2 + (ΩTd/2)2

(1)2 + (ΩTd/2)2
= 1 (2.36)

For all values of s on the jΩ-axis, Eq. (2.36) shows that |z| = 1. That means,

Chapter 2 Digital Signal Processing 20

Figure 2.3: Mapping of the s-plane onto z-plane using bilinear transformation.

Figure 2.4: Mapping of the continuous-time frequency axis onto the discrete-
time frequency axis using bilinear transformation.

the jΩ-axis of the s-plane is mapped onto the unit circle.

By substituting s = σ + jΩ and z = ejω into Eq. (2.33) and using Euler’s

relationship:

s = σ + jΩ

s =
2

Td

· e−jω/2

e−jω/2
·
[

ejω/2 − e−jω/2

ejω/2 + e−jω/2

]

σ + jΩ =
2

Td

[
2e−jω/2(j sin ω/2)

2e−jω/2(cos ω/2)

]

=
2j

Td

tan(ω/2) (2.37)

Therefore,

σ = 0 and Ω =
2

Td

tan(ω/2) (2.38)

Chapter 2 Digital Signal Processing 21Ω
|Hc(jΩ)| ΩsΩp

Figure 2.5: Nonlinear relationship between the Ω (s-domain) and ω (z-domain)
frequencies.

ω = 2 arctan
(ΩTd

2

)
(2.39)

Eq. (2.38) and Eq. (2.39) show the bilinear transformation is a mapping

from the s-plane to the z-plane. From Figure 2.4, it shows that the range of

frequencies 0 ≤ Ω ≤ ∞ in the continuous-time s-domain is mapped onto the

discrete-time z-domain with the range 0 ≤ ω ≤ π and the range −∞ ≤ Ω ≤ 0

is mapped onto −π ≤ ω ≤ 0. Although the bilinear transformation forms a

nonlinear relationship between the s-domain frequency, Ω, and the z-domain

frequency, ω, it can avoid the aliasing since the entire jΩ-axis on the s-plane is

mapped onto the unit circle of z-plane. By using this nonlinear transformation,

the frequency response of the prototype continuous-time filter in s-domain can

be transformed to the frequency response of the desired discrete-time filter in

z-domain [OSB98].

In analog systems, the intersection of the vertical σ = 0 plane and the

|Hc[s]| surface in the three-dimensional s-plane gives the frequency magnitude

response |Hc[Ω]|. As the bilinear transformation maps the the s = jΩ-axis

Chapter 2 Digital Signal Processing 22

to the unit circle |z| = 1, the frequency magnitude response |H[ω]| of the

discrete-time system would be the intersection of the unit circle |z| = 1 and

the |H[z]| surface in the three-dimensional z-plane.

2.4.3 Spectral Transformations of IIR Filters

In addition to repeating the filter design procedures, there is a method to mod-

ify the characteristics of an existing IIR filter to fulfill the new specifications.

For example, it is possible to modify an existing lowpass filter with 500 Hz

cutoff frequency to a new lowpass filter with the cutoff frequency of 1 kHz.

Besides modifying its cutoff frequency or passband frequency, it is possible

to transform an existing lowpass IIR filter to a new IIR filter with highpass,

bandpass or bandstop characteristic. This spectral transformation method is

a mapping between the original lowpass transfer function, Ho[z], and the de-

sired transfer function, Hn[z], that can be a lowpass, highpass, bandpass or

bandstop filter.

Let z−1 be the unit delay in the original lowpass filter Ho[z] and z̃−1 be the

notation of the unit delay in the transformed filter Hn[z̃]. The unit circles in

the z-plane and z̃-plane are defined by:

z = ejω and z̃ = ejω̃

The transformation from z-domain to z̃-domain is denoted as:

z = T [z̃] (2.40)

The transform operation, T , must fulfill the following constraints:

• In order to transform a rational Ho[z] into a rational Hn[z̃], T [z̃] must

be a rational function of z̃.

• The inside of the unit circle of the z-plane must be mapped into the

Chapter 2 Digital Signal Processing 23

inside of the unit circle of the z̃-plane. Otherwise, Hn[z̃] may become

unstable.

• The points on the unit circle of the z-plane must be mapped to the points

on the unit circle of the z̃-plane in order to map the original magnitude

response to the magnitude response of the desired filter.

In the z-plane, points on the unit circle are given by |z| = 1, points inside

the unit circle are defined by |z| < 1 and points outside the unit circle are

characterized by |z| > 1. The above constraints can be written as:

|T [z̃]| =





> 1, if |z| > 1,

= 1, if |z| = 1,

< 1, if |z| < 1.

(2.41)

and the general form of T−1[z̃] with real coefficients is defined by:

T−1[z̃] = ±
L∏

`=1

(
1− α`z̃

z̃ − α`

)
, (2.42)

where |α`| is either real or occurs in complex conjugate pairs with |α`| < 1 for

stability [Mit01]. For lowpass to lowpass transformation,

z−1 = T−1[z̃] =
1− αz̃

z̃ − α
=

z̃−1 − α

1− αz̃−1
(2.43)

On the unit circle, the transformation becomes:

e−jω =
e−jω̃ − α

1− αe−jω̃
(2.44)

Finally, it would become:

tan

[
ω

2

]
=

(
1 + α

1− α

)
tan

[
ω̃

2

]
(2.45)

Chapter 2 Digital Signal Processing 24

New normalized cutoff fr
equency

Figure 2.6: Mapping of the angular frequencies in the lowpass-to-lowpass trans-
formation.

Figure 2.6 plots the relationship between ω and ω̃ for three different values of

α. The transformation is linear only for α = 0 and for nonzero values of α,

the transformation is nonlinear and a warping of the frequency scale occurs.

From Eq. (2.45), the relation between the cutoff frequency, ωc of Ho[z] and

the cutoff frequency, ω̃c of Hn[z̃] is:

tan

[
ωc

2

]
=

(
1 + α

1− α

)
tan

[
ω̃c

2

]
(2.46)

By solving α:

α =
tan(ωc/2)− tan(ω̃c/2)

tan(ωc/2) + tan(ω̃c/2)
=

sin
(

ωc−ω̃c

2

)

sin
(

ωc+ω̃c

2

) (2.47)

and Ho[z] can be transformed to Hn[z̃]:

Hn[z̃] = Ho[z] = Ho(T [z̃]) = Ho(
z̃ − α

1− αz̃
) (2.48)

Although the spectral transformation is convenient in IIR filter design

Chapter 2 Digital Signal Processing 25

by using lowpass-to-highpass, lowpass-to-bandpass and lowpass-to-bandstop

transformations, it can map only one frequency point, ωc, in the magnitude

response of the original lowpass filter into a new frequency position, ω̃c, of

the same magnitude response value for the transformed lowpass and highpass

filters. For transforming bandpass and bandstop filters, the frequency point,

ωc, is mapped into two new frequency positions, ω̃c1 and ω̃c2, of the same mag-

nitude response values. It has the disadvantage that it can only map either

passband or stopband edges of the original lowpass filter to the positions of

the desired filters, but not both [Mit01].

2.5 Comparison on FIR and IIR Filters

In the implementation of digital signal processing systems, the choice between

using FIR filters and IIR filters base on the importance in the design problem

of the advantages of each filter type. IIR filters, for example, have a design

flexibility advantage as they can simulate the predefined prototype analog fil-

ter. IIR filters also can easily be designed by using the transformation from

the well developed approximate methods in the continuous-time filters such as

Butterworth, Chebyshev or elliptic. However, the transformation results from

the approximate methods only focus on the magnitude in the frequency re-

sponse and are limited to frequency-selective filters. If the design specification

requires a phase-delay or group-delay response, IIR filter design is difficult.

FIR filters can have a linear phase and are the only solution for the systems

having a exact linear phase specification. On the other hand, given the same

quality in magnitude response, IIR filters require fewer taps than FIR filters.

That means the number of multipliers used in IIR filters are smaller than that

of FIR filters with the same magnitude response. If the hardware limitation is

important, the slight phase nonlinearity is tolerable, IIR filters might be the

best choice [Lyo01].

Chapter 2 Digital Signal Processing 26

2.6 Digital Signal Resampling

2.6.1 Introduction

Digital signal resampling is used to change the effective sampling rate of a

discrete-time signal that has already been sampled. As the sampling period

takes an important role in many signal processing techniques and applications,

resampling is a useful method. For example, it can be used to minimize compu-

tations by reducing data rates when signal bandwidth is already narrowed by

lowpass filters. Also, in discrete-time signal processing, the signal bandwidth

is limited by the sampling frequency:

B <
fs

2
(2.49)

where B is the signal bandwidth and fs is the sampling frequency. Increasing

the sampling frequency can increase the bandwidth and enhance the auditory

quality and image quality in digital auditory and image processing systems.

Resampling is also imperative in the data transfer between high data rate

processors and low data rate devices.

2.6.2 Resampling by Decimation

Resampling changes the digital signal by either increasing or decreasing the

sample rate. Decreasing the sample rate (fs ↓ and Ts ↑) is called decimation.

For increasing the sample rate (fs ↑ and Ts ↓), the process is called interpo-

lation. Although, theoretically, the decrease and increase factor in resampling

can be a non-integral number, decimation and interpolation are the term used

for reducing and increasing the sample rate by an integral factor.

Decimating a sequence of sampled values by a factor M cannot in general

be done by simply extracting every Mth sample as this would cause aliasing.

Figure 2.7 shows how the aliasing occurs. As the frequency spectrum of a

Chapter 2 Digital Signal Processing 27

(a)

(b)

Figure 2.7: Spectra for aliasing problem of sample rate reduction by a factor
of M : (a) Spectrum of original signal; (b) Spectrum of signal decimated by
M .

discrete-time signal replicates every fs frequency intervals, directly extracting

every Mth sample would cause the spectra, XM [jω], to overlap and aliasing

occurs.

To avoid aliasing, it is necessary to first filter the discrete-time signal with

a lowpass filter which approximates the ideal characteristic:

H[ejω] =





1, |ω| ≤ π/M

0, otherwise.
(2.50)

For the decimation of the signal x[n] by a factor of M (Figure 2.8a), x[n]

is first filtered by a lowpass filter with cutoff frequency of fs/2M (Figure

2.8b). After filtering, the sample rate reduction is implemented by forming

the new signal y[n] by extracting every Mth sample of the filtered output

(Figure 2.8c). This lowpass filter is called a decimator filter. However, if

the frequency response of the lowpass filter is not sharp enough, aliasing will

still occur as signals of frequency higher than fs/2M would corrupt the low

frequency components [CR81].

Chapter 2 Digital Signal Processing 28

(a)

(b)

(c)

Figure 2.8: Avoiding aliasing problem by lowpass filter: (a) Spectrum of orig-
inal signal; (b) Spectrum filtered by lowpass filter; (c) Spectrum of signal
decimated by M .

Figure 2.9: Block diagram of sample rate reduction by a factor of M .

2.6.3 Resampling by Interpolation

For the interpolation of the signal x[n] (Figure 2.10a) by a factor of L, L− 1

zeros must be first inserted between each sample of the signal x[n] to generate

a new sequence v[n]. By doing such zero padding, the sequence would be

up-sampled by a factor of L. However, as the spectrum of the original signal

X[jω] is replicated with period fs, the spectrum of the up-sampled signal

V [jω] would contain many replicated spectra (Figure 2.10b). To remove those

replicated spectra, the up-sampled signal v[n] is then filtered by a lowpass filter

with cutoff frequency fs/2 (the current sampling frequency is Lfs). The filtered

signal y[n] would contain the same frequency components as the original signal

Chapter 2 Digital Signal Processing 29

(a)

(b)

(c)

Figure 2.10: Interpolation by a factor of L: (a) Spectrum of original signal;
(b) Spectrum of signal inserted L−1 zeros between each sample; (c) Spectrum
filtered by lowpass filter.

Figure 2.11: Block diagram of sample rate increased by a factor of L.

x[n]. The lowpass filter used in interpolation is called an interpolation filter

which approximates the ideal characteristic:

H[ejω] =





1, |ω| ≤ fs(old)/2 = π/L

0, otherwise.
(2.51)

2.6.4 Resampling by a Rational Factor

By combining the processes of decimator and interpolation, discrete-time sig-

nals are be resampled by any rational fraction L/M . The sampled signal, x[n],

is first up-sampled by a factor of L by padding L−1 zeros between each sample

Chapter 2 Digital Signal Processing 30

Figure 2.12: Block diagram of sample rate changed by a factor of L/M .

to form a up-sampled signal, v[n]. Then, it is filtered by the interpolation filter

and decimation filter. As the purpose of interpolation filters and decimation

filters are the same, a single combined filter which is called a multirate filter is

used instead. Finally, the filtered signal, w[n], is used to form the new signal,

y[n], by extracting every Mth sample of the filtered output.

2.7 Introduction to Dual Fixed-point (DFX)

Representation

Fixed-point arithmetic is commonly used in digital signal processing system.

The position of the radix point in this representation is fixed. The fixed-point

number is a binary word that has a fixed number of digits before and after the

radix point, namely the integral part and fractional part. Given a number, X,

with wordlength n, m digits in the integral part and f digits in the fractional

part (n = m + f), the value of that number assuming a two’s complement

representation is:

X = −xm−1 · 2(m−1) +
m−2∑

i=−f

xi2
i (2.52)

in which x(m−1) is the most significant bit and x(−f) is the least significant

bit. The notation for the fixed-number representation is n f . In fixed-point

representation, the position of the radix point takes an important role in the

range and accuracy of the fixed-point number. Given a fixed-point number

with fixed wordlength, increasing its representation range (−2(m−1) ≤ X <

2(m−1)) will, at the same time, decrease its accuracy (2(−f)) as n = m + f .

Chapter 2 Digital Signal Processing 31

Scaling Value of E Range Precision

Scale1 1
2(n−2−f0) ≤ value < 2(n−2−f1)

2(−f1)

−2(n−2−f1) ≤ value < −2(n−2−f0)

Larger Rangea Lower precision

Scale0 0
−2(n−2−f0) ≤ value < 2(n−2−f0) 2(−f0)

Smaller Range Higher precision

asince f0 > f1

Table 2.1: Comparison between two different fixed-point scalings in DFX:
Scale0 and Scale1

In order to get a large dynamic range, a floating-point representation is

used in some signal processing systems. The value of a floating-point number

is represented by the pair of significand (or mantissa), M , and exponent, E:

X = M · βE (2.53)

where β is the base of the exponent and commonly equals to 2. Although

floating-point representation can provide a large dynamic range, the computa-

tion of its arithmetic has high complexity. Therefore, the floating-point repre-

sentation normally would not be used in a hardware digital signal processing

system.

In 2004, Ewe et. al. proposed a dual fixed-point (DFX) representation

which has an improved dynamic range over a fixed-point representation and

the computation complexity is similar to that of fixed-point [ECC04]. In dual

fixed-point (DFX) data representation, a single bit exponent E is used to select

between two different fixed-point scalings, Scale0 and Scale1. The notation

n f0 f1 is used to describe a DFX number system where n is the word length

including the exponent bit E and f0 > f1. The value of a dual fixed-point

Chapter 2 Digital Signal Processing 32

number is:

value =





X · 2(−f0), if E = 0

X · 2(−f1), if E = 1.
(2.54)

In order to choose the best scaling, Scale0 or Scale1 for DFX numbers, a

boundary value Bound, which equals the range limit of the fixed-point number

(n − 1) f0 (i.e. Bound = 2(n−2−f0)), is used and the value of E is calculated

by:

E =





0, if −2(n−2−f0) ≤ value ≤ 2(n−2−f0) − 2(−f0)

1, if value < −2(n−2−f0) or value > 2(n−2−f0) − 2(−f0).
(2.55)

Table 2.1 shows the comparison between the two different fixed-point scalings

in DFX representation.

The dynamic range of any number representation is defined as the ratio

between the largest and smallest absolute value in that number representation

format. For fixed-point representation, the smallest absolute value is 2(−f) and

the largest absolute value is 2(m−1) = 2(n−1−f). Its dynamic range is:

Dynamic range = 20 log

(
2(n−1−f)

2(−f)

)

= 20 log(2(n−1))dB (2.56)

For DFX, the largest and smallest absolute values are 2n−2−f1 of Scale1 and

2−f0 in Scale0 respectively. Its dynamic range is:

Dynamic range = 20 log

(
2(n−2−f1)

2(−f0)

)

= 20 log(2(n−2+f0−f1))dB (2.57)

As f0 > f1, the dynamic range of DFX is larger than that of fixed-point

[ECC04].

Chapter 2 Digital Signal Processing 33

2.8 Summary

In this chapter, background knowledge in digital signal processing was intro-

duced and some design techniques for both FIR and IIR filters were discussed.

After comparing FIR and IIR filters, the advantages and disadvantages of each

were shown. Digital signal resampling methods, called decimation and interpo-

lation, were alos detailed in this chapter. The dual fixed-point representation

was introduced and it has the advantage of improved dynamic range and low

computational complexity.

Chapter 3

Lyon and Mead’s Cochlea

Model

3.1 Introduction

The first cochlea model, which was proposed by Lyon and Mead in 1988

[LM88] was implemented in analog VLSI and mimics the behavior of the hu-

man cochlea by using a cascaded series of second order filters (Figure 1.1). In

order to understand how the behavior of the human cochlea is mimicked by

a cascade series of filters, a detail description of the human cochlea is given

in this section. This hearing mechanism of the human ear was introduced by

Pickles at. el. in 1988 [Pic88].

The human cochlea is three dimensional fluid-dynamic system which acts

as a transducer in the human auditory system. It is used to convert mechanical

vibrations from the middle ear into neural electrical signals. It is composed

of the basilar membrane, inner hair cells and outer hair cells. The converted

neural electrical signals are then sent to higher levels in the auditory pathway

for further processing.

Figure 3.1 shows a simplified human ear system in which the oval window

is the input to the cochlea. Sound that enters the outer ear would cause

mechanical vibrations in the eardrum and the vibrations are propagated by

34

Chapter 3 Lyon and Mead’s Cochlea Model 35

Figure 3.1: Human auditory system.

the bones in the middle ear. The mechanical pressure wave is conducted to

the oval window into the cochlea. The wave is then propagated from base to

apex along the basilar membrane of the cochlea duct.

The basilar membrane is a longitudinal membrane inside the cochlea duct.

The stiffness of the basilar membrane varies smoothly over its length and at

any point will resonate most strongly with a pressure wave of a particular

frequency. The displacement is sensed and converted into neural signals by

several thousand inner hair cells that are distributed along the basilar mem-

brane (as shown in Figure 3.2). The hair cells also act as a half-wave rectifying

system as they can only sense displacements in one direction.

An important characteristic of the cochlea is that the energy in the auditory

wave is separated by frequency and each point of the cochlea respond best to

one frequency. That means the frequency content of the signal is mapped into

the spatial domain by the cochlea in a manner similar to that of a spectrum

analyzer. Due to the variety of stiffness of basilar membrane, the hair cells

near the base (oval window) are most sensitive to high-frequency auditory

waves and as the waves travel down the cochlea, lower frequencies are sensed.

Chapter 3 Lyon and Mead’s Cochlea Model 36

Figure 3.2: The basilar membrane inside cochlea.

To simulate the characteristics of the basilar membrane, Lyon and Mead

used a cascaded series of second order lowpass filters, each filter having the

following transfer function:

H[s] =
1

τ 2s2 + 1
Q
τs + 1

(3.1)

where τ is the time constant and Q is the damping quality factor. The values

of τ are varied along the cascade so that the cutoff frequencies of the filters

decrease exponentially. The quality factors, Q of all filters are the same in

order to maintain a constant damping characteristic.

In Lyon and Mead’s cochlea model, each stage of the cascaded series has

the following properties:

• acts as a resonant filter at a given frequency.

• acts as a lowpass filter which filters out the high frequency components

already handled by the earlier stages of the cascade.

Chapter 3 Lyon and Mead’s Cochlea Model 37

3.2 Digital Cochlea Model: Cascaded IIR Fil-

ters

3.2.1 Introduction

As the original Lyon and Mead’s cochlea model is a cochlea model using analog

filters, the analog filter model is converted into a discrete-time filter model by

using the bilinear transformation introduced in Section 2.4.2 of Chapter 2

[Sla88] [Sla98]. In the bilinear transformation, the continuous-time variable,

s, is substituted by discrete-time variable z as:

s =
2

Td

(
1− z−1

1 + z−1

)

The transfer function, H[s] in Eq. (3.1), for each analog filter is converted into

a second order discrete-time transfer function:

H[z] =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(3.2)

H[z] =

∑2
i=0 biz

−i

∑2
i=0 aiz−i

(3.3)

where ai and bi can be expressed in terms of τ and Q of H[s] from the bilinear

transformation. Therefore, ai and bi can be calculated after determining the

τ and Q of H[s] in Eq.(3.1).

As the value of the time constant, τ , depends on the cutoff and pass fre-

quencies of its own filter stage, it can be expressed as the ratio between the

cutoff frequency and the pass frequency. Furthermore, the cutoff and pass fre-

quencies of each filter stage are based on its filter bandwidth. The bandwidth

of each second order filter is first determined.

Chapter 3 Lyon and Mead’s Cochlea Model 38

Figure 3.3: Centre frequencies of different stages with sampling frequency 16
kHz.

3.2.2 Bandwidth and Centre frequencies

The bandwidth of each filter is calculated from its centre frequency. At the

high frequency sections of the cascaded series, the filter’s bandwidth is approx-

imately equal to the centre frequency divided by a constant EarQ while the

bandwidth of filters at the low frequency sections approaches to a constant of

BreakFreq/EarQ. Therefore, the bandwidth is calculated as:

Bandwidth[cf] =

√
cf 2 + BreakFreq2

EarQ
(3.4)

where cf is the centre frequency of that filter stage [Sla88]. Normally, the

values of BreakFreq and EarQ are 1000 Hz and 8 respectively so that the

bandwidth of the last filter stage is approximately equal to 125 Hz.

In the cascaded series of the cochlea model, the frequency responses of

successive cochlea filters are overlapped with each other by a fraction of their

bandwidths. Although this overlapped parameter is arbitrary, smaller values

Chapter 3 Lyon and Mead’s Cochlea Model 39

brings more stages and computations to the cascade. A typical choice is for 4

successive stages to overlap and as a result, the factor EarStep is designed to

be 0.25.

In order to produce exponentially decreasing centre frequencies of the filter

stages, a recursive algorithm is used [Sla88]:

Algorithm EarStageCF
Input: stage index i and sampling frequency fs

Output: centre frequency cfi

1. if i = 1 /* first stage */
2. then
3. cfi ←fs/2
4. else
5. cfi−1 ←EarStageCF (i− 1, fs)
6. cfi ←(cfi−1 − EarStep ·Bandwidth(cfi−1))
7. return cfi

Figure 3.4: Recursive algorithm of centre frequency calculation

Figure 3.3 shows centre frequencies of different stages in an example of

cascaded cochlea filter series with sampling frequency 16 kHz.

3.2.3 Zeros and Poles

The cutoff frequencies (zeros) and pass frequencies (poles) of each filter stage

can be determined from their centre frequencies and bandwidths.

As each stage of the cochlea acts as a resonant filter, the pole is placed

at the centre frequency to provide a peak to the filter’s frequency response at

its centre frequency so that auditory signal components whose frequencies are

close to that centre frequency will resonate. In order to act as a lowpass filter

and reject the high frequency components, the zero is designed slightly above

the centre frequency in the frequency response. Therefore, the zero and pole

Chapter 3 Lyon and Mead’s Cochlea Model 40

0 2 4 6 8 10

x 10
4

−100

−80

−60

−40

−20

0

20

Frequency Response of 1−169 Channels
P

ow
er

 (
dB

)

frequency (Hz)

Figure 3.5: Frequency responses of the electronic cochlea with 169 stages and
sampling frequency 200 kHz.

frequencies are calculated as [Sla88]:

PoleFreq[cf] = cf (3.5)

ZeroFreq[cf] = cf + 1.5EarStep ·Bandwidth[cf]

= cf + 0.375 ·Bandwidth[cf] (3.6)

where cf is the centre frequency. The quality factor of zeros and poles are

calculated by [Sla88]:

PoleQ[cf] =
PoleFreq[cf]

Bandwidth[cf]
(3.7)

ZeroQ[cf] =
5 · ZeroFreq[cf]

Bandwidth[cf]
(3.8)

Chapter 3 Lyon and Mead’s Cochlea Model 41

Figure 3.6: Decimated electronic cochlea.

where cf is the centre frequency. Finally, the coefficients ai and bi of the

second order transfer function in Eq. (3.2) can be determined by using the

bilinear transformation of the analog transfer function, H[s] (Eq. (3.1)), in

which the time constant τ and the damping quality factor Q are calculated

from PoleFreq, ZeroFreq, PoleQ and ZeroQ. Figure 3.5 shows the frequency

responses of a cochlea example with 169 stages and sampling frequency 200

kHz.

3.3 Modifications for Decimated Cochlea Model

3.3.1 Introduction

Decimation can be used to avoid redundant filter computations in the low fre-

quency sections of the Lyon and Mead model. The signals in the low frequency

sections of the cascaded series filters are of lower bandwidth than those in ear-

lier sections since each second order IIR filter in the cascaded has a lowpass

transfer function. Thus a lower sampling rate can be tolerated in later sec-

tions. Traditionally, implementations of the electronic cochlea have operated

at a single sampling frequency, and data is processed at a higher sampling rate

than necessary.

In order to reduce the computation rate of the low frequency sections, dec-

imation can be used (as shown in Figure 3.6). After decimation, the sampling

Chapter 3 Lyon and Mead’s Cochlea Model 42

frequency is reduced and the computation rate of subsequent filters is also

reduced. For a parallel, pipelined implementation, a multirate system with

high sampling frequencies for the sections near the base and lower operating

frequencies at the apex can be employed. For a sequential implementation,

decimation can be implemented by time-sharing IIR filters in such a way that

computations for the high frequency contents are more frequent than for the

low frequency sections.

Although decimation can reduce redundant filter computations in the low

frequency sections, aliasing may occur and in addition, the filter coefficients

need to be recomputed to reflect the change in sample rate.

3.3.2 Aliasing Avoidance

As described in Section 2.6.2 in Chapter 2, it is necessary to first filter earlier

stages with a lowpass filter which approximates the ideal characteristic in order

to avoid aliasing caused by decimation.

Since the Lyon and Mead’s cochlea model is composed of a series of lowpass

filters with exponentially decreasing cutoff frequencies, they can also act as

the lowpass filter for the decimator. The remaining task for decimation is to

determine suitable positions along the filter cascade to perform decimation.

In this work, the cochlea filter has been simulated with noise inputs to

determine the decimation position. Each stage of the filter cascade is examined

in sequence and if its signal power at frequency fs/2
n is smaller than the user-

defined cutoff value in dB, that stage should be decimated by a factor of 2n−1.

Figure 3.7 shows the relationship between cutoff value and the computation

required.

Chapter 3 Lyon and Mead’s Cochlea Model 43

0 10 20 30 40 50 60 70 80 90
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized computation rate against cutoff value

N
or

m
al

iz
ed

 c
om

pu
ta

tio
n

Cutoff (dB)

Figure 3.7: Normalized computation rate against cutoff value of a system with
sampling frequency of 200 kHz (169 stages).

3.3.3 Coefficient Modification after Decimation

After decimation, the filter coefficients need to be changed for the new op-

erating frequency since the cutoff and pass frequencies, fc and fp, stored in

the lowpass transfer function, H[z], are in the form of ωc and ωp, which are

normalized in the range of −π and π.

fc =
fs · ωc

2π
(3.9)

Therefore, after decimation, for those stages behind decimators in the filter cas-

cade, their cutoff frequencies would be reduced by 2n where n is the number of

previous decimations. In order to restore their cutoff frequencies and maintain

Chapter 3 Lyon and Mead’s Cochlea Model 44

their frequency responses as original, two coefficient modification approaches

have been studied: the spectral transformation and coefficient regeneration

approaches.

Spectral Transformation Approach

The spectral transformation approach is based on the spectral transformation

of IIR filters introduced in Section 2.4.3 of Chapter 2. By substituting Eq.

(2.43) into the second order IIR filter transfer function, H[z], in Eq. (3.3):

H[z] =

∑2
i=0 biz

−i

∑2
i=0 aiz−i

H[z̃] =

∑2
i=0 bi

(
z̃−1−α
1−αz̃−1

)i

∑2
i=0 ai

(
z̃−1−α
1−αz̃−1

)i (3.10)

=
b0

(
1− αz̃−1

)2
+ b1

(
1− αz̃−1

)(
z̃−1 − α

)
+ b2

(
z̃−1 − α

)2

a0

(
1− αz̃−1

)2
+ a1

(
1− αz̃−1

)(
z̃−1 − α

)
+ a2

(
z̃−1 − α

)2(3.11)

where

α =
− sin

(
ωc

2

)

sin
(

3ωc

2

) (3.12)

As a result, the coefficient modification by spectral transformation can be

represented as a matrix transformation function as:

(
b́0 b́1 b́2

)
=

(
b0 b1 b2

)
·




1 −2α α2

−α α2 + 1 −α

α2 −2α 1


 (3.13)

(
á0 á1 á2

)
=

(
a0 a1 a2

)
·




1 −2α α2

−α α2 + 1 −α

α2 −2α 1


 (3.14)

H[z̃] =

∑2
i=0 b́iz̃

−i

∑2
i=0 áiz̃−i

Chapter 3 Lyon and Mead’s Cochlea Model 45

Coefficient Regeneration Approach

This coefficient regeneration approach simply involves recomputing the filter

coefficients of affected filters by using the same zero and pole positions at

decimated sampling frequency fs/2n where n is the decimation level (number

of decimator stages).

Comparison between Different Methods

Figure 3.8 shows the result of applying two different coefficient modification

methods to a lowpass filter of the original pole and zero at 28 kHz and 31.4

kHz. As the cutoff frequency is used as the reference point for spectral trans-

formation mapping, the cutoff frequency can be restored by using any of the

two modification methods. However, Figure 3.8b shows that the new position

of the pole is moved and therefore the spectral transformation cannot maintain

the pole as original.

Although the spectral transformation is a simpler modification method and

only involves two matrix multiplications, it can only map either the passband

edge (pass frequency) or the stopband edge (cutoff frequency) of the original

lowpass filter to that of the desired lowpass filter, but not both. Only the zeros

or poles of the affected filters can be restored in the spectral transformation

while the coefficient regeneration approach can restore both the pass frequency

and the cutoff frequency as it is based on re-designing the filter. Consequently,

the coefficient regeneration method is chosen to modify the coefficients of af-

fected filters. Figure 3.9 shows the frequency responses of a decimated cochlea

example with 169 stages, sampling frequency of 200 kHz and using a 50 dB

decimation cutoff value.

Chapter 3 Lyon and Mead’s Cochlea Model 46

(a)
0 10 20 30 40 50 60 70 80 90

−16

−14

−12

−10

−8

−6

−4

−2

0

2

 Frequency (kHz): 27.73438
 Magnitude (dB): 1.788358

 Frequency (kHz): 31.44531
 Magnitude (dB): −16.40879

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response Estimate

(b)
0 5 10 15 20 25 30 35 40 45

−16

−14

−12

−10

−8

−6

−4

−2

0

2

 Frequency (kHz): 31.44531
 Magnitude (dB): −16.41083

 Frequency (kHz): 29.19922
 Magnitude (dB): 1.79133

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response Estimate

(c)
0 5 10 15 20 25 30 35 40 45

−16

−14

−12

−10

−8

−6

−4

−2

0

2

 Frequency (kHz): 31.44531
 Magnitude (dB): −16.4983

 Frequency (kHz): 27.63672
 Magnitude (dB): 1.726898

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response Estimate

Figure 3.8: Comparison of different coefficient modification methods: (a) Orig-
inal frequency response; (b) Modify by spectral transformation approach; (c)
Modify by coefficient regeneration approach.

Chapter 3 Lyon and Mead’s Cochlea Model 47

0 2 4 6 8 10

x 10
4

−100

−80

−60

−40

−20

0

20

Frequency Response of 1−169 Channels
P

ow
er

 (
dB

)

frequency (Hz)

Figure 3.9: Frequency responses of the decimated electronic cochlea with 169
stages, sampling frequency of 200 kHz and decimation cutoff value of 50 dB.

3.4 Summary

In this chapter, the Lyon and Mead’s cochlea model was introduced and in

order to avoid redundant computations in the low frequency sections of the

cochlea model, decimation is applied. Furthermore, the tradeoff among alias-

ing and redundant filter computation reduction was discussed. A comparison

between two coefficient modification methods: spectral transformation and co-

efficient regeneration was also shown. Although the spectral transformation

is simpler, it cannot map both the zeros and poles of filters as original. The

filter coefficients, therefore, would not be transformed but regenerated instead

after decimation.

Chapter 4

System Architecture

4.1 Introduction

In this chapter, the hardware platform and tools used to develop the electronic

cochlea system is introduced. The implementation of electronic cochlea system

and its architecture are also detailed.

At the beginning of this chapter, the computer-aided design (CAD) tools

and the hardware platform that used to implement the cochlea are introduced.

In next section, the implementations of the cochlea is discussed and followed

by the pipelining processing scheme and decimation implementation in the

system. Then the multiple core version of the cochlea is demonstrated. Finally,

the architecture of DFX filter computation core of the cochlea is introduced

in this chapter.

4.2 Hardware Platform and CAD Tools

The electronic cochlea was developed using the Very High Speed Integrated

Circuit Hardware Description Language (VHDL) [Ska96] which is a language

that is used to describe hardware architectures. One of the advantages of using

VHDL is that simulation can be done before the real hardware is implemented.

48

Chapter 4 System Architecture 49

Figure 4.1: The simplified structure of Xilinx slice.

A Field Programmable Gate Array (FPGA) was chosen to be the implemen-

tation platform. An FPGA is an integrated circuit (IC) that is programmable

after manufacture. FPGAs are reconfigurable hardware that can be repro-

grammed via a software downloadable bitstream. They provide the advantage

of a short turn around time and low cost and are widely used as a prototype

before fabricating a VLSI design or used directly in a product.

The hardware platform that was used to implement the cochlea system is

Alpha-data ADM-XP board. It is a PCI board containing the Xilinx Virtex-II

Pro 2VP100 FPGA element and 64 MB DDR SDRAMs.

The basic building block of the Virtex-II Pro FPGA is the slice. A Virtex-

II Pro slice consists of two 4-input function generators, carry logic and two

storage elements (Figure 4.1). As shown in Figure 4.2, each Virtex-II Pro CLB

contains 4 slices. The 4-input function generators are implemented as 4-input

look-up tables (LUTs). Each of them can be programmed as a function of a

Chapter 4 System Architecture 50

Figure 4.2: Xilinx Virtex-II Pro CLB structure.

4-input LUT, a 16-bit distributed SelectRAM memory or a 16-bit variable-tap

shift register [Xil05].

The Virtex-II Pro chip is dedicated large amounts of large blocks of special

memories, called BlockRAMs. Each BlockRAM has 18-kbit storage and can

be configured to single-port or dual-port mode. The ports can be configured

in width from 1 to 36 bits [Xil05].

Although multipliers can be constructed by combining a large amount of

LUTs, the constructed multipliers have low performance. The Virtex-II Pro

devices provide many embedded multiplier blocks. These multipliers have 18-

bit wide inputs and the outputs are 36 bits. They can perform high-speed

operations as the 36-bit product is calculated in a single cycle [Xil05]. These

were used in digital signal processing systems for improving the performance.

The Xilinx Virtex-II Pro 2VP100 has 7992 kbits of BlockRAM (arranged

as 444×18-kbit blocks), 88192 4-input look-up tables (44096 slices) and 444

18-bit-×-18-bit multiplier blocks.

Chapter 4 System Architecture 51

Figure 4.3: The architecture of a second order IIR filter.

4.3 Sequential Processing Electronic Cochlea

The basic architecture of a second order IIR filter is shown in Figure 4.3 which

implements the filter with transfer function:

H[z] =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

The parallel architecture of Figure 1.1 can be used only if the FPGA device

has sufficient resources (multipliers in particular) to perform all the operations

in parallel. For a cochlea system with S stages, 5× S multipliers are required

for a parallel implementation.

If insufficient resources are available, or if maximum throughput is not the

priority, a sequential approach can be used. For such a design, only 5 multi-

pliers are required. Figure 4.4 shows the architecture of a pipelined sequential

processing electronic cochlea which uses 5 dual-port BlockRAMs for storing

intermediate signals: x[t], x[t − 1], x[t − 2], y[t − 1] and y[t − 2]. For every

cycles, the intermediate signals are read from the BlockRAMs and the calcu-

lated result is later written back to the BlockRAMs. However, even if the IIR

filter is fully pipelined and has a latency of k, there would be k− 1 idle cycles

between the signal computations of time sample t in stage n − 1 and stage n

as there are data dependencies between successive stages (the input x of time

Chapter 4 System Architecture 52

Figure 4.4: Block diagram of the fully pipelined sequential processing electronic
cochlea.

Chapter 4 System Architecture 53

Figure 4.5: The interleaving scheme for the pipelined electronic cochlea.

t of stage n is the output y of time t of stage n − 1). In order to avoid these

idle cycles, an interleaving scheme is implemented in the sequential processing

electronic cochlea so that a new computation can be started every cycle.

4.3.1 Pipelining - An Interleaving Scheme

Figure 4.5 shows an interleaving scheme for the sequential processing electronic

cochlea. It expands the time between computations of stage n− 1 and stage n

of the same time sample t, to S cycles, where S is the total number of stages.

Since S ≥ k − 1, the dependencies are met, and computations of the previous

samples of other stages are interleaved. This scheme avoids idle cycles and

make the cochlea system to be fully pipelined. It requires a total of S cycles

to process the entire cochlea filter.

Chapter 4 System Architecture 54

4.3.2 Decimation in Sequential Processing Electronic

Cochlea

When decimation is applied to the sequential processing cochlea, the compu-

tation schedule is further modified as computation is not required for all of

the stages in each sample. Let Gi be the number of stages operating at the

decimated sampling frequency fs/2
i, i.e. there are G0 stages operating at fs

and G1 stages at fs/2. That means:

G0 stages are calculated every sample.

G1 stages are calculated every 2 samples.

G2 stages are calculated every 4 samples.

G3 stages are calculated every 8 samples.
...

Gn stages are calculated every 2n samples.

(where n is the maximum decimation level).

In other words, the calculations for the first 2n samples can be represented as

shown in Table 4.1.

Gi stages are calculated at sample k when k mod 2i = 0. Let h = (k

mod 2n) + 1. The evaluation of calculation stages at sample k is similar to

a priority encoder which determines the bit position of the least significant

set-bit of h.

For example:

For the 36th sample, as the value of h is 1001002 = 36, the least

significant set-bit is the bit of value 22. Stages 1 → (G0 +G1 +G2)

are processed in this iteration.

For the 48th sample, h is 1100002. The least significant set-bit is at

the position of 24 and therefore stages 1 → ∑4
k=0 Gk are calculated

Chapter 4 System Architecture 55

Sample k (mod 2n) h = k + 1 Stages for Calculation Number of Stages
0 1 1 → G0 G0

1 2 1 → (G0 + G1) G0 + G1

2 3 1 → G0 G0

3 4 1 → (G0 + G1 + G2) G0 + G1 + G2

4 5 1 → G0 G0

5 6 1 → (G0 + G1) G0 + G1

6 7 1 → G0 G0

7 8 1 → (G0 + G1 + G2 + G3) G0 + G1 + G2 + G3

8 9 1 → G0 G0

9 10 1 → (G0 + G1) G0 + G1

...
...

...
...

2n − 1 2n 1 → (
∑n

k=0 Gk)
∑n

k=0 Gk

Table 4.1: Calculation stages for different samples.

in this iteration.

4.3.3 Multiple Sequential Cores

A parallel electronic cochlea can be implemented by using multiple numbers of

sequential cochlea cores described in Figure 4.4. If P cochlea blocks are used

to implement an electronic cochlea system, they are interconnected as shown

in Figure 4.6. The schedules of each cochlea block can be modified so that the

nth cochlea block, only processes stages i, where i mod P = n. The input

signal x[t] of the nth cochlea block is forwarded from the (n − 1)th cochlea

block, which calculates the y[t] signal of the previous stages. Hence, using

multiple cores, it has the benefit of increasing the maximum sample rate of

the system by a factor of P .

4.3.4 Architecture of the DFX Filter Computation Core

Instead of using the standard dual fixed-point adder and multiplier modules

proposed by Ewe et. al. [ECC04], an improved filter computation module,

Chapter 4 System Architecture 56

Figure 4.6: Multiple sequential processing cochlea cores.

Chapter 4 System Architecture 57

Figure 4.7: Filter computation module for dual fixed-point n f0 f1.

which is customized for second order IIR filters is used to implement the IIR

filter core inside the electronic cochlea.

Figure 4.7 and Figure 4.8 show how the DFX filter computation module is

organized. In this filter module, 5 signals in the DFX representation of n f0 f1

are multiplied with 5 coefficients in the fixed-point representation of m fm.

The 5 intermediate products are stored in the non-rescaled DFX format of

(n + m) (f0 + fm) (f1 + fm). Finally, they are added together and rescaled

back to n f0 f1.

The advantages of using this customized filter module are:

• If the standard DFX adder and multiplier modules were used to con-

struct the filter core, the intermediate products would be rescaled back

to the n f0 f1 format. Further preprocessing normalization and postpro-

cessing rescaling are taken by the standard DFX adders. In the case of

5 products’ summation, 4 more normalization and rescaling units would

Chapter 4 System Architecture 58

Figure 4.8: Dual fixed-point fractional matcher.

be added to the datapath. Although the customized filter module re-

quires m more storage bits for each intermediate product, it can reduce

the hardware resources used by those additional preprocessing normal-

ization and postprocessing rescaling units.

• In some cases, the summation operation in filter calculations may involve

adding a very small number, Xs0 , in Scale0 scaling with 2 very large

Scale1 scaled numbers of the same magnitude but opposite sign, −Ys1

and Ys1 . The addition order would affect the result in these cases if

the standard DFX adder modules were used. If the small number Xs0

was first added with either of the large numbers, for example Ys1 , and

then with another one, −Ys1 , the final result would be 0 instead of Xs0

as the intermediate sum (Xs0 + Ys1) would be rescaled back to Scale1

scaling and the bits containing the value of Xs0 would be truncated. If

a longer wordlength and more precision (namely a DFX representation

Chapter 4 System Architecture 59

(n + m) (f0 + fm) (f1 + fm)) is used for the intermediate sum, this type

of error is eliminated.

In the DFX filter, (n − 1)-bit-×-m-bit fixed-point multipliers and (m +

n− 1)-bit fixed-point adders are used. Compared with a fixed-point core, the

additional blocks required to implement DFX are range detectors, a fractional

matcher and a rescaler as illustrated in Figure 4.7 and Figure 4.8.

Range Detector

Range detectors are used to determine the exponent bit, E, of the input. If the

value of the input is in the range of Scale0, all the bits above the boundary,

B = 2(n−2−f0), would be all 0’s if the input is positive, or would be all 1’s if

the input is negative [ECC04]. Therefore, the output Boolean expression of E

is:

E = (bnin−1 · bnin−2 · . . . · bfin+(n−2−f0) + bnin−1 · bnin−1 · . . . · bfin+(n−2−f0))

(4.1)

where nin and fin are the wordlength and the number of bits used in the

fractional part.

Fractional Matcher

The fractional matcher is used to normalize the products to the same exponent.

It first generates the correct exponent bits for each product by using the range

detectors. All the products are then normalized by the rescalers in order to

have the same new exponent, Enew. The new exponent, Enew, is generated

from the logic OR operation of all the correct product’s exponent bits as if

one of the products should be in the Scale1 range, all the products should be

rescaled to Scale1 scaling.

Chapter 4 System Architecture 60

Rescaler

Rescalers are used to change the scaling of the DFX number from Scale0 to

Scale1 or reverse. The table 4.2 shows the operations for different situations.

Original Target
Explanation Operation

Exponent Exponent
0 0 Scale0 → Scale0 no change
0 1 Scale0 → Scale1 shifting right by (f0 − f1) bits
1 0 Scale1 → Scale0 shifting left by (f0 − f1) bits
1 1 Scale1 → Scale1 no change

Table 4.2: Rescaling operations for different situations.

4.4 Summary

In this chapter, an overview of hardware platform used in this work was de-

scribed. The architecture of a sequential processing electronic cochlea was also

detailed. The cochlea was developed on a reconfigurable hardware computing

platform which contains a Xilinx Virtex-II Pro FPGA. By using the interleav-

ing scheme, the idle cycles during the computation of successive stages can

be avoided. In order to apply decimation, the computation stages for each

iteration are different. Besides fixed-point arithmetic, the cochlea was imple-

mented with the dual fixed-point arithmetic. The additional blocks used in

implementing the DFX second order IIR filter were given to be range detectors,

a fractional matcher and a rescaler.

Chapter 5

Experimental Results

5.1 Introduction

In this chapter, results obtained from the cochlea system with different arith-

metic are presented. Firstly, the testing environment and the analyzing tools

are introduced. It is followed by performance measurements of the cochlea in

different designs. Finally, comparisons between cochlea designs for different

arithmetic and different decimation are presented.

5.2 Testing Environment

The sequential processing electronic cochlea was verified using the ModelSim

Se 6.1d simulator, and was synthesized using Xilinx ISE 8.1i, with Xilinx

Virtex-II Pro XC2VP100-6 as the target device. The results were analyzed in

Matlab 7.2.

Several designs of two versions of cochleas that consist of 88 stages and 169

stages respectively were implemented in order to show the comparison between

fixed-point and dual fixed-point implementations. A random signal was used

as input testcase since it has energy at all frequencies. The results of different

implementations were analyzed in terms of signal to noise ratio (SNR).

61

Chapter 5 Experimental Results 62

Size (slices)
Figure 5.1: Size and timing comparison of different designs. (FIX x y refers to
a fixed-point system with wordlength x bits and fractional wordlength y bits.
DFX x y z is explained in Section 2.7)

Chapter 5 Experimental Results 63

Arithmetic Design Size (slices) Minimum Period (ns)

Fixed-point
FIX 26 24 1034 4.526
FIX 28 26 1067 4.352

Dual Fixed-point
DFX 27 28 24 1366 6.214
DFX 27 30 24 1370 6.279

Fixed-point
FIX 38 36 1826 5.293
FIX 40 38 1862 5.442
FIX 42 40 1900 5.482

Dual Fixed-point
DFX 39 40 36 2276 6.342
DFX 39 42 36 2282 7.027
DFX 39 46 36 2281 6.385

Table 5.1: Size and timing comparison of different designs.

5.3 Performance of the Sequential Electronic

Cochlea

Figure 5.1 and Table 5.1 show the size and performance of different cochlea

designs. The maximum processing rate of different designs can be calculated

from their minimum period:

MaxProcessingRate =
1

NumberofStages ·MinimumPeriod
(5.1)

5.3.1 Comparisons

Besides comparing the resource usage and timing, the results’ accuracy of

different implementations were compared. The SNR of a system’s output

Chapter 5 Experimental Results 64

Design
Length of Number of BlockRAM Block Multiplier
Cascade Pipeline Stages (18-kbit) (18-bit-×-18-bit)

FIX 26 24

88
8

22 20
FIX 28 26

DFX 27 28 24
10

DFX 27 30 24
FIX 38 36

169

9

28 30

FIX 40 38
FIX 42 40

DFX 39 40 36
11DFX 39 42 36

DFX 39 46 36

Table 5.2: Multipliers and BlockRAMs usage for different designs.

signal, a[t], to the reference signal, s[t], is calculated as:

noise[t] = a[t]− s[t] (5.2)

SNR = 20 log

[PN
t=1 s[t]2

NPN
t=1 noise[t]2

N

]

= 20 log

[∑N
t=1 s[t]2∑N

t=1(a[t]− s[t])2

]

= 20

[
log

(N∑
t=1

s[t]2
)− log

(N∑
t=1

(a[t]− s[t])2
)
]

(5.3)

Fixed-point arithmetic vs. Dual Fixed-point arithmetic

The resulting SNR of different implementations are shown in Figure 5.2 and

Figure 5.3. The SNR calculated in this work is with reference to double preci-

sion floating-point results. The relative SNR is calculated as the difference in

SNR compared with a double precision electronic cochlea that uses fixed-point

coefficients.

As the wordlength is increased, the SNR of the fixed-point designs (FIX)

increase as expected. For implementations with 88 cascaded filter stages, DFX

Chapter 5 Experimental Results 65

Magnitude (dB)
Figure 5.2: Relative SNR of 88 cascaded filters systems of different arithmetic
and wordlength.

Chapter 5 Experimental Results 66

Magnitude (dB)
Figure 5.3: Relative SNR of 169 cascaded filters systems of different arithmetic
and wordlength.

Chapter 5 Experimental Results 67

Arithmetic Design Maximum Processing Rate (kHz)

Fixed-point
FIX 26 24 2510
FIX 28 26 2611

Dual Fixed-point
DFX 27 28 24 1828
DFX 27 30 24 1809

Fixed-point
FIX 38 36 1117
FIX 40 38 1087
FIX 42 40 1079

Dual Fixed-point
DFX 39 40 36 933
DFX 39 42 36 842
DFX 39 46 36 926

Table 5.3: Maximum processing rate for different designs.

27 28 24 has an SNR which is 20 dB better than the FIX 26 24 implementation

at the same effective wordlength (Figure 5.2). For 169 stages, the SNR of the

DFX 39 42 36 is 30 dB higher than the FIX 38 36 which uses the same numbers

of multipliers and adders (Figure 5.3). DFX 39 42 36 also has a better SNR

than FIX 40 38 in which the effective wordlength is larger than that of DFX

39 42 36.

The resource overhead for the DFX implementation is approximately 450

slices, this being mainly for registers in the additional 2 pipeline stages in the

filter computation module.

From Figure 5.3, the FIX 42 40 and DFX 39 42 36 designs have similar

SNR. The area-speed product of the DFX 39 42 36 implementation is 16035

and FIX 42 40 is 10415, so if the design is constrained by logic resources,

the fixed-point implementation may be advantageous. Both designs used the

same number of 18-bit-×-18-bit multipliers and so if that is the main resource

constraint, DFX offers better SNR.

Chapter 5 Experimental Results 68

Improvement in processin
g rate (%)

Figure 5.4: Processing rate as a function of decimation level.

Different Decimation Designs

Figure 5.4 shows how the decimation can affect the maximum processing rate

for different designs. By using decimation, the maximum processing rate of

each design can be increased. For decimation with a cutoff value of -80 dB, the

maximum processing rate of the 88-stage systems and the 169-stage systems

are increased by 1.7% and 49% respectively. If cutoff value is chosen to be

-70 dB, higher levels of decimation can be used and the maximum processing

rates are 26% and 110% higher than the non-decimated 88-stage and 169-

stage systems respectively. The 88-stage systems can increase the maximum

processing rate by 59% and 85% for decimation with cutoff values of -60 dB

and -50 dB respectively. The corresponding increase for 169-stage systems are

173% and 218%.

Chapter 5 Experimental Results 69

5.4 Summary

In this chapter, the performance of the cochlea in different designs were pre-

sented. Also, the comparisons between fixed-point cochlea implementations

and the cochleas using dual fixed-point arithmetic were discussed in term of

resource usage, timing and SNR.

The dual fixed-point cochlea implementation can achieve a better SNR than

the fixed-point cochlea that has the same effective wordlength and used the

same number of multipliers. Although decimation cannot reduce the resource

usage of the sequential processing electronic cochlea, it can be used to increase

the maximum processing rate of the system.

Chapter 6

Conclusions

In this work, a novel architecture for a sequential processing electronic cochlea

using decimation and dual fixed-point arithmetic was developed. Through de-

sign examples, it showed that decimation can be used to reduce computations

in the low frequency sections of the Lyon and Mead’s cochlea model. This work

illustrated that the dual fixed-point arithmetic can be applied to the cochlea

in order to provide more precision results than fixed-point arithmetic. Several

problems were addressed as follows:

Aliasing and Computation Tradeoff

For both parallel and sequential implementations of the cochlea, the compu-

tation in low frequency sections was reduced by employing decimation. Deci-

mation can provide a higher processing rate to the system but causes aliasing.

For the 169-stage system decimated with cutoff values of -50 dB, -60 dB, -70

dB and -80 dB, the maximum processing rate was increased by 218%, 173%,

110% and 49% respectively.

It is important to study tradeoffs between aliasing and computation reduc-

tion. Designers always want to increase the processing rate of the system to

achieve the highest performance in the given implementation platform. Using

decimated designs with different cutoff values, designers can achieve higher

70

Chapter 6 Conclusions 71

processing rates by defining a suitable cutoff value based on precision con-

straints.

More Accurate Dual Fixed-point Filter

An electronic cochlea utilizing a dual fixed-point second order IIR filter compu-

tation core was implemented. A DFX design presented in this thesis had a SNR

which is 20-30 dB better than the fixed-point design at the same wordlength.

The resource overhead for the DFX implementation was over 400 slices but

the number of multipliers used in both implementations were the same.

At the same wordlength, DFX filter cores used more logic blocks than

the fixed-point, however, the main resource constraint should be the number

of multipliers since filter operations in digital signal processing are always in

sum-of-product form. Multipliers in an FPGA chip are more fewer than logic

blocks. Therefore for multiplier constrained designs, the resource usage of

DFX and fixed-point designs are the same. On the other hand, DFX designs

can offer more accurate results than fixed-point designs due to the improved

dynamic range of DFX arithmetic. As a result, the quality advantage of DFX

designs is more significant than their resource overhead as both designs used

the same number of multipliers.

Larger Signal Bandwidth

The need for high quality and efficient electronic cochleas are important and

a family of implementations is useful since the electronic cochlea serves as the

front-end signal analyzer in auditory systems serving different purposes. In

the design presented, decimation was used to increase the processing rate and

as the signal bandwidth is limited by the processing rate, decimated designs

can be used in systems that require larger signal bandwidth. An example

is in modeling bat echolocation systems as they use frequencies in the range

of 20-200 kHz [DZM95]. Moreover, as the electronic cochlea presented in this

Chapter 6 Conclusions 72

work used a sequential processing architecture, any member of channels can be

implemented with a fixed amount of hardware. This is in contrast to parallel

designs where resources are propositional to the number of channels. The

sequential design presented can also be accelerated by using multiple cores.

6.1 Future Work

The electronic cochlea presented in this thesis can be used as the front-end

signal processing stage for auditory analyzing systems such as speech recogni-

tion and bat echolocation. As the cochlea only used a small number of logic

gates in an FPGA, it is feasible to implement entire auditory applications in

a single chip.

Decimation and DFX arithmetic are general tools that can be applied to

many other signal processing systems. Opportunities are likely to exist for

their use in many similar applications.

Bibliography

[AvSV97] E. Fragnière A. van Schaik and E. Vittoz. Improved silicon cochlea

using compatible lateral bipolar transistors. In Advances in Neural

Information Processing Systems, volume 8, 1997.

[CR81] R. E. Crochiere and L. R. Rabiner. Interpolation and Decimation of

Digital Signals - A Tutorial Review. In Proc. of IEEE, volume 69,

pages 300–331, March 1981.

[DZM95] Itiel E. Dror, Mark Zagaeski, and Cynthia F. Moss. Three-

Dimensional target recognition via sonar: A neural network model.

Neural Networks, 8(1):149–160, 1995.

[ECC04] Chun Te Ewe, Peter Y. K. Cheung, and George A. Constantinides.

Dual Fixed-Point: An Efficient Alternative to Floating-Point Com-

putation. In Field-Programmable Logic and Applications 2004,

pages 200–208, 2004.

[LJL03] M. P. Leong, Craig T. Jin, and Philip H. W. Leong. An FPGA-

based Electronic Cochlea. EURASIP Journal on Applied Signal

Processing, (7):629–638, 2003.

[LM88] R. F. Lyon and C. Mead. An analog electronic cochlea. IEEE Trans.

Acoustics, Speech, and Signal Processing, 36(7):1119–1134, 1988.

73

[LM89a] J. P. Lazzaro and C. Mead. Silicon models of auditory localization.

Neural Computation, 1:47–57, Spring 1989.

[LM89b] J. P. Lazzaro and C. Mead. Silicon models of pitch perception. In

Proc. National Academy of Sciences, volume 86, pages 9597–9601,

1989.

[LWK94] J. P. Lazzaro, J. Wawrzynek, and A. Kramer. Systems technologies

for silicon auditory models. IEEE Micro, 14(3):7–15, 1994.

[LWL97] J. P. Lazzaro, J. Wawrzynek, and R. P. Lippmann. Micro power

analog circuit implementation of hidden Markov model state decod-

ing. IEEE Journal Solid State Circuits, 32(8):1200–1209, 1997.

[LWM92] R. F. Lyon L. Watts, D. A. Kerns and C. A. Mead. Improved

implementation of the silicon cochlea. In IEEE Journal Solid State

Circuits, volume 27, pages 692–700, 1992.

[Lyo91] R. F. Lyon. Analog implementations of auditory models. In Proc.

DARPA Workshop on Speech and Natural Language, February 1991.

[Lyo01] Richard G. Lyons. Understanding Digital Signal Processing. Pren-

tice Hall PTR, 2001.

[MAL91] C. A. Mead, X. Arreguit, and J. P. Lazzaro. Analog VLSI model of

binaural hearing. IEEE Transactions on Neural Networks, 2(2):230–

236, 1991.

[MBK98] A. Schwarz B. Mertsching M. Hansen M. Brucke, W. Nebel and

B. Kollmeier. Digital VLSI-implementation of a psychoacoustically

and physiologically motivated speech preprocessor. In Proc. NATO

Advanced Study Institute on Computational Hearing, pages 157–162,

1998.

74

[MH02] A. Mishra and A. E. Hubbard. A cochlear filter implemented with

a field-programmable gate array. In IEEE Trans. on Circuits and

Systems II: Analog and Digital Signal Processing, number 1, pages

54–60, 2002.

[Mit01] Sanjit K. Mitra. Digital Signal Processing A Computer-based Ap-

proach, chapter 7, pages 441–446. McGraw-Hill, 2001.

[OSB98] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck.

Discrete-time signal processing. Prentice Hall, Upper Saddle River,

New Jersey, second edition, 1998.

[Pic88] James O. Pickles. An Introduction to the Physiology of Hearing.

Academic Press, London, UK, second edition, 1988.

[SCLJ97] A. R. Temple S. C. Lim and S. Jones. VHDL-based design of biolog-

ically inspired pitch detection system. In Proc. IEEE International

Conference on Neural Network, volume 2, pages 922–927, June 1997.

[Ska96] Kevin Skahill. VHDL for Programmable Logic. Prentice Hall, 1996.

[SL92] C. D. Summerfield and R. F. Lyon. ASIC implementation of the

Lyon cochlea model. In Proc. IEEE International Conference Acous-

tics, Speech, Signal Processing, pages 673–676, March 1992.

[Sla88] Malcolm Slaney. Lyon’s Cochlear Model. Apple Technical Re-

port 13, Advanced Technology Group, Apple Computer, 1988.

[Sla98] Malcolm Slaney. Auditory Toolbox: A Matlab Toolbox for Auditory

Modeling Work. Technical Report 010, Interval Research Copora-

tion, Palo Alto, Califm, USA, 1998. Version 2.

75

[SS05] Rahul Sarpeshkar and C. Salthouse. An Ultra-low-power Pro-

grammable Analog Bionic Ear Processor. In IEEE Transactions

on Biomedical Engineering, volume 52, pages 711–727, 2005.

[vSM99] A. van Schaik and R. Meddis. Analog very large-scale integrated

(VLSI) implementation of a model of amplitude modulation sensi-

tivity in the auditory brainstem. Journal of the Acoustical Society

of America, 105(2):811–821, 1999.

[Xil05] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Com-

plete Data Sheet, 4.5 edition, October 2005.

76

Publications

Full length conference paper

C.K. Wong and P.H.W. Leong: An FPGA-based Electronic Cochlea with Dual

Fixed-point Arithmetic, Proceedings of the Eleventh International Workshop

on Field Programmable Logic and Applications (FPL’06), Tampere 2006

77

