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Abstract

In this office automation era, many handwritten documents are digitized for

ease of backup and transmission. The demand for digital writing instruments

is thus expected to grow rapidly in coming years. There are many different

types of systems already available on the market. Recently, we have developed

a prototype of a MEMS (Micro-Electro-Mechanical Systems) based 3D digital

writing instrument which makes use of a micro inertial measurement unit (µIMU)

constructed from MEMS accelerometers and gyroscopes for real-time capture of

handwriting.

This idea has been proposed for over 10 years [43], however, to date there

is still no successful product on the market. One reason is that the necessary

double integration from acceleration to position propagates the noise associated

with the sensors to the tracked position, and such errors increase without bound.

In this thesis, a study of the sources of errors in µIMU, accelerometers was given.

Different existing error reduction techniques are investigated and novel schemes

proposed with an aim to provide a practical solution to this problem.

We have proposed two novel error reduction schemes for this digital writing

instrument. They are developed from the Kalman filtering algorithm with the

addition of absolute position information. One is from the fact that z-axis dis-

placement in the navigation frame is always zero, and the other is the position

measurement from an electromagnetic resonance (EMR) position detection board.

With this extra information, the accuracy in the position estimate is improved.

Particularly for the latter one, a successful handwriting can be produced with

improved accuracy over previous methods.
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摘要

在這個辦公室自動化的時代，為了方便保存和傳送，很多傳統手寫的文件都

被數碼化。市場上亦出現了不同種類的產品以供用戶選擇，而未來幾年數碼輸

入設備的需求將日益增加。最近，我們研發了一套基於微機電系統的三維數碼

書寫設備。系統中包含了一個由三維微機電加速度傳感器和陀螺儀組成的微型

慣性測量單元，藉以實時地記錄我們的書寫動作。

利用慣性測量單元記錄書寫動作的概念已經提出了有十年時間，但直至現

在，市場上仍然沒有相關的產品。主要原因是在二次的積分過程中，傳感器內

的噪音信息大大影響了筆跡的計算。有鑑於此，本論文會先針對加速度傳感器

的噪音進行誤差分析，然後分析各種現有的誤差減少技術，並提出改進，藉此

希望能夠解決上述誤差信息，從而為院校和商界提供一套可以在三維空間自由

使用的數碼書寫系統。

利用卡爾曼濾波(Kalman filtering)算法和額外提供的絕對位置信息，我們提

出了兩種新的針對於數碼書寫設備的誤差減少方案。一是基於二維的平面書

寫z方向無位移的特點；而另一個則是通過電磁反饋裝置提供的位置信息，來

提高位置預測的準確性。特別是使用後述的方法，我們可以成功地將書寫的筆

跡重新在電腦上顯示出來，而準確度高於以前的方法。
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Chapter 1

Introduction

1.1 Motivation

The “Electronic Whiteboard” and “Digital Pen” are new paradigms in the

office automation industry that may someday completely replace the computer

keyboard, which is still the preferred alphanumeric human-to-computer input

device. These new devices aim to capture human handwriting or drawing motions

in real-time and store motion strokes for character recognition or information

retrieval at a later time.

In 1964, the first graphics tablet was launched, the RAND Tablet [12], also

known as the Grafacon (Graphic Converter). It makes use of electromagnetic

resonance to digitize pen motion. In the next 40 years of development, many dif-

ferent well-developed methodologies to digitize handwriting have been proposed.

Targeting business and academic institutions, ultrasonic, infrared and optical

sensing are currently the most popular technologies for detecting the position of

a digital pen on a large area electronic whiteboard. These systems allow users

to write on specific surfaces with restricted active areas by the usage of special

dry-erase pens.

Luidia Inc. [24] and Sanford LP [33] have separately proposed systems, eBeam

and mimior respectively, that can modify a conventional whiteboard by placing

a receiver in its corner. The receiver uses infrared and ultrasound technologies

to translate pen movement into positions which are recorded on a computer.

However, the price of the overall system is very expensive, over US$700, and the

active area is limited, with maximum dimension of 2.4 m × 1.2 m. Logitech [9]

and Nokia [10] have released the Logitech c© ioTM2 Digital Writing System and

Nokia Digital Pen SU-1B respectively which is 3 times cheaper than the eBeam

and mimior solution. This technology comes from the Anoto Group AB which

1
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(a) The Digital Pen (b) The Digital Eraser

Figure 1.1: The Digital Writing Instrument

uses optical detection techniques [1]. A specialized pen emits a lightwave that

is deflected by patterns built onto specialized digital paper. By detecting the

reflected light, the pen can be made to record its position on the paper. All

existing products, including eBeam, mimior, Logitech c© ioTM2 and Nokia SU-

1B, require special writing surfaces or attachments to function and the active

area for position detection is limited.

Recently, our group developed a Ubiquitous Digital Writing Instrument to cap-

ture and record human handwriting or drawing motions in real-time based on

Micro-Electro-Mechanical Systems (MEMS) motion sensing technology [51]. This

system is developed from the Micro Input Devices System (MIDS) [31], which was

also developed by our group. Using low-cost and small MEMS sensors, it is pos-

sible to build self-contained inertial sensors with overall system dimension of less

than 1 cubic inch as shown in Figure 1.2(b). These are called micro-inertial

measurement units (µIMU), which include accelerometers and gyroscopes to pro-

vide the acceleration and the angular rate of the motion. With the information

provided, Lam et al. proposed several practical applications to use this system,

such as robot controller [28, 29], wireless mouse, virtual keyboard [30, 31], game

controller [47], sports science [16], etc. Using a bluetooth wireless module, the

sensor units can track orientation and locomotion in real time. Recalling from

high school physics that position is the double integral of acceleration, based on

the acceleration and rotation in different axes of the given input device, it is

possible to build a digital pen based on these inputs.
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(a) The Hardware and Software Prototype (b) The µIMU with Bluetooth module

Figure 1.2: The Ubiquitous Digital Writing System

1.2 Objectives

MEMS motion technology can provide a novel solution for building a ubiqui-

tous digital writing system. This handwriting position tracking idea was first

proposed by C. Verplaetse [43] in 1996. However, to date, no successful digital

pen using this idea exists on the market. This is because different sources of errors

are introduced into the system during the manufacturing and assembly processes.

Some are deterministic, such as sensor bias, and can be eliminated through cal-

ibration, but some are random, such as electronic and mechanical noise in the

MEMS inertial sensors, and cannot be completely removed from the system. In

inertial kinematics theory [42], the position is computed by the double integration

of acceleration with respect to time. Hence, the main objective of this work is

to propose practical techniques to minimize the error, so as to demonstrate the

feasibility of MEMS accelerometer-based digital input device.

The detailed research aims were:

• Investigate existing error reduction algorithms for a MEMS accelerometer

based digital input device.

• Explore a methodology to improve the position tracking accuracy of the

MEMS accelerometer based digital input device.

• Demonstrate the feasibility of MEMS accelerometer-based digital input de-

vice by developing a prototype.

1.3 Contributions

This thesis presents methodologies for error reduction of accelerometer-based

digital writing instruments to improve writing accuracy. The contributions of
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this work are:

• A study of previous work on error reduction for a micro-inertial measure-

ment unit (µIMU) navigation.

• An experimental study of zero velocity compensation (ZVC) algorithm.

• A novel Kalman filter based real-time error compensation methodology for

a µIMU-based digital writing instrument that uses information from the

z-axis of the pen to deduce absolute position.

• A novel Kalman filter based real-time error compensation algorithm that

uses absolute position information from a 2-dimensional electromagnetic

resonance (EMR) board.

• A systematic error analysis for the error compensation algorithms with an

optical tracking based calibration system.

1.4 Thesis Organization

The thesis is structured as follows: Chapter 2 describes the system design of

our ubiquitous digital writing instrument with the introduction of inertial naviga-

tion theory and MEMS motion sensing technology. Chapter 3 reviews sources of

errors in using MEMS sensors and provides solutions to handle the deterministic

errors in the system. Chapter 4 evaluates the Zero Velocity Compensation algo-

rithm (ZVC), an offline error reduction algorithm proposed by other researchers.

Chapter 5 gives an introduction to the Kalman Filtering algorithm which is used

to handle error compensation and sensor fusion. Chapter 6 describes our error

compensation algorithms which use pen-tip position feedback based on users’

handwriting habits and a position feedback enhanced error compensation algo-

rithm. Finally, a conclusion is made and future work is suggested in Chapter

7.



Chapter 2

A Ubiquitous Digital Writing

System

2.1 Introduction

From elementary physics [15], position is the second integral of acceleration.

s =

∫ ∫

a dt dt (2.1)

where s and a is the position and acceleration of the pen in the navigation

frame respectively, and t is time. Hence, we can use accelerometers to measure

the accelerations in the x, y and z-axes during writing, and then compute the

position of the pen by the double integral according to Equation (2.1). After

obtaining position as a function of time, handwriting can be reconstructed from

the accelerometer output.

Owing to the advent of MEMS (Micro-Electro-Mechanical Systems) motion

sensing technology, a micro-inertial measurement unit (µIMU), with dimensions

of just 56 mm× 23 mm× 15 mm, can be constructed to sense the 3D motion of

the pen as described before. Therefore, the overall digital writing system is very

small, and it is very easy for user to take and use it at anywhere.

In this chapter, a brief introduction to the ubiquitous digital writing system will

be given starting from an brief introduction to MEMS motion sensing technology.

A description of the overall system architecture design is also given.

5



CHAPTER 2. A UBIQUITOUS DIGITAL WRITING SYSTEM 6

 

Center Plate 

Tether 

Beam 

Unit Cell 
Fixed Outer 
Plates 

Top View Top View 

Applied 
Acceleration 

Anchor 

∆x x0 

Figure 2.1: The Working Principle of a MEMS Accelerometer (modified from
reference [21])

2.2 MEMS Motion Sensing Technology

2.2.1 Micro-Electro-Mechanical Systems (MEMS)

MEMS stands for Micro-Electro-Mechanical Systems which integrates mechan-

ical units and electronic components together through micro-fabrication tech-

nology at the sub-millimeter scale. With this technology, we can build micro-

structures through micro-machining and create sensors which are very small in

size and suitable for the design of digital writing instruments.

There are several different methods for sensing motion. In the following sub-

sections, we concentrate on discussing the working principles of accelerometers

and gyroscopes used in our design of micro inertial measurement unit (µIMU)

[32].

2.2.2 Principle of a MEMS Accelerometer

The accelerometer is an instrument which is used to measure acceleration of a

target mounted object. Two Analog Device ADXL203 ±1.7g dual-axis iMEMSr

accelerometers [22] are used in our digital writing system. There are polysilicon

springs inside the sensor which are used to suspend a beam over the surface of

a silicon wafer and provide a resistance against applied force as shown in Figure

2.1. When acceleration is applied to the sensor, according to the Hooke’s law,

the beam deflects as described in Equation (2.2) and a differential capacitor is

used to measure the distance of the beam deflected as shown in Equation (2.3).

Finally, we can further measure the applied acceleration which is proportional to

the deflection of the beam as described in Equation (2.4) [21, 22, 20, 32, 42, 49].

∆d =
F

k
(2.2)
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(b) Structure of Gyroscope (modified from reference [2])

Figure 2.2: The Working Principle of a MEMS Gyroscope

∆C ≈ C0

∆d

d0

(2.3)

a =
F

m
=
k∆d

m
(2.4)

where F is the applied force, k is the spring constant of tether, ∆d is deflection

of the beam, a is the applied acceleration, m is mass of the beam, C0 is the capac-

itance of the unit cell measured at stationary, ∆C is the change in capacitance

during force is applied and d0 is the separation between the planes at stationary.

2.2.3 Principle of a MEMS Gyroscope

The gyroscope is an instrument which is used to measure angular velocity

of a target mounted object. Three Murata GYROSTARr ENC-03M MEMS

piezoelectric vibrating gyroscopes [34] are used in our digital writing system.

There is a bimorph vibrator inside the instrument as shown in Figure 2.2(b)

which resonates with linear velocity vvibration cos (Ωt). If the sensor is fixed to

the target body rotating at rate ωinput, the vibrator inside experiences a time-

varying Coriolis acceleration as shown in Equation (2.5) and Figure 2.2(a). The

acceleration is at the same frequency as the driving acceleration, but at right

angles to the vibrator velocity. Hence, the magnitude of the applied rotation

about the axis orthogonal to vibrator can be determined by measuring the Coriolis

acceleration generated [20, 34, 42, 49].

acoriolis(t) = [−2ωinput ⊗ vvibration] cos (Ωt) (2.5)

where acoriolis(t) is the Coriolis acceleration at time instant t, ωinput is the input

angular velocity, vvibration is the linear velocity of the vibrator.
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Figure 2.3: System Architecture of the Ubiquitous Digital Writing System

2.3 Architecture of Ubiquitous Digital Writing

System

Figure 2.3 is a block diagram of the ubiquitous digital writing system which

can be used to sense the 3D motion of a pen and reconstruct the script written by

the pen on a host computer. There are three main modules which are the micro

inertial measurement unit (µIMU), data transmission module and user interface

software. The detailed description for each module is given in this section.

2.3.1 Micro Inertial Measurement Unit (µIMU)

Figure 2.4 shows a prototype of a µIMU. An inertial measurement unit (IMU)

is used to measure acceleration and angular velocity of the attached object based

on its motion. The word “micro” refers the size of overall measurement unit,

the dimensions being 56 mm × 23 mm × 15 mm. This is very small compared

to IMUs used in vehicles and aeroplanes which are typically in dimensions of

95 mm × 76 mm × 81 mm [23]. The µIMU can be further divided into three

parts which are accelerometers, gyroscopes and microcontroller unit (MCU) as

shown in Figure 2.3. The detailed functionalities of each part are described below.
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Figure 2.4: The Prototype of the µIMU

2.3.1.1 Accelerometers

Two Analog Device ADXL203 precision ±1.7g dual-axis iMEMSr accelerom-

eters [22] are used in our µIMU. These are aligned perpendicularly along the x, y

and z-axes of the body frame of the pen. They are connected to a MCU and their

output signals, which are in analog format, are digitized by an analog-to-digital

converter (ADC) in the MCU which is also used to transmit the linear accelera-

tions of the pen to the host computer through the data transmission module.

2.3.1.2 Gyroscopes

Three Murata piezoelectric vibrating single-axis gyroscopes (GYROSTARr -

ENC-03M) [34] are also used along the x, y and z-axes of the body frame of the

pen to measure rotational angular velocities in three rotation angles, roll (φ), pitch

(θ) and yaw (ψ) respectively. As with the accelerometers, they are connected to a

MCU and their analog output signals digitized by the ADC to transmit rotational

angular velocities to the host computer through the data transmission module.

2.3.1.3 Microcontroller Unit (MCU)

An Atmel ATmega32 MCU [8] is used to sample the 6 channels of accelerom-

eters and gyroscopes at a rate of 200Hz and then digitize their analog outputs

through its internal 10-bit ADC. The data are transmitted to the host computer

through the data transmission module.
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2.3.2 Data Transmission Module

A data transmission module is used to transmit sensor signal data from the

µIMU to the host computer. We have two transmission modes, one is via USB

and the other wireless. The host computer receives the data through a virtual

serial communication port.

In the wired mode, the digital pen and host computer are connected through

a USB cable. This is mainly used for system development. In actual usage, USB

will be used only for recharging the pen.

The wireless mode uses two bluetooth modules, a transmitter and a receiver.

Bluetooth is supported on many computer devices, especially mobile devices, such

as laptop computers, personal digital assistants (PDAs), smart phones, etc. With

an approximate range of 10 metres, users can use the pen anywhere in a room

and transmit handwriting to a host computer.

2.3.3 User Interface Software

A user interface software as shown in Figure 2.5 is developed for the host

computer. The software is divided into three main modules as shown in Figure

2.3, the raw data collector, processing algorithm and observer. The detailed

functionalities of each module are described below.

2.3.3.1 Raw Data Collector

The raw data collector module is used for obtaining sensor signal data from

the µIMU through its serial port. This can receive either USB or bluetooth data.

This module is also used to segment acceleration and angular velocity in each

axis and pass it to the processing algorithm module.

2.3.3.2 Processing Algorithm

The processing algorithm module is used for estimating the position of the

pen from the raw data. It can be further separated into five parts as shown in

Figure 2.6, zero bias compensation, attitude estimation, gravity compensation,

coordinate transformation and position tracking. The detailed descriptions for

these functional blocks are given below.
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Figure 2.5: A User Interface Software for Ubiquitous Digital Writing System

Figure 2.6: A Detailed Block Diagram of the Processing Algorithm Module
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2.3.3.3 Observer

The observer module stores the position information and transfers it to the

data display and data storage module. After collecting the position information,

users can obtain the position information in two ways, the data display module

can reconstruct the script and display it on the graphical user interface (GUI) of

the software, or the data store module can save the position information with the

raw data in a file for later reference.

2.4 Summary

In this chapter, we have described the overall design of a ubiquitous digital writ-

ing system which uses MEMS motion sensing technology for position tracking.

We have also explained the fundamental working principle of MEMS accelerom-

eters and gyroscopes which are key components in the system.



Chapter 3

Calibration of µ-Inertial

Measurement Unit

3.1 Introduction

Owing to the double integration of Equation (2.1), a small noise in the ac-

celerometer measurement will grow rapidly in the computed final position. Error

reduction techniques are the key to a successful implementation of a digital pen.

In this chapter, a calibration method and correction technique for deterministic

µIMU errors is presented together with a study of accelerometer error sources.

3.2 Sources of Error

In a µIMU, there are many sources of errors that can reduce its measurement

accuracy. In this section, we present a study for the errors, and categorize them

into two groups, deterministic and stochastic.

3.2.1 Deterministic Errors

Misalignment Configuration Misalignment problems can be categorized into

two parts, external and internal. Since we use two 2D MEMS accelerometers

to construct our µIMU, there is a risk that these two accelerometers are not

perpendicular. This is known as external misalignment. Internal misalignment is

due to misalignment during fabrication.

The external misalignment is easy to solve. We can use the experimental setup

as shown in Figure 3.1(a), which is a constant speed rotation table, and then align

the plane, which consists of two active sensing accelerometers, parallel to gravity.

Owing to the orientation of the accelerometers, these two axes accelerometers

13
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(a) The experimental setup for accelerome-
ters alignment

(b) The experimental result of the ac-
celerometers alignment

will pick up a sinusoid curve with 90◦ phase difference if they are perpendicular

as shown in Figure 3.1(b). Hence, based on this phenomenon, we can test the

accelerometers to determine whether they can provide this 90◦ phase difference,

i.e. t1 = 1

4
T . If not, we can supplement the remaining phase difference as a

constant, i.e. t2 = 1

4
T − t1 when using the Direction Cosine Matrix (DCM)

defined in Equation (3.9).

Quantization Since the analog MEMS accelerometers are digitized for the ease

of processing and transmission, the signal received at the host computer will be

discretized and quantization errors will result.

3.2.2 Stochastic Error

Thermal Noise Owing to Brownian motion, white noise is generated by ther-

mal agitation due to the random charge carriers motion inside the sensors. This

is also known as Johnson-Nyquist noise, and results in a noisy signal output with

a root mean square value being the thermal noise equivalent acceleration (TNEA)

as shown in Equation (3.1) [7, 13, 18, 26, 32, 37, 49].

TNEA =
√

4BkBT (3.1)

3.3 Calibration of Accelerometers

In order to provide a full range of ±1.7g from an unsigned value, an offset

voltage is added to the output [22]. In this section, we discuss how to calibrate

the accelerometer to remove offset bias and acceleration gain errors.

As we know, if the µIMU is stationary, there is no external force on the µIMU

except the gravity. Hence, if we obtain a maximal or a minimal output while
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(c) Pointing to Earth (d) Pointing away from Earth

Figure 3.1: Calibration of accelerometers

Axis x y z
Maximum (max) 719 723 728
Minimum (min) 307 312 316
Direction (sign) − + +

Table 3.1: Experimental values for accelerometer calibration

rotating the µIMU, the accelerometer must be parallel to gravity as shown in

Figure 3.1. According to the coordinate system defined in Figure 3.2, we tabulate

the axis tested, the maximal value (max), minimal value (min) and direction

(sign) in Table 3.1. From max and min, we can compute the zero bias (bias) and

the output range (range) with Equations (3.2) and (3.3). Hence the calibrated

output is given in Equation (3.4). This assumes linearity in the accelerometer

output and that zero acceleration is at the centre of the output range.

bias =
(max+min)

2
(3.2)

range =
(max−min)

2g
(3.3)

outputcalibrated =
sign (outputraw − bias)

range
(3.4)

In the above equations, outputcalibrated and outputraw are the calibrated and

raw accelerometer output respectively, g is the gravitational constant 9.81 ms−2,

and sign is defined to follow the body frame coordinate system shown in Figure

3.2.

3.4 Coordinate Transformation with Gravity Com-

pensation

Figure 3.2 shows the two coordinate systems of the digital writing instrument.

One is the body frame, which represents the coordinate system aligned with the
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Figure 3.2: Coordinate system of navigation and body frames

configuration of the accelerometers attached on the digital writing instrument.

The other is the navigation frame, which represents the coordinate system we

used in the navigation tracking [5, 11, 20]. In order to reproduce the handwriting

trajectory, we first need to transform the acceleration in the body frame to the

navigation frame and remove the gravity for integration. In this section, we would

like to have a detailed description for the coordinate transformation with gravity

compensation and also with the attitude determination.

3.4.1 Coordinate Transformation

Given that the body frame b is aligned with the axes of the sensors. The

attitude of the pen can be represented by the three Euler angles, yaw (ψ), pitch

(θ) and roll (φ) and their corresponding rotation matrices Tφ Tθ and Tψ are

defined as follows:

Let Tj , where j = φ, θ, ψ, be the rotation matrix from the body frame to the

navigation frame defined as follows:







an,x

an,y

an,z






= Tj







ab,x

ab,y

ab,z






(3.5)



CHAPTER 3. CALIBRATION OF µ-INERTIAL MEASUREMENT UNIT 17

where an,i and ab,i are the acceleration with respect to the navigation frame and

the body frame defined in Figure 3.2 respectively, and the axis i = x, y, z.

Roll (φ) is rotation about the x-axis of the body frame, Xb, from the body

frame to the navigation frame as shown in Figure 3.3(a).

Tφ =







1 0 0

0 cosφ − sinφ

0 sin φ cosφ






(3.6)

Pitch (θ) is rotation about the y-axis of the body frame, Yb, from the body

frame to the navigation frame as shown in Figure 3.3(b).

Tθ =







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ






(3.7)

Yaw (ψ) is rotation about the z-axis of the body frame, Zb, from the body

frame to the navigation frame as shown in Figure 3.3(c).

Tψ =







cosψ − sinψ 0

sinψ cosψ 0

0 0 1






(3.8)

Tn
b = TφTθTψ

=







1 0 0

0 cosφ − sin φ

0 sinφ cosφ













cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ













cosψ − sinψ 0

sinψ cosψ 0

0 0 1







=







cos θ 0 sin θ

sinφ sin θ cosφ − sinφ cos θ

− cos φ sin θ sinφ cosφ cos θ













cosψ − sinψ 0

sinψ cosψ 0

0 0 1







=

















cos θ cosψ − cos θ sinψ sin θ
(

sin φ sin θ cosψ

+ cosφ sinψ

) (

− sinφ sin θ sinψ

+ cosφ cosψ

)

− sin φ cos θ

(

− cosφ sin θ cosψ

+ sinφ sinψ

) (

cosφ sin θ sinψ

+ sinφ cosψ

)

cosφ cos θ

















(3.9)

where Tn
b is also called Direction Cosine Matrix (DCM) which is used for vector

transformation of the accelerations in the body frame to the navigation frame.
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(a) Rotation about the x-axis of the
body frame, Xb, from the body frame
to the navigation frame
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(b) Rotation about the y-axis of the
body frame, Yb, from the body frame
to the navigation frame

ψ

ψ
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(c) Rotation about the z-axis of
the body frame, Zb, from the body
frame to the navigation frame

Figure 3.3: Coordinate transformation from body frame to navigation frame

Tφ, Tθ and Tψ are the rotation matrix about the roll (φ), pitch (θ) and yaw (ψ)

respectively.

3.4.2 Attitude Determination

In Figure 3.2, we can determine the attitude of the pen when stationary because

there is no external force applied to the system except the gravity. However, since

the rotation plane of the angle ψ is perpendicular to gravity, we cannot calculate

ψ from the accelerometer measurement alone. Thus we assume ψ to be zero

through the experiment.

The acceleration in the navigation frame An is gravity G while the acceleration

in the body frame Ab is the accelerometer measurement. The following equation
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models the stationary situation.

G = Tn
bAb (3.10)

where G =
[

0 0 −9.81
]T

is the gravitational constant vector in the naviga-

tion frame and Ab =
[

ab,x ab,y ab,z

]T

is the acceleration in the body frame

defined in Figure 3.2. This is the measured acceleration from the calibrated

accelerometers without any transformation.

By the orthogonal property of the DCM and assuming ψ = 0, we have

Ab = Tb
nG = [Tn

b]T G






ab,x

ab,y

ab,z






=







cos θ sin φ sin θ − cosφ sin θ

0 cos φ sinφ

sin θ − sinφ cos θ cosφ cos θ













0

0

−g







=







g cos φ sin θ

−g sin φ

−g cosφ cos θ






(3.11)

Based on Equation (3.11), we can derive the following three equations

ab,x
ab,z

=
g cos φ sin θ

−g cosφ cos θ
= tan θ (3.12)

ab,y = −g sin φ (3.13)

g =
√

a2
b,x + a2

b,y + a2
b,z (3.14)

and hence the equation for attitude from acceleration

φ = arcsin

(

−ab,y
g

)

= arctan





−ab,y
√

a2
b,x + a2

b,z



 (3.15)

θ = arctan

(

ab,x
−ab,z

)

(3.16)

3.4.3 Gravity Compensation

After obtaining the attitude of the pen, a coordinate transformation with grav-

ity compensation is performed to remove the gravity bias and tilt [42].

An = Tn
bAb + G (3.17)
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where An =
[

an,x an,y an,z

]T

is the acceleration in the navigation frame,

defined in Figure 3.2.

3.5 Summary

In this chapter, we described sources of errors in the µIMU, and also discussed

how to calibrate the accelerometer, to determine the attitude of the pen in a

stationary situation. With attitude information, we can perform a coordinate

transformation with gravity compensation, and remove deterministic errors to

obtain a more accurate acceleration measurement.



Chapter 4

Zero Velocity Compensation

4.1 Introduction

As discussed in Chapter 3, the sources of error in the µIMU can be separated

into two main parts, deterministic and stochastic. We have discussed techniques

to tackle the deterministic error. In this chapter, we concentrate on methods to

reduce stochastic error.

Recently, Samsung researchers proposed a method [3, 48], which is modified

from the position refinement algorithm proposed by Frank [17]. The idea makes

use of the fact that velocity and acceleration should be zero when the pen is

stationary. With this assumption, we can consider the velocity residue during

pauses as an error propagated from acceleration. It can then be compensated to

reduce the effect of the positional drift. This algorithm is known as Zero Velocity

Compensation (ZVC).

4.2 Algorithm Description

In this section, the zero velocity compensation (ZVC) algorithm is described

in detail. There are two major parts, stroke segmentation and zero velocity

compensation. First, we segment the raw accelerometer measurement of the

handwriting into moving or stopped states. We record the start and stop times

of the strokes. Then, with the assumption of zero velocity and acceleration when

stopped, we update the velocity and acceleration, and estimate the position of

the digital writing instrument. The detailed implementation will be described in

the following sub-section.

21
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Figure 4.1: Demonstration of Stroke Segmentation Algorithm. Dotted lines are
the standard deviation of acceleration, dashed lines are input acceleration, and
solid lines represent the stroke segmented region.

4.2.1 Stroke Segmentation

Stroke segmentation is used to separate pen-tip motion from it being stationary.

So Bang et al. [3] proposed a very simple method to do the stroke segmentation,

which uses the standard deviation of acceleration in the body frame |Ab|, σ
S
|Ab|

(k),

within an S-sized sample window at time instant k to determine whether the pen-

tip is moving by comparing to a threshold (σth) as described in Algorithm 4.1. If

it is less than σth, we consider the pen to be at rest.

Algorithm 4.1 Stroke Segmentation

1: if σS|Ab|
(k) < σth then

2: Stationary
3: else
4: Moving
5: end if

4.2.2 Zero Velocity Compensation (ZVC)

Using stroke segmentation, we determine when the pen is stationary. If the pen

is stationary, the velocity and acceleration should be zero. However, owing to the

existence of errors in accelerometer measurements, the computed velocity may be

non-zero. This velocity residue propagates to the position estimate through the

integration process and causes the positional drift problem, which is a problem

in the inertial navigation tracking that the computed position moves even if the

target is stopped. This phenomenon occurs because the position is computed by

double integration of the acceleration, and hence very sensitive to the noise in
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the accelerometer measurement as the noise propagated to the position rapidly

through the integration process. Bang et al. [3] proposed to reduce this velocity

residue with a linear model as in Equation (4.1). The velocity and position

estimates are updated as in Algorithm 4.2.

ân,k = an,k −
vn,k2 − vn,k1
k2 − k1

1

∆t
, k1, k2 ∈ k (4.1)

where k1 and k2 are the time instants before and after writing respectively, (i.e.

k1 < k < k2 is the writing interval), ǫ is the velocity residue, i.e. vn,k2 − vn,k1,

ŝn,k, v̂n,k and ân,k are the compensated position estimate, velocity estimate and

acceleration, ∆t is the sampling time of the accelerometer and the subscripts n

and k mean the quantity is in navigation frame (n) at time instant k.

Algorithm 4.2 Zero Velocity Compensation (ZVC)

1: vn,k = vn,k−1 + an,k∆t
2: if k1 < k < k2 then
3: ǫ = vn,k2 − vn,k1
4: ân,k = an,k − ǫ 1

k2−k1
1

∆t

5: v̂n,k = v̂n,k − ǫ k−k1
k2−k1

6: ŝn,k = ŝn,k−1 + v̂n,k∆t+ ân,k∆t
2

7: else
8: v̂n,k = ân,k = 0
9: end if

4.3 Experimental Results and Discussion

In order to evaluate the performance of the ZVC algorithm, several experiments

were carried out. To simplify the experiment and concentrate the discussion on

the position tracking performance of the algorithm, the attitude is assumed to be

fixed throughout the experiments discussed in this chapter. Several letters were

written at normal speed and can be successfully displayed on the user’s computer

as shown in Figure 4.2.

For the ZVC algorithm, no external device is required for error compensation.

However, by comparing the performance between ZVC and integration without

any processing in Figures 4.3(e) and 4.4(e), it is obvious that the scripts re-

produced by ZVC are more similar to the actual one. It is because ZVC takes

velocity to be the compensation reference input. If there is any error between two

reference points, the velocity estimate is corrected during each pause in writing.

Hence, it can reduce the amount of noise propagated to the position estimate.
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(a) “CMNS” (b) a Chinese Character

Figure 4.2: Demonstration of the Zero Velocity Compensation (ZVC) algorithm

For integration without any processing, the error in the acceleration propagated

to velocity and position. This results in positional drift and also velocity residue

defined in this chapter. The existence of the velocity residue is evidence to justify

the use of ZVC.

However, there are some disadvantages in using the ZVC algorithm. First,

the time between pauses cannot be too long. The compensation process in ZVC

assumes there is a constant error in acceleration, but it should be approximately

zero mean Gaussian distributed in actuality. The velocity residue may not in-

crease with time linearly. For a long time process, this model cannot determine

the amount of error in acceleration at each time instant, and error in position

still increases with time through the integration process. Hence, extra pauses are

required to improve the performance, but this may not be acceptable to the user,

especially for cursive writing.

Finally, ZVC does not fulfill the real time display requirement. Bang et al.

proposed this method for offline processing of handwriting recognition for mobile

phones. Users are expected to wait until the stroke is finished. In our digital

writing system, this approach may not be suitable. Since the latency time for

each processing depends on the writing time for each stroke, the display latency

varies considerably. Users expect to see the handwriting within a certain period,

and hence this algorithm has some limitations for our real-time writing system.

4.4 Summary

In this chapter, we have demonstrated and evaluated the ZVC algorithm. We

can reduce the positional drift problem by compensating the velocity residue.
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Figure 4.3: Comparison between using the ZVC algorithm and without any pro-
cessing to the raw data in writing a letter “S”. Solid lines are ZVC corrected
whereas dotted lines are obtained by integration of the raw acceleration data.
Dashed lines show the actual letter.
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Figure 4.4: Comparison between using the ZVC algorithm and without any pro-
cessing to the raw data in writing a letter “U”. Solid lines are ZVC corrected
whereas dotted lines are obtained by integration of the raw acceleration data.
Dashed lines show the actual letter.
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The advantage of using this algorithm is that no external reference is required.

However, there are several disadvantages. First, it is only useful for short dura-

tions. Frequent stopping is required for stroke segmentation, but this may not be

acceptable to users. Last but not least, the output is not available until a stroke

is completed. Since we do not know how long a stroke is, it cannot fulfill the

real-time display requirement.



Chapter 5

Kalman Filtering

5.1 Introduction

In the field of navigation tracking, the Kalman filter is a well-known algorithm

to handle the separation of probabilistic noise and state estimation of the system.

In 1960, Rudolf E. Kalman published an adaptive discrete recursive estimation

algorithm [27] which is based on the state-space system model to give an optimal

solution to the Weiner filter, proposed by Norbert Wiener [45] in 1949. The

Wiener filter is an optimal least mean square error filter to remove additional noise

from a signal, given their auto-correlation and cross-correlation functions. The

filter is linear and stationary. Comparing the Kalman filter to the Wiener filter,

stationarity is no longer required, and an optimal solution can also be obtained

for a time-varying system because the Kalman filter can adaptively update the

system response to the measurement input. With the advent of digital computers,

the discrete recursive state-space Kalman filtering algorithm [39] has become one

of the key algorithms used in aerospace and vehicle navigation.

In this chapter, we provide a summary of Kalman filtering algorithm and give

its implementation to handle the position estimation in our ubiquitous digital

writing instrument system.

5.2 Summary of Kalman filtering algorithm

5.2.1 System Model

In modern control theory, transformation of process state is represented as a

linear stochastic difference equation as shown in Equation (5.1). The measure-

ment model that describes the relationship between the process state and the

measurements is represented as a linear expression as shown in Equation (5.2).

28



CHAPTER 5. KALMAN FILTERING 29

Time Update

x̂−k = Ax̂−k−1
+Buk

P−
k = APk−1A

T +Q

Compute Kalman Gain

Kk =
P−
k H

T

HP−
k H

T +R

Initial priori estimate x̂0

and it error covariance P0

Measurement Update

x̂k = x̂−k +Kk(yk −Hx̂−k )

Pk = (I −KkH)P−
k

Estimation
Output x̂k

Measurement
Input yk

Figure 5.1: The Kalman Filtering Algorithm

Process Model:

xk = Axk−1 +Buk−1 + wk−1 (5.1)

Measurement Model:

yk = Hxk + vk (5.2)

where xk is the state of the linear system, k is the time index, u is a control

input to the system, yk is the measurement input, and w and v are the random

variables represent the process and measurement noise respectively, and H is the

measurement matrix. For position estimation, the state propagation is the double

integration of acceleration to position, hence the control input matrix, B, is not

used and can be assigned to zero. Finally, A is the state transition matrix which

is used to propagate the system state from the previous time instant, k−1 to the

current time instant k. For a detailed derivation, refer to Appendix A.

5.2.2 Initialization

This stage is used to initialize the state estimate and error covariance.

System State Estimate Initialization In order to use the Kalman filter to

estimate position, we need to initialize the state estimate vector (x̂) and the error

covariance matrix (P ). For the inertial navigation applications, x̂ includes the



CHAPTER 5. KALMAN FILTERING 30

estimate of the position (ŝi), velocity (v̂i) and acceleration (âi) of the pen in the

3-axes of the navigation frame as shown in Equation (5.3), where i represents the

axis of the quantity.

x̂ =
[

ŝn,x v̂n,x ân,x ŝn,y v̂n,y ân,y ŝn,z v̂n,z ân,z

]T

(5.3)

We first assume that the initial position of the pen is at the origin (0, 0, 0), and

initialize the system state as a 9 × 1 zero column vector as shown in Equation

(5.4).

x̂0 = 09×1 =
[

0 0 0 0 0 0 0 0 0
]T

(5.4)

Error Covariance Initialization In order to obtain an optimal estimate from

the noisy acceleration measurement, we define the covariance of the error residue

of the actual system state to the estimated one, E
[

(x− x̂) · (x− x̂)T
]

, to be an

error covariance matrix, P , which is initialized as follows and updated later.

P−
0 = E

[

(x− x̂) · (x− x̂)T
]

= I9 (5.5)

E[X] is the expectation of random variable X and I9 is a 9× 9 identity matrix.

State Transition Matrix Recall the position (s) and velocity (v) actually in

each axis is doubly integrated from acceleration (a). Hence the state transition

matrix can be described as follows:

sn,i,k = sn,i,k−1 + vn,i,k−1∆t+
1

2
an,i,k−1∆t

2 (5.6)

vn,i,k = vn,i,k−1 + an,i,k−1∆t (5.7)

where sn,i,k, vn,i,k and an,i,k are the position, velocity and acceleration in axis i of

the navigation frame at time instant k respectively and ∆t is the sampling time

of the accelerometer.

By making use of the state-space model, we can model the above equation

according to Equation (5.1)

xn,i,k = Aixn,i,k−1 (5.8)

where xn,i,k is defined as xn,i,k =
[

sn,i,k vn,i,k an,i,k

]T

, i = x, y, z, and Ai is

the state transition matrix for axis i.
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The state transition matrix for axis i, Ai is defined as follows:

Ai =







1 ∆t 1

2
∆t2

0 1 ∆t

0 0 1






(5.9)

where ∆t is the sampling period of the accelerometer.

The overall state transition matrix for the overall system state defined in Equa-

tion (5.3) is combined for the three axes.

A =







Ax 03 03

03 Ay 03

03 03 Az






(5.10)

where 03 is the 3 × 3 zero matrix

03 =







0 0 0

0 0 0

0 0 0






(5.11)

Measurement Matrix In order to perform the measurement update in the

Kalman filter, a measurement input vector yk at time instant k and a measure-

ment matrix H should be defined in advance. The measurement matrix H , also

called as observation matrix, is used to map the measurement input vector yk

with the corresponding state estimate variables to compute the error in state

estimation during time update with the measurement input. The error vector is

defined as yk−Hx̂
−
k , which is called innovation, to multiply with the Kalman gain

to update the state estimate in measurement update phase. Hence, the definition

of the measurement matrix depends on the measurement input provided.

Process Noise Covariance Through the integration, the accelerometer noise

will be propagated to its integrals. Process noise covariance matrix, Qk−1, at

time instant k − 1 is defined and initialized as follows to allow the Kalman filter

to estimate and reduce the effect of the noise propagated to the velocity and

position and obtain an estimate. Since the 3-axes accelerometers are orthogonal,
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zeros are used in the entries which are not defined in Qi.

Q = E[w · wT ]

=

∫ ∆t

0

eAτQ(t)eA
T τdτ

=







Qx 03 03

03 Qy 03

03 03 Qz






(5.12)

where τ is time, 03 is the 3 × 3 zero matrix as defined in Equation (5.11). Qi

defined in Equation (5.13) is the process noise covariance matrix in axis i. For a

detailed derivation, refer to Appendix B.

Qi =







1

20
qc∆t

5 1

8
qc∆t

4 1

6
qc∆t

3

1

8
qc∆t

4 1

3
qc∆t

3 1

2
qc∆t

2

1

6
qc∆t

3 1

2
qc∆t

2 qc∆t






(5.13)

Measurement Noise Covariance The measurement noise covariance matrix

R is a description of the noise distribution in the measurement input provided.

This can be defined from measuring the sensors noise through experiments.

5.2.3 Time Update

This stage is used to propagate the state estimate and error covariance based

on the information at the previous time instant.

A Priori State Estimate Propagation The state estimate is propagated

through the transition matrix.

x̂−k = Ax̂k−1 (5.14)

where x̂−k is the a priori state estimate at time instant k, x̂k−1 is the a posteriori

state estimate at time instant k − 1. A is the state transition matrix defined in

Equation (5.10).

A Priori Error Covariance Propagation The error covariance is propagated

through the transition matrix and the process noise covariance added.

P−
k = APk−1A

T +Qk−1 (5.15)
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where P−
k is the a priori error covariance matrix at time instant k, Pk−1 is the a

posteriori error covariance matrix at time instant k − 1, and Q is the covariance

of the process noise.

5.2.4 Measurement Update

This stage is used to update the state estimate and the error covariance based

on the measurement input.

Optimal Kalman Gain Computation The Kalman gain, Kk, is used to

update the state estimate vector, x̂, from the innovation residue vector which is

defined as the residue of the actual measurement to the estimated one, yk−Hx̂
−
k .

The computation of the optimal Kalman gain is defined as shown in Equation

(5.16). It depends on the a priori process noise covariance, P−
k and measurement

noise covariance, R. The gain is an acceptability measure of the measurement

input, yk, and the a priori error covariance, P−
k , in the update of the a posteriori

state estimate, x̂k, and the a posteriori error covariance, Pk. This is the key to

the Kalman filtering algorithm.

Kk =
P−
k H

T

HP−
k H

T +R
(5.16)

where Kk is the optimal Kalman gain at time instant k, and P−
k is the a priori

error covariance matrix at time instant k.

A Posteriori State Estimate Propagation After computing the Kalman

gain, Kk, the system state estimate, x̂, is updated by the measurement input from

the 3-axis accelerometers in the µIMU. Since the measurement is first acquired

in the body frame of the digital pen under the effect of gravitational force, com-

pensation with the coordinate transformation as described in section 3.4 should

be first performed. The optimal Kalman gain also influences the update of the

state estimate.

x̂k = x̂−k +Kk

(

yk −Hx̂−k
)

(5.17)

where yk is the acceleration measurement input at time instant k.

A Posteriori Error Covariance Propagation Besides the a posteriori state

estimate propagation, the update of the error covariance matrix, P , also uses the

optimal Kalman gain, Kk.

Pk = (I −KkH)P−
k (5.18)
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5.2.5 Stroke Segmentation

The Kalman filtering algorithm is a form of least mean square error algorithm.

Its performance is highly affected by the measurement input. In the stationary

state, it is obvious that there should be no motion and acceleration, however, noise

in the accelerometer will cause the filter to incorrectly estimate and cannot result

in zero acceleration during stationary region that induces the positional error.

We use stroke segmentation, as described in Section 4.2.1 to identify stationary

conditions. If there is writing, we update the Kalman filter by using the recursive

equations as mentioned before without any modification. However, if stationary,

we update the Kalman filter by directly setting the acceleration and velocity

in the system state estimate to zero. Hence, there is no positional drift during

pauses, and this helps to give a more accurate position estimate.

5.3 Summary

In this chapter, we described the Kalman filtering algorithm and demonstrated

how it can be used for navigational tracking from accelerometer measurements. In

future chapters, Kalman filtering will be used for error correction of accelerometer

data.



Chapter 6

Error Compensation from

Position Feedback

6.1 Introduction

In Chapter 4, we have covered noise reduction to improve the performance in

position tracking, based on users’ handwriting habits. However, the performance

of position estimation is not robust and positional drift exists for the methods

proposed. This is because the ZVC algorithm mentioned before do not use any

position reference to correct the position estimate, hence the noise in accelerom-

eter still propagates to position.

In vehicles and aeroplanes, the positional drift problem is also faced, but a

global positioning system is used to assist the navigation. This provides absolute

position information to improve the system performance through feedback. In this

chapter, we will investigate the feasibility of building a similar position feedback

system for a digital pen system to improve the accuracy of the tracked position.

For the sake of concentrating on the position estimation problem, all the ex-

periments are carried out under an assumption that there is no rotation change

in any axis during writing and in particular, there is no change in yaw, about the

normal to the horizontal plane.

6.2 Global Positioning System (GPS)

It is now common to find a global positioning system (GPS) in vehicles and

aeroplanes. GPS receives radio frequency signal from three or more GPS satellites

in space. By measuring time delay between transmission and reception of the

35
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signal in the receiver, the receiver can compute the altitude and position of the

target object.

Besides that, the short-term positional errors from the inertial navigation sys-

tems (INS) are relatively small, but the accuracy in position calculation degrades

without bound over time. In contrast, the GPS cannot provide high frequency

updates of position, but the position from GPS will not drift away with time.

The Kalman filtering algorithm is a recursive optimal least mean square error

estimator, so that the increase in the measurement information will improve the

accuracy of the position estimate. The Kalman filter can use statistical informa-

tion about errors in both subsystems, fuse them together to take advantage of

their respective advantages [20]. Therefore, many navigation systems use GPS

position information as a second input for a Kalman filter.

Unfortunately, GPS is not practical for our digital writing instrument. Firstly,

the writing instrument is mainly designed for indoor use, and the GPS signal will

be blocked by the buildings. Even if we use the system outdoors, the resolution

of GPS system is several metres [46], and cannot provide sufficient accuracy to

improve pen position tracking, which requires accuracy to about 1 centimeter or

less. An alternative system is needed to obtain position information to provide

error feedback for the Kalman filter.

6.3 Zero z-axis Kalman Filtering

The accuracy of the Kalman filter can be increased by introducing more mea-

surement information [20]. Most handwriting is done on a two dimensional sur-

face; hence we can make use of the constraint that the position and velocity of

the z-axis in the navigation frame in Figure 3.2 is always zero when the pen-tip

touches the writing surface. This is used as a supplementary input to the Kalman

filter and allows an error to be derived and feedback to be used. We also note that

the pen is oblique to the navigation frame during writing so a 3-axes accelerom-

eter is not orthogonal to the navigation frame z-axis and hence will project the

errors onto the navigation frame z-axis.

6.3.1 Algorithm Implementation

Using these ideas, we modify the Kalman filtering algorithm discussed in Chap-

ter 5. The variables used are the state vector (xk), measurement vector (yk),

measurement matrix (H), transition matrix (A) and the process noise covariance
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matrix (Q). The control-input matrix (B) is neglected since there is no control

vector (uk). Finally, the measurement noise covariance matrix (R) depends on

the covariance of the noise in the measurement input (y).

System State Estimate Initialization As for the Kalman filtering in Chap-

ter 5, we first need to define the state estimate vector (x̂k) as in Equation (6.1).

x̂k =
[

x̂n,x,k x̂n,x,k x̂n,x,k âb,k

]T

(6.1)

x̂n,i,k =
[

ŝn,i,k v̂n,i,k ân,i,k

]T

(6.2)

âb,k =
[

âb,x,k âb,y,k âb,z,k

]T

(6.3)

where k is the time index, x̂k is the state estimate vector at time instant k, ŝn,i,k,

v̂n,i,k and ân,i,k are the position, velocity and acceleration in the i-axis of the

navigation frame at time instant k, and âb,i,k is the acceleration in the i-axis of

the body frame at time instant k, where i = x, y, z.

This is different to the state estimate vector defined in Equation (5.3), as

it takes twelve inputs. An extra three accelerations in the x, y, z-axis of the

body frame are included. The reason for keeping accelerations in both body and

navigation frames is that we would like to distribute the error estimate from

the zero z-axis position and velocity to the other two axes through a coordinate

transformation.

Measurement Matrix Besides the 3-axes accelerometers used to estimate the

system state, the zero z-axis velocity (vn,z,k) and position (sn,z,k) are also given

as a measurement input in the Kalman filter. Hence, in Equation (6.4), the

measurement input vector (yk) is defined to consist of acceleration in the body

frame, z-axis position and velocity in the navigation frame at time instant k. The

measurement matrix H is defined in Equation (6.5), which is used to map the

inputs sn,z,k, vn,z,k, ab,x,k, ab,y,k, ab,z,k to the corresponding elements of the system

state x̂k defined in Equation (6.1), i.e. the 7th, 8th, 10th, 11th and 12th entries

in the system state x̂k mentioned.

yk =
[

ab,x,k ab,y,k ab,z,k sn,z,k vn,z,k

]T

(6.4)
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H =

















0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

















(6.5)

State Transition Matrix The state transition matrix for axis i, Af,i, is defined

as follows:

Af,i =







1 ∆t 1

2
∆t2

0 1 ∆t

0 0 0






(6.6)

where ∆t is the sampling period of the accelerometer.

The state transition matrix for the overall system, which is defined in Equation

(6.1) is combined for the three axes with the addition of three sub-DCM matri-

ces and a 3 × 3 identity matrix as shown in Equation (6.7). In order to include

the oblique effect in the noise propagation during estimation, the state transition

matrix is changed. We use the accelerations in the body frame to be the mea-

surement input instead of using the accelerations in the navigation frame. Hence,

the (3, 3)-element in each sub-matrix Af,i, defined in the Equation (6.6), is zero,

so as to let three DCM sub-matrices transform the acceleration in body frame

to the navigation frame. The sub-matrix I3 is used to propagate the previous a

posteriori acceleration estimates in the body frame to the current state.

Af =













Af,x 0 0 DCM1

0 Af,y 0 DCM2

0 0 Af,z DCM3

0 0 0 I3













(6.7)

where DCM1, DCM2, and DCM3 are defined below. As the 3-axes accelerations

in navigation frame are separated in the state estimate vector x̂k, therefore the

DCM is decomposed into three parts and padded with zero to have these three

matrices to compute the coordinate rotation.

DCM1 =







0 0 0

0 0 0

cos θ cosψ − cos θ sinψ sin θ






(6.8)
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DCM2 =













0 0 0

0 0 0
(

sinφ sin θ cosψ

+ cosφ sinψ

) (

− sinφ sin θ sinψ

+ cosφ cosψ

)

− sin φ cos θ













(6.9)

DCM3 =













0 0 0

0 0 0
(

− cos φ sin θ cosψ

+ sinφ sinψ

) (

cosφ sin θ sinψ

+ sinφ cosψ

)

cosφ cos θ













(6.10)

and I3 is the 3 × 3 identity matrix which is defined as follows:

I3 =







1 0 0

0 1 0

0 0 1






(6.11)

Process Noise Covariance The process noise covariance matrix is used to

estimate and reduce the effect of the noise propagated to the velocity and position.

The implementation depends on the state vector. By comparing the state vectors

in Equations (5.3) and (6.1), since we include the 3-axes acceleration in the body

frame in this enhanced Kalman filtering algorithm, the process noise covariance

matrix is defined as follows. The first 9 state variables are the same as Equation

(5.3), therefore the first 9 × 9 entries is the same as in Equation (5.12). For the

last three diagonal element, i.e. (10, 10), (11, 11) and (12, 12)-elements of the

process noise covariance matrix as shown in Equation (6.12), they are related to

the acceleration in the body frame, so we put the discrete noise covariance (qc∆t)

in there. For the rest, since we have assumed that the 3-axes are orthogonal,

zeros are used.

Qf =













Qx 03 03 03

03 Qy 03 03

03 03 Qz 03

03 03 03 qc∆t · I3













(6.12)

where Qi is the process noise covariance matrix in axis i = x, y, z as defined in

Equation (5.13), I3 is a 3 × 3 identity matrix as defined in Equation (6.11) and

03 is the 3 × 3 zero matrix as defined in Equation (5.11).

Measurement Noise Covariance The first three diagonal elements in the

measurement noise covariance matrix R depends on the noise distribution of the

accelerometers used. Assuming that the accelerometers in each axis i are inde-

pendent, they can be described as defined in Equation (6.13). For the other two

measurement inputs, from our assumption, they are absolute inputs to the algo-
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rithm, so there should be no noise for these two inputs, hence zero noise covariance

is set for these two elements, and the whole measurement noise covariance matrix

is defined as follows:

R = E[v · vT ]

=

















Rx 0 0 0 0

0 Ry 0 0 0

0 0 Rz 0 0

0 0 0 0 0

0 0 0 0 0

















(6.13)

where Rx, Ry and Rz is the accelerometer noise covariance in x-axis, y-axis and

z-axis respectively.

6.3.2 Experimental Results and Discussion

In order to test the accuracy of the algorithm proposed, we simulated stationary

accelerometers and rotated the pen to produce an acceleration. We assume Gaus-

sian distributed noise in the accelerometers with covariance (ω2) of 10 cm2s−4 as

shown in Figure 6.1.

It can be seen that the overall noise level using our feedback error compensa-

tion technique shown in Figure 6.2 is much lower than for the accelerometer-only

Kalman filtering algorithm with acceleration measurement only Figure 6.3, espe-

cially in the steady state.

Through simulation with realistic sensor noise levels as shown in Figure 6.1,

comparing Figures 6.2 and 6.3, the proposed enhanced Kalman filtering technique

can be seen to have a better acceleration error reduction than the accelerometer-

only Kalman filter for a pen-based inertial measurement unit. However, as can

be seen in Figure 6.4, an experimental result using real data, the position es-

timate given by the new algorithm is roughly the same as that given by the

accelerometer-only Kalman filtering or the ZVC algorithm. This shows that al-

though the algorithm can shorten the stabilization time for the estimation and

maintain low fluctuation during the stable state, the position estimate is still very

sensitive to accelerometer noise. Hence, zero z-axis velocity and position still can-

not provide sufficient guidance to the estimation, and the position estimate does

not improve significantly.
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Figure 6.1: Random Noise in the Three-axes Accelerometers

Figure 6.2: Noise level of Accelerometers after using Kalman filtering algorithm
with Pen-tip Compensation
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Figure 6.3: Noise level of Accelerometers after using Kalman filtering algorithm
without Pen-tip Compensation
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Figure 6.4: The Performance Comparison between the zero z-axis position feed-
back enhanced Kalman filtering and integration without any processing. The
solid line is produced by the zero z-axis position feedback enhanced Kalman fil-
tering, whereas the dotted line is produced by integration from raw data and the
dashed line is the actual handwriting.
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6.4 Combined Electromagnetic Resonance (EMR)

Position Detection Board and µIMU

6.4.1 EMR Position Detection System

In the previous section, we have described a zero z-axis Kalman filtering al-

gorithm. From the experimental results, it is not accurate enough to do the

position estimation, but it shows that more information introduced to the system

will help the estimation performance, especially in providing the position refer-

ence to the filter. Fortunately, a common human-computer interaction device,

namely a graphics tablet, can provide position information. The first graphics

tablet, the RAND Tablet, appeared in 1964 [12] and many modifications and

improvements since then have been reported. The basic working principle, which

was also used in the RAND Tablet, is to use electromagnetic resonance (EMR)

to detect the position of a stylus.

In Figure 6.5, a system level diagram of an electromagnetic resonance motion

detection system is given. In Figure 6.6(a), a grid of wires, which consists of two

sets of coils arranged both horizontally and vertically, is used to determine the

horizontal and vertical coordinates of the digital pen or eraser. The coil grid acts

as antenna to receive the time-varying magnetic field generated by the resonant

circuit (RLC circuit) shown in Figure 6.5 in the transmitter, which is installed

on the pen and eraser as shown in Figure 6.6(b). Hence, if the transmitter is

within a coil, the coil will generate a voltage with a magnitude that represents

how close the pen is. This voltage is then digitized through an analog-to-digital

converter (ADC) in the motion detection circuit as shown in Figure 6.6(c) to

be transmitted to the host computer through a bluetooth module to locate the

position of the pen.

Based on the basic working principle described above, when the pen moves

across the board, the voltage is generated in each channel of the coil grid. This

voltage will vary with the distance between the transmitter and the centre of the

coil. Figure 6.7(a) shows the magnetic field strength of two signal channels from

the EMR motion detection board, and Figure 6.7(b) shows their corresponding

coordinates. These two signal channels are picked up from the coils with the

largest two voltages, and are the closest two coils to the pen. In Figure 6.7, the

solid line represents the channel having the largest signal magnitude; whereas the

dashed line represents the channel having the second largest signal magnitude. If

the transmitter is within a coil, defined as region I, and the solid line is higher
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x - Direction Scan 

y - Direction Scan 
 

Pen Tip 

Electromagnetic 
Resonance Board 

Figure 6.5: Working Principle of Electromagnetic Resonance Motion Detection
System (modified from reference [36])

than a threshold as shown in Figure 6.7(a). We can obtain the corresponding

coordinate as shown in Figure 6.7(b). If the transmitter is between two coils,

defined as region II, we can take an average of the coordinates of the two signal

channels to determine the position.

6.4.2 A Combined Scheme

Owing to the existence of random noise in the µIMU, error propagates from

accelerometer measurement to the position estimate and is unbounded and drifts

with time. Many researchers have proposed different error compensation algo-

rithm to solve it. However, up to date, there is no successful real-time solution

to solve the problem for handwriting.

Although the EMR motion detection board can provide position information,

its performance is poor for large writing areas, particularly if good resolution is

needed. Since the accuracy of the motion detection board depends on the density

of the coil, the searching time will increase with the number of channel used and

results in the increase of the delay time in finding the position of the pen.

We propose a combined scheme using an µIMU and EMR motion detection

board which comes from the idea of sensor fusion in an IMU/GPS coupled system
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(a) Whiteboard with Coils

(b) Digital Pen and Eraser (c) Electromagnetic Resonance Motion
Detection Circuit

Figure 6.6: Electromagnetic Resonance Motion Detection System
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Figure 6.7: Signal from Electromagnetic Resonance (EMR) Position Detection
System. The solid line represents the channel having the largest signal magnitude;
whereas the dash line represents the channel having the second largest signal
magnitude.

[20]. A low resolution EMR motion detection board can provide absolute position

with bounded error, accuracy being limited by the grid size, and the µIMU can

provide the detailed part of the motion. Hence, we combine the benefits of µIMU

and EMR schemes to give more accurate position estimation.

6.4.3 Algorithm Implementation

In order to realize the idea mentioned above, we add the available position

information collected by the EMR motion detection board as feedback to the

Kalman filtering algorithm of Chapter 5.

Kalman

Filtering

Algorithm

µIMU Sensors

EMR Position 

Detection

Board
More Accurate 

Position Estimation

Inertial 

Navigation 

Algorithm

CorrectionEstimation

Figure 6.8: A Combined Scheme of µIMU and EMR Motion Detection Board
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6.4.3.1 Initialization

Firstly, we need to define and initialize the system state and the other param-

eters used in the Kalman filter.

System State Estimate We first define the 3-axes navigation information,

which is position, velocity and acceleration, as the system state defined in Equa-

tion (5.3) and initialize them as a zero vector with the assumption that the pen is

at rest and at the origin (0, 0, 0) at the beginning as described in Equation (5.4).

State Transition Matrix Since the system state defined in Equation (5.3)

is the same as the system state defined for the Kalman filter in Equation (5.3),

therefore we can reuse the state transition matrix described in Equation (5.10).

Error Covariance Matrix Similar to the state transition matrix, we use the

same state transition matrix, so the error covariance matrix can be initialized as

in the error covariance matrix of the Kalman filter described in Equation (5.5).

Measurement Matrix In the combined scheme proposed, we have two mea-

surement sources to feedback the filter, the first one is from the µIMU, and the

other is from the EMR motion detection board. Hence, we have two measurement

matrix for these two measurement sources.

For the measurement matrix for the µIMU, HIMU , since we make use of 3-axes

accelerometers as the µIMU measurement input for the Kalman filter, therefore

acceleration is observed during the measurement update. Before using the ac-

celerometer measurement in the Kalman filter, a coordinate transformation must

be performed as mentioned in Section 3.4 to transform the acceleration in body

frame Ab to that in navigation frame An. Given the measurement vector yIMU,k

as shown in Equation (6.14), from the measurement model defined in Equation

(5.2), we need to select the 3-axes acceleration from the system state x̂ for up-

dating the Kalman filter from the measurement. As defined in Equation (5.3),

the accelerations in the navigation frame an,x, an,y and an,z are the 3rd, 6th and

9th elements of the system state x. Hence we construct the measurement matrix

HIMU as described in Equation (6.15) to map the measurement input yIMU,k to

the corresponding accelerations in the system state estimate x̂k.

yIMU,k =
[

an,x an,y an,z

]T

(6.14)
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HIMU =







0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1






(6.15)

For the measurement matrix for the EMR motion detection board described in

Equation (6.17), since the board gives out the position of x-axis and y-axis, sx and

sy, as shown in Equation (6.16) to feedback the system, hence the measurement

matrix HEMR is described as Equation (6.17) which updates the position of x-

axis and y-axis in the system state x̂ to the measurement input from the EMR

system.

yEMR,k =
[

sx sy

]T

(6.16)

HEMR =

[

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

]

(6.17)

Process Noise Covariance As for the error covariance matrix, the process

noise covariance matrix is the same as that of the Kalman filter described in

Equation (5.12).

Measurement Noise Covariance For the µIMU measurement noise covari-

ance matrix RIMU , since the measurement input just has 3-axis accelerations,

therefore, under the assumption of independent and perpendicular accelerome-

ters used in each axis, the measurement noise covariance matrix can be described

as a diagonal matrix as follows:

RIMU = E[v · vT ]

=







Rx 0 0

0 Ry 0

0 0 Rz






(6.18)

where Rx, Ry and Rz is the accelerometer noise covariance in x-axis, y-axis and

z-axis respectively.

However, for the EMR motion detection board measurement noise covariance,

REMR, since the position, given by the EMR motion detection system, represents

the centre of the grid and the pen location is evenly distributed over the entire

board, we assume a uniform distribution, and the measurement noise covariance

in each axis, REMR,i can be computed as follows:

REMR,i =

∫ b

−b

s2ds =
2b3

3
(6.19)
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where s is position and b is half the width of the grid, i.e. 1.5 cm.

Since the motion detection of the axes are independent, the overall EMR motion

detection board measurement noise covariance matrix is a diagonal matrix as

follows:

REMR =

[

REMR,x 0

0 REMR,y

]

(6.20)

6.4.3.2 Time Update

The state estimate and error covariance are propagated based on the informa-

tion at previous time instant k − 1 to the current time instant k by using the

Equations (5.14) and (5.15).

6.4.3.3 Accelerometer Measurement Update

When the accelerometer information is available, we can update the Kalman

filter based on the acceleration as discussed in Chapter 5 with the Equations

(5.16), (5.17) and (5.18).

6.4.3.4 EMR Position Detection Board Measurement Update

This stage updates the state estimation based on the measurement from the

EMR motion detection system. We use the following equations.

Kalman Gain for EMR Position Detection Board Measurement Update

KEMR,k =
P−
k H

T
EMR

HEMRP
−
k H

T
EMR +REMR

(6.21)

where Kk
EMR is the Kalman gain for the EMR motion detection board measure-

ment update at time instant k, P−
k is the a priori error covariance matrix at

time instant k, HEMR is the measurement matrix for the EMR motion detection

system as defined in Equation (6.17), and REMR is the EMR motion detection

board measurement noise covariance matrix described in Equation (6.19).

A Posteriori State Estimate Propagation

x̂k = x̂−k +Kk
EMR

(

yEMR,k −HEMRx̂
−
k

)

(6.22)

where yEMR,k is the position measurement from the EMR motion detection board.
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A Posteriori Error Covariance Propagation

Pk =
(

I −Kk
EMRHEMR

)

P−
k (6.23)

where Pk is the posterior error covariance matrix at time instant k.

6.4.4 Synchronization

Since the measurements from µIMU and EMR motion detection board are

separated in the system, a synchronization process should be performed before

navigation tracking. We assume that the transmission interval between two sets

of data from sensors boards are equal, meaning that the transmission intervals in

µIMU and the motion detection board are fixed to 200 Hz and 40 Hz receptively.

Since we receive the data from the sensor board in a block of multiple samples,

we use the machine clock of the host computer to record the initial data and

final data reception time, and then label data from both µIMU and EMR motion

detection board with a timestamp. After that, we sort the two data sequences

according to the timestamp and compute the position estimate with ordered data.

6.4.5 Experimental Results and Discussion

In order to investigate the feasibility of the combined scheme, we make use of

an optical calibration system, proposed by Dong et al. [14]. The setup is shown

in Figure 6.9. In this system, a high speed (200 Hz) camera is used to record the

handwriting script. A motion estimation algorithm, Parallel Full Search (PFS),

together with a Correlation Coefficient (CC) matching criteria is used to trace

the locus of the script at 200 Hz. With this position information, we can measure

the error, which is the distance between the actual position and the estimated

position, for every sample point.

Direct integration is used to determine position from raw data using the fol-

lowing equation

sn,i,k = sn,i,k−1 + vn,i,k−1∆t+
1

2
an,i,k−1∆t

2 (6.24)

vn,i,k = vn,i,k−1 + an,i,k−1∆t (6.25)

where sn,i,k, vn,i,k and an,i,k are the position, velocity and acceleration in axis i of

the navigation frame at time instant k respectively and ∆t is the sampling time

of the accelerometer.

This is compared with the ZVC algorithm and the coupled scheme.
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Figure 6.9: Optical Calibration System

Table 6.1 shows a comparison of the average distance estimation error per

sample point in using the three algorithms. From 26 letters, in terms of the

average distance estimation error, the ZVC algorithm is better 84.6% (22/26) of

the time compared with direct integration from raw data. And also, the coupled

scheme is always better than direct integration from the raw data, and 76.9%

(20/26) of the time better than the ZVC algorithm.

We further test the complete system by writing a letter “A” as shown in Figure

6.10(b) with our new algorithm. In Figure 6.10(c), the dotted line represents the

position estimated by the integration from the raw data; the dashed line repre-

sents the position estimated by the ZVC algorithm, and the solid line represents

the position estimated by the combined EMR/µIMU scheme. Compared to the

result obtained by direct integration from the raw data and the ZVC algorithm,

the position drift in the script reproduced by the µIMU/EMR motion detec-

tion board coupled system has been removed and the position estimate error is

bounded, that shows why the performance of the coupled scheme is better than

direct integration. However, the EMR motion detection board cannot provide

high resolution pen position information, because there is a tradeoff between the

grid separation distance and the board sampling frequency. With the help of the

µIMU, improved results can be obtained, but there is a limitation is minimum

letter size since the resolution is limited to 3 cm. That is why some of the cases

in the test show that the coupled scheme cannot provide a more accurate result

in terms of the average distance estimation error than the ZVC algorithm.
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Figure 6.10: The performance of the µIMU/EMR motion detection board coupled
system
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Letter Integration from raw data ZVC algorithm Coupled Scheme
a 0.129212 0.032566 0.011514
b 0.026502 0.030031 0.014817
c 0.046248 0.018910 0.008414
d 0.231922 0.013393 0.012635
e 0.057270 0.014407 0.010532
f 0.048683 0.032737 0.017284
g 0.122060 0.051408 0.015710
h 0.035847 0.017685 0.010579
i 0.073466 0.018630 0.009849
j 0.033743 0.036292 0.011147
k 0.020570 0.042459 0.016998
l 0.027476 0.006819 0.009191
m 0.117594 0.015396 0.026178
n 0.026800 0.005529 0.022134
o 0.051911 0.007474 0.020675
p 0.167984 0.015567 0.016323
q 0.142942 0.042050 0.012922
r 0.026205 0.032892 0.015568
s 0.062084 0.016142 0.014145
t 0.044068 0.014701 0.014258
u 0.062084 0.016142 0.014145
v 0.023015 0.013845 0.011506
w 0.085311 0.019105 0.014937
x 0.216970 0.012452 0.018213
y 0.106834 0.024192 0.013328
z 0.087265 0.050143 0.013718

Table 6.1: A comparison of the average distance errors per sample point between
position estimated by the integration from the raw data, the ZVC algorithm and
the coupled scheme (unit: metre).
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6.5 Summary

In this chapter, we have demonstrated two novel position estimation techniques.

One is the zero z-axis Kalman filtering and the other is the µIMU/EMR motion

detection board coupled system. The first approach cannot provide sufficient

improvement in the accuracy of the position estimation, but it tells us the im-

portance of the amount of the measurement information provided to the system.

Based on this idea, the second approach tries to improve the position estimation

from the µIMU by combining a low resolution absolute position reading from the

EMR board with detailed but noisy information from the µIMU. Experimental

results were presented which show the feasibility of the idea and its superiority

over direct integration and the ZVC schemes.



Chapter 7

Conclusion

The main objective of this work was to develop practical techniques to minimize

the error in position tracking in MEMS accelerometer-based digital input device.

Several subproblems were addressed and original contributions made.

MEMS Accelerometer-based Digital Writing Instrument

We developed a MEMS accelerometer-based digital writing instrument. The

accelerometer picks up the acceleration generated during handwriting which is

transmitted to a host computer to compute the position of the pen tip. However,

as random noise degrades the acceleration readings, a positional drift results when

double integration of acceleration is applied. Several error reduction schemes were

investigated including zero velocity compensation (ZVC) and Kalman filtering.

Zero Velocity Compensation

Zero velocity compensation (ZVC), proposed by the Samsung Advanced In-

stitute of Technology [3, 5], demonstrated an ability to remove positional drift.

However, a one stroke delay is introduced and it is not able to determine position

in real-time.

Error Compensation from Position Feedback

Kalman filtering algorithm is a well-known sensor fusion algorithm. Based on

the idea of coupled IMU/GPS systems, we developed two algorithms to improve

the position tracking performance for the µIMU. First, a zero z-axis Kalman

filtering algorithm (Algorithm 7.1), which assumes writing is in a two dimensional

plane with the z-axis being zero in the navigation frame was tried. However, from

the experimental results, the position tracking accuracy still was not sufficient for

55
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a practical digital writing instrument system. This is because this idea can correct

the z-axis, but not the x and y-axes.

Algorithm 7.1 Zero z-axis Kalman Filter

1: loop
2: Time Update

x̂−k = Ax̂−k−1

P−
k = APk−1A

T +Q
3: Compute Kalman Gain

Kk =
P−

k
HT

HP−

k
HT +R

4: Measurement Update
xk = x̂−k +Kk(yk −Hx̂−k )
Pk = (I −KkH)P−

k

5: end loop

We further developed a practical coupled system for digital writing instrument

(Algorithm 7.2). It uses the µIMU with an electromagnetic resonance (EMR)

motion detection board, which can provide the position information of the pen

in x-axis and y-axis of the navigation frame. Using an optical tracking scheme

to record absolute position, it was shown that it has improved performance over

direct integration and the ZVC algorithm. From experimental results, the EMR

board can track position with limited position error, this depending on the grid

size. Although the EMR board cannot provide position information at a high

frequency (limited to only 40 Hz), the µIMU, which can output the acceleration

information in 200 Hz, can track the detailed part of the handwriting motion.

The handwriting trajectory can be successful reproduced through this coupled

scheme.

7.1 Future Work

7.1.1 Improvement in the µIMU

Throughout the whole dissertation, we use MEMS accelerometers to perform

navigation tracking under the assumptions of zero rotation during writing and

no rotation in yaw. This assumption is not very practical, especially in cursive

writing, so we should also include the effect of rotational change in the posi-

tion computation. In the future, a MEMS gyroscope, already installed in our

µIMU, can be used to acquire angular rate, and this information used to track

the position in a more accurate and realistic manner.
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Algorithm 7.2 Coupled EMR and µIMU Kalman Filter

1: loop
2: Time Update

x̂−k = Ax̂−k−1

P−
k = APk−1A

T +Q
3: Compute Kalman Gain for µIMU

KIMU,k =
P−

k
HT

IMU

HIMUP
−

k
HT

IMU
+RIMU

4: Measurement Update for µIMU
x̂k = x̂−k +KIMU,k(yIMU,k −HIMU x̂

−
k )

Pk = (I −KIMU,kHIMU)P−
k

5: Compute Kalman Gain for EMR Position Detection Board

KEMR,k =
P−

k
HT

EMR

HEMRP
−

k
HT

EMR
+REMR

6: Measurement Update for EMR Position Detection Board
x̂k = x̂−k +Kk(yEMR,k −HEMRx̂

−
k )

Pk = (I −KEMR,kHEMR)P−
k

7: end loop

Besides that, the misalignment of the sensors also contributes to error in the

position computation. It would be better to use a 6 degree-of-freedom MEMS

inertial sensor, which consists of 3-axis accelerometers and 3-axis gyroscopes in a

single chip, instead of using two 2-axis accelerometers and three 1-axis gyroscopes.

This can reduce misalignment errors during µIMU installation and reduce the size

of the µIMU.

At this stage, the MEMS sensor technology is still under development phrase,

so that it is unavoidable that the cost of the sensors and the overall system is

much higher than other existing solutions. However, with the improvement of

the fabrication technology, we can forecast that the cost will be further reduced

when the mass production is available and the competition between the MEMS

sensor companies increased.

7.1.2 Combined Camera Optical Tracking and µIMU

As discussed in the Chapter 6, we have combined EMR motion detection and

the µIMU to compute position. However, it is not practical to use a large dedi-

cated writing board for a ubiquitous digital writing system. Fortunately, in the

computer vision technology can provide an accurate position tracking solution.

We can install a small-sized digital camera, roughly 1 cm× 1 cm in size, on the

digital pen, and then transmit the image data to a host computer to track the

movement of the pen. However, as for the EMR motion detection board, the dig-

ital camera cannot provide position information at high frequency, and a Kalman

filter that combines the absolute camera information with µIMU data should be
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used.

7.2 Concluding Remarks

In this thesis, we have demonstrated the feasibility of using MEMS accelerome-

ters to implement a ubiquitous digital writing instruments. Owing to the random

noise associated with accelerometers, error reduction techniques are needed to im-

prove the accuracy of position tracking. We have illustrated and discussed several

error reduction schemes, and found that the most promising scheme is to use po-

sition information from an EMR motion detection board. When this is used with

accelerometer information, tracking position error can be bound to a reasonable

value, and a satisfactory digital writing instrument based on this scheme can be

developed.



Appendix A

Derivation of Kalman Filtering
Algorithm

A.1 Introduction

In this appendix, we would like to derive the Kalman filter algorithm to let us
study it from a theoretical perspective [25, 4, 6, 19, 20, 27, 38, 40, 41, 42, 44, 50].
The idea of the Kalman filtering algorithm is to obtain a optimal state estimate
based on the past state estimate and the measurement input. The algorithm is
based on the state-space approach to model the system, so we first define the
process and measurement models for state estimation.

Process Model:
xk = Axk−1 + wk (A.1)

Measurement Model:
yk = Hxk + vk (A.2)

where xk is the state vector, yk is the measurement vector, A is the transition
matrix; whereas H is the observation matrix, wk is the process noise covariance,
and vk is the measurement noise covariance at the time instant k.

Before the derivation, we would like to first given the assumption that we will
make in the Kalman filtering

• The system state estimate is unbiased.

E [x̃k] ≡ E [x̂k − xk] = 0, ∀k (A.3)

• The process noise covariance and measurement noise covariance is zero-
mean Gaussian distributed.

E [wk] = 0, ∀k (A.4)

E [vk] = 0, ∀k (A.5)
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• The process noise covariance is uncorrelated to the estimation error.

E
[

wk+1 (x̂k − xk)
T
]

= E
[

(x̂k − xk)w
T
k+1

]

= 0 (A.6)

• The measurement noise covariance is uncorrelated to the estimation error.

E
[

vk+1 (x̂k+1 − xk+1)
T
]

= E
[

(x̂k+1 − xk+1) v
T
k+1

]

= 0 (A.7)

Based on the arrival of the measurement input, the recursive process can be
separated into two stages, a priori state and a posteriori state.

A.2 Derivation of a Priori State Estimation Equa-

tion

In the Kalman filtering, we take the expectation of the state to be the state
estimate x̂k, hence, we can deduce the a priori state estimation equation as follows:

E [xk] = AE [xk−1] + E [wk]

x̂k = Ax̂k−1 (A.8)

A.3 Derivation of a Posteriori State Estimation

Equation

In the Kalman filtering, after the arrival of the measurement input, the state
estimate will be updated based on the previous state estimate and the measure-
ment input, so we define the a posteriori state estimation as follow:

x̂k+1 ≡ KA
k+1x̂k +KB

k+1zk+1 (A.9)

We define a posteriori error residue x̃k is the difference between the a posteriori
state estimate x̂k and the actual state xk at time instant k.

x̃k+1 ≡ x̂k+1 − xk+1

=
(

KA
k+1x̂k +KB

k+1zk+1

)

− xk+1

= KA
k+1x̂k +KB

k+1 (Hxk+1 + vk+1) − xk+1 +
(

KA
k+1xk −KA

k+1xk
)

= KA
k+1 (x̂k − xk) +KB

k+1 [H (Axk + wk+1) + vk+1] − (Axk + wk+1) +KA
k+1xk

= KA
k+1x̃k +

(

KB
k+1HA−A +KA

k+1

)

xk +
(

KB
k+1H − I

)

wk+1 +KB
k+1vk

(A.10)

Taking the expectation of Equation (A.10), we have

E [x̃k+1] = K ′
k+1E [x̃k] +

(

Kk+1HA−A +K ′
k+1

)

E [xk]

+ (Kk+1H − I)E [wk+1] +Kk+1E [vk]
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Based on the assumptions described in the Equations (A.3), (A.4) and (A.5),
we can obtain

(

Kk+1HA− A+K ′
k+1

)

E [xk] = 0 (A.11)

Since E [xk] may not be equal to zero, which implies

Kk+1HA− A+K ′
k+1 = 0 (A.12)

K ′
k+1 = (I −Kk+1H)A (A.13)

Therefore, the a posteriori state estimation equation is derived as follows:

x̂k+1 = (I −Kk+1H)Ax̂k +Kk+1zk+1

= Ax̂k +Kk+1 (zk+1 −HAx̂k)

= x̂−k+1
+Kk+1

(

zk+1 −Hx̂−k+1

)

(A.14)

A.4 Derivation of a Priori Error Covariance Ma-

trix

We define a priori error residue x̃−k is the difference between the a priori state
estimate x̂−k and the actual state xk at time instant k.

x̃−k+1 ≡ x̂−k+1 − xk+1

= Ax̂k −Axk − wk+1

= A (x̂k − xk) − wk+1

Based on the assumption described in Equation (A.6), we have

P−
k+1

≡ E
[

x̃−k+1
x̃−Tk+1

]

(A.15)

= E
[

(Ax̃k − wk+1) (Ax̃k − wk+1)
T
]

= AE
[

x̃kx̃
T
k

]

AT + E
[

wk+1w
T
k+1

]

− E
[

wk+1x̃
T
k

]

AT − AE
[

x̃kw
T
k+1

]

= APkA
T +Qk+1 (A.16)

where the process error covariance matrix is defined as follows:

Q ≡ E
[

wk+1w
T
k+1

]

(A.17)
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A.5 Derivation of the Optimal Kalman Gain

Considering the a posteriori error reside x̃k+1 again,

x̃k+1 ≡ x̂k+1 − xk+1

=
(

[I −Kk+1H ] x̂−k+1
+Kk+1zk+1

)

− xk+1

= [I −Kk+1H ] x̂−k+1 +Kk+1 [Hxk+1 + vk+1] − xk+1

= x̂−k+1
−Kk+1Hx̂

−
k+1

+Kk+1Hxk+1 +Kk+1vk+1 − xk+1

=
(

x̂−k+1
− xk+1

)

−Kk+1H
(

x̂−k+1
− xk+1

)

+Kk+1vk+1

= [I −Kk+1H ]
(

x̂−k+1
− xk+1

)

+Kk+1vk+1

= [I −Kk+1H ] x̃−k+1
+Kk+1vk+1 (A.18)

Based on the assumption described in Equation (A.7), we have

Pk+1 ≡ E
[

x̃k+1x̃
T
k+1

]

= [I −Kk+1H ]E
[

x̃−k+1
x̃−Tk+1

]

[I −Kk+1H ]T +Kk+1E
[

vk+1v
T
k+1

]

KT
k+1

= [I −Kk+1H ]P−
k+1

[I −Kk+1H ]T +Kk+1Rk+1K
T
k+1

= [I −Kk+1H ]P−
k+1

[

I −HTKT
k+1

]

+Kk+1Rk+1K
T
k+1 (A.19)

= P−
k+1

−Kk+1HP
−
k+1

− P−
k+1

HTKT
k+1

+Kk+1HP
−
k+1H

TKT
k+1 +Kk+1Rk+1K

T
k+1 (A.20)

where the measurement noise covariance matrix is defined as follows:

Rk+1 ≡ E
[

vk+1v
T
k+1

]

(A.21)

The trace of a matrix is the sum of the diagonal elements of the matrix. There-
fore, the trace of the error covariance matrix (Pk+1) is the sum of the mean squared
errors. Hence, the mean squared errors is minimized by minimizing Trace (Pk+1)

Trace (Pk+1) = Trace
(

P−
k+1

)

− 2Trace
(

Kk+1HP
−
k+1

)

+ Trace
(

Kk+1

[

HP−
k+1

HT
]

KT
k+1

)

+ Trace
(

Kk+1Rk+1K
T
k+1

)

(A.22)

Taking the partial derivative with respect to Kk+1, we have

δTrace (Pk+1)

δKk+1

= −2P−
k+1H

T + 2Kk+1HP
−
k+1H

T + 2Kk+1Rk+1 = 0 (A.23)

Therefore, the optimal Kalman gain is derived as follows:

Kk+1 =
P−
k+1H

T

HP−
k+1H

T +Rk+1

(A.24)
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A.6 Derivation of a Posteriori Error Covariance

Matrix

From the Equation (A.20), we have

Pk+1 = [I −Kk+1H ]P−
k+1

[I −Kk+1H ]T +Kk+1Rk+1K
T
k+1

= [I −Kk+1H ]P−
k+1 − P−

k+1H
TKT

k+1 +Kk+1HP
−
k+1H

TKT
k+1 +Kk+1Rk+1K

T
k+1

= [I −Kk+1H ]P−
k+1 − P−

k+1H
TKT

k+1 +Kk+1

[

HP−
k+1H

T +Rk+1

]

KT
k+1

(A.25)

Based on the optimal Kalman gain defined in the Equation (A.24), we have

P−
k+1

HT = Kk+1

[

HP−
k+1

HT +Rk+1

]

(A.26)

and hence, the a posteriori error covariance matrix is

Pk+1 = [I −Kk+1H ]P−
k+1 −Kk+1

[

HP−
k+1H

T +Rk+1

]

KT
k+1

+Kk+1

[

HP−
k+1

HT +Rk+1

]

KT
k+1

= [I −Kk+1H ]P−
k+1 (A.27)



Appendix B

Derivation of Process Noise
Covariance Matrix

In this appendix, we would like to derive the process noise covariance matrix Q.

First, we suppose that Ẋ = AX where X =
[

x ẋ ẍ
]T

, so that the transition
matrix A is defined as follows:





ẋ
ẍ
0



 = A





x
ẋ
ẍ



 =





0 1 0
0 0 1
0 0 0









x
ẋ
ẍ





⇒ A =





0 1 0
0 0 1
0 0 0



 (B.1)

Given that the continue-time process noise covariance matrix, Qt is defined as
follows:

Qt =





0 0 0
0 0 0
0 0 qc



 (B.2)

where qc is the process noise covariance for continue-time.

From the Equation (B.1), we have

A2 =





0 1 0
0 0 1
0 0 0









0 1 0
0 0 1
0 0 0



 =





0 0 1
0 0 0
0 0 0



 (B.3)

A3 = A2 · A

=





0 0 1
0 0 0
0 0 0









0 1 0
0 0 1
0 0 0



 =





0 0 0
0 0 0
0 0 0



 (B.4)
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eAτ = I + Aτ +
1

2!
A2τ 2 +

1

2!
A2τ 2 + . . .

=





1 0 0
0 1 0
0 0 1



+





0 τ 0
0 0 τ
0 0 0



+





0 0 1

2
τ 2

0 0 0
0 0 0



+





0 0 0
0 0 0
0 0 0





=





1 τ 1

2
τ 2

0 1 τ
0 0 1



 (B.5)

Similarly,

eA
T τ =





1 0 0
τ 1 0

1

2
τ 2 τ 1



 (B.6)

Therefore, the discrete-time process noise covariance matrix is derived as fol-
lows:

Q =

∫ dt

0

eAτQte
AT τdτ

=

∫ dt

0





1 τ 1

2
τ 2

0 1 τ
0 0 1









0 0 0
0 0 0
0 0 qc









1 0 0
τ 1 0

1

2
τ 2 τ 1



dτ

=

∫ dt

0





0 0 1

2
qcτ

2

0 0 qcτ
0 0 qc









1 0 0
τ 1 0

1

2
τ 2 τ 1



dτ

=

∫ dt

0





1

4
qcτ

4 1

2
qcτ

3 1

2
qcτ

2

1

2
qcτ

3 qcτ
2 qcτ

1

2
qcτ

2 qcτ qc



dτ

=





1

20
qcdt

5 1

8
qcdt

4 1

6
qcdt

3

1

8
qcdt

4 1

3
qcdt

3 1

2
qcdt

2

1

6
qcdt

3 1

2
qcdt

2 qcdt



 (B.7)
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