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The application of machine learning techniques to predict time-series continues to at-

tract considerable attention due to the difficulty of the prediction problems compounded

by the non-linear and non-stationary nature of the real world time-series. The per-

formance of machine learning techniques, among other things, depends on suitable

engineering of features. This thesis proposes a systematic way for generating suitable

features using context-free grammar. The notion of grammar families as a compact rep-

resentation to generate a broad class of features is exploited. Implementation issues and

ways to overcome them are explained in detail. A number of feature selection criteria is

investigated and a hybrid feature generation and selection algorithm using grammatical

evolution is proposed. The proposed approaches are demonstrated by predicting the

closing price of major stock market indices, peak electricity load and net hourly foreign

exchange client trade volume. The widely and commonly employed features in practice

(in previous work) for electricity and financial time-series are explored. These features

are considered as a basis for comparison with the features generated and selected by

the proposed framework. Other model-based approaches and naive approaches are

also used as benchmarks. It is shown that the generated features can improve results,

while requiring no domain-specific knowledge. The proposed method is used to de-

termine suitable features to use in predicting previously unexplored foreign exchange

client trade volume and the capabilities of the approach in automatically engineering

appropriate features is highlighted. The proposed method can be applied to a wide

range of machine learning architectures and applications to represent complex feature

dependencies explicitly when machine learning cannot achieve this by itself.
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Chapter 1

Introduction

1.1 Motivation and Aims

Rapid advances in data collection technology have enabled businesses to store massive

amounts of data. Data mining algorithms are used to analyse such stored data to reveal

previously unknown strategic business information in the form of hidden patterns and

trends which are not apparent.

A time-series is a sequence of data recorded at successive points in time and is a com-

mon occurrence in finance, energy, signal processing, astronomy, resource management,

economics and many other fields. Time-series prediction is a form of data mining that

predicts future behaviours by analysing historical data.

Machine learning (ML) is concerned with teaching computers to make predictions or

behaviours based on information extracted from data. Supervised ML methods have

been extensively applied to a range of time-series prediction problems including financial

[1–4], energy markets [5–7], control system/signal processing and resource management

(see [8, 9] for a comprehensive list of applications). The inherent non-linear and non-

stationary nature of real-world time-series makes ML methods (simply referred to as

learners) more appealing than model-based approaches [10–13].

1



Chapter 1. Introduction 2

Time-series prediction is a supervised learning task. The learner is presented with the

training samples (x1, y1), (x2, y2), . . . , (xn, yn), where xj ∈ RN is a vector of features.

For a regression task, yj ∈ R is the target output and for a classification task, yj ∈ Z

is the class label. The learner’s objective is to find structure in the training samples

to infer a general function (a hypothesis) that can predict yk for previously unseen

xk. The generalization is achieved by searching through a hypothesis space H, for

a hypothesis that best fits the training samples. In a binary classification example,

the target hypothesis h : Z → {0, 1} is a discriminant boundary that maximises the

classification accuracy, for support vector and neural network regression, the hypothesis

h : Rn → R is a function that minimises the root mean squared error, and so on.

Learner
Set of Observations

Observation Language Lǫ

Solution Hypothesis

Hypothesis Language LH

ǫ h

Hypothesis Space
H

Figure 1.1: Language terminology (as depicted in [14]).

As shown in Fig. 1.1, the training samples (observations) ε can be specified using an

observation language Lε, and a hypothesis h ∈ H can be specified by a language LH . Lε
is the notation used to represent the training samples and LH is the notation used by

the learner to represent what it has learned, e.g. for a neural network Lε is the notation

used to represent the training patterns and LH is the notation used to represent weights.

The performance of supervised ML methods depends strongly on the formalism in which

the solution hypothesis is represented using LH . The features used in Lε and LH are

identical which means that one way to achieve a better formulation of LH is a better

representation of Lε. Therefore, an important research area is to investigate techniques

to expand the feature space used to represent Lε and select features that maximize the

performance of a particular ML architecture under consideration.

The main aim of this thesis is to develop a flexible framework that can transform the

initial feature space of Lε to a much larger feature space containing thousands of feature

combinations with different parameters and then extract feature subsets from this new

space that can produce better predictions. By applying the proposed framework on
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real-world datasets, the thesis asks the question “Can we improve the performance of a

particular ML architecture by expanding and then reducing the feature space to better

formalize the representation of the solution hypothesis?”

1.2 Feature Generation

Feature generation enriches the hypothesis language with additional constructed and

derived features [15]. A goal of feature generation is to represent feature dependencies

explicitly when the ML algorithm cannot accomplish this by itself. A ML algorithm

might be able to elucidate hidden dependencies in data by itself but this can be supple-

mented in practice by proper feature engineering to enhance performance. This section

sheds some light on the relationship between the features and the innate machinery of

a kernel based ML algorithm.

ML
Method

Features

Kernel

Output

Expert User

Figure 1.2: Tuning knobs of a kernel based ML algorithm.

The performance of a kernel based ML algorithm can be enhanced by, (i) kernel op-

timizations, e.g. type of kernel (only the classical kernels are considered, i.e. linear,

polynomial, Gaussian and sigmoid), kernel parameters (ii) input feature space manip-

ulation by feature engineering. These tasks can be visualized as tuning knobs of a

kernel based ML algorithm available to a human expert as in Fig. 1.2. Ideally, kernel

optimization and feature space manipulation should be concurrent tasks of the human

expert but this is infeasible due to the large search space. Therefore, in practice, it is re-

quired to strike a correct balance between kernel optimization and feature engineering.

For time-series prediction, the additional burden of empirically evaluating parametrized

features, e.g. a moving average of a lagged time-series as a feature, and determining for

each feature (i) which lags to use (ii) what look-back periods to use (iii) what are the

moving-widow sizes to use and (iv) what are the best feature combinations to use, can
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have a great impact on ML algorithm performance. This thesis decouples kernel opti-

mization and feature engineering. The same philosophy can be extended to non-kernel

based ML algorithms.

1.3 Approach

The work proposes to use context-free grammar (CFG) as a framework for defining

rules that are sequentially invoked to generate a large feature space. Expert suggested

features are expanded by a range of operators used by the grammar framework (see Fig.

1.3). The grammars are formally defined using the Backus-Naur form (BNF) notation,

customizable and organized into grammar families. A user with a better understanding

of the time-series under consideration, i.e. an experienced user or a domain expert, can

define focused grammars to generate features that are more suitable.

The grammars defined in this thesis generate thousands of features. This large feature

space is mined to extract best features for the learner under consideration. Standard

filter and wrapper feature selection (FS) techniques are explored and a novel hybrid FS

algorithm which uses grammatical evolution (GE) is proposed as well.

If the solution hypothesis formulated using the expert defined features is h1 and the

solution hypothesis formulated using a feature subset discovered through the proposed

framework is h2, which solution hypothesis is better, h1 or h2? The proposed technique

is applied on real-world time-series to answer this question and the results are discussed.

Learner

Language: Lǫ

Solution Hypothesis

Hypothesis Space H

CFG

Expert Suggested Features

Expanded Feature Space

Feature
Selection

Feature Space
Exapnsion

Expert Defined
Grammar h1 : Using Expert Suggested Features

h2 : Using Selected Features from the
Expanded Space

Language: Lǫ′

Grammar Generated Features

Figure 1.3: The research question. Which hypothesis is better? h1 or h2?
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1.4 Contributions

The first contribution of this thesis is the implementation of a novel framework to sys-

tematically generate suitable features using CFGs. The notion of grammar families

is introduced. Implementation issues affecting the feature space size, feature informa-

tiveness, computational time, framework flexibility are studied in detail and ways to

overcome them proposed. Some of the grammar families use the concept of technical

indicators [16], as used in finance. These are formulae that identify patterns and mar-

ket trends in financial markets which are developed from models for price and volume.

The work is unique in that no previous attempts have been made to automatically

generate informative features in the form of technical indicator formulae for time-series

prediction. Other proposed grammar families capture information using wavelet trans-

formations, history windows and other operators.

Depending on the configuration of the grammar framework, irrelevant and redundant

features can be produced. FS eliminates such features, thereby improving the perfor-

mance and speed of ML algorithms [17]. Most ML techniques are designed to find the

relevant features but an additional pre-processing step is often required prior to the

application of ML techniques to get the best performance. Furthermore, using all of

the generated features in a learning task is impractical and leads to over-fitting. As the

second contribution of this thesis, different FS filters like information gain, symmet-

ric uncertainty, correlation, maximum-relevance-minimum-redundancy (mRMR), Relief

and wrapper techniques such as sequential forward and backward selection and genetic

algorithms are compared to investigate the effectiveness of the selected algorithms in

mining large feature spaces.

As the third contribution, the proposed feature generation framework is extended as a

hybrid FS and feature generation framework by using a modified version of GE [18].

GE is presented as a convenient way to avoid selective feature pruning. This extended

system is flexible in that an expert user can also suggest known feature subsets, e.g.

feature subsets that are known to work well, and the system attempts to discover

feature subsets that give better predictions. To the best of the author’s knowledge, this

is the first time GE is applied as a feature discovery technique for time-series prediction.
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The software was developed using the R programming language and is made publicly

available since there is no existing R package for GE (available at [19]).

Furthermore, the thesis also explores financial time-series and electricity peak load

prediction using features employed in standard practice (in previous work). These

results are considered as a basis for comparison with the proposed framework.

Finally, foreign exchange client trade volume time-series prediction is also investigated,

the proprietary nature of such data having resulted in little published work. The

capability of the framework in automatically identifying appropriate types of features

to use for such previously unexplored datasets is highlighted.

1.5 Thesis Structure

Chapter 2 presents the necessary background in time-series prediction using ML tech-

niques within the thesis. Several FS techniques are discussed and the CFG and support

vector machine theory is presented. Chapter 3 contains details on how CFG is used as

a feature generation framework and descriptive implementation details of the proposed

feature generation framework. Chapter 4 continues to present how FS is performed on

the expanded feature space to mine for “good” features. This chapter also describes

how the learner is applied to predict time-series by utilizing the sliding window tech-

nique, cross-validation and parameter tuning. Chapter 5 presents the research results

and discusses the results. Finally, the research question is answered and future research

directions are suggested in Chapter 6. Wavelet theory is deferred to Appendix A. Some

production rule sequences that generate interesting features are provided in Appendix

B and supplementary results are in Appendix C.



Chapter 2

Background

This chapter establishes the theoretical foundations on which the research in this the-

sis is based. Specifically, the areas covered are: time-series prediction, application of

machine learning (ML) techniques to time-series prediction, the importance of feature

selection, feature selection techniques, context-free grammar (CFG), genetic algorithms

(GAs), grammatical evolution (GE) and support vector machines (SVMs). The work

presented in this thesis is an amalgamation of these research fields.

2.1 Time-series Prediction

A time-series is a sequence of vectors (or scalars) recorded at successive points in time.

A vector sequence produces a multivariate time-series and a scalar sequence produces

a univariate time-series. The sequence x(t0), x(t1), . . . , x(ti−1), x(ti), x(ti+1), . . . is a

univariate time-series of the recorded variable x.

Time-series have many application domains ranging from economics to engineering.

Daily share prices, daily foreign exchange rates, yearly company profits are some ex-

amples of financial time-series. Daily temperature measurements, sunspot activity and

daily average rainfall are some time-series arising from physical phenomena. Other

7
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types of time-series also exist in disciplines such as astronomy, physics, marketing and

geography. Fig. 2.1 depicts the time-series of yearly number of sunspots, well-studied

EUNITE daily electricity load [20] and closing price of the Standard & Poor’s 500

(GSPC) stock index.
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Figure 2.1: 3 real world time-series.

Time-series can be recorded at regular or irregular intervals and the recorded values

can be discrete or continuous. A series of events occurring randomly in time is a special

type of time-series known as a point process, e.g. the dates of major earthquakes. In

this research, the time-series of interest are financial time-series of daily stock index

prices, daily peak electricity load time-series and foreign exchange client trade volume

time-series (irregular).

The objective of a time-series prediction task at time t is to estimate the value of x at

some future time, x̂[t + s] = f(x[t], x[t − 1], . . . , x[t − N ]), s > 0 is called the horizon

of prediction, e.g. for one-step ahead predictions s = 1. Fig. 2.2 shows the prediction

of a time-series using autoregressive integrated moving average (ARIMA) model. The

years 1973-1979 are the historical data and the years 1980-1981 are the predictions.
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The horizon of prediction is 2 years of daily values (s = 730 days) and the prediction

confidence limits are also shown.

1974 1976 1978 1980

Figure 2.2: Time-series prediction: predicting the daily values using ARIMA.

Hyndman and Athanasopoulos [21] discuss three general model based approaches to

time-series prediction: explanatory models, time-series models and mixed models.

Explanatory models use predictor variables commonly referred to as features in the ML

terminology. Suppose that the prediction task is to predict the AUD/USD exchange

rate (EAUD/USD) for the next month. An explanatory model can be of the form,

EAUD/USD = f(Australian interest rate, US interest rate, strength of economy, gross

domestic product, foreign relations, error).

If EAUD/USD is denoted by E, a simple pure time-series model of the form Et+1 =

f(Et,Et−1,Et−2,Et−3, . . . , error) can be constructed. Such models only use informa-

tion from the variable to be predicted and makes no attempt to discover the factors

affecting its behaviour, i.e. it will extrapolate trend and seasonal patterns but ignore

all other external covariates such as Australian interest rate, US interest rate, strength

of economy, gross domestic product, foreign relations etc.

A mixed model can be formed as a combination of explanatory and pure time-series

models, e.g. Et+1 = f(Et,Et−1,Et−2,Et−3, . . . ,, Australian interest rate, US interest

rate, strength of economy, gross domestic product, foreign relations, error).

Pure time-series models are in much wider use than the explanatory models because

it is difficult to understand and accurately model the complex relationships between

the explanatory variables and the target variable. Many time-series models are based
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on linear methods [22] in which the output variable depends linearly on its own previ-

ous values. Real world time-series are often non-linear and non-stationary. Non-linear

approaches such as non-linear autoregressive processes, bilinear models and threshold

models are widely used for time-series modelling. Generalized autoregressive condi-

tional heteroskedasticity (GARCH) model is another non-linear time-series model used

to represent the changes of variance over time (heteroskedasticity). In this thesis we

use 2 pure time-series models, ARIMA and exponential smoothing state space model

(ETS) for the purposes of comparison.

The drawback of model based approaches is that usually a priori assumption of the

underlying distribution of data is required for model parameter estimation. ML tech-

niques can alleviate this issue and cope with the inherent non-linear and non-stationary

nature of real world time-series.

2.1.1 Machine Learning Techniques for Time-series Prediction

Real world time-series prediction problems are often complex and have interdependen-

cies that are not clearly understood. The inherent non-linear and non-stationary nature

makes ML prediction techniques more suitable than model-based approaches. The dis-

tinction of ML algorithms from the time-series model based approaches is the aspect

of learning (training). For a neural network, learning represents the optimization of

the network weights. For a SVM, this is the construction of the hyperplane in a high

dimensional space. These optimizations are done using a set of training samples, i.e.

known outcomes of the problem for given conditions. The final data modelling goal is

not to memorize known patterns but to generalize from prior examples, i.e. be able to

estimate the outcomes of the problem under unknown conditions. The ML method has

to extract from the training samples, something about the distribution to allow it to

produce useful predictions in new, unseen cases. A ML task starts with the construc-

tion of a dataset. Fig. 2.3 illustrates the steps involved with the training phase of a

ML algorithm.
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Training
Data

Pre-processing
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- Standardization
- Transformation
- Feature Selection

Learning
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- Reinforcement

Validation
- Parameter tuning
- Over/underfitting Model

Figure 2.3: Training phase of a machine learning method.

• Pre-processing: Data pre-processing includes simple operations like data cleaning,

normalization, standardization and more advanced operations like feature transfor-

mation and feature selection (FS). Pre-processing can be time-consuming but has

shown to produce significantly better results due to better representation of the

solution hypothesis. Usually, features are considered individually for simple pre-

processing tasks. Any outliers are removed and non-available data samples are re-

placed with a mean value, closest value, regressed value or the most common value.

The features are often scaled to the range [-1, 1] or [0, 1] to ensure that each feature is

independently normalized using min-max or z-score normalization [23]. The concepts

of feature transformation (sometimes referred to as feature construction) and FS are

discussed later in this chapter.

• Learning: This is the core aspect of a learning method. Unsupervised learning

involves discovering structure in unlabelled data, e.g. clustering algorithms. On the

other hand, supervised learning infers a mapping function that maps input features

to outputs (or labels), e.g. regression and classification algorithms. A reinforcement

learning agent learns by interacting with its environment and observing the feedback

of these interactions which in a way mimics human behaviour. It involves trial and

error to maximize a certain reward, e.g. in robotics applications. This thesis is only

concerned with supervised learning algorithms.

• Validation: Cross-validation is a way of measuring the performance of a ML method

before the algorithm is deployed as a real world application. It is easy to overfit a

model by including too many degrees of freedom which will lead to poor generalization

for unseen data. Therefore, validation sets are used for model optimization such as

parameter-tuning and is described in Sec. 4.2.2.
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2.2 Application of Machine Learning Techniques in Time-

series Prediction

It was already mentioned that real world time-series are often non-linear and non-

stationary. For a time-series x[t], the auto-covariance is given by γ(x[t + τ ], x[t]) =

cov(x[t + τ ], x[t]), ∀ t and lag τ . x[t] is stationary if two conditions are satisfied.

The first condition is the expectation of x[t] is finite and does not depend on t, i.e.

E(x[t]) = µx[t] = µ < ∞. The second condition is for each lag τ , the auto-covariance

does not depend on t, i.e. γ(x[t + τ ], x[t]) = γτ . In simple terms, the statistical

properties of a stationary time-series are time-invariant. In a non-stationary time-

series, the distribution of the time-series changes over time causing changes in the

dependency between the input and output variables. An effective learning algorithm

should have the potential to take this into account. In this research, the sliding window

(or the rolling window) technique for one-step ahead predictions was used as described

in Chapter 4 to create new prediction models when new data becomes available.

If the time-series to be predicted is denoted by y[t] and the features by x1[t], x2[t], . . . , xk[t],

each feature is a time-series by itself. In one-step ahead predictions, the objective is to

predict the value of y[t+1] using the previously unseen feature vector x1[t], x2[t], . . . , xk[t].

ML techniques can be applied for time-series prediction as a classification task or a

regression task. For regression tasks, the target variable is y[t] or an appropriately

smoothed version of y[t] [24]. For classification tasks, a discrete target variable is usu-

ally constructed from a continuous target variable y[t]. For example, in a daily stock

closing price prediction task, if the closing price C[t] has an upward directional change

C[t + 1] − C[t] ≥ 0, y[t] = +1, and if the price has a downward directional change

C[t + 1] − C[t] < 0, y[t] = −1, i.e. y[t] ∈ {−1,+1}. For both regression and classifica-

tion, appropriate features need to be constructed.

As an example application, the approach used by Kim [25] to predict the daily di-

rectional change of the Korean composite stock index (KOSPI) was to use technical

indicators as features. The first feature x1 was the technical indicator MACD (moving

average convergence divergence). The feature x2 was the indicator disparity and feature
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Figure 2.4: Next day’s closing price is the target and MACD, Disparity and RSI are
used as features.

x3 was the indicator RSI. Fig. 2.2 shows the target (closing price) and 3 of the features

(MACD, disparity and RSI). Kim used a total of 12 technical indicators with 1637 train-

ing samples forming a feature matrix of 1637×12. This produced the feature matrix X

with k = 12, n = 1637. X =



x1[t− n] x2[t− n] · · · xk[t− n]

x1[t− (n+ 1)] x2[t− (n+ 1)] · · · xk[t− (n+ 1)]
...

...
. . .

...

x1[t− 2] x2[t− 2] · · · xk[t− 2]

x1[t− 1] x2[t− 1] · · · xk[t− 1]


The ML algorithm was trained with the feature matrix X . 581 unseen feature vectors

were presented to the model to get the predictions. For example, the unseen vector

x1[t], x2[t], . . . , xk[t] was used to predict the target variable y[t + 1], the vector x1[t +

1], x2[t+ 1], . . . , xk[t+ 1] was used to predict the target variable y[t+ 2], and so on. It

was necessary to ensure that at any time in predicting the value of y[t+ 1], the feature

matrix had no access to information beyond time t. Such a phenomenon which will lead

to unrealistically good predictions and is referred to as “peeking” within this thesis.

The techniques used to ensure that we avoid peeking are presented in Sec. 4.4.
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The performance of ML techniques in predicting time-series, among other things, de-

pends on a suitable crafting of feature vectors that contain information about the target

signal. In most cases, these are selected by experienced users and domain experts. The

next section explains the concept of FS using computational methods.

2.3 Feature Selection

FS is the process of choosing a subset of features that improves the ML method perfor-

mance. Formally, for N data samples with M features in each data sample, FS problem

is to find from the M -dimensional observation space RM , a subspace of m features Rm

that best predict the target. This is achieved by reducing the number of features to

remove irrelevant, redundant, or noisy information from the feature set.

FS primarily aids in alleviating the curse of dimensionality and speeding up the learning

task. In practice, it also helps in optimizing data collection methodologies by identifying

which data to collect. Therefore, FS is a key pre-processing step (see Fig. 2.3) to

improved predictions.

In a typical ML problem, there is usually an optimal number of features that provide

the minimum error (highest accuracy). Because the total number of subspaces is 2M ,

finding an optimal feature subset is usually intractable [26] and many problems related

to FS have been shown to be NP-hard [27]. Alternatively, many sequential and random

searches have been proposed.

FS strategies are essentially twofold; (i) ranking the relevant features according to differ-

ent criteria and (ii) collectively choosing a feature subset [28]. Feature ranking assigns

a weight for each feature and feature subset selection evaluates different feature com-

binations. In general, filter models are used as feature ranking strategies and wrapper

and embedded models are used as feature subset selection strategies. These models are

explained next.
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2.4 Feature Selection Models

This section describes the filter and wrapper models in detail and briefly explains

the embedded models. The evolutionary FS technique proposed in Sec. 3.5 can be

considered as a hybrid approach that employs both filter and wrapper models.

2.4.1 Filter Models

A filter model makes use of intrinsic characteristics in the data for feature ranking.

The feature ranking criterion can be based on dependency measures, distance measures

and consistency measures. In this research, the commonly used filters include the in-

formation gain (dependency), maximum-relevance-minimal-redundancy (dependency),

Pearson’s correlation (dependency) and the Relief algorithm (distance). By evaluating

these measures between the feature and the target variable the features can be assigned

a weight and they can be ranked.

• Information Gain: Also referred to as the divergence between two random se-

quences (X) and (Y ) with probabilistic densities p(x), p(y) and p(x, y) is given by

I(x, y) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dx dy. This is a measure of the information lost

when X is used to predict Y . Information measures are widely-used in statistics and

quantify the dissimilarity between time-series.

• Maximum-relevance-minimal-redundancy (mRMR): mRMR selects good fea-

tures according to maximal statistical dependence criterion based on mutual infor-

mation [29]. Maximum relevance features are assessed by Eq. 2.1 where S is a feature

set of m features such that |S| = m, xi is an individual feature and c is the target.

max D(S, c), D =
1

|S|
∑
xi∈S

I(xi, c) (2.1)

Although highly relevant features are selected, there is a high probability of redun-

dancy. Therefore, mRMR uses a minimal redundancy criterion to select mutually
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exclusive features by choosing features that satisfy Eq. 2.2.

min R(S), R =
1

|S|2
∑

xi,xj∈S
I(xi, xj) (2.2)

The criterion that combines the above two constraints is called “maximum-relevance-

minimal-redundancy” criterion below.

max Φ(D,R), Φ = D −R (2.3)

Incremental search methods are used to find the near-optimal features defined by

Φ(·). Starting from an initial feature set Sm−1 with m− 1 features, the objective is

to select the mth feature from the remaining set {X−Sm−1} by selecting the feature

which maximizes Φ(·). The incremental algorithm is given in Eq. 2.4.

max
xj∈X−Sm−1

I(xj , c)−
1

m− 1

∑
xi∈Sm−1

I(xj , xi)

 (2.4)

• Correlation: Given two random sequences (X) and (Y ) with means µX and µY

respectively, the Pearson’s correlation coefficient at lag τ is,

ρx,y(τ) =

∑
k(Xk − µX)(Yk+τ − µY )√∑

k(Xk − µx)2
√∑

k(Yk+τ − µY )2
. Direct feature-target correlation by

itself is however considered as a poor technique because a high feature-target corre-

lation can still be an irrelevant feature (referred to as spurious correlations).

• Relief Score: Distance based filter models such as Relief ranks features that dis-

tinguish classes based on how well a feature can separate classes. The original Relief

algorithm proposed by Kira and Rendell [30] is a two-class filtering algorithm. A

training sample Ri is chosen randomly and the Euclidean distance to all other in-

stances calculated. The algorithm then proceeds to choose the nearest hit (same

class) H and the nearest miss (different-class) M based on the calculated distances.

If there are a features, the feature weight is recursively updated for each feature A

using Eq. 2.5. The whole process is repeated m times and the average weight W[A]

is retained.

W [A] = W [A]− diff(A,Ri, H)/m+ diff(A,Ri,M)/m (2.5)



Chapter 2. Background 17

The weighting function in Eq. 2.5 assigns a higher weight for features that discrim-

inate classes while penalizing the weight of the features that do not contribute to

class separability. RRelief (regression relief) [31] was developed later which was able

to operate on regression problems. Since regression problems do not involve classes,

RRelief uses a probability measure which is modelled by the target variable values

of instances belonging to different classes.

Another filter model type is the consistency. Consistency models find a minimum

number of features that distinguish between the classes as consistently as the the full

set of features do. An “inconsistency” arises when multiple training samples have the

same feature values but different class labels, e.g. set cover [32].

In the presence of multiple interacting features, the individual feature relationship with

the target can be insignificant but if such interacting features are considered in combi-

nation, a strong relationship to the target variable may be identified. In other words,

“the m best features are not the best m features” [29]. Many efficient FS algorithms

assume feature independence, ignoring the interacting features. Jakulin and Bratko

[33] define an interacting feature subset as an irreducible whole: “a whole is reducible

if we can predict it without observing all the involved variables at the same time”.

Therefore, different feature combinations are often evaluated using wrapper models.

For large dimensional feature spaces, a filter model is usually applied first to reduce the

feature space dimensionality followed by the application of a wrapper model.

2.4.2 Wrapper Models

Subset
Generation

Subset
Evaluation

Stopping 
Criterion

Validation

Original
Features

No Yes

Figure 2.5: A general wrapper model [27].
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A wrapper model involves a feature evaluation criterion, a search strategy and a stop-

ping criterion as depicted in Fig. 2.5. Unlike a filter model, a wrapper model utilizes

the performance of the learning algorithm as the evaluation criterion. This ensures that

the selected feature subset performs optimally for the ML algorithm [34]. Wrappers are

computationally expensive since it requires the ML algorithm to be executed in every

iteration and are usually used for low dimensional datasets.

Search strategies generate different feature combinations to traverse through the feature

space (generating feature subsets for evaluation). A widely used stopping criterion is to

stop generating and evaluating new feature subsets when adding or removing features

does not make any improvements [27]. The sequential steps of a wrapper model are

given in Algorithm 1.

Algorithm 1 Wrapper Approach

Input
X . Training data with N features, |X| = n
N . Number of features (feature space dimensionality)
n . Number of training examples
A . Learning Algorithm
SC . Stopping criterion
S0 . Initial subset of features

Output Sbest . Selected feature subset

Sbest ← So . Assign the current best feature subset as the initial subset
γbest ← eval(S0, X,A)
repeat

S ← SearchStrategy(X) . Generate next subset to be evaluated
γ ← eval(S,X,A)
if γ ≥ γbest then

γbest ← γ
Sbest ← S

end if
until SC is reached return Sbest

For N features there exist 2N potential subsets. For even modest values of N , an

exhaustive search over this huge space is intractable. The feature search therefore
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plays an important role in wrappers. Exponential, sequential and randomized searches

are described next.

2.4.2.1 Feature Search

• Exponential search: An exponential search returns the optimal subset. Although

the order of the search space is O(2N ), the search need not be exhaustive, i.e. heuris-

tics can be introduced to reduce the search space without compromising the chances

of discovering the optimal subset [27], e.g. branch and bound and beam search.

• Sequential search: Sequential forward feature selection (SFFS), sequential back-

ward feature elimination (SBFE) and bidirectional selection are greedy search algo-

rithms that add or remove features one at a time [27]. SFFS initiates with an empty

set and SBFE initiates with a full set whereas a bidirectional search initiates a SFFS

and SBFE simultaneously ensuring that the features selected by SFFS are never elim-

inated by SBFE. The drawback of SFFS is that it could fail to eliminate redundant

features generated in the search process. SBFE has the drawback of not being able to

re-evaluate feature usefulness together with other features once a feature is removed.

Plus-L minus-R selection (LRS) search attempts to resolve these issues. The worst

case search space of sequential search is in the order of O(N2).

• Randomized search: In practical applications, the feature space may contain thou-

sands of features, e.g. bioinformatics, text, natural language processing applications

and the work in this thesis. In such applications, it is not feasible to search the entire

feature space. Randomized search trades off optimality of the solution for efficiency

by searching only a sampled portion of the feature space. GAs have been used as a

guided randomized FS technique [35, 36] and is discussed in depth in Sec. 2.6.

In contrast to filter and wrapper models, embedded models do not separate learning

from FS. Embedded models are specifically catered for certain ML algorithms and

applications. SVM-RFE is an embedded FS method proposed in [37] for gene selection

in cancer classification. Nested subsets of features are selected in a sequential backward

elimination manner, which starts with all the features and removes one feature at a time.
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Method Complexity Advantages Disadvantages

Exhaustive O(2N ) High accuracy Computationally expensive

Sequential O(N2) Simple Less flexible with backtracking

Randomized O(N logN) Users can trade-off between ac-
curacy and speed, avoids trap-
ping in local optima

Low accuracy

Table 2.1: Search criterion comparison.

At each step, the coefficients of the weight vector of a linear SVM are used to compute

the feature ranking score. Embedded techniques are complex and application specific.

In this research we do not use any embedded techniques for FS.

A different approach to eliminate redundant and irrelevant features and reduce the fea-

ture space is dimensionality reduction. Linear techniques such as principal component

analysis (PCA) perform a linear mapping of the data to a lower dimensional space in

such a way, the variance of the data in the low-dimensional representation is maxi-

mized. Kernel principal component analysis (KPCA) and manifold techniques are able

to perform non-linear dimensionality reduction.

2.5 Principal Component Analysis

PCA is mathematically defined as an orthogonal linear transformation that maps the

data to a new coordinate system such that the greatest variance by any projection of

the data comes to lie on the first coordinate (called the first principal component),

the second greatest variance on the second coordinate, and so on. In practice, PCA is

calculated via SVD (singular value decomposition).

The application of PCA is described for a feature matrix Xp×N , i.e. there are p features

and N samples. The feature matrix here has features as rows and the data samples as

columns (different from the feature matrix X in Sec. 2.2). The feature matrix is first

centred by subtracting the means from each feature, X = [(x1 −m1), . . . , (xN −mN )].

Then, SVD is performed on Xp×N .

X = Up×pDp×p(VN×p)
T (2.6)



Chapter 2. Background 21

U and V are orthogonal matrices and D is a diagonal matrix. The scatter matrix S

can be written as,

S = XXT = UD2UT (2.7)

The eigenvectors of S are the columns of U and the eigenvalues are the diagonal elements

of D2. By taking only a few significant eigenvalue-eigenvector pairs such that d � p.

A new reduced dimension representation: x̃i = m+ Up×d(Up×d)
T (xi −m) is formed.

In this research, the number of features is much greater than the number of training

samples, i.e. p� N . This is because thousands of features are generated for a smaller

number of training samples. In such cases, the SVD of XT is computed,

XT = VN×NDN×N (Up×N )T (2.8)

X = Up×NDN×N (VN×N )T (2.9)

By choosing only a few significant eigenvalue-eigenvector pairs such that d < N : x̃i =

m+ Up×d(Up×d)
T (xi −m).

The first principal component accounts for as much variance as possible in the data

followed by other principal components. The assumption behind PCA is that the feature

matrix is jointly normally distributed. Non-linear dimensionality reduction techniques

like kernel PCA do not have this assumption.

2.6 Genetic Algorithms

A number of evolutionary approaches have been applied to FS. An initial population

is created and evolved to traverse through the feature space. The best individuals of

the population are selected using different criteria and the ML algorithm performance

using the feature subset represented by an individual is used to assess the fitness of

an individual. GAs have been used as a wrapper technique, thus introducing a search

mechanism to avoid enumerating the entire space. A simple approach is to encode

features in the chromosome, e.g. the chromosome 01001000 could mean that the 2nd

and 5th features are selected [38, 39]. Huang and Wang [40] used a chromosome with
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parameters of a SVM (the penalty parameter C, and the kernel parameter γ). The

resultant solution provided the best features and the appropriate SVM parameters.

Genetic programming (GP) for FS has been used where a GP based online FS algorithm

which evolved a population of classifiers was used to choose accurate classifiers with

the minimum number of features [41]. Multi-population GP has also been used in [42]

to develop a method for simultaneous feature extraction and selection.

2.6.1 Canonical Genetic Algorithms

Canonical GA works on n-tuple of binary strings bi of length l. The n-tuple is termed

as the population and the bits of each string are considered to be genes of an individual

chromosome. A chromosome is represented as a binary string, with each consecutive

group of n-bits creating a codon. A group of codons is called a gene. An individ-

ual chromosome may contain more than one gene. The operations performed on the

population are selection, crossover and mutation as illustrated in Fig. 2.6.

Population

Evaluation

Mutation

Crossover

Selection

Fitness Score

GA Operators

Figure 2.6: The evolutionary process and associated operators.

The initial population is created by randomly setting each bit of a chromosome to 1

or 0. The individuals are then evaluated based on a given fitness function φ(·). Each

individual represents a solution for the formalized problem. The objective function

φ(bi) gives the fitness score of the individual which has to be maximized. The better

scoring individuals are deemed to have the best genes hence they are retained and

the low scoring chromosomes are discarded from the population and replaced with
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new chromosomes. These well scoring individuals are termed elite individuals. The

probability for an individual bi to be selected for recombination is proportional to the

relative fitness score given by φ(bi)/
n∑
j=0

φ(bj).

The crossover is performed on 2 randomly selected individuals. In canonical GA the tra-

ditional crossover operator is the single-point crossover. A crossover point in the binary

string is chosen at random and the string sections of the two parents are exchanged.

The mutation operator randomly flips single bits on a specific chromosome under a

defined mutation probability. Mutation is necessary to maintain genetic diversity from

one generation of a population to the next. The evolutionary process is repeated until a

given termination criterion is satisfied. Integer GAs which is an extension of canonical

GAs is explained in Sec. 4.3.2.

2.7 Grammatical Evolution

Grammatical evolution (GE) can be used to evolve complete programs in an arbitrary

language and like other evolutionary programming techniques such as GP, evolves a

population towards a certain goal. The difference between GE and GP is that GE

applies evolutionary operators on binary strings which are then converted using the

defined grammar to the final program; on the other hand GP directly operates on the

actual program’s tree structure [18]. In GE, a suitable grammar developed for the

problem at hand is first specified in Backus-Naur form (BNF). Chapter 4 proposes a

hybrid FS and feature generation algorithm using a modified version of GE. In order

to describe GE, context-free grammar (CFG) is brought in the next section.

2.7.1 Context-free Grammar

A CFG is a simple mechanism to generate patterns and strings using hierarchically

organized production rules [43]. Using the Backus-Naur form (BNF), a formal notation

for CFG [44], a CFG can be described by the tuple (T ,N ,R,S) where T is a set

of terminal symbols and N is a set of non-terminal symbols with N ∩ T = ∅. The

non-terminal symbols in N and terminal symbols in T are the lexical elements used in
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specifying the production rules of a CFG. A non-terminal symbol is one that can be

replaced by other non-terminal and/or terminal symbols. Terminal symbols are literals

that symbols in N can take. A terminal symbol cannot be altered by the grammar

rules R, a set of relations (also referred to as production rules) in the form of R → α

with R ∈ N , α ∈ (N ∪ T ). S is the start symbol S ∈ N . If the grammar rules are

defined as R = {x→ xa, x→ ax}, a is a terminal symbol since no rule exists to change

it, whereas x is a non-terminal symbol. A language is context-free if all of its elements

are generated based on a context-free grammar. If S is the starting symbol and we

define a CFG, T = {a, b}, N = {S} and R = {S → aSb,S → ab}, L = {anbn|n ∈ Z+}
is a context-free language. An example grammar in BNF notation is given in Table 2.2.

2.7.2 Generating Features using GE

In this section, the grammar in Table 2.2 is used to demonstrate how features can be

generated using GE. Consider the individual [166|225|180|132|187|219|179|249] in which

the integer numbers represent codon values of 8 bits, i.e. the individual is 64 bits in

length. The codon values are used to select production rules from the example grammar

definition to generate features. The usual mapping function used is the MOD rule

defined as; (codon integer value) MOD (number of rules for the current non-terminal),

where MOD is the modulus operator (%).

N = {expr, op, coef , var}
T = {÷, ×, +, -, V1, V2, C1, C2, (, )}
S = <expr>

Production rules : R

〈expr〉 ::= (〈expr〉)〈op〉(〈expr〉) (1.a)
| 〈coef 〉×〈var〉 (1.b)

〈op〉 ::= ÷ | × | + | - (2.a), (2.b), (2.c), (2.d)

〈coef 〉 ::= C1 | C2 (3.a), (3.b)

〈var〉 ::= V1 | V1 (4.a), (4.b)

Table 2.2: An example grammar in BNF notation.

Now it is shown how the example chromosome above generates a symbolic feature ex-

pression using the grammar provided in Table 2.2, which is later evaluated as a numeri-

cal feature. Using the start symbol S = <expr>, there are 2 production rules to choose
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from, (1.a), (1.b). The MOD operation on the current codon becomes (166)MOD(2)

which yields 0, hence choose rule (1.a). The successive application of rules in Table 2.3

shows how a feature expression is generated by the example chromosome.

MOD Rule Current element state

166 MOD 2 0 (<expr>)<op>(<expr>)
225 MOD 2 1 (<coef>×<var>)<op>(<expr>)
180 MOD 2 0 (c1 ×<var>)<op>(<expr>)
132 MOD 2 0 (c1 × v1)<op>(<expr>)
187 MOD 4 3 (c1 × v1) ÷ (<expr>)
219 MOD 2 1 (c1 × v1) ÷ (<coef>×<var>)
179 MOD 2 1 (c1 × v1) ÷ (c2 × <var>)
249 MOD 2 1 (c1 × v1) ÷ (c2 × v2)

Table 2.3: Production of a terminal element.

The derivation sequence above can be maintained as a derivation tree. The derivation

tree is then reduced to the standard GP syntax tree as in Fig 2.7.

Figure 2.7: Feature generation tree.

GE uses standard concepts in canonical GAs to evolve the chromosomes thereby gen-

erating new derivation sequences, new feature expressions and new numerical features.

Chapter 4 presents a more detailed description on how GE can generate much complex

feature expressions.

For a given individual, the resultant feature can be a terminal (T ) or a non-terminal

(N ) element. If the individual runs out of codons without producing a terminal element

as above, it is wrapped around and the codons are reused from the beginning. This

could lead to incomplete individuals if the mapping never produces a terminal element,

which is addressed by introducing a limit on the allowed chromosome wrappings and

returning a poor fitness score. An in-depth explanation on the usage of GE can be

found in the original GE paper [18].
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2.8 Support Vector Machines

This section explains the basic concept of SVM (see [45] for an in-depth explanation)

which is the main ML algorithm used in this research. SVMs were first proposed for

binary classification which finds an optimal hyperplane with a maximum margin which

separates labelled data into two classes. This is achieved by finding a hyperplane in

a higher dimension by transforming the original feature space using a kernel function

(known as the kernel trick). The optimum (maximum margin) hyperplane gives the

maximum separation between the two classes. If the training examples are labelled as

{xi, yi}, i = 1, 2, . . . , n, yi ∈ {−1,+1} and xi ∈ Rd. The linear hyperplane can then be

represented by, yi = w ·x+ b, where w ·x is the inner product between the weights (w)

and the training samples (x), and b is the bias. Soft margin SVM was introduced to

accommodate classifying training data when there is no clean hyperplane to separate

the training data. The objective of soft margin SVM was to split the training data

as cleanly as possible while still maximising the distance to the closest cleanly split

data samples. In a similar manner to the soft-margin classification approach, SVM

regression seeks to optimize the generalization bounds given for regression using an

error tolerance parameter, ε.

The objective of support vector regression (SVR) is to estimate the function f(x) =

w · xi + b using linear regression in a higher dimensional space. Similar to the soft-

margin constructed in SVM classification, the so called ε-insensitive loss function in Eq.

2.10 is adapted for SVM regression. ε is the error tolerance and only deviations larger

than ε are considered as errors.

Lε[y − f(x)] =


0, if |y − f(x)| ≤ ε

|y − f(x)| − ε, otherwise

(2.10)

The function f(x) is estimated by solving the following minimization problem. N is

the number of training samples.

min
w

1

2
‖w‖2 +

C

N

N∑
i=1

Lε[y − f(xi)] (2.11)
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The problem is transformed into a constrained convex optimization problem by em-

ploying slack variables ξi and ξ∗i .

min
w

1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

subject to f(xi)− y ≤ ε+ ξi

y − f(xi) ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 for i = 1, 2, . . . , N.

(2.12)

To solve the optimization problem, Lagrange multipliers are added to the condition

equations, and the problem is restated in its dual form.

max
w

− ε
N∑
i=1

(αi + α∗i ) +
N∑
i=1

(αi − α∗i )yi −
1

2

N∑
i,j=1

(αi − α∗i )(αj − α∗j )(xi, xj)

subject to 0 ≤ αi, α∗i ≤ C
M∑
i=1

(αi − α∗i ) = 0.

(2.13)

where αi, α
∗
i are the Lagrange multipliers. Only the non-zero values of Lagrange multi-

pliers are required to predict the regression line, and their corresponding data samples

are called support vectors. The data samples inside the ε-tube have Lagrange mul-

tipliers as zero, and do not contribute to the regression. Fig. 2.8 aids in visualising

the tolerance error, the function f(x) to be regressed and the slack variables with the

training data samples.

ξ∗i

ξi
w · x + b

ǫ

Figure 2.8: Epsilon tube with slack variables and selected data points.
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The data samples are transformed to a higher dimension by a transformation function

Φ(x), i.e. (xi, xj) in Eq. 2.13 can be substituted with Φ(xi) · Φ(xj) which is defined

as the kernel function K(xi, xj). The Gaussian radial basis function (RBF) is used

throughout this research which is defined with the kernel parameter γ as K(xi, xj) =

exp(−γ‖xi − xj‖2).

The weights can be re-expressed as, w =

l∑
i=1

(αi − α∗i )Φ(xi) and the function to be

estimated can be expressed as f(x) =
l∑

i=1

(αi−α∗i )K(xi, xj) + b, where l is the number

of support vectors. Once the number of support vectors, Lagrange multipliers, and the

bias are determined from the training samples, previously unseen testing data can be

regressed using the function f(x).

It is important to choose the correct SVM and kernel parameters for a particular task

at hand since the performance of the ML algorithm depends highly on the parameter

values. “The parameter C controls the trade-off between the margin and the size of the

slack variables (C =∞ leads to hard margin SVM)” [46]. On the other hand, ε governs

the width of the ε-insensitive zone. This can affect the number of support vectors used

to construct the ε regression function. For higher values of ε, fewer support vectors are

selected and there is a higher chance of over-fitting.

2.9 Summary

This chapter explained time-series prediction, application of machine learning tech-

niques to time-series prediction, the importance of feature selection, feature selection

techniques, context-free grammar, genetic algorithms, grammatical evolution and sup-

port vector machines which are essential to understand the thesis. The following chap-

ters utilize the theory presented in this chapter to construct a feature generation and

selection framework for time-series prediction.



Chapter 3

Grammar Based Feature

Generation

Instead of manually constructing feature vectors, the methodology proposed in this

chapter can automatically generate a large pool of analytical features; including such

manually constructed features. Although the proper selection of analytical features

is of utmost importance, it is often overlooked and it is doubtful if the best possible

models are constructed by manually selected features. Context-free grammars (CFGs)

are used as a systematic way of generating suitable features. The notion of grammar

families as a compact representation to generate a broad class of features is explained.

Special attention is given to feature pruning and implementation issues arising as a

result of processing a large number of features. Furthermore, grammatical evolution

(GE) is proposed as a convenient technique to combine feature generation and feature

selection (FS) without selective feature pruning.

3.1 Feature Generation using Context-free Grammars

Automated feature generation is the process of generating numerical descriptions of

some data instances. A manual approach involves identifying certain characteristics of

the time-series under consideration and to derive mathematical formulae to generate

29
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numerical measures to describe them [47]. As suggested in Chapter 1, one aim of this

thesis is to enable experts to provide guidelines to the automated feature generator but

for the computer to do all the tedious work of generating and selecting appropriate

feature subsets for the prediction task at hand.

3.1.1 Related Work on Grammar Based Feature Generation

Automated feature generation is an interesting research area since it may systemati-

cally produce and select better feature combinations than those designed by humans.

It has been used mostly in signal classification. A general framework for function-based

feature generation using context-free grammars was first proposed by Markovitch and

Rosenstein [48]. Such grammars are used in linguistics to describe sentence structure

and words of a natural language and in computer science to describe the structure of

programming languages [43]. Markovitch and Rosenstein generated features strongly re-

lated to the target using decision trees. Unfortunately, the technique is only suitable for

problems where the features are apparent from the problem definition. Eads et. al [47]

and Pachet and Roy [49] addressed supervised time-series classification using standard

genetic programming to discover a set of fundamental signal processing operations via a

grammatical structure. Both these works conclude that conventional classifiers trained

using raw data as features can be outperformed by training the same classifiers with

grammar generated features. Standard genetic programming was also used by Rit-

thof et. al [15] to combine feature generation and feature selection, and applied to the

interpretation of chromatography time-series. Ritthof et al. used arithmetic operators

in their grammar to expand the feature space while Eads et al. extracted time-series

information using operators such as the mean, delay, derivative, integral, etc. [50] used

genetic programming with a set of mathematical transformation operators, e.g. sin,

cos, +, -, sqrt, etc. to produce features of the raw vibration signals from a rotating

machine (fault classification). The same framework was applied to breast cancer di-

agnosis as well [51]. Both works reported improved classification accuracies. Islamaj

et al. [52] proposed a feature generation algorithm for analysing splice-site reduction in

biology. An improvement of around 6% compared with using well-known features was

reported. Krawiec and Bhanu [53] used a co-evolutionary feature generation approach
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where multiple populations were evolved simultaneously. Primary operators applicable

to images, e.g. different filters, image norms, scalar operators etc. were defined and the

best operator sequences (or processing steps embedded in chromosomes) were used for

synthetic aperture radar (SAR) image recognition. The approach proved to be robust

in different operating conditions.

The proposed framework in this chapter uses a range of such operators to expand the

feature space. The parameters of these operators are selected appropriately to maxi-

mize the prediction performance of the ML algorithm under consideration. Previous

work has given less attention to appropriate feature selection techniques of a feature

generation framework to select robust features which is extremely important in pre-

dicting non-stationary time-series hence Chapter 4 of the thesis is dedicated for feature

selection. Comparisons to using well-known features is also missing in literature. The

thesis also proposes GE as a hybrid technique for feature generation and selection. [54]

used GE to select features for detecting epileptic oscillations within clinical intracranial

electroencephalogram (iEEG) recordings of patients with epilepsy. GE has also been

used in computational finance, credit rating & corporate failure prediction, music and

robot control applications (see [55] for a survey). None of these works however formulate

a well organized general framework that is extensible and customizable. Furthermore,

none of the works have applied their techniques to financial time-series prediction using

technical indicators or electricity load time-series prediction or foreign exchange client

trade volume time-series predication.

3.1.2 Proposed Framework

This work uses CFGs to systematically guide the generation of a pool of candidate

features and define (hierarchical) grammar structures with different layers to guide

the feature generation flow. Unlike genetic algorithms in feature construction [56], a

CFG framework facilitates visualization of the feature generation flow which helps to

monitor the features generated. The layered organization of operators used to generate

features is shown in Table 3.1. At time k, the base layer consists of the observed

variables x
(1)
k , . . . , x

(m)
k and the derived variables f

(1)
k , . . . , f

(l)
k . Using the notation in
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Table 3.4, O,H,L,C are the observed variables and M,U,D are the derived variables

in the financial time-series prediction context.

User defined layers e.g. EMA(c
(i)
k , n)

Combinatorial and transformation layer elements c
(i)
k are parsed to the higher layers

Combinatorial and
transformation layer

Fractional combinations e.g. (b
(i)
k − b

(j)
k )/b

(j)
k

Additive combinations e.g b
(i)
k ± b

(j)
k

Base operators e.g. log(b
(i)
k )

Running operators e.g. func(b
(i)
k ) (see Table 3.2)

Base layer elements b
(i)
k are parsed to the transformation layer

Base layer Derived variables f
(1)
k , . . . , f

(l)
k

Observed variables x
(1)
k , . . . , x

(m)
k

Table 3.1: Layered organization of operators for feature generation.

The transformation operators in the combinatorial and transformation layer consists

of base operators and running operators. The base operators are simple operators

such as the first difference and the absolute value of a variable. Running operators

use sliding windows of length n to identify local features. By varying n, long or short

history information can be captured systematically. The combinatorial operators fuse

information across variables to produce more features which are parsed to the user

defined layers, and are defined in Table 3.2. Domain transformations (e.g. wavelets,

Fourier) are also useful in constructing informative features. For example, the wavelet

transformation has been used for multi-resolution analysis of stock data to capture

information on different time-scales that is not obvious from the original time-series [57].

Such transformed variables can easily be incorporated to the framework by including

them in the base layer as derived variables. Additionally, transformations can be defined

in a higher layer as well (preferably in the combinatorial and transformation layer).

The operators defined in Table 3.2 suffice to generate a broad class of features. In

the next section, it is explained how the proposed framework can be used to generate

simple forms of features from a grammar based on wavelet components for electricity

load time-series prediction.
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Base operators Running operators (window size n)

diff(x, n) xk − xk−n sma(x) simple moving average
log(x) natural log wilder(x) Wilder exponential moving average
delt(x) (xk − xk−1)/xk ema(x) exponential moving average
abs(x) |xk| wma(x) weighted moving average
lag(x, n) xk−n max(x) maximum value
sin(x) min(x) minimum value
cos(x) sd(x) standard deviation
. . . sum(x) summation

meandev(x) mean deviation
skewness(x) skewness
kurtosis(x) kurtosis
median(x) median
histwin(x) a history window (a lag sequence)

Table 3.2: Base operators and running operators.

3.2 Wavelet Based Grammar for Electricity Load Time-

series Prediction

In order to demonstrate how a feature is generated, the grammar in Table 3.3 which was

designed to generate features to predict peak electricity load time-series is used. This

grammar is expressed in Backus-Naur form (BNF) notation. The operator notation

is as in Table 3.2 and E is the half-hourly electricity load time-series. D1, D2, D3 and

S = S3 are the 3-level wavelet decomposition components of E. Wavelet transformation

background theory is deferred to Appendix A.

T = {abs, delt, diff, lag, sma, sd, meandev, histwin, E, D1, D2, D3, S, n, k, (, )}
N = {expr, base-var, pre-op, base-op, var}
S = <expr>

R Production rules

〈expr〉 ::= histwin(〈base-var〉, n) (1.a)
| 〈pre-op〉(〈base-var〉, n) (1.b)
| 〈base-var〉 (1.c)

〈base-var〉 ::= 〈base-op〉(〈var〉) (2.a)
| lag(〈var〉, k) (2.b)
| 〈pre-op〉(〈var〉, n) (2.c)

〈pre-op〉 ::= sma | sd | meandev (3.a), (3.b), (3.c)

〈base-op〉 ::= delt | diff | abs (4.a), (4.b), (4.c)

〈var〉 ::= E | D1 | D2 | D3 | S (5.a), (5.b), (5.c), (5.d), (5.e)

Table 3.3: Wavelet based grammar for peak electricity load time-series prediction.
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Recall that a CFG can be described by (T ,N ,R,S) as explained in Sec 2.7.1. The

production rules R for this grammar are organized into 5 groups. Group 1 has 3 rules

(1.a)-(1.c), group 2 has 3 rules (2.a)-(2.c) and so on. The total number of production

rules is 17, (1.a)-(5.e) (|R| = 17). Each production rule has a head (left hand side), a

non-terminal symbol in N , that is assigned by the string of symbols in the body (right

hand side). Multiple production rules in the same group are delimited by the pipe “|”.

There are 5 non-terminal symbols (N ) which are denoted in the production rules by

<·>. A feature generated by each rule corresponds to a particular layer in Table 3.1.

Rule (2.b) adds different lags of observed (E) and derived variables (D1,D2, D3 and S)

to the generated feature pool. Rule group 2 can be considered as producing features

in the combinatorial and transformational layer. Rule (1.a) produces user defined layer

features by applying different operators on variable combinations. The rules (1.b) and

(1.c) act as mere linking rules that invoke other rules.

As described in Sec. 2.7.1, to generate a specific feature, the feature generation sequence

is initiated with the start symbol S = <expr>. The production rules are sequentially

invoked on the left-most non-terminal to generate features. The generation of a simple

feature is illustrated first.

The production rule sequence (1.b)→(3.a)→(2.b)→(5.a) generates sma(lag(E, k),n)

which is a running operator in the combinatorial and transformation layer, e.g. for

n=10 and k=0, the feature can be interpreted as the simple moving average of peak

load for 10 days. This rule invoking sequence is compactly represented in Fig. 3.1. The

circles represent the leftmost non-terminals on which the rules are invoked and the rule

number is indicated below the arrows.

< expr > < pre− op > (< base− var >, n) sma(lag(< var >, k), n) sma(lag(E, k), n)
(1.b)

sma(< base− var >, n)
(3.a) (2.b) (5.a)

Figure 3.1: Step-wise generation of exponential moving average as a feature from
the wavelet grammar in Table 3.3.

This can also be illustrated by the following notation.

Invoking rule (1.b): <expr> ::= <pre-op>(<base-var>, n)

Invoking rule (3.a): (<pre-op>) ::= sma
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Invoking rule (2.b): <base-var> ::= lag(<var>, k)

Invoking rule (5.a): <var> ::= E

It is illustrated that rule sequences like above generate primary features such as mov-

ing averages. This section demonstrated how simple features are generated from the

proposed framework. More complex feature generation sequences to generate technical

indicator type formulae are brought later in this chapter.

3.3 Grammar Families

By defining well organized compact grammar families (instead of a single grammar),

the number of generated features can be significantly reduced. More importantly, the

generated features can now be be more informative and interpretable because they

are systematically organized by a human expert. Once all the features are generated,

feature selection and dimensionality reduction techniques can be applied to select the

best features.

This is illustrated by introducing the grammar families designed to generate technical

indicators. If a single grammar was designed to generate all the technical indicators

surveyed, the number of features will be extremely large. Grammar families were

designed to generate standard technical indicators along with many other potentially

new technical indicators. Technical indicators are described in the next section.

3.3.1 Technical Indicators

Technical indicators are formulae that identify patterns and market trends in financial

markets [58] which are developed from models for price and volume. The seminal work

of Edwards et al. [59] on technical analysis still remains in use to the present. Tech-

nical indicators can be broadly classified as trend, momentum, volatility and volume

indicators. A trend analysis studies price charts using the moving average filters. The

moving average filter gives smooth price estimates and identifies overall trend patterns.

The exponential moving average (EMA), simple moving average (SMA) and weighted
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moving average (WMA) filters are some of the standard trend indicators. Momentum

measures the variation of price in a given time. Momentum indicators identify over-

bought and oversold positions and start of new trends. Rate of convergence (ROC),

relative strength index (RSI) and average directional index (ADX) are some commonly

used momentum indicators. Volatility indicators like Bollinger bands (BB) identify the

uncertainty in the market via statistical variance of price movements. Volume indica-

tors identify the volumes of trade that have the potential to cause market movements,

and the money flow index (MFI) is one such example. Table 3.5 summarizes some

well-known and standard trend, momentum, volatility and volume indicators and its

notation is in Table 3.4.

Symbol Interpretation

O Opening price of the current day
H Highest price of the day
L Lowest price of the day
C Closing price of the day
V Traded volume for the day
M Typical (average) price, (Hk + Lk + Ck)/3
U Upward price change, max(0,Ck − Ck-1)
D Downward price change, min(0,Ck − Ck-1)
F Money flow at a given time, M×V
F+ Positive money flow, max(0,Fk − Fk−1)
F− Negative money flow, min(0,Fk − Fk−1)
H+ Highest high price of the day, max(Hk−i)

n−1
i=0

L− Lowest low price of the day, min(Lk−i)
n−1
i=0

i+ Days elapsed since the last highest price, arg maxi Pk−i, i = 0, 1, . . . , n− 1
i− Days elapsed since the last lowest price, arg mini Pk−i, i = 0, 1, . . . , n− 1

Table 3.4: Symbol notation. The subscript k denotes the current day.

3.3.2 Generating Technical Indicators using Grammar Families

This section demonstrates how a set of grammar families generate a broad class of

features with the technical indicators summarized in Table 3.5 as particular cases. 7

grammar families generate all the technical indicators in Table 3.5 as particular cases.

The CFG based framework is flexible in that, (i) the number of grammar families

and the organization of the production rules can be adapted (ii) the user is able to

design a sufficiently large grammar to capture as much information as possible with

a manageable feature space and (iii) the user can incorporate domain knowledge by
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Indicator name Acronym Formula Parameters

Simple moving average SMA
1

n

n−1∑
i=0

Pk−i n = 5, 15, 30

Weighted moving average WMA
1

n

n−1∑
i=0

(n− i)Pk−i n = 15, 5, 30

Exponential moving average EMA
n−1∑
i=0

α(1− α)iPk−i
n = 5, 15, 30
α = 2/(n+ 1)

Disparity DIS Pk/ema(Pk, n) n = 5, 10

Bias BIAS (Pk − sma(Pk, n))/n n = 5, 10

Bollinger bands BB sma(Pk, n)± 2σ n = 15

Chaikin volatility - sma(Hk − Lk, n)± 2σ n = 15

Average true range ATR max(Hk − Lk, |Hk − Ck−n|, |Lk − Ck−1|) -

Money flow index MFI (1 + R)/R n = 14

Aroon indicator (Up, Down) - (n− i+)/n , (n− i−)/n n = 6, 12, 24

Rate of convergence ROC (Ck − Ck−n)/Ck−n n = 1

Commodity channel index CCI (Mk − sma(Mk, n))/0.015σ̄ n = 15

Relative strength index RSI RS/(1 + RS) n = 14

Moving average
convergence divergence

MACD ema(Ck, n1)− ema(Ck, n2) , n1 > n2 n1 = 26, n2 = 12

Momentum MOM Ck − Ck−n n = 4

William’s indicator R (H+
k−n − Ck)/(H+

k−n − L−
k−n) n = 15

Stochastic oscillator K (Ck−n − L−
k−n)/(H+

k−n − L−
k−n) n = 14

Stochastic indicator D sma(K(n1), n2) n1 = 15, n2 = 5

Slow stochastic indicator Slow D sma(D(n1, n2), n3) n1 = 15, n2, n3 = 3

Close location value CLV ((Ck − Lk)− (Hk − Ck))/(Hk − Lk) -

Price Oscillator OSCP (sma(Pk, n1)− sma(Pk, n2))/sma(Pk, n1) n1 = 5, n2 = 10

Accumulation/Distribution
Oscillator

ADO (Hk − Ck−1)/(Hk − Lk) -

Table 3.5: Standard trend, volatility and volume indicators.

Additional Notation: Money ratio R = Σn−1
0 F+

i /F
−
i . RS = ema(U, n)/ema(D, n).
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choosing appropriate derived variables and production rules. The grammar families 1

and 2 are brought in Tables 3.6,3.7 and the rest in Appendix B Tables B.1-B.5.

Family 1

N = {L1, L2, L3}
T = {− , ÷, lag, sma, meandev, sum, H, L, C, M, n, k, N, ( , ) }
S = {L3}

Production rules : R

〈L3 〉 ::= (〈L2 〉) ÷ (lag(〈L2 〉, k)) | (〈L2 〉) ÷ (〈L2 〉) (1.a), (1.b)
| ((〈L2 〉) − (〈L2 〉)) ÷ N | 〈L2 〉 (1.c), (1.d)

〈L2 〉 ::= 〈L1 〉 − lag(〈L1 〉, k) | 〈L1 〉 − sma(〈L1 〉, n) (2.a), (2.b)
| meandev(〈L1 〉, n) | sum(〈L1 〉, n) | 〈L1 〉 (2.c), (2.d), (2.e)

〈L1 〉 ::= H | L | C | M (3.a), (3.b), (3.c), (3.d)

Table 3.6: Grammar family 1.

< L3 >

(< L2 >)÷ (< L2 >)

(< L1 > −lag(< L1 >, k))÷ (< L2 >)

(H− lag(< L1 >, k))÷ (< L2 >)

(H− lag(C, k))÷ (< L2 >) (H− lag(C, k))÷ (< L1 > −lag(< L1 >, k))

(H− lag(C, k))÷ (H− lag(< L1 >, k))

(H− lag(C, k))÷ (H− lag(L, k))

(1.b)

(2.a)

(3.a)

(3.c)
(2.a)

(3.b)

(3.a)

Figure 3.2: Step-wise generation of ADO indicator. The circles indicate the current
non-terminals on which the rules are invoked and the rule number is indicated.

The grammar family 1 is used to illustrate the generation of standard technical indica-

tors A/D oscillator, CLV, bias and ROC. Fig 3.2 shows the production rules invoked to

generate the technical indicator A/D oscillator and the intermediate states produced

in the process. The start symbol for grammar family 1 is <L3>. By invoking rule (1.b)

on <L3>, the intermediate non-terminal element (<L2>)÷ (<L2>) is produced. Since

there are 2 individual non-terminal elements in this intermediate element, the leftmost

non-terminal is always chosen (hence circled in figure). Fig. 3.2 can be understood in
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this manner and the resultant terminal element can be verified to be the A/D oscillator

formula provided in Table 3.5 with C lagged by k = 0 and L lagged by k = 1, i.e.

(H− lag(C, 1))÷ (H− lag(L, 0)). The generation of CLV and ROC by grammar family

1 is deferred to Appendix B.

Family 2

N = {L1, L2, L3, L4}
T = {− , ÷, lag, sma, ema, wma, H, L, C, M, delt, diff, n, k, ( , ) }
S = {L4}

Production rules : R

〈L4 〉 ::= (〈L3 〉) ÷ (〈L3 〉) | (〈L3 〉 − 〈L3 〉) | 〈L3 〉 (1.a), (1.b), (1.c)

〈L3 〉 ::= ema(〈L2 〉, n) | sma(〈L2 〉, n) | wma(〈L2 〉, n) (2.a), (2.b), (2.c)
| sma(ema(〈L2 〉, n), n) | 〈L2 〉 (2.d), (2.e)

〈L2 〉 ::= diff(〈L1 〉) | delt(〈L1 〉) | lag(〈L1 〉, k) (3.a), (3.b), (3.c)

〈L1 〉 ::= H | L | C | M (4.a), (4.b), (4.c), (4.d)

Table 3.7: Grammar family 2.

< L4 >

(< L3 >)÷ (< L3 >)

(lag(< L1 >, k))÷ (< L3 >)

(1.a)

(2.e)

(< L2 >)÷ (< L3 >)

(lag(C, k))÷ (< L3 >)

(lag(C, k))÷ (ema(< L2 >, n))

(lag(C, k))÷ (ema(lag(< L1 >, k), n))

(lag(C, k))÷ (ema(lag(C, k), n))

(3.c)
(4.c)

(2.a)

(3.c)

(4.c)

Figure 3.3: Step-wise generation of disparity indicator. The circles indicate the
current non-terminals on which the rules are invoked and the rule number is indicated.

In a similar fashion, Fig. 3.3 illustrates how the technical indicator disparity is gener-

ated using the family 2. The final terminal element, (lag(C, k)) ÷ (ema(lag(C, k), n))

provides the disparity with C lagged by k = 0 as can be verified with the disparity

formula in Table 3.5. All 7 grammar families were defined to generate one or more

technical indicators in Table 3.5 along with many other custom technical indicators.

Some other technical indicator generation sequences are presented in Appendix B. Table

3.8 indicates which technical indicators are generated by each grammar family.
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Family # Standard technical indicators generated

1 CLV, CCI, ROC, ADO, Bias, Lagged prices

2 EMA, SMA, WMA, Lagged prices, Disparity, MACD, SD, OSCP

3 R, K, D, Slow D

4 Aroon

5 RSI, MFI

6 BB, Chakin volatility

7 Volume related indicators

Table 3.8: Standard technical indicators generated by each grammar family.

The base layer variables H+, L− in grammar family 3 rely on a look-back period of n

which does not affect the symbolic feature expression but affects the numerical features.

This is similarly applicable to the base layer variables in grammar family 4, i+ and i−.

Notice the variable n used in the interpretation of H+, L−, i+ and i− in Table 3.4.

Therefore, 3 look back-periods of n = 6, 12, 24 days were used for grammar family 3

and 4 to generate 3 sets of numerical features from each grammar family.

3.4 Implementation

This section discusses the practical aspects of the feature generation framework and

tactics adopted in the implementation.

3.4.1 Pruning Strategies

Some of the generated features are parametrized by the window-size n and lag k. The

parameter values used were n = 5, 15, 30 and k = 0, 1, 2, 3, 4, 5, 6. This means that a

feature expression can produce multiple numerical features , e.g. the feature expres-

sion EMA(H,n) generates 3 numerical features EMA(H,5), EMA(H,15) and EMA(H,30).

Clearly, the language size explodes by having a larger range for the parameters n and

k. Appropriate feature pruning can be used to retain only the top ranking features. An

alternative approach is to generate a very large number of features and then choose a

subset of the features. Unfortunately, the larger the search space, the harder it becomes

to mine for better features. A computationally more efficient approach is to limit the
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number of features generated in the first place. This can be achieved by introducing

pruning mechanisms to ensure the number of features remain within a manageable

range. In the following, the primary pruning strategies are discussed.

(i) Feature pruning can be implicitly achieved by carefully designing the grammar struc-

ture. The first step towards this was to introduce grammar families in Sec. 3.3. By

defining well organized compact grammar families (instead of a single grammar), the

number of generated features can be significantly reduced.

(ii) Limiting the number of production rules in each rule group can also avoid the fea-

ture space becoming too large. Constructing focused grammar families for different

groups of technical indicators was used to achieve this.

(iii) Grammar family 4 in Table B.2 has separate production rules <L1> and <L2> for

the numerator and denominator terms. This reduces the number of permutations in

comparison to using a single rule to generate fractional features.

(iv) Avoiding invalid combination of terms in a production rule avoids generation of

meaningless features, e.g. price cannot be added to volume or time and so on.

Despite following the strategies mentioned above, it was found that the number of

features generated was still too large to carry out the necessary computations in a rea-

sonable time. Furthermore, it was understood that the computational issues that arise

due to memory limitations should be addressed in the feature generation framework

implementation because the feature matrices were too large to be processed as single

large matrices. Each grammar family produces a different number of feature expressions

which are brought in Table 3.9 totalling 24284. With 1900 days under consideration,

the feature matrix size was 1900× 24284 for financial time-series.

Grammar Family # # of feature expressions

1 5852
2 10440
3 1675
4 480
5 5516
6 21
7 300

Total 24284

Table 3.9: Number of feature expressions generated by each family.
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3.4.2 Implementation Issues

This section discusses the implementation issues and secondary pruning strategies in-

volved therein. Fig. 3.4 depicts the feature generation flow which was used in this

research to generate features. Because of the design of grammar families, there were

some feature expressions that were duplicated, i.e. some feature expressions were gen-

erated by multiple grammar families. These feature expressions were removed from the

final feature expression list by simply searching for repeated formulae in the list.

Family 1

Family 2

Family 7

Feature Expressions

EMA(C.n)
(C-L)/lag(H,k)

lag(C.k)

meandev(C,n)/max(H-L)

EMA(C.n)-WMA(H-n)

Pmf/sd(Pmf,n)
hh/max(EMA(hh,n),n)

Set 1

Set 2

Set n

Matrix 2

Matrix n

Pruning 2
Matrix 1

Pooled
Feature
Matrix

Pruning 2

Pruning 2

Parallel processing in multiple cores

Final
Feature
Matrix

Pruning 3

Pruning 1

Pruning 1

Pruning 1

Figure 3.4: Feature generation flow.

Each feature expression in the list was evaluated by substituting numerical values for

the symbols of the expression. All possible n, k combinations of a particular feature

expression were also considered. The feature expression list was divided into 20 sets of

roughly 1000 features in each set. The feature expressions in each set were evaluated

in a parallel environment using multiple cores in reasonable time since features can be

independently evaluated.

For feature expressions having more than 10 permutations, “Pruning 1” (see Fig. 3.4)

only selects the 10 best numerical features based on the information gain. If the number

of permutations of a particular feature expression was less than 10, all permutations

were selected.
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It was also observed that some features had very low variance and not helpful in a

regression. The feature matrices after the first prune were scaled and the features with

low variance were removed by “Pruning 2”.

All feature matrices were combined to form a large pool of features and the final feature

matrix was achieved by further pruning. This final pruning, “Pruning 3”, was carried

out to remove features that were reciprocals of each other e.g. the feature generation

framework treats EMA(H,5) and 1/EMA(H,5) as 2 distinct features but it is unclear if

these 2 features add any additional information to the learning task. The MD5 hash

for these 2 features are the same and this was exploited to keep only one of the features

in the final matrix.

Continuing with the methodology of feature generation, ways of automatically generat-

ing only “good” feature subsets were also investigated. GE combines feature generation

with feature selection by using the fitness function of the underlying GA to assess fea-

ture subset goodness using a wrapper approach. It is also shown that more degrees of

freedom can be allowed in grammar by allowing recursive rules (see next section). This

means that GE does not need any explicit feature pruning. Feature generation using

GE is entailed in the next section.

3.5 Feature Generation using GE

In this section, GE is proposed as a novel feature subset selection process. The grammar

families in Table 3.10 were designed to generate trend, momentum and volatility type

indicators for financial/electricity load time-series prediction and an initial population

is evolved using GE to generate feature subsets that are better suited for prediction

task at hand. Note the recursive rule (1.a) in the momentum family.

The theoretical background of GE was explained in Sec. 2.7. Fig. 3.5 illustrates how

the momentum grammar family maps a binary chromosome to a feature, namely the

MACD technical indicator. The binary chromosome has 8 codons and each codon is

converted to an integer resulting in the integer chromosome. The GE technique can

also be directly used with integer chromosomes but using binary chromosomes leads to
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Moving average grammar family

N = {expr, der-var, base-var, pre-op, base-op, var}
T = {delt, diff, ema, sma, wma, max, min, H, L, C, n, (, ) }
S = <expr>

Production rules : R

〈expr〉 ::= 〈der-var〉 (1.b)
| 〈base-var〉 (1.c)

〈der-var〉 ::= 〈pre-op〉(〈base-var〉, n) (2.a)

〈base-var〉 ::= 〈base-op〉(〈var〉) (3.a)
| 〈pre-op〉(〈var〉, n) (3.b)
| 〈var〉 (3.c)

〈pre-op〉 ::= ema | sma | wma | max | min (4.a), (4.b), (4.c), (4.d), (4.e)

〈base-op〉 ::= delt | diff (5.a), (5.b)

〈var〉 ::= H | L | C (6.a), (6.b), (6.c)

Momentum grammar family

N = {expr, var-op, op, var}
T = {÷, -, delt, lag, ema, H, L, C, n, k, (, ) }
S = <expr>

Production rules : R

〈expr〉 ::= (〈expr〉)〈op〉(〈expr〉) | 〈var-op〉 (1.a), (1.b)

〈var-op〉 ::= lag(〈var〉, k) | ema(〈var〉, n) (2.a), (2.b)

〈op〉 ::= ÷ | - (3.a), (3.b)

〈var〉 ::= H | L | C | delt(H) (4.a), (4.b), (4.c), (4.d)

Volatility grammar family

N = {expr, var-op, op, var}
T = {+, -, abs, ema, sd, meandev, H, L, C, n, (, ) }
S = <expr>

Production rules : R

〈expr〉 ::= ema(〈var-op〉, n) + sd(〈var-op〉) (1.a)
| ema(〈var-op〉, n) - sd(〈var-op〉) (1.b)

〈var-op〉 ::= abs(〈var〉) | meandev(〈var〉) | 〈var〉 (2.a), (2.b), (2.c)

〈var〉 ::= H-L | H-C | C-L (3.a), (3.b), (3.c)
| H | L | C (3.d), (3.e), (3.f)

Table 3.10: High, low and close value based multi-family grammar.

better genetic diversity. The start symbol is S=<expr>. The first codon value is 222.

Since there are 2 production rules (1.a), (1.b) that the non-terminal element <expr>

can take, (codon integer value) MOD (number of rules for the current non-terminal)

is evaluated as 222%2 = 0 which points to rule (1.a). The derivation sequence of the

figure can be understood in this manner noting that the left-most non-terminal is always

expanded.
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<expr> ::= (<expr>)<op>(<expr>)
<expr> ::= <var-op>

<var-op> ::= lag(<var>, k)
<var-op> ::= ema(<var>, n)

<op> ::= ÷
<op> ::= -

<var> ::= H
<var> ::= L
<var> ::= C

Momentum Grammar Family

0
1

0
1

0
1

2

0
1

<expr>
222%2 = 0

(<expr>)<op>(<expr>)
125%2 = 1

(<var-op>)<op>(<expr>)
71%2 = 1

(ema(<var>, n))<op>(<expr>)
44%3 = 2

ema(C, n)<op>(<expr>)
154%2 = 0

ema(C, n)-(<expr>)
11%2 = 1

ema(C, n)-(<var-op>)
181%2 = 1

ema(C, n)-(ema(<var>, n)
233%3 = 2

ema(C, n)-(ema(C, n)

222 125 71 44 154 11 181 233

11011110 01111101 01000111 00101100 10011010 00001011 10110101 11101001 Binary Chromosome (Optional)

Integer Chromosome

Derivation Sequence
(Exapnding the left-most non-terminal)

Figure 3.5: GE mapping from a linear binary (or integer) chromosome.

It was expected that a good mix of trend, momentum and volatility type formulae could

result in better predictions. Therefore, gene partitions of individual chromosomes were

mapped into different grammar families. Fig. 3.6 depicts such an examplary mapping

of 5 features to 3 grammar families. The binary form of a chromosome is represented

as a set of stacked genes for clarity. Each n bit long individual was dissected to N gene

partitions where each gene was considered a feature and GE was independently applied

on each partition, e.g. for an individual of 1280 bits with 10 features n = 1280, N = 10.

011000101010101010101010101010101010

101010101101000111001010101111000101

100101010101110101010101110001010101

001010001010111001010101110000101001

010011101010111000101010111000110101

Grammar 

family 1

Grammar 

family 2

Grammar 

family 3

Figure 3.6: Gene partition mapping example for 5 features.

It was already mentioned that GE uses standard genetic operators. Individuals were se-

lected for recombination using the fitness proportionate selection (also known as roulette
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wheel selection). Random mutation was employed and a modified version of multiple-

point crossover in Fig. 3.7 was used. The stacked gene was partitioned based on

randomly selected cross-over points and the sections were interchanged to produce the

children. This crossover ensured that inter-grammar-family crossover is avoided. Elite

individuals were passed to the next generation without mutation or crossover.

Parent 1 Parent 2

Child 1 Child 2

Cross-over points

Gene 1

Gene 2

.......

Gene n

n integers in
N partitions

N partitions

Child 1 unwrapped

n integers

Figure 3.7: Proposed multiple-point crossover.

The unique advantage of using GE is the ability to exploit the GE fitness function as

an inherent mechanism to penalize bad feature subsets and to evolve the population

towards “good” feature subsets that lead to better predictions. Different parameters

can be controlled to get feature subsets with desired properties (feature complexity,

number of parameters in the features, feature expression character length etc.). This

crafting of GE fitness function as a wrapper is described in Sec. 4.3.2.

3.6 Summary

This chapter described the core functionality of the feature generation framework. The

mechanism in which the rule sequences were invoked to generate feature expressions was

illustrated for simple and complex feature expressions, i.e. technical indicators. The

issue of large feature spaces was brought up and selective feature pruning strategies

used to contain the most informative features was presented. It was highlighted that

the fitness function of grammatical evolution can be used as an inherent mechanism

to penalize bad feature subsets hence selective feature pruning can be avoided. The

importance of feature selection was highlighted and the next chapter presents how the

generated feature space was mined to seek better features.



Chapter 4

Feature Selection

The previous chapter presented the proposed approach to generate a large number

of features using an expert defined grammar framework. This chapter proceeds to

investigate ways to explore such large feature spaces to extract the best features for

prediction, i.e. feature selection (FS). Several FS and feature extraction techniques

were explored to determine the best approach to discover “good” feature subsets for

particular ML algorithms.

4.1 Common Input Features

When applying ML techniques for a time-series prediction task, the input features are

usually chosen by domain experts. Different application domains adopt features of

different style, e.g. financial time-series prediction applications use technical indicators,

electricity load time-series prediction applications use a history window, temperature,

calendar information etc. The common input features for financial time-series and

electricity load time-series prediction were surveyed and are presented in Tables 4.1 and

4.2 respectively. These common features were used as a basis to construct grammar

structures for each application. By doing so, it was possible to generate commonly used

features and many other potentially “good” feature subsets in a large candidate feature

47
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pool. It can be noticed that similar input features are used with different learners in

different studies with seldom changes in input feature formulation choice.

4.1.1 Stock Index Time-series Prediction

The analysis of financial time-series is of critical importance to a wide range of business

such as corporate banks, broker firms, individual investors and other organisations.

Such analysis is used for the hedging of risk, speculative and algorithmic trading, port-

folio management, planning and other activities. The accuracy of financial predictions

and the speed at which the predictions can be obtained is of great interest. The effi-

ciency and complexity of financial markets however, makes reliable learning of financial

time-series an extremely challenging problem.

Seminal work by Fama [75], proposes the random walk hypothesis on stock-market

patterns and concludes that “The main conclusion will be that the data seem to present

consistent and strong support for the model. This implies, of course, that chart reading,

though perhaps an interesting pastime, is of no real value to the stock market investor”.

Many subsequent studies agree with this theory while an equal number disagree. Lo

et al. [76] uses non-parametric kernel regression and conclude that “several technical

indicators do provide incremental information and may have some practical value”. It

has always been a controversial topic and it is generally believed that some predictability

can be achieved over some time-periods. Based on this belief, many studies are still

conducted on pure financial time-series prediction.

The purpose of this research is to investigate the success achieved by using effective,

but seemingly unconventional feature combinations which are not apparent to human

experts. Hence, the thesis does not attempt to make advances in the state-of the

art financial time-series prediction systems. Nevertheless, it is straightforward for any

state-of-the art financial prediction system to make use of the proposed approach as a

pre-processing stage to select feature subsets.

A standard approach in financial time series literature is to pick a set of standard

technical indicators and/or external economic factors as input features to machine
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Features Method Reference

Previous hour load history windows SVM [5, 71]

Previous week’s hourly load information, temperature information, calendar
information

SVM [7]

Previous load information and differenced values, Daubechies wavelets (Multi
resolution analysis of hourly load upto 168 hours ago) and differenced values,
temperature information

ANN [72]

Wavelets (Multi-resolution analysis of hourly load upto 500 hours ago), tem-
perature information

ANN,
GA

[73]

Empirical Mode Decomposition (Multi-resolution analysis of hourly load),
temperature information

SVM [74]

Table 4.2: Common input features used in short-term electricity load time-series
prediction.

learning (ML) algorithms. Table 4.1 presents the symbols of technical indicators used,

number of technical indicators used and method in 12 studies. [25, 60, 65] used standard

technical indicators as features in the support vector machine (SVM) to predict financial

time-series. In a similar fashion, standard technical indicators have also been used

as features in neural networks [25, 64, 70]. [66, 68] used kernel principal component

analysis (KPCA) to reduce the dimensionality of the feature space formed by standard

technical indicators and used SVM and neural network to predict stock prices. Other

techniques such as SVMs optimized using genetic algorithm (GA) [61], neural networks

optimized using adaptive fish swarm algorithm (AFSA) [69], boosted experts using

GA [61], adaptive bacterial foraging optimization (ABFO) [67] have also been used to

model financial time-series. All these applications manually selected a set of standard

technical indicators as features for different ML techniques.

In the above-mentioned works, the authors identify a subset of the standard technical

indicators that are deemed informative. In each case, the technical indicator used, the

number of technical indicators selected and more importantly, the technical indicator

parameters used is not the same with some overlap between different works. However,

the choice is generally ad-hoc. It would therefore be useful to have a framework that

can automatically generate interesting feature combinations by systematically guiding

the generation of a pool of candidate features that have a meaningful interpretation.
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4.1.2 Electricity Load Demand Time-series Prediction

Accurate load prediction plays a major role in distribution system investments and

electricity load planning and management strategies. Bunn and Farmer [77] pointed

that a 1% increase in prediction error implied a £10 million increase in operating costs.

While overestimation results in an unnecessary spinning reserve and undesired excess

supply, underestimation causes failure in providing sufficient reserve and implies high

costs per peaking unit. Therefore, it is desirable to predict electricity load demand

accurately. It is shown that using decomposed signals is more effective in ML based

electricity load prediction than using raw time-series signals [78]. Fourier series can

be used to decompose electricity load time-series but it is far useful when the time-

series is stationary. Empirical mode decomposition (EMD) and wavelet transforms are

the most popular approaches. In predicting non-stationary time-series, such multi-

resolution decomposition techniques can be used for elucidating complex relationships

[79, 80]. The wavelet transform can produce a good local representation of a signal in

both time and frequency domain and is not restrained by the assumption of stationarity.

EMD is an alternative to wavelet transform but EMD based feature generation is not

adapted in this thesis. History windows and first differences of the raw time-series and

decomposed components seem to be popular expert hand picked features in electricity

load time-series prediction (see Table 4.2).

4.1.3 Better Feature Combinations than Common Input Features?

From Tables 4.1 and 4.2 it can be seen that applications tend to use a similar set of

features over and over with ad-hoc parameter values. As brought in Chapter 1, we

were intrigued by the question, “can we find feature combinations better than a human

expert selected features for a given ML architecture?”. It can be argued that having a

better observation language can lead to a better hypothesis language leading to a better

solution hypothesis (see Chapter 1). By searching for better input feature combinations

generated via an expert defined grammar framework, the thesis answers this question

under certain conditions.
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4.2 Data Partitioning for Time-series Prediction

In a typical application of ML to time-series prediction, it is common practice to divide

the time-series into training, validation, and testing (out-of-sample) sets. The training

set is used to construct a model. The model is supposed to fit the samples in the training

set. The validation set is used to evaluate the generalization ability of the trained

model. The model parameters are tuned such that the model performs satisfactorily

on the validation set. The final evaluation of the model is based on its performance

on the testing set. No changes to the model should be made by repeatedly performing

a series of train-validation-test steps and adjusting the model parameters and features

based on the model performance on the testing set. This is a form of “peeking” (see

Sec. 4.4).

ValidationTraining Testing

Figure 4.1: Training, validation and testing samples in a typical ML application.

The training set is the largest in size and the validation set is usually 10% - 30% of the

training set size. The testing set should have sufficient samples to evaluate the trained

model (in this research the same sample size is used for both the validation and the

testing set). The testing set should consist of the most recent contiguous observations.

Day 1

Day 2

Day 3

Day n

N Days

N Days

N Days

N Days

Figure 4.2: The sliding window approach for daily model retraining.

A more rigorous approach called the sliding or moving window (also known as walk-

forward testing) is a form of online training because the model is frequently retrained.
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The number of samples in the testing set determines the retraining frequency of model.

For one-step ahead predictions, this means that the model can be retrained after every

prediction. The data is divided into a series of overlapping training-validation-testing

sets. The typical training-validation-testing concept is still present, but now only the

most recent observations are used to construct models. This is depicted in Fig. 4.2

for daily model retraining. Frequent retraining is more time consuming but allows the

models to adapt more quickly to the non-stationarity in time-series.

4.2.1 Data Preprocessing

The feature matrix is “cleaned” before being used by any ML model. The missing values

are interpolated, the infinite values are replaced with a finite maximum threshold and

the outliers are usually removed.

The training and validation sets are scaled together since the purpose of the testing set

is to determine the ability of the network to generalize. However, the testing set should

not be scaled with either the training or validation sets since this biases the integrity

of the validation set as a final and independent check on the model.

Self-organizing map (SOM) makes use of a set of prototype vectors representing the

data set and performs a “topology preserving projection” of the prototypes from input

space to a low dimensional grid [81]. This ordered grid can be used as a visualization

surface to identify clusters in the original data in an unsupervised manner. This has

been exploited in many time-series prediction applications such as electricity load time-

series prediction to identify similar data patterns, e.g. if the objective is to predict the

electricity load in January, a SOM can be used to identify periods (months) that show

similar load patterns to January. Training a model only on similar data patterns can

not only lead to better prediction but also reduces the model training time.
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4.2.2 Model Selection and Parameter Tuning

Model selection and parameter search is critical to the performance of any ML al-

gorithm. For a support vector machine (SVM), the kernel function is such a pa-

rameter that should be chosen to maximize the performance. Radial basis function

(RBF) which non-linearly maps the samples to the high-dimensional space is gener-

ally known to work well in many applications. The RBF with the kernel parameter

γ, i.e. K(xi, xj) = exp(−γ‖xi − xj‖2), where xi, xj are the input training vectors,

i, j = 1, 2, . . . ,m was found to work well. For a SVM using a RBF kernel, the param-

eters C, γ needs to be tuned where C is the penalty term (see Sec. 2.8). Improper

parameter selection can lead to over/under fitting [3]. Cross-validation via parallel

grid-search, genetic algorithms, random search, heuristics search and inference of model

parameters within the Bayesian evidence framework are some parameter search tech-

niques. The performance of different parameter combinations is assessed by the learner

performance, e.g. mean squared error.

The experiments in this thesis use parameter evaluation via a parallel grid-search on the

validation data. Parameter tuning using the validation data prevents the over-fitting

problem. The final performance of the learner is evaluated using the best parameters

in the validation phase.

K-fold cross validation, 2-fold cross validation, leave-one-out cross validation and re-

peated random sampling cross validation are some popular cross validation techniques.

Time-series cross validation is slightly different because the data are not independent

and leaving an observation out does not remove all the associated information due

to the correlations with other observations. Time-series cross validation was done as

follows as suggested by Hyndman [82],

1. Fit the model to the data y1, . . . , yt and let ŷt+1 denote the prediction of the next

observation. Then compute the error RMSE as e∗t =
n∑
i=1

(yi − ŷi)2

2. Repeat step 1 for t = m, . . . , n−1 where m is the minimum number of observation

needed for fitting the model

3. Compute the average RMSE from e∗m+1, . . . , e
∗
n
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4.3 Feature Selection Techniques

CFG

Common
Features

Generated
Features

Wrappers

PCA

Filters

Grammatical Evolution (GE)

Figure 4.3: Different feature selection techniques explored.

This section presents the FS techniques investigated in the research. As mentioned in

Chapter 3, the CFG based framework generates a large number of features parametrized

by the look-back period N , window-size n and lag k. Some features have no parameters

while others have one or both. It is important to select the appropriate (N,n, k) for

each feature to obtain the most informative features, e.g. some specific lags (k) of a

feature can have much important information than other lags of the same feature, a

feature with a shorter window (n) can have better predictive power than the same

feature with a longer window.

As shown in Fig. 4.3, a range of FS techniques were explored to compare the perfor-

mance. The filter FS techniques (see Sec. 2.4.1) used were information gain, maximum-

relevance-minimum-redundancy (mRMR), correlation and Releif. The individual fea-

ture goodness for each feature was assessed against the target variable, e.g. the closing

price of stock index time-series. Once the features were ranked, an appropriate num-

ber of features was used for the prediction task. The advantage of filters is that they

are extremely fast compared to wrapper based FS. As already mentioned, filter ranked

features can have redundancies since similar features have equal rankings (weights).

Furthermore, individual feature goodness does not translate to better predictive power

when used in ML algorithms. Therefore, it is hard to determine the optimal number

of features to use. PCA and wrapper approaches which are described in Sec. 4.3.1 and

4.3.2 lead to better results. The use of grammatical evolution (GE) as a wrapper based

hybrid feature generation and selection technique is explained in Sec. 4.3.2.
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4.3.1 Dimensionality Reduction using PCA

Principal component analysis (PCA) has been proposed as an effective FS technique

in many applications. The generated features were first ranked according to different

filter criteria and the number of features to perform PCA on was chosen based on a

sharp cut-off threshold. PCA was applied on this chosen number of features. Different

numbers of principal components accounting for different threshold in the variance of

original data were used as the features and the performance was compared.

N Days

PCA

Transformed
Features

Rotational
Matrix

Scaling
Matrix

NxM 1xM

NxM MxM 1xM

Transform Day 1-N Day N+1

Day 2-(N+1) Day N+2

Day i-(N+i-1) Day N+i

Stored
PCA Train

Stored
PCA Test

Figure 4.4: PCA transformations for the ith day.

PCA for large matrices is a time-consuming process. When using the sliding window

technique for PCA predictions m models should be constructed, where m is the testing

set size. If the size of the parameter grid is 100 × 100, the total number of models

becomes 100 × 100 × m and an equal number of PCAs should be performed. Since

the calculations are required to be performed within a reasonable time, the PCA com-

ponents (transformed feature matrix, rotational matrix and scaling matrix) on each

training window was stored and reused as illustrated in Fig. 4.4. The testing day

features were scaled and rotated using the rotational and scaling matrices of the train-

ing data as shown. This approach requires only m PCAs to be performed hence less

time-consuming.
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4.3.2 Feature Selection using Integer Genetic Algorithms

The generic details of canonical GAs were presented in Sec. 2.6.1 and this section

elaborates specificities of adopting integer GA for FS.

Fig. 4.5 shows the proposed architecture for integer GA based FS. Chromosomes are

selected from the population which are then mapped to feature subsets using the defined

CFG. These subsets are evaluated and the best subsets are selected by a wrapper

approach using a particular learner architecture with fixed parameter settings. The

population is evolved such that the learner architecture has a minimum cross validation

error.

Chromosome

Evolutionary Operators

Feature Subset Goodness Evaluation

Feature
Subsets

ML
Algorithm Fitness

Criteria?Selection

Cross-over

Mutation
Exit

CFG

Initial Population

Yes

No

Figure 4.5: System architecture for integer GA based FS.

The initially generated feature space space was too large for the search algorithms to

converge in a reasonable time. Therefore, when GE was not used as a hybrid feature

generation and selection technique, the feature space was first shrunken by using mRMR

criterion to rank and select top features. This shrunken feature space was used to seek

better performing feature subsets using the wrapper approach.

In order to quickly discover better feature subsets, specific chromosomes were placed in

the initial population which were known to work well in general, e.g. standard technical

indicators in financial time-series prediction. This is possible since the rule sequence to
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generate a specific technical indicator (or a feature in general) is known. This ensures

that the initial population is healthy and encourages the generation of high performing

feature subsets. The rest of the population consists of randomly generated individuals.

Consider the integer chromosome [302|237|2|451| . . . |871|23|657|77|549]. Each gene rep-

resents a feature number. For example if the feature space size was 1000 features, the

chromosome says to select the features 302, 237, 2 and so on. Integer GA mutation was

done according to the criterion x(1 + rand(−0.05, 0.05)), where x is the current codon

and rand was a function which generated a random number between -0.05 and 0.05

(as opposed to random bit flipping in canonical GA). Cross-over and selection criteria

were unchanged. The feature subset size was varied by varying the chromosome length,

i.e. the number of genes. Because of the inherent random nature of the GA algorithm

it is usually run multiple times before drawing any conclusions. At least 10 trials were

performed in the work involved with this thesis and a final result was reported as the

best, worst and the average performance for the 10 runs as in standard practice.

4.3.3 Wrapper based Feature Subset Evaluation

This section explains wrapper based FS and in particular how the GE fitness function

can be crafted to select good feature subsets. The feature subset evaluation steps used

in electricity load time-series prediction using GE are shown in Algorithm 2. The in-

dividuals with the lowest score were deemed to be the best. e(Yk) is the MAPE (mean

absolute percentage error), given by 100
n

n∑
i=1

∣∣∣ yi−ŷiyi

∣∣∣ where n is the number of predictions,

y is the target and ŷ is the predicted value. To choose robust features providing good

generalization, time-series cross validation was used (see Sec. 4.2.2). The lines 6-8 cor-

respond to time-series cross validation and N was chosen to be 5, i.e. 5-fold time-series

cross validation. q(·) is an assessment of the symbolic feature expression complexity,

taking into account the length, the number of operations and pre-operations. Since

GE generated feature subsets can include non-terminal expressions, c(·) was calculated

based on the number of non-terminal elements NNT in subset Yk (a subset containing

many non-terminal elements was considered as poor). When GE was not used, the

genetic feature subset evaluation steps are specified in Algorithm 3.
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Algorithm 2 Feature subset evaluation procedure using GE

Input current integer chromosome

1: Extract individual genes from the current chromosome

2: Map genes into grammar families (if necessary)

3: Derive symbolic features

4: Generate numeric feature subset Yk for each time stamp

5: Append calendar information to Yk (see Chap. 5)

6: for i in 1:N do

7: err[i] = ML algorithm MAPE in validation sample i

8: end for

9: Calculate the average MAPE e(Yk) = mean(err)

10: Calculate the final score J(Yk) = e(Yk) + q(Yk) + c(NNT )

Output J(Yk)

Algorithm 3 Feature subset evaluation procedure

Input current symbolic features

1: Generate numeric feature subset Yk for each time stamp

2: Append selected expert suggested features to Yk

3: for i in 1:N do

4: err[i] = ML algorithm performance metric in validation sample i

5: end for

6: Calculate the average performance metric e(Yk) = mean(err)

Output e(Yk)

4.4 Avoiding Peeking

In this thesis, the term “peeking” refers to scenarios where future data is mistakenly

used to get an insight to the future behaviour. This section explains 2 techniques that

were implemented to ensure that this mistake is avoided.

(i) It was ensured that in prediction or parameter tuning, the implementation function

had no access to future data. The safest way to avoid peeking when predicting xt+1 is to
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ensure that all training samples are time-stamped and the prediction/tuning function

to return an error/terminate if it encounters any samples with time-stamps after xt.

The wavelet decomposition should also be carried out in an incremental manner to

avoid peeking as described in Appendix A.

(ii) Even if the time-stamp check is performed, there is still the risk of peeking involved

in feature construction. It was ensured that a particular feature is constructed with only

past values. A validity test was devised to confirm this. This test compared features

constructed from all data up to time t with features constructed from all data up to

time t + k for some interval k. The numeric evaluation of the constructed features in

two cases should be identical for the period t. If this is not the case, it implies that in

constructing features for the period t, the data in interval k has been used in some way.

4.5 Summary

This chapter investigated commonly and widely used features in financial and electric-

ity load time-series prediction. The steps involved is data partitioning for time-series

prediction was also explained. The rest of the chapter described how the feature se-

lection techniques explained in Chapter 2 were used in practice for filter and wrapper

based feature selection. Since the proposed framework involves the generation of a

large pool of features, there is a high probability of redundant and irrelevant features.

Therefore, feature selection is equally important as feature generation. The proposed

hybrid feature selection and generation algorithm using grammatical evolution was de-

scribed as a technique to avoid selective feature pruning by crafting the fitness function

to penalize bad feature subsets. Now that the theory and methodology is covered, the

next chapters present and analyse the results to conclude the thesis.
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Results

This chapter presents how the performance of selected learning algorithms is affected by

using various input feature combinations with different parameter values. The results

are discussed under three sections for stock market index time-series, electricity load

demand time-series and foreign-exchange client trade volume time-series. The effective-

ness of the feature subsets selected using the proposed approach was compared to the

performance of the same algorithms trained using commonly (and widely) used input

features and other benchmarks. By “good” features, a reference is made to features

that are “good for a particular ML algorithm architecture/configuration” because it is

difficult to define universally good features.

5.1 System Performance on Predicting Stock Indices

A stock market index reflects the movement average of many individual stocks rather

than the movement of a single stock. It can be believed that stock market indices are

easier to model and predict than individual stocks, which can be very volatile.

Numerous studies, some which are summarized in Table 4.1 use technical indicators as

input features for prediction. This relies on the past events of the time-series captured

using technical indicators repeating to produce reliable predictions and is known as

61
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technical analysis. This section explores the effectiveness of using such standard tech-

nical indicators as features and attempts to discover numeric feature combinations with

different parameter values that can give better predictions.

The system performance was assessed on the daily closing prices of leading financial

stock indices in Table 5.1. The data were downloaded from “Yahoo! Finance” using

the quantmod package in R [83] and comprise of daily recordings between 16 October

1998 and 19 June 2006 (1900 trading days). The data preprocessing and parameter

tuning was carried out as described in Chapter 3.

Symbol Index Name Listed Exchange

AORD All Ordinaries Index Australia Stock Exchange
FTSE FTSE-100 Index London Stock Exchange
GDAXI DAX Index Germany Stock Exchange
GSPC S&P-500 (Standard and Poor’s) Index -
HSI Hang Seng Index Hong Kong Stock Exchange
TWII Taiwan Weighted Stock Index Taiwan Stock Exchange
NDX NASDAQ-100 Index NASDAQ Stock Market
N225 NIKKEI 225 Index Osaka Securities Exchange
SSEC Shanghai Stock Exchange Composite Index Shanghai Stock Exchange
SSMI Swiss Market Index Six Swiss Exchange

Table 5.1: Major world financial indices.

The predictability of indices was first assessed using widely used standard technical

indicators in Table 3.5 with the exception of SMA and WMA because EMA is much

popular. The grammar families in Tables 3.6,3.7, B.1-B.5 were used to generate a large

pool of features and different feature selection (FS) criteria in Sec. 2.3 were used to

select custom technical indicator combinations with different parameter values. For a

fair comparison, the number of features used in both cases was the same, 25 features.

Support vector regression (SVR) and back-propagation neural network (BPNN) were

used as ML methods and the experiment configuration details are in Table 5.2. SVM

with a Gaussian kernel was found to work best and the parameters were selected by

a grid search parallelized on multiple cores using the snowfall package in R [84] (see

Appendix C Sec. C.2 for selected parameters). The SVM was implemented using the

e1071 package [85]. For the BPNN, a 3 layer architecture with 8 hidden nodes was

implemented [3, 25, 64, 66, 69, 70] using the Neural Network Toolbox in MATLAB®.
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Prediction horizon One-day ahead
Training period 1998-10-16 to 2004-11-11 (1500 days)
Validation period 2004-11-12 to 2005-09-01 (200 days)
Testing period 2005-09-02 to 2006-06-19 (200 days)

Support vector regression + Gaussian kernel

SVM cost range (C) {1, 5i, i = 1, 2, . . . , 40}
SVM kernel hyper-parameter range (γ) 100 values spread out between {0.00001, 1}
SVM hyper-parameter (ε) 0.1, 0.01, 0.001

Back-propagation neural network

Number of layers 3 (input, output and hidden)
Number of nodes in hidden layer 8
Other learning parameters Optimized for best validation performance *

Table 5.2: Financial index prediction experiment configuration.

* The learning rate, momentum and other learning parameters were automatically decided by the
MATLAB Neural Network Toolbox to get the best performance by using the least number of epochs.

The steps involved in the financial time-series prediction experiments are in Table 5.3.

(1) Select a ML algorithm, e.g. SVM
(2) Select well-known (and widely used) technical indicators (25 standard technical
indicators as described above)
(3) Use the validation data to select an appropriate kernel (linear, polynomial and
Gaussian kernels were considered) for the 25 standard technical indicators
(4) Optimize kernel parameters for the 25 standard technical indicators - Result 1
(5) Generate grammar features
(6) Apply pruning strategies to prune the feature space
(7) Use mRMR to shrink the grammar feature space
(8) Use integer genetic algorithm (GA) with fixed parameter valued SVM as a wrap-
per to select feature subsets from the shrunken space
(9) Re-optimize the kernel for the integer GA selected feature subset - Result 2

Table 5.3: Steps in the financial time-series prediction experiments.

To gauge the performance of the ML techniques, a comparison was made with the

naive approaches such as the previous close, exponential moving average (ema) with

windows size p = 5, 10, 15, and traditional model-based approaches: exponential time-

series smoothing (ETS) and autoregressive integrated moving average (ARIMA). The

performance was assessed based on the RMSE (root mean squared error) =
n∑
i=1

(ai−pi)2

and MAE (mean absolute error) =
n∑
i=1
|ai− pi| for validation and test periods, ai is the



Chapter 5. Results 64

actual value and pi is the predicted value. The results are first summarized for GSPC in

Table 5.4. The integer GA FS proved computationally too burdensome for the BPNN

and hence omitted.

GSPC Result Comparison Validation Test

RMSE MAE RMSE MAE

1 Naive 1 - Previous Close, Ck−1 - - 7.61 5.88
2 Naive 2 - ema(C, 5) - - 9.39 7.67
3 Naive 3 - ema(C, 10) - - 11.36 9.49
4 Naive 4 - ema(C, 15) - - 12.95 10.82
5 ARIMA (1, 1, 1) * - - 7.58 5.87
6 ETS * - - 7.60 5.87

BPNN

Input Features

7 Standard Technical Indicators 7.82 6.35 7.86 6.02
9 Grammar - PCA ** 7.73 6.13 7.69 6.01
10 Grammar - Releif 8.14 6.64 8.05 6.35
11 Grammar - Correlation 7.96 6.37 8.34 6.40
12 Grammar - Info. Gain 7.75 6.18 7.69 6.02
13 Grammar - mRMR 7.69 6.07 7.60 5.84

SVM

Input Features

14 Standard Technical Indicators 7.73 6.25 7.54 5.93
15 Grammar - PCA ** 7.78 6.32 8.10 6.41
16 Grammar - Releif 7.97 6.69 8.03 6.29
17 Grammar - Correlation 8.24 6.14 7.68 6.08
18 Grammar - Info. Gain 7.64 6.06 7.51 5.81
19 Grammar - mRMR 7.73 6.08 7.51 5.82

20 Grammar - GA Best 7.63 5.98 7.45 5.80
21 Grammar - GA Average *** 7.71 6.07 7.49 5.83
22 Grammar - GA Worst 7.75 6.11 7.51 5.86

Table 5.4: Performance of different techniques on GSPC.

* The parameters for the ETS and ARIMA models were chosen using the forecast package [86] (see
Appendix C C.1 for implementation details).

** For fair comparison only the first 25 principal components were used.

*** Feature subset selection using GA was repeated 10 times with different subset initializations. The
results were averaged over the 10 runs.

Based on the result for GSPC the following observations were made.

• SVM and BPNN were able to outperform naive approaches and model based

approaches ARIMA and ETS
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• The reduction in the errors using the SVM was more pronounced compared to

the BPNN

• SVM and BPNN using grammar features selected using integer GA, information

gain and mRMR were found to reduce the validation and test errors compared to

the same methods using standard technical indicators

• SVM using integer GA selected features was able to outperform all other ap-

proaches

• Results were consistent for RMSE and MAE in general

It can be stated that the grammar framework performed well for GSPC in comparison

to model based, naive approaches and ML methods with standard technical indicators.

It is evident that the generated feature space contains feature combinations with some

additional information not captured by the commonly used standard technical indi-

cators. This implies that better solution hypothesis can be formulated by grammar

generated features provided that “good” feature subsets for the particular ML algo-

rithm are selected. FS therefore plays a critical role. Based on the above observations,

the results for other indices are compactly presented in Table 5.5. Only the RMSE is

reported and the BPNN and SVM performance is evaluated for the standard techni-

cal indicators and selected grammar features using mRMR and integer GA. ARIMA,

ETS, AR(1) and EMA = ema(C, p=5) results are also shown. Based on this empirical

study involving a range of stock indices, the following can be stated. The results were

consistent when the metric was changed to MAE.

• In general, the grammar features reduce the validation and test errors in the ML

techniques. For example, for NDX, the reduction is by (1.52, 2.82) by using the

BPNN with mRMR and (0.49, 0.78) for the SVM using integer GA. Similarly,

for HSI, the best reduction is by (1.80, 2.57) using the BPNN and (7.77, 1.59)

using the SVM. The grammar features reduced the validation and test errors for

GSPC, HSI, SSMI, SSEC, FTSE, N225, NDX and TWII using the BPNN (8/10

indices) and GSPC, HSI, SSMI, FTSE, N225, NDX and AORD (7/10 indices)

using the SVM.
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HSI SSMI SSEC

Method Validation Test Validation Test Validation Test

ARIMA - 138.95 - 47.96 - 19.78
ETS - 139.95 - 47.13 - 19.78
AR(1) - 140.24 - 47.60 - 19.71
EMA - 183.51 - 61.42 - 28.16

BPNN (TIs) 100.00 155.43 34.07 49.22 16.57 20.86
BPNN (Grammar - mRMR) 99.71 140.55 33.56 43.98 16.33 19.02

SVM (TIs) 107.48 136.70 36.04 46.26 16.50 18.03
SVM (Grammar - GA Avg.) 99.71 135.11 33.55 46.17 15.79 18.54

SVM (Grammar - GA Best) 97.30 133.71 33.53 45.73 16.64 18.27
SVM (Grammar - GA Worst) 101.33 137.12 33.57 46.55 16.77 18.92

FTSE N225 NDX

Method Validation Test Validation Test Validation Test

ARIMA - 34.33 - 207.07 - 14.35
ETS - 33.54 - 207.13 - 14.05
AR(1) - 33.71 - 207.21 - 13.98
EMA - 42.63 - 275.20 - 14.75

BPNN (TIs) 26.79 36.19 90.09 211.94 15.79 16.90
BPNN (Grammar - mRMR) 25.48 34.61 85.80 221.79 14.14 15.78

SVM (TIs) 26.34 40.27 94.29 203.89 14.89 15.15
SVM (Grammar - GA Avg.) 25.30 32.64 86.49 203.30 14.40 14.37

SVM (Grammar - GA Best) 24.77 32.27 85.96 202.70 14.22 14.04
SVM (Grammar - GA Worst) 26.11 33.37 86.49 204.35 15.68 14.75

GDAXI TWII AORD

Method Validation Test Validation Test Validation Test

ARIMA - 44.19 - 69.52 - 29.97
ETS - 44.08 - 69.46 - 29.98
AR(1) - 44.18 - 69.41 - 29.97
EMA - 58.26 - 96.55 - 38.81

BPNN (TIs) 31.77 47.73 47.97 71.02 22.43 54.18
BPNN (Grammar - mRMR) 36.69 51.37 46.88 70.94 21.22 73.98

SVM (TIs) 31.04 43.70 48.61 66.85 26.06 29.23
SVM (Grammar - GA Avg.) 29.94 44.49 46.99 67.13 21.53 28.61

SVM (Grammar - Best) 27.45 43.93 46.39 67.00 21.87 27.95
SVM (Grammar - GA Worst) 30.12 46.28 47.03 67.41 21.04 30.14

Table 5.5: RMSE for validation and test data for major stock indices using the
ARIMA, ETS, AR(1), EMA, BPNN using technical indicators (TIs) and grammar
feature subsets selected using mRMR and SVM using TIs and grammar feature subsets

selected using mRMR and integer GA.
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• The reduction in the errors using the SVM was more pronounced compared to

the BPNN. Furthermore, the accuracy of the estimates was higher for the SVM

in most cases. The superior performance of SVM might be due to better gen-

eralization achieved by structural risk minimization as opposed to empirical risk

minimization in BPNN [3]. The poor generalization is clearly observed in BPNN

for AORD. Additionally, the large number of free parameters in BPNN (hidden

layers, number of hidden nodes, learning rate, momentum, epochs, transfer func-

tions and weight initialization methods) requires extensive empirical parameter

estimation to achieve optimal results.

• For NDX, the model-based approach AR(1) showed superior performance (1/10

indices). The superior performance of model based approaches in test is most

likely due to some structure in the time-series where there is dependence on the

history. This is supported by the RMSE which is considerably smaller compared

to other indices which seems to suggest that such models provide a reasonable fit

to the data. However, it can be observed that the performance of the model-based

methods is only marginally better than the ML techniques.

• In general, integer GA performed the best followed by mRMR and information

gain.

The SVM using grammar features was unable to outperform the SVM using standard

technical indicators for SSEC, GDAXI and TWII. Although the difference is marginal

at test errors 0.51, 0.79 and 0.28, there can be 3 major reasons.

(i) The technical indicators have captured most of the information hence the grammar

features do not add any additional information

(ii) The FS criteria have failed to select good features that are still good in test period

(iii) The parameter tuning is far from optimal

Considering that the approach worked well for all other indices producing lower valida-

tion errors, the most probable reason is that the FS criteria has selected less informa-

tive features. The time-series is highly non-stationary hence the goodness of features

selected using the validation period might have changed considerably in the test period.

It is likely that a selected subset will not be optimal over the entire validation and test
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interval. Based on the belief that the features might have been outdated, the same ex-

periment was conducted again but with adaptive FS once every 20 days as opposed to

one-time FS using a validation period of 200 days. The adaptive FS process is depicted

in Figure 5.1. The test period was kept the same and adaptive FS was done by using

integer GA as the FS technique. Only the SVM was used.

Validation

Validation

Validation

Test

Test

Test

200 Days200 Days

20 Days

FS

FS

FS

Figure 5.1: Adaptive FS using the sliding window technique.

Furthermore, the best performance for NDX using ML techniques was 14.37 using

SVM with integer GA based FS which is poor compared to the AR(1)/ ETS results

of 13.98/14.05. Therefore, adaptive FS was performed on SSEC, GDAXI, TWII and

NDX to see if the results can be improved. The results for the 4 selected indices are

brought up in Table 5.6.

Index ETS ARIMA TIs Grammar Adaptive Grammar

SSEC 19.78 19.78 18.03 18.54 17.96
GDAXI 44.08 44.19 43.70 44.49 44.45
TWII 69.46 69.52 66.85 67.13 67.88
NDX 14.05 14.35 15.15 14.37 14.30

Table 5.6: RMSE for test period using ARIMA, ETS and SVM with features as TIs,
grammar features selected only once and adaptive grammar FS using integer GA.

It is seen that the errors can be improved by adaptive FS. The SSEC test error in fact

outperformed the standard TI indicators (making 8/10 indices in favour of grammar

features). Adaptive FS in this manner is not possible if a fixed set of standard technical

indicators and parameter values are used as features. It is expected that by repeating

feature subset selection as often as necessary, the accuracy of the ML techniques can be

further improved. The interval over which selection needs to be repeated will need to be
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empirically decided. Although this technique is time consuming and computationally

expensive, real-world applications can exploit cloud resources for fast calculations.

Feature Freq.

1 Disparity 32
2 C-(sd(lag(C, k), n)) 24
3 C-(sd(lag(M, k), n)) 23
4 C-(sd(lag(L, k), n)) 22
5 H-(sd(lag(C, k), n)) 21
6 L-(sd(lag(L, k), n)) 21
7 sd(diff(H), n))/(sd(delt(L), n)) 21
8 (C-(M-lag(C, k)))/n 20
9 (C-(M-lag(C, k)))/n 19
10 Bias 18
11 L-(sd(lag(H, k), n)) 18
12 (M-(H-lag(H, k)))/n 18
13 (C-(M-lag(H, k)))/n 17
14 H-(sd(lag(L, k), n)) 17
15 L-(sd(lag(M, k), n)) 17
16 (L-(H-lag(L, k)))/n 17
17 (sd(diff(H), n))/(sd(delt(M), n)) 17
18 Lower Bollinger Band 17
19 (C-(meandev(M, n)))/n 16
20 (H-(L-lag(H, k)))/n 16
21 M-(sd(lag(M, k), n)) 16
22 M-(sma(ema(diff(L), n), n)) 16
23 (C-(H-lag(C, k)))/n 15
24 C-(sd(diff(C), n)) 15
25 C-(sma(ema(diff(L), n), n)) 15
26 L-(sd(diff(C), n)) 15
27 sma(L, n) - 2*(sd(L, n)) 15
28 (C-(H-lag(H, k)))/n 14
29 (C-(L-lag(C, k)))/n 14
30 (C-(L-lag(H, k)))/n 14
31 (C-(L-sma(L, n)))/n 14
32 CLV 14

Feature Freq.

33 (lag(M, k))-(sd(lag(H, k), n)) 14
34 M-(sma(ema(diff(M), n), n)) 14
35 sma(L, n) + 2*(sd(L, n)) 14
36 C-(H-lag(L, k)))/n 13
37 C-(H-sma(L, n)))/n 13
38 C-(sd(lag(H, k), n)) 13
39 H-(sd(lag(M, k), n)) 13
40 (M-(L-lag(H, k)))/n 13
41 (sd(diff(C), n))/(sd(delt(C), n)) 13
42 (sd(diff(C), n))/(sd(delt(M), n)) 13
43 (sd(diff(L), n))/(sd(delt(M), n)) 13
44 sma(M, n) + 2*(sd(M, n)) 13
45 C-(sma(diff(H), n)) 12
46 C-(sma(ema(diff(M), n), n)) 12
47 H-(sma(diff(H), n)) 12
48 L-(sd(lag(C, k), n)) 12
49 M-(sd(lag(L, k), n)) 12
50 (L-(H-lag(C, k)))/n 12
51 (M-(L-lag(C, k)))/n 12
52 (sd(diff(M), n))/(sd(delt(L), n)) 12
53 Upper Bollinger Band 12
54 Aroon 11
55 (C-(H-lag(M, k)))/n 11
56 (C-(M-lag(L, k)))/n 11
57 (H-(meandev(L, n)))/n 11
58 Lagged closing price 11
59 H-(sd(diff(L), n)) 11
60 H-(sd(lag(H, k), n)) 11
61 M-(sd(lag(C, k), n)) 11
62 M-(sma(ema(diff(H), n), n)) 11
63 (sum(L, n))/(max(i+, n)) 11
64 sma(H, n) + 2*(sd(H, n)) 11

Table 5.7: Technical indicators and selected grammar feature frequency.

As a by-product of the empirical study, potential candidates for technical indicators

that consistently improve validation and test errors compared to the standard technical

indicators can be identified. For a given stock index, FS using the GA method was

repeated 10 times with different initialization and a histogram was constructed. The

results for 4 indices are shown in Table C.4 Appendix C. Of the grammar generated

features, the standard technical indicators (TIs) are indicated in bold. In each case

only a very small number of standard TIs account for the grammar generated features.

For example, for GSPC only 1 was selected. For SSMI no standard TIs were selected

and for FTSE only 2 standard TIs were selected.

Table 5.7 shows the frequency of a grammar generated feature selected by aggregating

the results for the 10 indices considered in Table 5.1. It is found that only 7 of the
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25 standard TIs appear in the top 64 and the list is dominated by grammar generated

features. The actual n and k values are not shown so that the general formulae can

be seen. The other frequently selected TIs were K (9), ROC (8), OSCP (8), Slow K

(8), SMA (8), ATR (6), R (6), ADO (4) and Chaikin volatility (4). In this manner,

appropriate parametrized feature combinations can be identified for the time-series

under consideration for a particular algorithm.

5.2 System Performance on Predicting Peak Electricity

Load Data

The EUNITE dataset [20] has been extensively used as a benchmark to test load pre-

diction algorithms. It consists of half-hourly recordings in the years 1997 and 1998, and

also holiday and temperature information. It was originally published for a competition

to predict the peak daily load for January 1999 using half-hourly recordings in the years

1997 and 1998. The performance metric used in electricity load time-series prediction,

mean absolute percentage error (MAPE) = 100
n

n∑
i=1

∣∣∣∣∣yi − ŷiyi

∣∣∣∣∣ where yi, ŷi are the actual

and predicted values respectively was used for evaluation.

Calendar information was encoded as 7 binary values to represent the day-of-week and

a single binary value for holidays as the competition winners in [71]. A self organising

map (SOM) was used to identify data clusters using a peak load history window of

7 days, temperature and calendar information as SOM inputs. This showed a very

strong seasonality, dividing the data into cold and hot seasons (season 1 and 2 in Fig.

5.2 respectively). Based on the SOM result, only the data from season 1 months were

used to construct models in the experiments, e.g. to predict Jan. 1999, the model was

constructed using Jan. 1997 - Mar. 1997, Oct. 1997 - Mar. 1998 and Oct. 1998 - Dec.

1998 data.

Two different experiments were performed on the dataset. In the first trial, the wavelet

based grammar in Table 3.3 was used in a month-ahead manner of prediction. Here,

after predicting a load value for January 1st, 1999, this predicted value was used with

the historical values before January 1st to predict January 2nd, 1999. This process
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Figure 5.2: Clustering days to different seasons using a SOM.

was continued until the predicted load value of January 31st was obtained. For the

second approach, the grammar in Table 3.10 was used. This required the previous day’s

high, low and close electricity loads (HLC), and was suited to a day-ahead prediction

approach. Therefore, the actual historical HLC values were used in predicting each

day. The usage of HLC values in electricity load prediction is unconventional but

conceptually justified because the data is better represented.

For initial performance comparison, ARIMA and ETS models were chosen as analytical

methods. SVM and kernel recursive least squares (KRLS) algorithm were used as kernel

based ML methods. Table 5.8 summarizes the results of the different techniques used

for different feature subsets on different months. It was observed that the best results

were produced by a radial basis function (RBF) kernel.

Based on the features used in previous load prediction work, the performance of 5

domain-expert suggested feature subsets was compared in Table 5.8. It was observed

that for a particular feature subset, the result stability for different months is poor, e.g.

the feature subset Hk,∆Hk,∆D
1
i ,∆D

2
i ,∆D

3
i ,∆Si(∀i ∈ {k − 1, ..., k − 6}) performed

remarkably well only in Jan. 1999 but the average accuracy was inferior to other subsets

considered. It can be suspected that some related work on the EUNITE dataset have

used specific subsets in a trial and error fashion to report good performance only on

the test dataset, Jan. 1999.

Grammatical evolution (GE) was used as the FS method as described in Sec. 4.3.3.

GE has no selective feature pruning and the GE fitness function is crafted to evaluate

feature subset goodness. As KRLS requires one less parameter (σ and λ) than support
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vector regression (C, γ and ε) consuming less hyper-parameter tuning time, KRLS

was chosen for feature subset evaluation as explained in Algorithm 2 Sec. 4.3.3. The

optimal parameters for the KRLS feature subset evaluator, σ = 256 and λ = 0.0625

were chosen by 10-fold time-series cross validation using a peak load history window of

7 days and encoded calendar information as features. A chromosome of the proposed

GE algorithm comprised of 24 codons and 25 genes, i.e. a maximum of 25 features per

subset with each feature represented by 24 codons making the integer chromosome size

600. The population size was 48 and 100 generations were iterated. Roulette wheel

parent selection technique was used and the proposed multi-point crossover technique

in Fig. 3.7 was used. The best 2 chromosomes in each generation were considered to

be elite individuals.

10 GE trials were performed and the results are presented at the bottom of Table 5.8.

The HLC based grammar produced significantly better results for each of the 3 months

(1.15%, 1.73% and 1.39%), and even the worst performing HLC feature subset outper-

formed all other methods for average day-ahead predictions. Although the best wavelet

feature subset (1.81%) outperformed other domain-expert suggested feature subsets

for day-ahead predictions, the average performance of each month (1.96%) was poor.

However, its performance for month-ahead prediction was promising. This leads to

state that the HLC grammar incorporates more information about the daily variations

of load and significantly improves day-ahead predictions while the wavelet grammar

elucidates long-term trends and hence is more suited for month-ahead predictions. The

best one-day ahead predictions are plotted against the actual values and the cumulative

MAPE is also shown in Fig. 5.3.

Table 5.9 compiles selected features from all GE trials filtered using the maximum-

relevance-minimum-redundancy (mRMR) criterion. While some features are obvious

and straightforward (e.g. ∆H, H, delt(H), histwin(H, 14)), many others are not so

apparent to human experts.
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HLC features Wavelet features

1 (|C-L|-|L|)/|C-L| D1

2 (|L|-|H-L|)/L delt(H)

3 (ema(∆C, 2))/(ema(delt(C), 2)) ∆D1

4 (ema(H, 5))/(min(ema(H, 2), 2)) ∆H

5 delt(H) ∆S

6 delt(L) H

7 ∆H lag(D3, 5)
8 ema(C, 3) lag(delt(H), 2)

9 ema(C-L, 5) + sd(H-L, 3) lag(∆D1, 1)

10 ema(D, 3) lag(∆D3, 4)

11 ema(ema(H, 5), 3) lag(meandev(D1, 14), 3)

12 ema(H, 7) lag(sd(H, 7), 3)

13 ema(H, 7) - sd(H-C, 2) lag(S, 6)

14 ema(H-C, 2) + sd(H, 14) lag(sma(D1, 7), 6)

15 ema(lag(D,7), 3) histwin(∆H, 7)

16 ema(lag(U, 3), 3) lag(sma(H, 5), 4)

17 lag(H, 7) histwin(H, 14)

18 lag(U, 1) meandev(D1, 14)
19 max(H, 14) sd(D1, 14)

20 max(L, 3)-lag(H, 7) sd(H, 14)

21 max(lag(H, 1), 3) S

22 min(D, 5) sma(D1, 14)

23 min(∆C, 5) sma(D1, 7)
24 sd(H, 5)-lag(D, 7) sma(D2, 3)
25 sma(∆L, 2) sma(D3, 3)

Table 5.9: Selected features from 10 GE runs.
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Figure 5.3: The best one-day ahead prediction values versus the actual values
(MAPE 1.15%).
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Method MAPE (%) Year

SVM (EUNITE Competition Winner) 1.95 2004
SVM-GA 1.93 2006
Autonomous ANN 1.75 2007
Floating search + SVM 1.70 2004
MLP-NN + Levenberg-Marquardt 1.60 2008
Auto-regressive recurrent ANN 1.57 2006
Local prediction framework + SVR 1.52 2009
Feedforward ANN 1.42 2005
Best GE result 1.42 -
SOFNN + Bi-level optimization 1.40 2009
LS-SVM + chaos theory 1.10 2006
MLP-NN + Differential Evolution 1.02 2011

Table 5.10: Benchmark results on the EUNITE dataset (Compiled from [87, 88]).

The best results of proposed methods in literature which are summarized in Table

5.10 consistently use a window of past days’ peak load, temperature and calendar

information. The main differences between these methods is the data partitioning

technique, choice of the ML algorithm and its training method. There is some ambiguity

in these results in that in the original competition, the temperature results of the testing

period as well as the actual load data was not available. After the competition, some

researchers might have used this information in order to improve their results and the

original competition winner’s result has been claimed to be outperformed. Furthermore,

some works do not state if it’s day-ahead or month-ahead predictions.

5.3 System Performance on Predicting Foreign Exchange

Client Trade Volume

The foreign exchange market enables global firms to easily convert currencies crucial for

trade and investment. Banks are an important part of this market, brokering for small

institutes and big corporations with minimal costs thus creating specialised services for

international traders. With the floating nature of exchange rates, traders and brokers

are exposed to financial risk when trading this market. Exchange rate fluctuations can

cause profit and loss to both brokers and traders alike. While speculative traders are

attracted to this risk, corporations hedge to reduce their risk. Different financial instru-

ments are created to reduce risk exposure of financial bodies but to remain competitive
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in the already efficient foreign exchange market, banks are seeking to exploit machine

intelligence to better hedge their risk. Given the exchange rate and customers history,

can the risk exposure of a bank be reduced using ML techniques? The literature on

industrial bank/broker hedging is scarce due to the proprietary nature of in-house de-

veloped techniques. In a hedging system, the prediction engine is a major component.

This section explains the implementation of a grammar based prediction engine for

foreign exchange client trade volume prediction.

Data Preprocessing : The dataset contained transaction details for different currency

pairs. The majority of the transactions were AUD/USD. These were spot transactions

and the data were irregular. The AUD/USD transactions were aggregated to form

hourly net trade volume time-series V . Firstly, net trade volume prediction task was

formulated as a binary classification problem. V > 0 meant that the net trade volume

was “buy” and vice versa. The out-sample test results for 6 months are presented in

Appendix C Table C.3. The first observation is that the data is unbalanced (1460 net

buys and 604 net sells) for the 6 months considered. Therefore, the balanced accuracy

is a more suitable measure to assess the model performance and the 6 month average is

51.06%. It was then attempted to deal with a more balanced dataset and a threshold

Thresh was decided to construct classification labels as,

class =


−1 V< −Thresh (1085 samples)

0 −Thresh<V<Thresh (959 samples)

+1 V>Thresh (660 samples)

Candidate Features : Unlike stock market index and electricity load data, previous

knowledge of the types of features to use was unavailable. Therefore, after manually

picking features the best results were achieved by using the following features.

• 6 external features that can affect the trading behaviour of small and medium

scale foreign exchange traders, e.g. T-bill rates, interest rates, bond prices, first

difference of the AUD/USD foreign exchange rate, etc. obtained from SIRCA [89]

• A client trading volume history window of 16 hours, i.e. lag(V,1), . . . , lag(V,16)
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External Features

Wavelet Features

Time-derived Features

Moving Average Features

Lag Based Features

Exchange Rate Features

mRMR

Integer GA

Grammar Features

Family 1

Family 2

Family 3

Family 4

History Window

Wavelet Differences

Manually Selected Features

Figure 5.4: Features considered for client trade volume prediction. Grammar fea-
tures were supplementary to the manually selected features.

• Time-derived features : Month of the year (1-12), day of the week (1-7), day of

the month (1-31) and hour of day(0-23)

• First difference of the trade volume wavelets, ∆(D1), ∆(D2), ∆(D3) and ∆(S)

The grammar features considered with varying lags k and moving window lengths and

look-back periods n for predicting foreign exchange client trade volume were,

(i) Wavelet features: Grammar features derived from the 3-level decomposition of the

client trade volume time-series for different n, k

(ii) Moving average features: Grammar features derived from a combination of moving

averages applied on the client trade volume time-series for different n

(iii) Lag-based features: Grammar features derived using different lags, maximum and

minimum values for different n, k values of the client trade volume time-series

(iv) Exchange rate related features: Technical indicator type grammar features using

the exchange rate which can be believed to be a driving factor of client trades

From each of the 4 grammar families, 10 features were first selected using mRMR to

create a pool of 40 features and the binary GA wrapper was used to select feature subsets

from this pool as in Fig 5.4. The resultant best chromosome encoding represented the

selected features and the number of ‘1’s in the chromosome was the feature subset
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size. Adaptive FS was performed weekly. SVM was used with a RBF kernel and

the parameters were also re-optimized weekly. The predictions were done in a rolling-

window manner to get day-ahead predictions. The SVM parameters were optimized.

Confusion Matrix: Columns represent predicted class and rows represent actual

class, e.g. for a binary classification task,
(

15 33
56 45

)
, TN = 15, FP = 33, FN = 56 and

TP = 45.

The out-sample test results for 8 months are presented in Table 5.12 and for 6/8 months,

the grammar improved the 3-class classification accuracies. The overall balanced accu-

racy improved from 38.03% to 38.91% and the overall hit ratio improved from 42.05%

to 42.86%. A closer inspection of the confusion matrix showed that the class -1 pre-

diction accuracy remained the same at 696/1085 while class 0 accuracy improved from

357/959 to 372/959 and class +1 accuracy improved from 84/660 to 91/660.

Feature Freq. Family

1 i−(4) 13 3
2 sma(∆(F),16) - ema(∆(F),4) 11 4
3 (i−(8) - i−(4))/4 11 3
4 i+(4) 10 3
5 i−(4)/(lag(min(V,16), 16) 9 3
6 i+(16)/(lag(min(V,16), 4) 9 3
7 (i−(16) - i−(4))/4 8 3
8 ema(lag(F,8),4)/sma(lag(F,8),4) 8 4
8 sma(∆(V),32)/ema(∆(V),4) 8 2
10 sma(∆(F),32)/sma(∆(F),4) 8 4
11 wma(∆(F),4)/ema(∆(F),4) 8 4
12 (i−(16) - i−(8))/4 8 3
13 (i+(4) - i−(8))/4 8 3
14 (min(V,16)-min(V,8))/4 8 3
15 (min(V, 4)-V))/4 7 3

Feature Freq. Family

16 (min(V,8)-min(V,4))/4 7 3
17 i+(16)/(lag(min(V,16), 16) 6 3
18 i−(8) 6 3
19 V/min(V,16) 6 3
20 (min(V,16)-min(V,4))/4 5 3
21 ((min(V,16)-V))/4 5 3
22 i−(4)/(lag(min(V,16), 4) 4 3
23 i−(8)/(lag(min(V,16), 16) 4 3
24 i+(8)/(min(V,16) 4 3
25 (i−(16) - i−(8))/4 4 3
26 ∆(V) - sma(∆(V),8) 4 2
27 ema(∆(V),16) - wma(∆(V),16) 4 2
28 sma(∆(V),16)/ema(∆(V),16) 4 2
29 i−(16) 4 2
30 (wma(|V |, 4))/(wma(∆(V), 4)) 4 2

Table 5.11: Selected grammar feature frequency for different families.

The grammar based prediction system also enabled the identification of the best features

to use with the selected ML algorithms. The parameters of the moving averages, look-

back periods of maximum, minimum values and the appropriate lags to use can also

be empirically decided in this manner, e.g. a window-size of 4 was associated with a

large number of features which means that recent history is more important. The best

features discovered for the optimized SVM are in Table 5.11. V is the net trade volume

and i+, i− are the days elapsed since the last highest net trade volume and the last

lowest net trade volume. F is the AUD/USD foreign exchange rate.
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An interesting observation is the absence of wavelet based grammar features on the top

30 features. Therefore, when attempting to predict this type of data, the effectiveness

of wavelets should be further investigated. Net trade volume lag-based features were

dominant and the exchange rate seemed to influence trade volumes as well.

5.4 Summary

This section applied the proposed feature engineering algorithm to predict stock index

time-series, electricity load time-series and foreign exchange client trade volume time-

series. The non-stationary and non-linear nature of these time-series makes prediction

a challenging task. The feature subsets generated by the proposed framework were

able to improve over carefully crafted manual features in general. By supplementing

the manually selected features with the grammar features, further improvements were

achieved. Although the improvements were marginal in some cases, it is a significant

achievement provided that the time-series considered are hard to predict in the first

place. The best parametrized feature combinations to use with the particular ML al-

gorithms were identified along with their dominant lags, most useful window-sizes and

look back periods, which is of utmost importance when predicting time-series. Such

feature parameters can not be automatically elucidated by standard kernel functions

or manual feature crafting. The importance of feature engineering in real world pre-

diction problems was realized. The proposed framework was used to harness the best

performance from established ML algorithms and standard kernels in a practical sense.

The results justify the usage of automatic feature generation because it can improve

the results over human expert defined parametrized feature combinations.
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Month Method Confusion Matrix Balanced Accuracy Hit Ratio

1
Without Grammar

84 41 16
55 41 17
56 31 11

35.69 38.64

With Grammar
91 31 19
61 35 17
50 30 18

37.96 40.91

2
Without Grammar

80 31 18
57 33 29
60 9 19

37.11 39.29

With Grammar
77 36 16
57 43 19
56 15 17

38.38 40.77

3
Without Grammar

65 63 2
53 87 0
31 50 1

37.79 43.47

With Grammar
63 62 6
52 87 1
28 53 1

37.27 42.90

4
Without Grammar

168 4 0
94 8 0
57 5 0

35.17 52.38

With Grammar
158 14 0
86 16 0
57 5 0

35.85 51.79

5
Without Grammar

100 32 6
68 31 10
62 19 8

36.63 41.37

With Grammar
97 29 12
64 31 14
57 20 12

37.40 41.67

6
Without Grammar

94 11 30
62 11 39
67 7 31

36.32 38.64

With Grammar
84 18 33
63 12 37
57 15 33

34.79 36.65

7
Without Grammar

59 60 14
64 60 13
40 20 6

32.42 37.20

With Grammar
64 56 13
59 69 9
40 21 5

35.35 41.07

8
Without Grammar

46 58 3
31 86 10
26 36 8

40.71 46.05

With Grammar
62 38 7
39 79 9
40 25 5

42.43 58.03

1-8
Without Grammar

696 300 89
484 357 118
399 177 84

38.03 42.05

With Grammar
696 284 105
481 372 106
385 184 91

38.91 42.86

Table 5.12: Out-sample results (%) using binary GA to predict the client trade
volume classification for 8 months using SVM.
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Conclusion

The performance of machine learning (ML) techniques is highly dependant on the for-

malism in which the solution hypothesis is represented. The features used to formalize

this hypothesis should be engineered carefully for optimal performance. This is usually

done by domain experts which often leads to good results. This thesis investigated if

an automatic feature generation framework that can generate expert suggested features

and many other parametrized features can be used to improve the performance of ML

methods in time-series prediction.

The feature generation framework using context-free grammars (CFGs) was proposed in

Chapter 3. A key feature was to enable experts to provide guidelines to the system but

for the computer to do all the grunt work of feature engineering. Grammar families were

proposed as a way to organize and constrain the feature space. Pruning strategies that

can be used to eliminate features without compromising the effectiveness of the feature

generation were discussed. The merits of the proposed framework are, (i) parametrized

features can be engineered in a systematic manner based on time-series dynamics (non

ad-hoc parametrization) (ii) the user is able to design a sufficiently large grammar

to capture as much information as possible with a manageable feature space (iii) the

user can incorporate domain knowledge by choosing appropriate derived variables and

production rules. It was realized that not only the expansion but mining the generated

feature space to discover better feature subsets is also important.

81
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Chapter 4 presented how different feature selection (FS) criteria were explored to mine

the expanded feature space. The wrapper based techniques were found to work better

than filter based approaches. Integer genetic algorithms, maximum-relevance-minimal-

redundancy and information gain criteria performed the best.

Grammatical evolution was proposed as a hybrid feature generation and selection al-

gorithm. This hybrid algorithm combines the feature generation and selection phases

and avoids the need for selective feature pruning strategies. The fitness function of the

genetic algorithm was crafted to penalize bad feature subsets and select good feature

subsets using a wrapper system.

The empirical evaluation on real world financial and electricity load time-series proved

that the proposed approach can lead to improvements of the performance of particular

ML algorithms that use certain expert suggested feature subsets. The expert suggested

features for financial time-series prediction were chosen as widely used standard tech-

nical indicators. For electricity load time-series, different features used in previous

works such as history windows, wavelet transforms and differenced values were chosen

as expert suggested features.

The classification accuracy of foreign exchange client trade volume time-series was also

improved by using grammar families. Because of the absence of literature on predicting

such time-series, features engineered manually and exogenous features were defined as

expert features.

Although the proposed approach is not guaranteed to produce better out-sample results,

it can certainly be used as a technique to craft features. The best approach is to begin

with expert suggested features, and use the system generated feature combinations as

supplementary feature subsets to add value to the predictor. An experienced user can

monitor features that consistently rank in the top and consider them as good features.

The feature parameters and the optimal feature subsets are subject to change due to the

non-stationary nature of real world time-series hence it is intuitive that an expert system

can assist a human expert in selecting the best feature combinations automatically.
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In a nutshell, the proposed framework is a systematic approach to generate a rich class

of features from an expert designed set of rules that can yield considerable improvement

in the performance of any ML technique in a practical sense for critical applications.

Future Work

The grammar developed in this work was designed to generate only a limited feature

space. For example, the grammar for stock market index time-series generated only a

limited set of technical indicators. Advanced conditional technical indicators can be

generated by combining probabilistic context-free grammar and genetic programming.

The grammar can also be applied to other transformations of the time-series, e.g. the

grammar for electricity load time-series can have other effective transformations such

as empirical mode decomposition (EMD).

In addition, robust FS for non-stationary time-series using ensemble approaches and

non-linear dimension reduction techniques can also be investigated further. It was

discovered that wrapper approaches are better than filter approaches hence advanced

FS algorithms should be developed that will ensure that the selected feature subsets are

robust for non-stationary time-series which will aid in minimizing the the gap between

the best and worst performing feature subsets, e.g. in Table 5.8.

It was also discovered that adaptive FS can lead to better results. This can be supple-

mented with adaptive parameter optimization to account for the non-stationary nature

of time-series. Although this is time-consuming, small improvements can yield benefits

in critical applications such as financial time-series prediction.

The proposed approach is general and is not limited to time-series investigated in the

thesis. Other time-series can be explored and appropriate grammars can be developed.

By using the proposed approach, an insight to the feature combinations that work

well with particular ML algorithms can be discovered hence the experts can use the

proposed feature generation framework in any application to supplement their own set

of hand picked features.
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The approach is computationally expensive hence certain experiment parameters were

restricted, e.g. number of generations in genetic algorithm, tuning parameter grid size

etc. A cloud based parallel implementation can speed up the feature generation and

selection process in real world applications.

Finally, as in Fig.6.1, the approach can be viewed as an abstraction layer to reduce the

effort associated with finding the best feature-ML architecture-parameter combination

which is the most time-consuming aspect in developing a ML system. The system can

be used to automate tuning and feature engineering to enhance the performance of

existing ML systems, conveniently.

Output

Raw Data

Feature
Engineering

ML Parameter
Optimization

Human Expert

Learner

Abstraction Layer

Time-series

Figure 6.1: The proposed system viewed as an abstraction layer.
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Wavelet Transformations

Discrete Wavelet Transform (DWT)

This appendix is loosely based on the presentation outline in [90].

DWT decomposes a time-series into a set of orthonormal basis functions (wavelets) pro-

ducing a set of wavelet coefficients. Each coefficients captures information at different

frequencies at distinct times. A function f can be expanded using a mother wavelet

function Ψ as,

f(t) =
∞∑

j=−∞

∞∑
k=−∞

wjk2
j/2Ψ(2jt− k) (A.1)

The functions Ψ(2jt−k) are mutually orthogonal. The coefficient wjk conveys informa-

tion about the behaviour of f at a scale around 2−j near time k× (2−j). Application of

DWT for time-series analysis suffers from a lack of translation invariance which is un-

desired. The highly redundant maximal overlap discrete wavelet transform (MODWT)

is used to address this issue.

Maximal Overlap DWT (MODWT) and À Trous Filtering

When MODWT is applied on an N sample input time-series it will produce N samples

for each resolution level aligning with the original time-series in a meaningful way. For

a time-series X with N samples, the jth level MODWT wavelet (W̃j) and scaling (Ṽj)

85
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coefficients are,

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l modN (A.2)

Ṽj,t =

Lj−1∑
l=0

g̃j,lXt−l modN (A.3)

where h̃j,l = hj,l/2
(j/2) are the MODWT wavelet filters and g̃j,l = gj,l/2

(j/2) are the

MODWT scaling filters. Hence the additive decomposition or the multi-resolution

analysis (MRA) is expressed by,

X =

J0∑
j=1

D̃j + S̃J0 (A.4)

where,

D̃j,t =
N−1∑
l=0

h̃j,lW̃j,t+l modN (A.5)

S̃j,t =
N−1∑
l=0

g̃j,lṼj,t+l modN (A.6)

A set of coefficients Dj with N samples can be obtained at each scale j. These co-

efficients capture the local fluctuations of X at each scale. SJ0 captures the overall

“trend” of X. Adding Dj to SJ0 , for j = 1, 2, . . . , J0, gives an increasingly more accu-

rate approximation of the now decomposed X. This additive reconstruction allows to

predict each wavelet sub-series (Dj , SJ0) separately and add the individual predictions

to generate an aggregate prediction.

In time-series prediction, the MODWT should be performed incrementally where a

wavelet coefficient at a position n is calculated from the samples at positions less than

or equal to n, but never larger. If this is not adhered it is a form of peeking. The À

Trous filtering scheme [91] briefly described below is used to do this. Consider a signal

X(1), X(2), . . . , X(n), where n is the present time point and perform the following

steps:
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1. For index k sufficiently large, carry out the MODWT transform (A.5), (A.6) and

(A.7) on X(1), X(2), . . . , X(n).

2. Retain the coefficient values as well as the smooth values for the kth time point

only: D1(k), D2(k), . . . , S5(k). The summation of these values gives X(k).

3. If k < n, set k = k + 1 and go to Step 1. This process produces an additive

decomposition of the signal X(k), X(k + 1), . . . , X(n), which is similar to the À

Trous wavelet transform decomposition on X(1), X(2), . . . , X(n).
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Production rules for some

standard technical indicators

This appendix presents the feature generation flow for the technical indicators R, Aroon,

RSI and Chaikin volatility respectively using grammar families 3, 4, 5 and 6.

Family 3

N = {L1, L2, L3}
T = {− , ÷, lag, sma, meandev, sum, Hh, Ll, C, n, k, ( , ) }
S = {L3}

Production rules : R

〈L3 〉 ::= (〈L2 〉) ÷ (〈L2 〉) | sma(〈L2 〉, n) | 〈L2 〉 (1.a), (1.b), (1.c)

〈L2 〉 ::= 〈L1 〉 − lag(〈L1 〉, k) | sma(〈L1 〉, n) (2.a), (2.b)
| meandev(〈L1 〉, n) | sum(〈L1 〉, n) | 〈L1 〉 (2.c), (2.d), (2.e)

〈L1 〉 ::= H+ | L− | C (3.a), (3.b), (3.c)

Table B.1: Grammar family 3.

88
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Family 4

N = {L1, L2, L3, L4, L5}
T = {− , ÷, lag, ema, sma, meandev, sum, H, L, C, n, k, i+, i−, ( , ) }
S = {L5}

Production rules : R

〈L5 〉 ::= (〈L3 〉 ÷ 〈L4 〉) | (〈L3 〉 ÷ N) | 〈L4 〉 (1.a), (1.b), (1.c)

〈L4 〉 ::= ema(〈L1 〉, n) | sum(〈L1 〉, n) | max(〈L1 〉, n) (1.d), (1.e)
| min(〈L1 〉, n) | (〈L1 〉) ÷ N | 〈L1 〉 (2.a), 2.b), (2.c)

〈L3 〉 ::= 〈L2 〉 − ema(〈L2 〉, n) | ema(〈L2 〉, n) | meandev(〈L2 〉, n) (3.a), (3.b)
| sum(〈L2 〉, n) | max(〈L2 〉, n) | min(〈L2 〉, n) | 〈L1 〉 (3.c), (3.d), (3.e), (3.f)

〈L2 〉 ::= H | L | C (4.a), (4.b), (4.c)

〈L1 〉 ::= i+ | i− (5.a), (5.b)

Table B.2: Grammar family 4.

Family 5

N = {L1, L2, L3}
T = {− , ÷, lag, ema, sma, meandev, sum, H, L, C, n, k, i+, i−, ( , ) }
S = {expr}

Production rules : R

〈L5 〉 ::= 〈L3 〉 ÷ (〈L3 〉+〈L4 〉) | 〈L3 〉 ÷ (〈L3 〉−〈L4 〉) (1.a), (1.b), (1.c)

〈L4 〉 ::= ema(〈L1 〉, n) | sum(〈L1 〉, n) | meandev(〈L1 〉, n) | max(〈L1 〉, n) (2.a), (2.b)
| min(〈L1 〉, n) | delt(〈L1 〉) (2.c), (2.d), (2.e)

〈L3 〉 ::= ema(〈L2 〉, n) | sum(〈L2 〉, n) | meandev(〈L2 〉, n) | max(〈L2 〉, n) (3.a), (3.b)
| min(〈L2 〉, n) | delt(〈L2 〉) (3.c), (3.d), (3.e)

〈L2 〉 ::= F− | D (4.a), (4.b)

〈L1 〉 ::= F+ | U (5.a), (5.b)

Table B.3: Grammar family 5.

Family 6

N = {L1, L2, L3}
T = {− , ÷, lag, ema, sma, meandev, sum, H, L, C, n, k, i+, i−, ( , ) }
S = {L4}

Production rules : R

〈L4 〉 ::= (〈L1 〉 − 〈L3 〉) ÷ (〈L2 〉 − 〈L3 〉) | 〈L2 〉 | 〈L3 〉 (1.a), (1.b), (1.c)

〈L3 〉 ::= sma(〈L1 〉, n) - 2× sd(〈L1 〉, n) (2.a)

〈L2 〉 ::= sma(〈L1 〉, n) + 2× sd(〈L1 〉, n) (3.a)

〈L1 〉 ::= H | L | C | H-L | H-C | C-L (4.a), (4.b), (4.c), (4.d), (4.e), (4.f)

Table B.4: Grammar family 6.
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Family 7

N = {L1, L2, L3}
T = {− , ÷, lag, sma, H, L, C, M, ( , ) }
S = {expr}

Production rules : R

〈L3 〉 ::= (〈L2 〉) ÷ (〈L2 〉) | (〈L2 〉 − 〈L2 〉) | 〈L2 〉 (1.a), (1.b), (1.c)

〈L2 〉 ::= ema(〈L1 〉, n) | sma(〈L1 〉, n) | wma(〈L1 〉, n) (2.a), (2.b), (2.c)
| sma(ema(〈L1 〉, n), n) | 〈L1 〉 (2.d), (2.e)

〈L1 〉 ::= lag(V, k) (3.a)

Table B.5: Grammar family 7.

Fig. B.1 shows how the indicator R is generated. In Chapter 3.3.2, it was explained

that features were generated with 3 values n = 6, 12, 24 for H+, L−, i+ and i−.

< L3 >

(< L2 >)÷ (< L2 >)

(1.a)

(2.a)

(3.a)
(3.c)

(2.a)

(3.a)

(3.b)

(< L1 > −lag(< L1 >, k))÷ (< L2 >)

(H+ − lag(< L1 >, k))÷ (< L2 >) (H+ − lag(C, k))÷ (< L2 >)

(H+ − lag(C, k))÷ (< L1 > −lag(< L1 >, k))

(H+ − lag(C, k))÷ (H+ − lag(< L1 >, k))

(H+ − lag(C, k))÷ (H+ − lag(L−, k))

Figure B.1: Feature generation flow for the technical indicator R.

Aroon type technical indicators can be easily generated as follows. Although the original

Aroon up indicator is (N − i+)/N it is understood that the information is captured by

simple division i+/N , hence the subtraction from 1 is ignored.

Invoking rule (1.b) : <L5> ::= (<L3>) ÷ N

Invoking rule (3.f) : <L3> ::= <L1>

Invoking rule (5.a) : (<L1>) ::= i+

Invoking rule (5.b) : (<L1>) ::= i−

Fig. B.2 shows how the indicator RSI is generated. By defining RS = ema(U, n)/ema(D, n),

RSI=RS/(1+RS). By expanding this RSI = ema(U, n)/(ema(U, n) + ema(D, n)).
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< L5 >

(< L3 >)÷ (< L3 > + < L4 >)

(1.a)

(5.b)

(5.b)

(4.b)

(ema(U), n)÷ (< L3 > + < L4 >)

(ema(U), n)÷ (ema(U),n)+ < L4 >)

(ema(U), n)÷ (ema(U),n) + ema(D,n))

Figure B.2: Feature generation flow for the RSI indicator.

The upper band of Chaikin volatility is generated as follows.

Invoking rule (1.c) : <L4> ::= (<L3>)

Invoking rule (2.a) : <L3> ::= sma(<L1>, n) + 2×sd(<L1>, n)

Invoking rule (4.d) : <L1> ::= H-L

The lower band can be generated similarly by using rule (2.b) instead of (2.a).



Appendix C

Results

C.1 Model-based Approaches on Stock Indices

Autoregressive integrated moving average (ARIMA) and exponential time-series smooth-

ing (ETS) were used as pure time-series model benchmarks. auto.arima(), Arima()

and ets() functions in the forecast package in R [86] were used for implementation.

ARIMA model order was automatically decided using auto.arima() for day-ahead

predictions in the validation dataset. The error type, trend type and seasonal type

of ETS models were automatically decided using ets(). Table C.1 gives the ARIMA

model orders for the 10 indices.

GSPC 1,1,1 SSMI 4,1,5 N225 2,1,0 GDAXI 4,1,4 HSI 2,1,2
FTSE 4,1,4 SSEC 0,1,0 NDX 4,1,4 TWII 1,1,0 AORD 0,1,0

Table C.1: ARIMA model order for the 10 indices.

C.2 SVM Parameter Values

The C and γ parameter of the SVM were chosen using a parallelized grid search. The

grid range is specified in Table 5.2. Table C.2 gives the optimal parameters selected for

SVM using technical indicators as features.

92
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Symbol C γ

AORD 190 5.823249e− 05

FTSE 70 0.00049476

GDAXI 200 8.99928e− 05

GSPC 110 0.00014141

HSI 200 0.0001979628

Symbol C γ

TWII 140 0.00049476

NDX 190 0.0002474412

N225 190 0.000109989

SSEC 190 7.614881e− 05

SSMI 170 8.249402e− 05

Table C.2: Parameters for SVM using TIs as features with ε = 0.01.

C.3 Foreign Exchange Client Net Trade Volume Binary

Classification

Evaluation Criteria : For unbalanced data sets, accuracy alone is not a good crite-

rion for evaluating a model performance. Therefore a range of measures were evaluated.

Define TP ≡ True Positive, TN ≡ True Negative, FP ≡ False Positive and TN ≡ True

Negative. Accuracy ≡ Hit Ratio (HR) = (TP + TN)/(TP + FP + TN + FN). Sensi-

tivity = TP/(TP+FN), Specificity = TN/(TN+FP) and Balanced Accuracy (BAC) =

(Sensitivity + Specificity)/2. Precision = TP/(TP+FP), Recall = TP/(TP+FN) and

F-score = 2×Precision×Recall/(Precision + Recall).

Evaluation Criterion Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

Confusion Matrix
210 30
97 15

206 26
87 17

235 13
97 7

261 8
65 2

234 5
96 1

225 7
109 11

Sensitivity 13.39 16.34 6.73 2.98 1.03 9.16
Specificity 87.50 88.79 94.76 97.03 97.91 96.98
Balanced Accuracy 50.44 52.57 50.74 50.01 49.47 53.07

Precision 33.33 39.53 35.00 20.00 16.67 61.11
Recall 13.39 16.35 6.73 2.98 1.03 9.17
F-Score 19.11 23.13 11.29 5.19 1.94 15.94

Hit Ratio 63.92 66.37 68.75 78.27 69.94 67.04

Table C.3: Out-sample results (%) using integer GA to predict the client trade
volume direction for 6 months using SVM.

C.4 Dominant Features Providing Best Results in the SVM

for Chosen Indices
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