
Variable Block Size Motion
Estimation Hardware for Video

Encoders

LI Man Ho

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

c©The Chinese University of Hong Kong
Nov 2006

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
a proposed publication must seek copyright release from the Dean of the
Graduate School.

Abstract of thesis entitled:
Variable Block Size Motion Estimation Hardware for Video

Encoders
Submitted by LI Man Ho
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in Nov 2006

Multimedia has experienced massive growth in recent years due
to improvements in algorithms and technology. An important
underlying technology is video coding and in recent years, com-
pression efficiency and complexity have also improved signifi-
cantly. Applications of video coding have moved from set-top
boxes to internet delivery and mobile communications.

H.264/AVC is the latest video coding standard adopting vari-
able block size, quarter-pixel accuracy, motion vector prediction
and multi-reference frames for motion estimations. These new
features result in higher computation requirements than that for
previous coding standards. In this thesis, we propose a family of
motion estimation processors to balance tradeoffs between the
performance, area, bandwidth and power consumption on an
field programmable gate array (FPGA) platform.

We combine algorithmic and arithmetic optimizations for mo-
tion estimation. At the algorithmic level, we compare different
algorithms and analyze their complexities. At the arithmetic
level, we explore bit-parallel and bit-serial designs, which em-
ploy non-redundant and redundant number systems. In our bit-
serial design, we study tradeoffs between least significant bit first
(LSB-first) and most significant first (MSB-first) modes.

i

Finally, we offer a library of motion estimation processors
to suit different applications. For bit-parallel processors, we
offer 1-dimensional, 2-dimensional systolic based architectures.
Together with tree architectures and our proposed bit-serial ar-
chitecture, our family of processors is able to cover a range of
applications.

The bit-serial processor is able to support full search, three
step search and diamond search. An early termination scheme
has been introduced to further shorten the encoding time, and
the standard technique is further optimized via H.264/AVC mo-
tion vector prediction.

In this thesis, the first reported MSB-first bit-serial variable
block size motion estimation processor is introduced. It operates
at a maximum clock frequency of 420 MHz. This processor is
capable of performing common intermediate format (CIF) res-
olution full search encoding in real time at 23068 macroblocks
per second within a -16 to 15 search range and occupies 2133
slices on a Xilinx Virtex-II Pro FPGA.

Our architectures were implemented on an FPGA platform
and comparisons made. The result implementations are able to
support H.264/AVC variable block size motion estimation for
resolutions from CIF to high-definition television (HDTV) in
real time.

ii

摘要

近年，多媒體在算法上及技術上經歷了很大的發展。視訊編碼是一個重要的基本

技術以及在近年來在壓縮效能及複雜性上有明顯的進步。視訊編碼的應用已從以

前的視訊轉換器演變到現在的網際網路傳送和流動通訊。

H.264/AVC是最新的視訊編碼標準在位移預測應用了變塊尺寸、1/4 像素精度、移

動向量預測以及多參考幀。這些新引進的特徵導致比以前的視訊編碼標準有更大

的計算效能要求。在這論文中，我們提出了一個在現場可程式化邏輯閘陣列平台

上建造位移預測處理器系列去平衡效能、面積、頻寬和功率消耗量間的取捨。

我們在運動估計中結合了算法及算術的優化。在算法優化層面上，我們比較了不

同算法以及分析了它們的複雜性。在算術層面上，我們探索了應用冗餘數字系統

和不冗餘數字系統的並行位運算和序列位運算。在我們的序列位運算設計中，我

們在最不重要位元為先地做法和最重要位元為先地做法間作出了取捨。

最後，我們提供了一個能處理不同應用的位移預測處理器系列。在序列位運算處

理器中，我們提供了應用一次元、二次元心縮陣列的結構。連同樹狀結構及我們

提出的序列位運算結構，我們的處理器系列能夠處理一系列的應用。

序列位運算處理器能夠支持全域搜尋、三步搜尋及鑽石搜尋。提早結束技巧被提

出去縮短編碼時間，以及經由 H.264/AVC 移動向量預測而被優化。

這篇論文發表了第一個最重要位元為先地做法序列位運算變塊尺寸位移預測處

理器。它能夠在在 400MHz 下運作。這處理器能夠在 CIF 尺寸下進行以-16 至 15

搜尋區域每秒 23068 宏塊的即時全域搜尋編碼以及使用了 Xilinx Virtex-II Pro 現場

可程式化邏輯閘陣列平台 2133 塊硬體資源。

我們在現場可程式化邏輯閘陣列平台上建設了硬體結構以及作出了比較。我們的

處理器系列實踐能夠支持即時的 H.264/AVC 變塊尺寸運動估計於 CIF 至 HDTV

解像度。

iii

Acknowledgement

Firstly, I would like to give a sincere thank to my supervi-
sor, Professor Philip Leong, who encouraged and challenged me
throughout my research program, guided me on writing confer-
ence papers, thesis and put effort on our workings. Without his
effort, this dissertation could not be written. Since the final year
project, Professor Leong gave me vast amount of resources to
grow me up as an equipped research student.

Secondly, I would like to thank Professor Lee Kin Hong, who
offers me an opportunity to teach Computer Architecture which
helps me a lot in my research. At the same time my presentation
performance and teaching skills are improved significantly.

Moreover, I would like to thank my Mphil classmate, Mr. Lau
Wai Shing, Mr. Wong Chun Kit, Mr. Cheung Yu Hoi Ocean and
Mr. Lam Yuet Ming for their aid in my daily research problems.

Finally, I would like to thank my dearest family and Elaine
for giving me fully support on daily cares, financial subsidies
and a cheerful life from time to time.

iv

This work is dedicated to my family.

v

Contents

Abstract i

Acknowledgement iv

1 Introduction 1
1.1 Motivation . 3
1.2 The objectives of this thesis 4
1.3 Contributions . 5
1.4 Thesis structure 6

2 Digital video compression 8
2.1 Introduction . 8
2.2 Fundamentals of lossy video compression 9

2.2.1 Video compression and human visual sys-
tems . 10

2.2.2 Representation of color 10
2.2.3 Sampling methods - frames and fields . . . 11
2.2.4 Compression methods 11
2.2.5 Motion estimation 12
2.2.6 Motion compensation 13
2.2.7 Transform 13
2.2.8 Quantization 14
2.2.9 Entropy Encoding 14
2.2.10 Intra-prediction unit 14
2.2.11 Deblocking filter 15

vi

2.2.12 Complexity analysis of on different com-
pression stages 16

2.3 Motion estimation process 16
2.3.1 Block-based matching method 16
2.3.2 Motion estimation procedure 18
2.3.3 Matching Criteria 19
2.3.4 Motion vectors 21
2.3.5 Quality judgment 22

2.4 Block-based matching algorithms for motion es-
timation . 23
2.4.1 Full search (FS) 23
2.4.2 Three-step search (TSS) 24
2.4.3 Two-dimensional Logarithmic Search Al-

gorithm (2D-log search) 25
2.4.4 Diamond Search (DS) 25
2.4.5 Fast full search (FFS) 26

2.5 Complexity analysis of motion estimation 27
2.5.1 Different searching algorithms 28
2.5.2 Fixed-block size motion estimation 28
2.5.3 Variable block size motion estimation . . . 29
2.5.4 Sub-pixel motion estimation 30
2.5.5 Multi-reference frame motion estimation . 30

2.6 Picture quality analysis 31
2.7 Summary . 32

3 Arithmetic for video encoding 33
3.1 Introduction . 33
3.2 Number systems 34

3.2.1 Non-redundant Number System 34
3.2.2 Redundant number system 36

3.3 Addition/subtraction algorithm 38
3.3.1 Non-redundant number addition 39
3.3.2 Carry-save number addition 39

vii

3.3.3 Signed-digit number addition 40
3.4 Bit-serial algorithms 42

3.4.1 Least-significant-bit (LSB) first mode . . . 42
3.4.2 Most-significant-bit (MSB) first mode . . . 43

3.5 Absolute difference algorithm 44
3.5.1 Non-redundant algorithm for absolute dif-

ference . 44
3.5.2 Redundant algorithm for absolute difference 45

3.6 Multi-operand addition algorithm 47
3.6.1 Bit-parallel non-redundant adder tree im-

plementation 47
3.6.2 Bit-parallel carry-save adder tree imple-

mentation 49
3.6.3 Bit serial signed digit adder tree imple-

mentation 49
3.7 Comparison algorithms 50

3.7.1 Non-redundant comparison algorithm . . . 51
3.7.2 Signed-digit comparison algorithm 52

3.8 Summary . 53

4 VLSI architectures for video encoding 54
4.1 Introduction . 54
4.2 Implementation platform - (FPGA) 55

4.2.1 Basic FPGA architecture 55
4.2.2 DSP blocks in FPGA device 56
4.2.3 Advantages employing FPGA 57
4.2.4 Commercial FPGA Device 58

4.3 Top level architecture of motion estimation proces-
sor . 59

4.4 Bit-parallel architectures for motion estimation . 60
4.4.1 Systolic arrays 60
4.4.2 Mapping of a motion estimation algorithm

onto systolic array 61

viii

4.4.3 1-D systolic array architecture (LA-1D) . . 63
4.4.4 2-D systolic array architecture (LA-2D) . . 64
4.4.5 1-D Tree architecture (GA-1D) 64
4.4.6 2-D Tree architecture (GA-2D) 65
4.4.7 Variable block size support in bit-parallel

architectures 66
4.5 Bit-serial motion estimation architecture 68

4.5.1 Data Processing Direction 68
4.5.2 Algorithm mapping and dataflow design . 68
4.5.3 Early termination scheme 69
4.5.4 Top-level architecture 70
4.5.5 Non redundant positive number to signed

digit conversion 71
4.5.6 Signed-digit adder tree 73
4.5.7 SAD merger 74
4.5.8 Signed-digit comparator 75
4.5.9 Early termination controller 76
4.5.10 Data scheduling and timeline 80

4.6 Decision metric in different architectural types . . 80
4.6.1 Throughput 81
4.6.2 Memory bandwidth 83
4.6.3 Silicon area occupied and power consump-

tion . 83
4.7 Architecture selection for different applications . . 84

4.7.1 CIF and QCIF resolution 84
4.7.2 SDTV resolution 85
4.7.3 HDTV resolution 85

4.8 Summary . 86

5 Results and comparison 87
5.1 Introduction . 87
5.2 Implementation details 87

5.2.1 Bit-parallel 1-D systolic array 88

ix

5.2.2 Bit-parallel 2-D systolic array 89
5.2.3 Bit-parallel Tree architecture 90
5.2.4 MSB-first bit-serial design 91

5.3 Comparison between motion estimation architec-
tures . 93
5.3.1 Throughput and latency 93
5.3.2 Occupied resources 94
5.3.3 Memory bandwidth 95
5.3.4 Motion estimation algorithm 95
5.3.5 Power consumption 97

5.4 Comparison to ASIC and FPGA architectures in
past literature . 99

5.5 Summary . 101

6 Conclusion 102
6.1 Summary . 102

6.1.1 Algorithmic optimizations 102
6.1.2 Architecture and arithmetic optimizations 103
6.1.3 Implementation on a FPGA platform . . . 104

6.2 Future work . 106

A VHDL Sources 108
A.1 Online Full Adder 108
A.2 Online Signed Digit Full Adder 109
A.3 Online Full Adder Tree 110
A.4 SAD merger . 112
A.5 Signed digit adder tree stage (top) 116
A.6 Absolute element 118
A.7 Absolute stage (top) 119
A.8 Online comparator element 120
A.9 Comparator stage (top) 122
A.10 MSB-first motion estimation processor 134

Bibliography 137

x

List of Figures

2.1 Hybird video coder for H.264/AVC 12
2.2 Improvement made by deblocking filter - Left:

improved . 15
2.3 Selection of block sizes within a frame 17
2.4 Motion estimation and motion vector 19
2.5 Sub-macroblock partitions in H.264/AVC 29
2.6 Integer, half-pixel and quarter-pixel motion esti-

mation search positions (pel stands for pixel) . . . 31
2.7 Matlab simulation on the quality of different mo-

tion estimation algorithms on Foreman 32

3.1 LSB-first bit-serial addition algorithm 43
3.2 MSB-first bit-serial addition algorithm 44
3.3 Signed-digit number based sign detection algorithm 46
3.4 Sequential SAD computation in general purpose

processor . 47
3.5 Bit-Parallel 4x2-operand adder tree 48
3.6 Bit-serial signed-digit adder (ol-CSFA stands for

on-line carry-save full adder) 51

4.1 FPGA Logic Cell Architecture (Xilinx Virtex-II
Pro series) . 56

4.2 DSP architecture in Xilinx Virtex-5 FPGA 57
4.3 Model of motion estimation processor 59
4.4 Data flow in systolic array over general implemen-

tation . 60

xi

4.5 Variable block size motion estimation algorithm . 61
4.6 Fundamental elements in systolic and tree archi-

tectures . 62
4.7 1-D systolic architecture 63
4.8 2-D systolic architecture 65
4.9 1-D Tree architecture 66
4.10 2-D tree architecture 67
4.11 H.264/AVC motion vector prediction 69
4.12 Top level architecture of bit-serial motion estima-

tion unit . 71
4.13 Flow chart of non-redundant to signed-digit num-

ber conversion . 72
4.14 Signed-digit adder tree that generates 41 SADs . 73
4.15 On-line carry save and signed digit adders 74
4.16 A 16-operand carry save adder tree 75
4.17 16-operand signed-digit adder tree for 4x4 SADs . 76
4.18 SAD merger . 77
4.19 Architecture of on-line comparator 78
4.20 Timeline of bit-serial design for whole motion es-

timation computation process 79

5.1 Throughput of different motion estimation archi-
tectures at different resolutions 93

5.2 Occupied slices of different motion estimation ar-
chitectures . 94

5.3 Bandwidth requirements of different motion esti-
mation architectures at CIF 30 fps 95

5.4 Throughput of different architectures at different
motion estimation algorithms 96

5.5 Maximum throughput per slice of different mo-
tion estimation architectures 97

5.6 Power consumptions of different architectures . . 98

xii

5.7 Power efficiencies of different motion estimation
architectures . 98

6.1 Area vs throughput in different motion estima-
tion architectures 105

xiii

List of Tables

2.1 Complexity profile of each compression stage in
H264/AVC . 16

2.2 Complexity of block-based searching algorithms
(measured in MOPS) 28

3.1 Example for online signed-digit adder 50

4.1 Number of cycles to complete comparison stage
for different scenes using different starting strat-
egy (16 cycles for no early termination scheme) . 70

4.2 On-line delay of different SAD types 76
4.3 Delays of primitive operations employed in bit-

parallel motion estimation architectures 81
4.4 Areas of primitive component employed in bit-

parallel motion estimation architectures 81
4.5 Throughput of different architectural types (N:

block size) . 82
4.6 Bandwidth requirement of different architectural

types . 83
4.7 Area estimation of different architectural types

(Variable block sizes not supported) 84
4.8 Power estimation of different architectural types

(Variable block sizes not supported) 84

5.1 Results of 1D systolic array processor 89
5.2 Results of 2D systolic array processor 90

xiv

5.3 Results of 1D tree-based motion estimation proces-
sor . 91

5.4 Results of 2D tree-based motion estimation proces-
sor . 92

5.5 Results of MB-first bit-serial processor 92
5.6 Results and comparison of motion estimation proces-

sors on FPGA devices 100
5.7 Results and comparison of motion estimation proces-

sors on ASIC devices 101

xv

Chapter 1

Introduction

Digital video coding has gradually increased in importance since
the 90’s when MPEG-1 [16] first emerged. It has had large im-
pact on video delivery, storage and presentation. Compared
to analog video, video coding achieves higher data compression
rates without significant loss of subjective picture quality. This
eliminates the need of high bandwidth as required in analog
video delivery. With this important characteristic, many ap-
plication areas have emerged. For example, set-top box video
playback using compact disk, video conferencing over IP net-
works, P2P video delivery, mobile TV broadcasting, etc. The
specialized nature of video applications has led to the develop-
ment of video processing systems having different size, quality,
performance, power consumption and cost.

Digitization of video scenes was an inevitable step since it has
many advantages over analog video. Digital video is virtually
immune to noise, easier to transmit and is able to provide a
more interactive interface to users. Furthermore, the amount
of video content, e.g. TV content, can be made larger through
improved video compression because the bandwidth required for
analog delivery can be used for more channels in a digital video
delivery system. With today’s sophisticated video compression
systems, end users can also stream video, edit video and share
video with friends via the internet or IP networks. In contrast,

1

CHAPTER 1. INTRODUCTION 2

analog signals are difficult to manipulate and transmit.
Generally speaking, video compression is a technology for

transforming video signals that aims to retain original quality
under a number of constraints, e.g. storage constraint, time de-
lay constraint or computation power constraint. It takes advan-
tage of data redundancy between successive frames to reduce the
storage requirement by applying computational resources. The
design of data compression systems normally involves a tradeoff
between quality, speed, resource utilization and power consump-
tion.

In a video scene, data redundancy arises from spatial, tem-
poral and statistical correlation between frames. These corre-
lations are processed separately because of differences in their
characteristics. Hybrid video coding architectures have been
employed since the first generation of video coding standards,
i.e. MPEG. MPEG consists of three main parts to reduce data
redundancy from the three sources described above. Motion es-
timation and compensation are used to reduce temporal redun-
dancy between successive frames in the time domain. Transform
coding, also commonly used in image compression, is employed
to reduce spatial dependency within a frame in the spatial do-
main. Lastly, entropy coding is used to reduce statistical redun-
dancy over the residue and compression data. This is a lossless
compression technique commonly used in file compression.

Hardware video compression systems can be implemented in
application-specific integrated circuit (ASIC) and field program-
mable gate array (FPGA) technologies and, depending on the
desired quality, real-time video encoding can be realized in both
hardware and software technologies. Advances in codecs have
continued since we have to enable video delivery over new medi-
ums such as IP networks. As a result, H.264 [48] and MPEG-4
were developed to suit these network applications through en-
hanced compression efficiency and picture quality under very

CHAPTER 1. INTRODUCTION 3

low bit-rates. Unfortunately, the complexity of the latest video
codecs for network applications has increased a lot over pre-
viously defined standards such as MPEG-1 and MPEG-2 [17].
Real-time and low power encoding requirements create great
challenges for software and hardware engineers.

1.1 Motivation

Among all the blocks in a video coder, motion estimation is the
most demanding [8]. It is also the critical part that affects the
video quality and compression efficiency. For this reason, many
algorithms and architectures have been proposed to optimize
this process. With advancement of video codec standards, the
requirements of motion estimation have increased and thus both
software (algorithmic) and hardware (architectural) optimiza-
tions must be continuously improved to cope with the increased
complexity.

Power and speed are important considerations in codecs, es-
pecially running on mobile devices. Pure software implementa-
tions of video codecs usually result in large power consumption
and low speed. To solve these issues hardware support is often
employed. Hardware can use parallelism to obtain higher per-
formance. Together this reduces the high data bandwidth and
the instruction fetching associated with software, which are a
major source of power wastage. As a result, hardware imple-
mentations consume lower power than a corresponding software
implementation. Realization of video codec in hardware plays
an important role in mobile applications.

Since the introduction of advanced motion estimation tech-
nique in the latest video codecs such as MPEG-4 and H.264,
previous motion estimation architectures are no longer fully ap-
plicable. As a result, a family of new motion estimation architec-
tures has been proposed to fit different application requirements

CHAPTER 1. INTRODUCTION 4

while still efficiently utilizing resources.

1.2 The objectives of this thesis

Hardware assistance for video coding has become an impor-
tant tool for optimizing system performance. Among hybrid
video coding architectures, motion estimation introduces most
of the complexity. Although many fast algorithms have been
proposed to reduce the computational complexity, quality and
compression performance still may not meet the application re-
quirements. The complexity of motion estimation has greatly
increased compared to MPEG-1 or MPEG-2 since the introduc-
tion of variable block size motion estimation in MPEG-4. To-
gether with multi-reference frames, sub-pixel motion estimation
support, prior architectures have become unsuitable.

In this thesis a family of motion estimation architectures and
algorithms are studied and analyzed. Implementation of those
architectures on an FPGA platform was effected to measure
the efficiency of different architectural approaches. The VLSI
architectures suggested in this thesis are also applicable to ASIC
design. We also analyze the impact of computer arithmetic to
motion estimation. With optimization of the arithmetic, we
discovered efficient ways to implement motion estimation for
low to high-end applications.

A full range of applications are supported by this work from
low demand applications like low-resolution video conferencing
and mobile digital video broadcasting, to high demand applica-
tions like HDTV video encoding. A family of motion estima-
tion architectures is suggested to target different applications
while efficiently utilizing computational resources, silicon area
and power. Using the reconfigurable feature of FPGAs, we can
provide the most efficient option to users which meets their re-
quirement without changing the underlying hardware device.

CHAPTER 1. INTRODUCTION 5

In commercial design situations, the architecture selected is
often suboptimal because of limited design time and resources.
This work provides an overview of architectural alternatives to
realize products in a more efficient manner. In terms of com-
puter architecture and computer arithmetic, this thesis provides
an architecture design space to explore optimizations for differ-
ent kinds of application domains. The idea suggested in this
work can also be applied to other areas such as transform or
filtering in video encoder. With such implementation informa-
tion, good tradeoffs between architecture and algorithm can be
done to deliver a design with satisfactory performance, power
and occupied silicon area.

1.3 Contributions

This thesis presents a family of FPGA-based motion estimation
architectures for variable block size motion estimations. The
following novel contributions result from this work.

• A study of the complexity, quality and performance asso-
ciated with different motion estimation algorithms jointly
with hardware architectures for H.264/AVC was made. Im-
plementations of hardware architectures were done on a Xil-
inx FPGA platform. To the best of my knowledge, no study
considering all these issues has been previously reported in
the literature.

• Employing computer arithmetic optimizations for motion
estimation. Although MSB-first bit serial architectures with
early termination have been proposed [46], this is the first
reported architecture supporting variable block size motion
estimation.

• The initialization scheme proposed in section 4.5.3 is an

CHAPTER 1. INTRODUCTION 6

improvement over the standard one and enables earlier ter-
mination.

• A family of architectures capable of supporting the latest
codec standard H.264/AVC was developed which can meet
the requirements of different kinds of applications under
different constraints, e.g. performance, area, bandwidth,
quality and power consumption.

1.4 Thesis structure

The main theme of this thesis is to study different implemen-
tation methods for motion estimation in the latest and future
video coding standards. The reference coding standard in this
thesis is H.264/AVC or MPEG-4 part 10. All the work stated in
this thesis assumes the definition given in H.264/AVC standard.

Chapter 2 reviews the background of digital video compres-
sion and explains the role of motion estimation and the under-
lying algorithms. A number of commonly used motion estima-
tion algorithms are introduced in detail. In terms of efficiency,
performance and data dependency, a comparison between dif-
ferent algorithms are made. Lastly, the new added features in
H.264/AVC are presented and their effects are analyzed.

Chapter 3 contains background associated with computer
arithmetic for motion estimation. Number systems and cor-
responding algorithms for addition, absolute difference, multi-
operand addition and comparison are presented using both bit-
parallel and bit-serial (MSB-first or LSB-first) approaches.

Chapter 4 presents various VLSI architectures for variable
block size motion estimation. Concepts including systolic ar-
rays and tree architectures are described for bit-parallel systems.
Next, the implementation of bit-serial system is presented in a
top-down manner. Lastly, metrics of different architectures are

CHAPTER 1. INTRODUCTION 7

analyzed and capabilities of these architectures are presented.
Chapter 5 presents the results of this thesis. Several compar-

isons have been made on different architectures and technologies.
Lastly, conclusions are drawn in chapter 6.

Chapter 2

Digital video compression

2.1 Introduction

Compression is the process of compacting data into a smaller size
in terms of number of bytes in digital media. Text files, pictures,
voice, and in fact any data that contains redundancy can be
made smaller by employing compression. Since an uncompressed
video scene can occupy a large amount of storage space, video
compression has an important role in the digital world.

Every compression system involves complementary units, an
encoder (compression unit) and a decoder (decompression unit).
The encoder exploits the redundancy among the given data and
converts it to a compressed data stream. The decoder interprets
the compressed data stream and restores it into the original
format. To ensure the compressed size is satisfactory small, the
original data may not be exactly the same as the original data
hence some details may be lost. These kinds of compression
systems are also called lossy compression systems.

The compression system must be well defined and the com-
pressed data stream format known in both the encoder and de-
coder. The encode/decode pair is often described as a codec
(coder/decoder). MPEG-1, MPEG-2, H.263 [3], H.264, etc are
codecs defined by standardization parties. Standardization par-
ties include moving picture expert group (MPEG), a group of

8

CHAPTER 2. DIGITAL VIDEO COMPRESSION 9

the international organization for standardization; international
telecommunication union (ITU-T); video coding expert group
(VCEG), etc.

Video compression exploits three kinds of data redundancy
within a video scene. In a standard lossy video compression such
as H.264, the temporal redundancy between adjacent frames is
the most important redundancy in video-type data and a large
proportion of data dependency can be reduced through motion
estimation. Spatial redundancy, which can be exploited within
a frame, is reduced via transform techniques. It also consti-
tutes a significant portion of redundancy since there is usually a
high correlation between neighbouring pixels. Lastly, statistical
redundancy, which must occur in any kind of data source, is
reduced by an entropy coder in the last stage of the encoder.

2.2 Fundamentals of lossy video compression

In digital video, lossy compression is often employed to en-
sure good compression performance. Although the quality is
inevitably degraded, there is minimal impact on perceived qual-
ity since only the high-frequency component is eliminated and
human eyes are not sensitive to these components. The video en-
coding system consists of two kinds of compression units, namely
lossy and lossless. Lossless data compression is a class of data
compression algorithms in which the exact original data can be
reconstructed. In contrast, lossy data compression must intro-
duce some data loss during compression. The lossy compres-
sion unit contains temporal and spatial redundancy compres-
sors. The statistical compressor in the last stage is a lossless
one. The video coder contains five stages in total [42], handling
different kinds of compression. In the following subsection each
compression unit is discussed. Figure 2.1 shows the block dia-
gram of a hybrid video encoder with the three compressor types

CHAPTER 2. DIGITAL VIDEO COMPRESSION 10

described [42].

2.2.1 Video compression and human visual systems

A video scene consists of multiple objects each with their shapes,
textures, illuminations, colors, etc. The motion, color and bright-
ness of a scene are interpreted by the human visual systems.
Some aspects are less sensitive to human eyes than others. For
example, human eyes can’t detect blue as well as green. In dark
environments, only black and white can be detected. Moreover,
the image formed in the retina remains for 10 to 30 milli-seconds.
As a result human eye cannot detect the difference between 60
fps and 120 fps video. Human vision cannot perceive very de-
tailed objects, i.e. high resolution objects. The objective of
video compression is to exploit these properties of the human
visual system, maximizing compression efficiency while keeping
the impact of objective quality loss to a minimum. Since the
non-sensitive components are high frequency components, e.g.
color, frame rate, their removal results in high compression ra-
tios.

2.2.2 Representation of color

We need at least three basic colors: red, blue and green, to
display a true color picture. As a result, each pixel consists of
at least three distinct channels of information.

Common color representations methods include RGB and
YUV [42]. RGB is a representation that includes three ba-
sic colors together with brightness information. It is a com-
mon method for monitor displays. YUV is a representation
which divides the color space into luminance (brightness) and
chrominance (color). The 3 original colors can be derived from
YUV data. Since humans are less sensitive to color than lu-
minance, color information can be suppressed compared to lu-

CHAPTER 2. DIGITAL VIDEO COMPRESSION 11

minance data without significant quality loss. For example, in
4:2:0 YUV, we have four times the luminance information than
chrominance. Other representations such as 4:2:2 and 4:4:4 de-
pend on the sampling frequencies. In the video compression,
YUV representation is a better method to specify a pixel since
it more closely tracks human perception and can enhance com-
pression efficiency.

2.2.3 Sampling methods - frames and fields

A video can be sampled as frames or fields. This is called pro-
gressive sampling and interlaced sampling respectively. For each
time instance, frames consist of both odd-numbered lines and
even-numbered lines forming a picture. Fields consist of either
odd-numbered lines or even-numbered lines consecutively. As a
field occupies half the data of a frame, fields can be sampled at
twice the rate of a frame. The advantage of interlaced sampling
is it gives the viewer smoother motion, at the same time the
data rate is reduced. The downside is the introduction of inter-
lacing artifacts when displayed on a progressive scan monitor.
Both sampling methods are employed in video compression and
the best choice depends on the application.

2.2.4 Compression methods

Since a video scene is rectangular, block-based coding is a suit-
able choice of processing element. However, other compression
methods also exist. One example is wavelet coding which is
employed in image encoding in JPEG2000 [19]. A three dimen-
sional version of wavelet coding for video compression was sug-
gested [15] which gives better visual quality but the computation
complexity is much higher. Another method is called arbitrary-
shaped coding which is employed in MPEG-4 [18]. This is based
on different moving objects whose motion is combined to form

CHAPTER 2. DIGITAL VIDEO COMPRESSION 12

Entropy
Coding

Scaling & Inv.
Transform

Motion-
Compensation

Control
Data

Quant.
Transf. coeffs

Motion
Data

Intra/Inter

Coder
Control

Decoder

Motion
Estimation

Transform/
Scal./Quant.-

Input
Video
Signal

Split into
Macroblocks
16x16 pixels

Intra-frame
Prediction

De-blocking
Filter

Output
Video
Signal

Entropy
Coding

Scaling & Inv.
Transform

Motion-
Compensation

Control
Data

Quant.
Transf. coeffs

Motion
Data

Intra/Inter

Coder
Control

Decoder

Motion
Estimation

Transform/
Scal./Quant.-

Input
Video
Signal

Split into
Macroblocks
16x16 pixels

Intra-frame
Prediction

De-blocking
Filter

Output
Video
Signal

Figure 2.1: Hybird video coder for H.264/AVC

a complete frame. The performance is improved by accurate
prediction in motion estimation. As a tradeoff, it has increased
complexity.

2.2.5 Motion estimation

The motion estimation unit, shown in figure 2.1, is the first
stage. The uncompressed video sequence input undergoes tem-
poral redundancy reduction by exploiting similarities between
neighbouring video frames. Temporal redundancy arises since
the difference between two successive frames are usually simi-
lar, especially for high frame rates, because the objects in the
scene can only make small displacements. With motion esti-
mation, the difference between successive frames can be made
smaller since they are more similar. Compression is achieved by
predicting the next frame relative to the original frame. The
predicted data are the residue between the current and refer-
ence pictures, and a set of motion vectors which represent the

CHAPTER 2. DIGITAL VIDEO COMPRESSION 13

predicted motion direction. The process of finding the motion
vector is optimal or suboptimal depending on the block match-
ing algorithm chosen. Since the correlation between successive
frames is inherently very high, the compression in this stage
has large impact on the overall performance of the whole sys-
tem. The motion predicted frames are usually called P-frames
(Predicted frames). The other type of predicted frame is called
B-frames (Bi-predicted frames). In this case the frame is pre-
dicted from two or more reference frames previously decoded.

2.2.6 Motion compensation

The motion compensation unit constructs a compensated frame,
also called a residue frame, from the original frame and motion
vectors. It than calculates the residue between the compensated
frame and the reference frame. It is often employed together
with motion estimation unit to reduce temporal redundancy of
a video sequence. On the decoder side, the compensation unit
acts as a reconstruction engine that combines the residue and
motion vector to form the original frame. The frame is divided
into subblocks so that the engine will act on each subblock se-
quentially until the whole picture is constructed.

2.2.7 Transform

The transform unit [32] reduces spatial redundancy within a pic-
ture. Its input is the residue picture calculated by the motion
estimation unit. Since the residue picture has high correlation
between neighbouring pixels, the transformed data is easier to
compress than the original residue data since the energy of the
transformed data is localized. The transformed data are called
transform coefficients and they are passed to the quantization
unit. The transformation can be done by many methods, includ-
ing the Cosine Transform, Integer Transform, Karhunen-Loeve

CHAPTER 2. DIGITAL VIDEO COMPRESSION 14

Transform etc. Details of these can be found in [41].

2.2.8 Quantization

The quantization unit is the only lossy compression unit in the
system. It serves to eliminate high frequency transform coeffi-
cients so that the quantized transform coefficients are more eas-
ily compressed. The elimination of high frequencies is justified
because of the insensitivity of human vision to high frequency
components. Subjectively, the quality of a video scene after
quantization will not be significantly degraded if the bit-rate is
not highly constrained. In each video coding standard, there
exists a defined set of quantization parameters for providing the
best compression-to-quality ratios for different applications.

2.2.9 Entropy Encoding

The entropy encoding unit is the last stage in a video compres-
sion system. In this stage, mostly statistical redundancy remains
in the data. The motion vectors output by the motion estima-
tion unit and quantized transform coefficients from the trans-
form unit are accepted in this stage to produce the compressed
bit stream that can be transmitted or stored. Typically, there
are two kinds of entropy coder. The first is a variable-length-
coder [4] in which the statistical information is initially defined.
Second is an arithmetic coder [33] in which the statistical infor-
mation is determined online. Most modern entropy coders are
content-adaptive [33]. The compressed data can be optimized
adaptively independent of the nature of the video scene.

2.2.10 Intra-prediction unit

The intra-prediction unit is activated when the difference be-
tween consecutive frames is too large, as occurs in a scene change

CHAPTER 2. DIGITAL VIDEO COMPRESSION 15

Figure 2.2: Improvement made by deblocking filter - Left: improved

or very fast moving pictures. In this case the frame is pre-
dicted by predefined block patterns instead of motion estimation
and compensation. The output bit stream is usually smaller
when such effects occur. H.264/AVC supports 13 prediction
patterns in its intra-prediction unit [42]. The frames coded by
intra-prediction unit are usually called I-frames (Intra-predicted
frames).

2.2.11 Deblocking filter

Since most of the video coder employs block-based motion com-
pensation, blocking artifacts may be visible when the scene is
reconstructed. The lower the bit-rate, the more pronounced the
blocking effect. To reduce this blocking artifact, a deblocking
filter is included within the encoding loop. It employs adaptive
filtering techniques so that edges are correctly filtered. Includ-
ing the deblocking filter improves the visual quality in terms of
objective (PSNR, section 2.3.5) and subjective judgment (hu-
man vision). The effect of the deblocking filter is illustrated in
figure 2.2

CHAPTER 2. DIGITAL VIDEO COMPRESSION 16

Compression stage Proportion

Motion vector search 67.31%

Mode selection 8.19%

Rate distortion opt. 3.37%

Transform and quantization 6.95%

entropy coder 6.19%

deblocking filter 0.03%

Others 7.96%

Table 2.1: Complexity profile of each compression stage in H264/AVC

2.2.12 Complexity analysis of on different compression
stages

Each unit in the video coder contributes additional computa-
tional complexity to the overall system. Among all compression
units, the motion estimation unit occupies most of the computa-
tion resources. In a software implementation, this is more than
65 percent of the total computation time. The transform unit,
entropy coder and deblocking filter add up to 15 percent. The
remaining 20 percent is due to mode selection and other over-
heads. Thus, there is no doubt that motion estimation unit can
be accelerated using hardware. Table 2.1 shows the profiling of
H.264/AVC encoding on a Pentium-III platform by [8].

2.3 Motion estimation process

2.3.1 Block-based matching method

Block-based matching method is the most widely used motion
estimation method for video coding since pictures are normally
rectangular in shape and block-division can be easily done. Usu-
ally, standards bodies, e.g. MPEG, defines the standard block
sizes for motion estimation. This can be 16 by 16, 8 by 8, etc,

CHAPTER 2. DIGITAL VIDEO COMPRESSION 17

Figure 2.3: Selection of block sizes within a frame

depending on the target application of the video codec. In the
latest codec standards such as MPEG-4 or H.264/AVC, variable
block sizes are supported which can be 4 by 4, 8 by 8 and 16
by 16. The goal of motion estimation is to predict the next
frame from the current frame by associating the motion vector
to picture macroblocks as accurately as possible. The block size
determines the quality of prediction [12] and thus the accuracy.
Figure 2.3 shows the distribution of block sizes within a picture.
It is easy to see that the detailed region is associated with small
blocks whereas the large uniform region is associated with large
blocks.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 18

2.3.2 Motion estimation procedure

After motion estimation, a picture residue and a set of motion
vectors are produced. The following procedure is executed for
each block (16x16, 8x8 or 4x4) in the current frame.

1. For the reference frame, a search area is defined for each
block in the current frame. The search area is typically
sized at 2 to 3 times the macroblock size (16x16). Using the
fact that the motion between consecutive frames is statisti-
cally small, the search range is confined to this area. After
the search process, a ”‘best”’ match will be found within
the area. The ”‘best”’ matching usually means having low-
est energy in the sum of residual formed by subtracting the
candidate block in search region from the current block lo-
cated in current frame. The process of finding best match
block by block is called block-based motion estimation.

2. When the best match is found, the motion vectors and
residues between the current block and reference block are
computed. The process of getting the residues and motion
vectors is known as motion compensation.

3. The residues and motion vectors of best match are encoded
by the transform unit and entropy unit and transmitted to
the decoder side.

4. At decoder side, the process is reversed to reconstruct the
original picture.

Figure 2.4 shows an illustration of the above procedure. In
modern video coding standards, the reference frame can be a
previous frame, a future frame or a combination of two or more
previously coded frames. The number of reference frames needed
depends on the required accuracy. The more reference frames
referenced by current block, the more accurate the prediction is.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 19

Current frame

Reference frame

Search area

Current block

Best match block

Minimum motion vector

Figure 2.4: Motion estimation and motion vector

2.3.3 Matching Criteria

Block-based motion estimation obtains the best match by min-
imizing a cost function. Various cost functions have been pro-
posed and analyzed in the literatures, varying in complexity and
efficiency. In this section, the mean absolute difference (MAD),
mean square error (MSE), sum of absolute difference (SAD) and
sum of absolute transformed difference (SATD) block matching
criteria are explained. In and In−1 in the formula below repre-
sent the macroblock in current and reference frame respectively.
m and n are the search location motion vector and N is the
block size. k and l represent the index of macroblocks.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 20

Mean absolute difference (MAD)

The MAD cost function [43] is defined as:

MAD(k,l;m,n)= 1

N2

∑N

i=0

∑N

i=0
|In(k+i,l+j)−In−1(k+i+m,l+j+n)| (2.1)

The advantage of MAD cost function is its simplicity and ease
of implementation in hardware. Unfortunately, MAD tends
to overemphasize small differences, giving an inferior result to
MSE.

Mean absolute error (MSE)

MSE [47] is a cost function measuring the energy remaining in
the difference block. The MSE cost function is defined as:

MSE(k,l;m,n)= 1

N2

∑N

i=0

∑N

i=0
(In(k+i,l+j)−In−1(k+i+m,l+j+n))

2 (2.2)

The advantage of MAD cost function is its accuracy but its com-
plexity is high for both software and hardware implementations.

Sum of absolute difference (SAD)

SAD [43] is the most common matching criteria chosen in video
coding because of its low complexity, good performance and ease
of hardware implementation. The SAD cost function is defined
as:

SAD(k,l;m,n)=
∑N

i=0

∑N

j=0
|In(k+i,l+j)−In−1(k+i+m,l+j+n)| (2.3)

The only difference between SAD and MAD is that SAD takes
the sum of all pixels while MAD measures the average pixel
value. Since the block size is constant during subtraction, the
average value per pixel is not important. A divide operation is
saved and the overall computation is simplified.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 21

Sum of absolute transformed difference (SATD)

SATD is another way to compute the residues between two
blocks, where the pixel values are pre-transformed by Hadamard
Transform [42]. Since the transformed coefficient is closer to the
final bit stream, it offers better matching accuracy than SAD.
The SATD cost function is defined as:

SATD(k,l;m,n)=
∑N

i=0

∑N

j=0
|Tn(k+i,l+j)−Tn−1(k+i+m,l+j+n)| (2.4)

In the above equation, Tn and Tn−1 represents the transformed
coefficient of each block in the current and reference frames re-
spectively. Although it offers significant improvement in predic-
tion quality, transform hardware must be added within the mo-
tion estimation loop and hardware complexity is increased. On
the other hand, the latency and thus the performance of motion
estimation will be degraded due to the added transform hard-
ware. This technique is applied to H.264/AVC when performing
quarter pixel accuracy motion estimation. The high accuracy is
needed since it is the final stage of motion estimation [42].

2.3.4 Motion vectors

To represent the motion of each block, a motion vector is de-
fined as the relative displacement between the current candidate
block and the best matching block within the search window in
the reference frame. It is a directional pair representing the dis-
placement in horizontal (x-axis) direction and vertical (y-axis
direction). The maximum value of motion vector is determined
by the search range. The larger the search range, the more
bits needed to code the motion vector. Designers need to make
tradeoffs between these two conflicting parameters. The motion
vector is illustrated in figure 2.4.

Traditionally one motion vector is produced from each mac-
roblock in the frame. MPEG-1 and MPEG-2 employ this prop-

CHAPTER 2. DIGITAL VIDEO COMPRESSION 22

erty. Since the introduction of variable block size motion esti-
mation in MPEG-4 and H.264/AVC, one macroblock can pro-
duce more than one motion vector due to the existence of dif-
ferent kinds of subblocks. In H.264, 41 motion vectors should
be produced [42] in one macroblock and they are passed to rate-
distortion optimization to choose the best combination. This is
known as mode selection.

2.3.5 Quality judgment

The quality of a video scene can be determined using both objec-
tive and subjective approaches. The most widely used objective
measure is the peak-signal-to-noise-ratio (PSNR) [42] which is
defined as:

PSNR = 10log10

[2552

MSE

]

(2.5)

where the MSE is the mean square error of the decoded frame
and the original frame (refer to section 2.3.3 for the exact for-
mula). The peak value is 255 since the pixel value is 8 bits in
size.

The higher the PSNR, the higher the quality of the encoding.
The PSNR and bit-rate are usually conflicting, the most appro-
priate point being determined by the application. Although
PSNR can objectively represent the quality of coding, it does
not equal the subjective quality. Subjective quality is deter-
mined by a number of human testers and a conclusion is drawn
based on their opinions. There exist cases for which high PSNR
results in low subjective quality [42]. However, in most cases,
PSNR provides a good approximation to the subjective measure
and we use this measure in the rest of the thesis.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 23

2.4 Block-based matching algorithms for mo-

tion estimation

Block-based matching algorithms are processes for finding mini-
mum motion vectors in the motion estimation process. Different
kinds of algorithm could give a different motion vector. Among
all algorithms proposed, only full search gives optimal result
within the search range. Other algorithms will give near-to-
optimal results but significant lower complexity by reducing the
number of search points. In this section, we describe several
block-matching algorithms which are commonly used in modern
coding standards.

2.4.1 Full search (FS)

The full search algorithm finds a global optimal motion vector
from the entire candidate blocks within the search window. If
our search window is 48 by 48 pixels and the block size is 16 by
16, there will be 16∗16 = 1024 candidates that need to undergo
SAD computation. FS exhaustively searches all candidates until
a minimum motion vector is found and it is the algorithm with
the simplest data flow and control. It is suitable for hardware
implementation since the high computational complexity can be
overcome by parallelism and high bandwidth can be overcome
by systolic architectures.

For software implementations, full search is often ignored [8]
as contemporary microprocessors cannot handle full search with
acceptable performance, especially for real time applications.

The number of search locations to be examined by full search
is directly proportional to the square of the search range r. The
number of search location in search area is (2r + 1)2. So the
algorithm complexity of full search is O(r2).

CHAPTER 2. DIGITAL VIDEO COMPRESSION 24

2.4.2 Three-step search (TSS)

The three step search algorithm has been proposed by Koga [23]
and implemented by Lee et al [27]. This algorithm makes an
assumption that the residue values increases radically from the
absolute minimum point within the search area. This algorithm
searches for the direction of the greatest decrease in residue and
from there, continues to find the minimum point.

In the first step, TSS compares the nine search points sur-
rounding the center point with step size p equal to or larger than
half of the maximum search range r. Among the 9 search points,
a minimum is selected and becomes the center of the next step.
Next, the step size is halved and 8 new search points (exclud-
ing the center) are searched and again a minimum is selected.
The step size is halved again and search continues until the step
size is equal to one. The minimum search point is found at this
stage.

From the above described procedure, it can be observed that
the TSS constantly divides the search step size by two and
is therefore a logarithmic search. The total number of search
points is [1 + 8log(p)]. Except for the first step, the 8 search
points are calculated in each iteration and the algorithmic com-
plexity for TSS is O(8log(p)) = O(log(r/2)) where p is the initial
step size and typically equals to r/2.

This algorithm has advantages of much lower complexity than
FS in terms of number of candidates to evaluate and efficient im-
plementations in both software and hardware. Even for software
implementations, this algorithm [25] can offer real time encod-
ing. It has the drawback of degraded quality since it can easily
be trapped into a local minimum. Also, its large initial step size
can lead to poor results. Furthermore, its data dependencies
restrict parallelism in hardware implementations.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 25

2.4.3 Two-dimensional Logarithmic Search Algorithm
(2D-log search)

Two-dimensional logarithmic search is another logarithmic search
proposed by Jain and Jain [21]. It has less search points than
TSS but its prediction is more accurate. It also defines a step
size at the beginning and terminates when the step size equals
to one.

First the algorithm begins by calculating the SAD in the cen-
ter of search area and another four points ±p pixels away from
center in the horizontal and vertical directions. If the minimum
SAD is located at the center, the step size is halved. Otherwise,
one of the 4 search points will become the center and another 4
search points ±p pixels away from the new center will be calcu-
lated. In this case the step size is kept until the minimum SAD
is located at the center. When the step size is reduced to 1,
instead of four search points, the nine search points surrounding
the current center are searched and a minimum point is found.

The complexity of 2D-log search is similar to TSS and equals
to O(log(r/2)). The difference is that the Big-O constant is
lower than that of TSS.

This algorithm has advantages of better prediction quality
than TSS with some additional control overhead introduced.
Again, its data dependencies do not favor fully parallel hardware
implementations.

2.4.4 Diamond Search (DS)

The diamond search algorithm was proposed by Zhu and Ma
in 1997 [56, 57] and, as its name suggests, employs diamond
search patterns. It is commonly employed for fast searches since
it provides the best quality to complexity ratio. It makes use
of two diamond shapes for searching: a large diamond with 9
search points and a small diamond shape with 5 points.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 26

This algorithm initially employs a large diamond shape in the
beginning and searches for the minimum SAD location. If the
minimum location is not at the center, the new center is reset
to the minimum location just found and the search is continue
using a large diamond pattern until a minimum value is located
at the center. Then the algorithm switches to small diamond
pattern and the minimum point is found in this final stage.

The complexity of this algorithm is lower than the entire
logarithmic search described above. Its complexity is in order
of O(log(r/2)). The average search points in DS is less than 20
for a normal scene [49].

DS gives better prediction quality and lower complexity than
TSS and 2D-log search. It is the best choice for software im-
plementations. For hardware implementation, the two diamond
sizes add a small but acceptable complexity to control circuits.

2.4.5 Fast full search (FFS)

In the full search algorithm, the SAD is computed for all can-
didate positions. When a smaller value is found, it is recorded
as the current minimum SAD. It is possible to speed up the
rejection of incorrect candidates via mathematical techniques
such as Successive Elimination Algorithms (SEA) [29], progres-
sive norm successive algorithm (PNSA)[37] without any qual-
ity loss. Partial distortion elimination (PDE) [13] is a method
of early comparison that compares the partial SAD with the
current minimum SAD. The speedup is possible because these
techniques employ other matching criteria, e.g. SEA, PNSA and
partial SAD, which are easier to calculate than SAD and early
elimination for impossible candidates can be achieved.

The algorithms suggested above focus on mathematical opti-
mizations. In hardware implementations, arithmetic optimiza-
tions can also improve the efficiency of full search. For example,

CHAPTER 2. DIGITAL VIDEO COMPRESSION 27

in a bit serial implementation of SAD, computation can be saved
by employing early termination in the comparison stage. The
early termination is brought by the fact that comparison is a
most-significant-bit-first process. In the next chapter we will
explain the early termination technique in detail.

2.5 Complexity analysis of motion estimation

In video compression applications, we define the complexity of
an algorithm in terms of the number of required operations and
express the complexity as MOPS (Million operations per sec-
ond). In the following subsection we will compare the com-
plexity of motion estimation algorithm in terms of MOPS. The
following assumptions have been made for the comparisons.

1. The macroblock size is 16 by 16.

2. The SAD cost function requires 2∗(16∗16) data loads, 16∗
16 = 256 subtraction operations, 256 absolute operations,
256 accumulate operations, 1 compare operation and 1 data
store operation. In total, 1282 operations are needed for one
SAD computation.

3. CIF resolution is 352 ∗ 288 and HDTV 720p resolution is
1280 ∗ 720. The number of macroblocks in a CIF frame is
396 and for HDTV 720p is 3600.

4. The frame rate is 30 frames per second.

5. The total number of operations required to encode CIF
video in real time is 1282 ∗ 396 ∗ 30 ∗ (#ofsearchpoints)=
15.23016 ∗ (#ofsearchpoints) MOPS. To encode HDTV
720P video signal, 138.456 ∗ (#ofsearchpoints) MOPS is
needed.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 28

Algorithm Num of searching point
when search range = ±16

CIF HDTV

FS 1024 15600 142000

TSS 33 502 4600

2D-log Search 30 456 4200

DS 25 381 3500

Table 2.2: Complexity of block-based searching algorithms (measured in
MOPS)

2.5.1 Different searching algorithms

Assume that the search range is confined to ±16. Table 2.2
shows the number of search points needed for each of the al-
gorithms described above. The last 2 columns show the num-
ber of operations needed for CIF and HDTV 720P resolutions
respectively. The large computational requirements limit the
ability of general purpose processors to perform these searches
in real time. In modern general purpose processors such as Intel
Pentium-4, its performance is a few giga operations per second
(GOPS) and a full search is totally impractical in software. Dig-
ital signal processors, ASIC or FPGA technologies are the only
choices available for FS.

2.5.2 Fixed-block size motion estimation

In the first generation coding standards, the block size is con-
fined to 8 by 8 or 16 by 16. A large block size favors encoding
of a uniform area whereas small block sizes favor detailed area
encoding [12]. Within a picture, detailed uniform areas coexist
and fixed block sizes must sacrifice prediction quality to reduce
complexity.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 29

41
39

40

37 38
33 34

35 36

16x16 16x8 8x16 8x8

8x4 4x8 4x4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 19

18 20

21 23

22 24

25 26 27 28

29 30 31 32

Figure 2.5: Sub-macroblock partitions in H.264/AVC

2.5.3 Variable block size motion estimation

In order to adaptively select a suitable block size for picture mac-
roblock, variable block size motion estimation has been added in
the latest codec standards, e.g. H.264. In H.264 [48], each pic-
ture (frame) is segmented into macroblocks. Each macroblock
is further divided into sub-blocks with 7 different types of block
sizes (4x4, 4x8, 8x4, 8x8, 8x16, 16x8 and 16x16) as shown in
Figure 2.5. Each macroblock has in total 41 types of sub-blocks
to cover the whole macroblock. In variable block size motion es-
timation, for each type of subblock, a motion vector is produced.
In total 41 motion vectors are calculated per macroblock.

Since the number of motion vector is increased from 1 to 41
in variable block size motion estimation, the number of com-
parison operations in the computation of a SAD is also in-
creased. The number of operations to find the motion vectors
is 1282+40=1322 operations. In a software implementation this
is not a big increase but for hardware implementation, this in-
crease is significant as the number of comparators is increased

CHAPTER 2. DIGITAL VIDEO COMPRESSION 30

from 1 to 41, contributing a significant hardware cost.

2.5.4 Sub-pixel motion estimation

Sub-pixel motion estimation involves searching sub-sample in-
terpolated positions as well as integer-sample positions. Since
the motion of a macroblock between two successive frames can
be half way between two integer positions in most cases, the ad-
dition search on sub-pixel accuracy block improves the overall
quality of the prediction. In H.264/AVC [48], quarter-pixel ac-
curacy motion estimation is supported in addition to half-pixel
accuracy.

In the first stage, motion estimation finds the best match
on the integer sample. The encoder search half-sample posi-
tions immediately next to this best match to see whether the
match can be improved. If required, quarter-pixel samples are
searched for further improvement. The added complexity is due
to the interpolation of sub-pixels and added search positions.
Assume interpolation for the half-pixel accuracy pixel needs 11
operations for each pixel and 3 operations are needed for quar-
ter pixel accuracy. We have 9 more search points for half-pixel
accuracy and 9 more for quarter pixels. We have in addition
9 ∗ 256 ∗ (11 + 3) = 32256 filtering operations per macroblock
and the number of search point is increased by 18. Figure 2.6
shows the integer position, half-pixel and quarter-pixel positions
of search candidates.

2.5.5 Multi-reference frame motion estimation

In previous standards, for prediction of macroblocks, only refer-
ences to the immediate previously coded I-picture or P-picture
are required. In H.264/AVC, this restriction is released to enable
efficient coding by allowing selection among a larger number of

CHAPTER 2. DIGITAL VIDEO COMPRESSION 31

Figure 2.6: Integer, half-pixel and quarter-pixel motion estimation search
positions (pel stands for pixel)

pictures that have been decoded and stored. Up to five reference
frames can be used in H.264/AVC [48].

Motion estimation algorithms are modified accordingly in this
case. Depending on the searching algorithm, the complexity can
be increased by five times in the worst case.

2.6 Picture quality analysis

The performance of motion estimation algorithms: FS, TSS,
2D-log and DS are simulated in software using Matlab. The
simulation result on the standard Foreman sequence is shown in
figure 2.7. This video consists of a slow moving background and
detail facial motions. As expected, full search performs the best
among all algorithms. For fast search algorithms, DS performs
better than TSS and 2D-log search. As a result, DS is a common
choice in fast search motion estimation.

CHAPTER 2. DIGITAL VIDEO COMPRESSION 32

Figure 2.7: Matlab simulation on the quality of different motion estimation
algorithms on Foreman

2.7 Summary

In this chapter we gave background information on video coding
with an emphasis on motion estimation. The motion estimation
procedure, matching criteria, quality judgment were presented.
We also reviewed algorithms for performing motion vector pre-
diction, comparing their complexities and qualities. Advanced
motion estimation features such as fractional motion estimation,
multi-reference fames were also discussed.

Chapter 3

Arithmetic for video encoding

3.1 Introduction

Computer arithmetic is an important area of digital computer
organization concerned with the realization of arithmetic func-
tions to support computer architectures as well as arithmetic
algorithms for software implementation. Architectural and al-
gorithmic optimizations are studied to maximize the efficiency
of arithmetic operations.

In general purpose processor, efficient digital circuits for math-
ematical primitives such as +,−,×,÷,√ , log, sin, cos are em-
ployed. Implementing a complex problem, e.g. motion esti-
mation, using general purpose processor, the designer searches
an appropriate algorithm and implements it in an acceptable
complexity using combinations of mathematical primitives pro-
vided. The optimization is often restricted since the maximum
parallelism cannot be exploited.

To address this issue, algorithm specific optimizations can be
applied to greatly improve efficiency. In the following section we
use motion estimation as an example to show how the arithmetic
circuit can be optimized using arithmetic approach.

33

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 34

3.2 Number systems

We have been familiar with decimal numbers in calculation for
thousand of years, whereas number representation for computer
systems have only been developed this past century. In digital
systems, numbers are encoded by means of binary digits. As
the representation has significant effect on algorithm and circuit
complexity, a suitable representation should be correctly chosen
for any special applications if designers want to fully exploit the
optimizations.

In this section we will introduce the non-redundant num-
ber systems such as the sign-and-magnitude and complement
number schemes. For redundant number systems we introduce
carry save and signed-digit number schemes. Other representa-
tions also exist, e.g. residue number system, logarithmic number
system and floating point number system. Since they are not
employed in our applications, interested readers can refer to an
arithmetic textbook [10] [28] [40] for further details.

3.2.1 Non-redundant Number System

A number N can be represented by a string of n digits with r

being the radix as follows.

N = (dn−1dn−2...d1d0)r

di, where 0 ≤ i ≤ n− 1, is a digit and di ∈ {0, 1, ..., r − 1}. It is
a positional weighted system where the position of di matters.
The value of N is defined by:

N = dn−1 × rn−1 + dn−2 × rn−2 + ... + d1 × r1 + d0 × r0

=
n−1
∑

i=0

di × ri

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 35

dn−1 is called the most significant digit (MSD) and d0 is called
the least significant digit (LSD). In binary encoding system, each
digit is called a bit and the above terms become MSB and LSB.

Sign-and-magnitude number representation

There are several ways to represent a negative number in a non-
redundant number system. In standard mathematical notation,
± sign is appended to the front of the string of digits to indicate
the number is positive or negative. In case of computer systems,
a common convention to represent negative sign is appending a
“1” to the MSD of binary string to represent a negative number
and a “0” for a positive one. Such representation is called sign-
and-magnitude representation scheme. As a result, the number
of bits representing the number is increased by 1. A Sign-and-
magnitude number S is presented as:

S = (dndn−1dn−2...d1d0)r

where dn = 0 when it is positive and dn = 1 otherwise. The
value of S is defined by:

S = (−1)dn × (dn−1 × rn−1 + dn−2 × rn−2 + ... + d0 × r0)

= (−1)dn

n−1
∑

i=0

di × ri

Advantages of sign-and-magnitude representation include its
conceptual simplicity, symmetric range and simple negation by
flipping the sign bit. A disadvantage is that the addition of num-
ber needs to be handled differently when signs of two numbers
are different.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 36

Complement representation

Another way to represent a signed number is to employ a com-
plement number representation. The negation of a number X
is represented as unsigned value M − X where M is a suit-
ably large constant greater than X. Representing integers in
range [−N, +P] requires M ≥ N + P + 1 or M = N + P + 1
for maximum coding efficiency. For example to code [−7, +8],
M = 7 + 8 + 1 = 16. The value X of a r’s complement number
is defined as follows:

X = −dn × rn + dn−1 × rn−1 + dn−2 × rn−2 + ... + d0 × r0

= −dn × rn +
n−1
∑

i=0

di × ri

Addition and subtraction can be performed easily in hard-
ware using complement forms since the adder and subtractor
can be combined in a unit. For this reason, 2’s complement
scheme is often used in computer systems.

3.2.2 Redundant number system

The number systems introduced in the previous sections belong
to non-redundant, positional weighted systems. Each digit has
only a positive value which is less than radix r. In this section we
present another number system, the redundant number system
including the signed-digit number scheme and carry save number
scheme. These number systems are redundant as a value can
be represented more than one way. In the signed-digit number
scheme, each digit can either have a positive or a negative value
bounded by ±α. In carry-save number scheme, each digit is a
positive value which is bounded by 2r − 1.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 37

Signed-Digit number

Signed-digit number is a redundant number representation sat-
isfying the following constraints. Suppose we have a signed-digit
number SD. It is represented by:

SD = (xn−1xn−2...x1x0)r

where radix r ≥ 2, −α ≤ xi ≤ α and
⌈

r−1
2

⌉

≤ α ≤ r − 1.
To represent the signed-digit number in minimum redun-

dancy [10], we set α =
⌊

r
2

⌋

. To value of SD is defined as:

value of SD =
n−1
∑

i=0

xi · ri where xi ∈ {−α, ...,−1, 0, 1, ..., α}

.

Carry-save number

Carry save number is also a number system with redundancies.
Suppose we have a carry save number CS, it is represented by:

CS = (xn−1xn−2...x1x0)r

where radix r ≥ 2, 0 ≤ xi ≤ 2r − 1 since carry ∈ {0, 1}. The
value of a carry save number is defined as:

value of CS =
n−1
∑

i=0

xi · ri where xi ∈ {0, 1, ..., 2r − 1}

.
In the redundant number system, addition time can be in-

dependent of word length. Since the length of maximum carry
propagation can be reduced, for which the adder can work at
higher efficiency. It favors operations for which both the input
and output operands are in redundant representations.

The drawback is the increase in the number of bits required
for representing a number. Moreover, it makes the magnitude

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 38

comparison and sign detection more complex than that in non-
redundant number systems. Finally, it takes time to convert
redundant numbers to non-redundant one when non-redundant
results are desired.

Application of redundant number systems

Applications of the redundant number system appear in many
areas such as cryptography [36], digital signal processing [44],
etc. These fields involve calculation of either very long operands
or multi-operand operations which can benefit from redundant
number representations. For example, RSA decryption involves
1024-bit arithmetic and is slow in non-redundant number sys-
tems. Redundant number systems can be used to reduce time
complexity. Digital signal processing (DSP) operations often in-
volves filtering which employs multi-operand operations. Multi-
operand addition can be speeded up by employing redundant
number systems. In these applications, since the performance
speedup outweighs area overhead, redundant number systems
are commonly chosen. For motion estimation, which involves
many multi-operand operations, the advantages of redundant
number systems such as low latency and high pipelinability are
compelling.

3.3 Addition/subtraction algorithm

Addition and subtraction are basic operations in computer arith-
metic and also in our problem domain - motion estimation.
Many algorithms and architectures have been proposed in previ-
ous literatures to perform addition or subtraction in hardware.
Both non-redundant and redundant approaches are applicable
to these algorithms. Since the radix-2 is commonly used in com-
puter system, it is assumed in all algorithms below.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 39

3.3.1 Non-redundant number addition

This is the simplest addition algorithm in computer arithmetic.
Suppose we have two n-bit operands, x and y, to be added, such
that 0 ≤ x, y ≤ 2n − 1. Together with carry-in cin ∈ {0, 1} as
inputs, output sum s is calculated where 0 ≤ s ≤ 2n − 1 and
carry out cout ∈ {0, 1}. We have,

x + y + cin = 2ncout + s (3.1)

The solution to this equation 3.1 is,

s = (x + y + cin) mod 2n

and

cout =

1 if (x + y + cin) ≥ 2n

0 otherwise

= ⌊(x + y + cin)/2
n⌋

When n = 1, the addition algorithm reduces to a primitive
module called full-adder (FA) which is a fundamental element
to build big adders in hardware. The recursion of the above
equation for n = 1 gives implementation of word adder built on
FA arrays.

3.3.2 Carry-save number addition

A carry save representation allows us to eliminate long carry
propagations in a non-redundant number addition algorithm.
Suppose we have three radix-2 n-bit non-redundant numbers
x, y, z such that 0 ≤ x, y, z ≤ 2n − 1 as inputs and produces as
outputs the sum vector sv where 0 ≤ sv ≤ 2n − 1 and the carry
vector cv where 0 ≤ cv ≤ 2n+1 − 1, we have:

x + y + z = cv + sv

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 40

where

svi = xi + yi + zi mod 2

cvi+1 = ⌊(xi + yi + zi)/2⌋
cv0 = 0

0 ≤ i ≤ n − 1

The sum of three numbers is in carry save format {cv, cs}.
To convert it to a non-redundant number, a final non-redundant
addition is needed.

3.3.3 Signed-digit number addition

The objective of signed-digit addition, like carry save addition,
is to eliminate the carry propagation for long word length num-
bers. Suppose we have two signed-digit numbers, x and y. The
procedure of performing signed-digit addition consists of two
steps.

1. Compute the interim sum (w) and transfer (t) such that

xi + yi = wi + rti+1 (3.2)

at digit level 0 ≤ i ≤ n − 1 while n is the number of digit
and r is the radix. w acts like the sum in the carry-save
addition but instead of being values between 0 and r, it is
bounded by −α ≤ w ≤ β. t acts like a carry to the next
position with t ∈ {−1, 0, 1} instead of 0, 1 in carry-save
representation scheme.

2. Compute the sum s of w and t such that for 0 ≤ i ≤ n− 1,

si = wi + ti

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 41

The carry-free property can be ensured by avoiding carry
generations of adding w and t. Given −a ≤ s ≤ a, the
following constraints should be satisfied on values of w and
t so that no carry is produced. The constraint is given
below.

−a + t− ≤ wi ≤ a − t+

where
−t− ≤ ti+1 ≤ t+

To implement a radix-2 signed-digit addition, this constraint
is never met because if the radix is 2, a = 1 and −1+ t− ≤ wi ≤
1 − t+ implies either wi = 0 or ti+1 = 0 which is not possible to
satisfy equation 3.2 [10].

To allow the signed-digit addition in radix-2 operands, a
recoding modification is made [10]. As the signed-digit ad-
dition can be viewed as a recoding of digit set of xi + yi ∈
{−2,−1, 0, 1, 2} into digit set of {−1, 0, 1}, two recodings are
performed. First, the digit set is recoded from {−2,−1, 0, 1, 2}
to {−2,−1, 0, 1}.

xi + yi = 2hi+1 + zi

such that hi ∈ {0, 1} and zi ∈ {−2,−1, 0}. The sum of 2hi and
zi has a digit set {−2,−1, 0, 1}. Then this digit set is recoded
to {−1, 0, 1} by setting

zi + hi = 2ti+1 + wi

such that ti ∈ {−1, 0} and wi ∈ {0, 1}.
Details and examples of radix-2 signed-digit addition are pre-

sented in [10]. In this work we employ a 2-level recoding ap-
proach to implement our signed-digit multi-operand addition in
our bit-serial architecture in chapter 4.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 42

3.4 Bit-serial algorithms

Bit-serial arithmetic [10] has the advantages of smaller silicon
area, low pin count and higher operating frequency. Since the
routing in bit-serial designs can be much shorter than corre-
sponding bit parallel implementation, the throughput can be
competitive to a bit-parallel approaches. Moreover, performance
per gate in a bit-serial design is often much higher. It is often a
good choice in implementation platforms where storage elements
are abundant, as is the case for FPGAs.

Bit-serial implementations can be categorized into two process-
ing orders: Least-significant-bit first (LSB-first) and Most sig-
nificant bit first (MSB-first). MSB-first arithmetic is also called
on-line arithmetic in the literature since it adds an on-line de-
lay from input to output. Some operations like addition and
subtraction are more easily implemented LSB-first while com-
parisons, square roots and divisions are more efficient MSB-first.

3.4.1 Least-significant-bit (LSB) first mode

LSB-first mode is an arithmetic computation starting from the
least weighing digit. LSB-first arithmetic can be employed in
non-redundant number systems or redundant number systems.
With a word size of N bits, the number of iterations to produce
the result is N . LSB-first arithmetic can produce the output
bits without input-to-output delays when LSB-first favored al-
gorithms are implemented. Once the input bits are ready, the
output bits of corresponding inputs can be calculated immedi-
ately in the next computation cycle.

LSB-first favored algorithms include additions, subtractions,
multiplications, etc. As a result LSB-first mode is applicable to
almost all the simple primitive mathematical operations. For
example, a LSB-first addition algorithm for radix-2 is shown in
figure 3.1

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 43

Algorithm LsbBsAdd
Input: Operands x, y and carry0

Output: Sum s and carry out carryN

1. for (i from 1 to N)
2. do si = (xi + yi + carryi−1) mod 2;
3. carryi = (xi + yi + carryi−1) >> log2 2;
4. return s and carryN

Figure 3.1: LSB-first bit-serial addition algorithm

where carry0 = 0 and the result is N + 1 bits including the
carry out. This addition takes N cycles to complete.

3.4.2 Most-significant-bit (MSB) first mode

MSB-first arithmetic, also known as on-line arithmetic, is a bit-
serial scheduling technique in which the calculation is started
from the largest weighing digit [11]. Its idea is to perform
computation overlapped with digit by digit communications of
operands. Division and square root operations can be imple-
mented efficiently using MSB-first calculation. An important
characteristic of on-line arithmetic is that an on-line delay δ is
injected such that digit j input will complete calculations at j+δ
cycle.

Addition and subtraction must employ redundant number
representation to be computed in a MSB-first manner. A com-
monly used redundant number set is signed-digit numbers. For
example, a MSB-first addition algorithm for radix-r (r > 2) is
shown in figure 3.2:

where wN = 0 and z0 = 0. The result is in signed-digit format
and 1 cycle on-line delay is introduced. In contrast, two cycles
on-line delay are introduced for radix-2 two operand additions
[10].

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 44

Algorithm MsbBsAdd
Input: Operands x, y
Output: Sum z
1. for (i from N-1 down to -1)
2. do wi = (xi + yi) mod r;
3. ti+1 = (xi + yi) >> log2 r;
4. zi+1 = wi+1 + ti+1;
5. return z

Figure 3.2: MSB-first bit-serial addition algorithm

3.5 Absolute difference algorithm

This section describes how the operation “Absolute difference”
(|a − b|) can be done in bit-parallel and bit-serial approaches.
The procedure of absolute difference is described as follows.

1. Subtraction of the two numbers a and b.

2. Check if the result is negative.

3. Convert the negative number to a positive result if the dif-
ference is negative.

The following subsection describes how to realize these three
steps in non-redundant and redundant number systems.

3.5.1 Non-redundant algorithm for absolute difference

In the first step, a subtraction is done by converting b to its two’s
complement format and performing the addition. This involves
an (N+1)-bit addition. The sign of the difference can be deter-
mined by looking at the most significant bit of the difference.
Lastly, the result is converted to its 2’s complement representa-
tion if it is negative. At the hardware level, the worse case is
two (N+1)-bit additions and a sign-detection.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 45

Non-redundant number system is commonly used in bit par-
allel absolute difference implementation since it can determine
the sign in a short time. But for SAD in motion estimation, the
absolute difference calculated is not necessary presented in non-
redundant numbers since multi-operand additions in the sub-
sequent stage can accept redundant inputs. As a result, the
absolute difference is modified to:

1. Perform A + B where A is a bit-wise NOT on A.

2. Check if carry out = 1, if yes, B ≤ A.

3. If carry out = 1, set (A, B) as output. Set (A, B) as output.

In this way, result is represented by two N-bit pairs. The
worse case is one N-bit addition and one comparison only (ne-
glecting the cost of the invertor operation). This approach has
been used in a SAD processor proposed in [53].

3.5.2 Redundant algorithm for absolute difference

When we perform absolute difference in a signed-digit number
system, we have to redefine the comparison and absolute value
operations. In motion estimation a and b in |a − b| are 8-bit
positive numbers representing the intensity of a pixel. The first
step a − b can be done by converting a − b into signed-digit
format directly.

In signed-digit number system, each significant digit is rep-
resented by {−1, 0, 1}, or {x+, x−} ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
in binary format. {(0, 0), (1, 1)} is redundant and equal to zero
value. As a result, a−b can be represented in signed-digit format
setting (x+

i = ai, x
−
i = bi) where 0 ≤ i ≤ N − 1 and N = 8 in

this case. Second, a − b in signed-digit format is checked to see
if it is a positive or a negative number. Finally, it is converted
to positive signed-digit number as output. The conversion is

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 46

Algorithm SignDectectSignNum
Input: Current block pixel: a Reference block pixel: b
Output: |a − b| in signed-digit format: x
1. a larger = 0;
2. for (i from N downto to 1)
3. do xi = (ai, bi);
4. for (i from N downto to 1)
5. do if (xi = (0, 0) or xi = (1, 1))
6. then continue;
7. if (x = (1, 0))
8. then a larger = 1;
9. break;
10. if (x = (0, 1))
11. then a larger = 0;
12. break;
13. if (a larger = 0)
14. then for (i from N to 1)
15. do xi = (bi, ai);
16. else for (i from N to 1)
17. do xi = (ai, bi);
18. return x

Figure 3.3: Signed-digit number based sign detection algorithm

achieved by just interchanging x+ with x− if a negative signed-
digit number is detected, i.e. (x+

i = bi, x
−
i = ai). The sign

checking for signed-digit numbers is described in figure 3.3. No-
tice that N = 8 is the word-length and the checking is performed
in a MSB-first manner.

x is the result of |a − b| in signed-digit format. In hardware,
a signed-digit absolute difference requires no addition or sub-
traction. The sign detection can be done on-the-fly as it is a
MSB-first favored algorithm and thus the hardware latency is
not significant compared to a conventional two’s complement
approach.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 47

Algorithm SadSeq
Input: Current block pixel: c, Reference block pixel: r
Output: Sum of absolute difference: SAD
1. SAD[0] = 0;
2. for (i from 1 to MN)
3. do SAD[i] = SAD[i-1] + |ci − ri|;
4. return SAD

Figure 3.4: Sequential SAD computation in general purpose processor

3.6 Multi-operand addition algorithm

Multi-operand addition plays an important role in motion esti-
mation as it comprises most of complexity in a SAD calculation.
SAD operation is given by:

SAD =
MN
∑

i=0

|ci − ri|

where M,N are the width and height of a macroblock respec-
tively. The summation can be performed in parallel or sequen-
tially. In general purpose processors, the summation is executed
sequentially shown in figure 3.4 but a parallel approach is often
chosen for high-end applications. In the following section, three
parallel implementations are presented.

3.6.1 Bit-parallel non-redundant adder tree implemen-
tation

Multi-operand addition based on a non-redundant adder tree is
the easiest way to implement multi-operand additions. Suppose
we have an N-bit 2-operand adder (2N-Add) as a calculation
element, the M ×N -operand adder tree can be built as follows.

1.
⌊

MN
2

⌋

2N-Add adders are needed for the first level addition.
⌊

MN
2 + 1

⌋

result operands are produced.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 48

8-bit adder 8-bit adder 8-bit adder 8-bit adder

8-bit adder 8-bit adder

8-bit adder

Op1 Op2 Op3 Op4 Op5 Op6 Op7 Op8

Result

Figure 3.5: Bit-Parallel 4x2-operand adder tree

2. Feed the result operands into another series of

⌊⌊MN
2

+1⌋
2

⌋

2N-ADD adders as inputs and produce half number of the
result operands calculated at step 1.

3. Continue to add the result operands until number of result
operands is equal to 1 and the summation terminates.

This type of adder tree can be pipelined to increase the
throughput. Its cycle time depends on the word size and num-
ber of operands to be added. For example, if we have 256 8-bit
operands to be added, the critical path delay in a hardware
pipeline is (log2256) + 8 = 16: a 16-bit addition delay.

The speedup of this adder tree is MN/log2MN over the se-
quential approach. Assume that the cycle time in the sequential
implementation is equal to that of adder tree and no pipeline
execution, MN = 256 implies the speedup is 256/log2256 = 32,
which is a significant improvement over general purpose proces-
sors. With pipelined execution, the speedup can be even more
significant. An example of 4x2-operand adder tree is shown in
figure 3.5.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 49

3.6.2 Bit-parallel carry-save adder tree implementa-
tion

Non-redundant number system is employed in non-redundant
adder trees. In fact, the cycle time in a non-redundant adder
tree can be reduced by employing carry-save adders in which
the carry propagation is independent of the operand size. To
illustrate the carry-save based multi-operand adder tree, a com-
putation element, 4-to-2 compressor, is used as a primitive cal-
culation. It adds 4 operands and produces 2 result operands. A
example of 4-to-2 compressor based adder tree for addition of
16 operands is shown in [10].

When using a 16-bit 4-to-2 compressor as a primitive com-
ponent, the construction of 4-to-2 compressor based adder trees
is similar to that of non-redundant adder trees. The number of
adder tree levels is reduced by one in carry-save adder trees. The
output of carry-save adder tree is in carry-save format and the
final output should be added using a carry propagation adder
to convert it into a non-redundant number when desired. As
a result, their effective pipeline levels are equal. In contrast,
the cycle time of a 4-to-2 compressor is less than that of a non-
redundant adder since its carry save nature shortens the carry
propagation delay. As a result the speedup over general purpose
processors is greater than non-redundant adder trees.

3.6.3 Bit serial signed digit adder tree implementation

The mentioned adder trees above are implemented in a word-
parallel manner. A primitive computation element involves N-
bit additions and occupies a large silicon area. To address this
issue, we try to implement multi-operand additions in bit-serial
approach. Only MSB-first approach is discussed here.

Signed-digit representation must be used to enable MSB-first
addition. Signed-digit adders [10] are used throughout the adder

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 50

Cycle A+a A− B+b B− R− R+c

0 0 1 1 0 0 0

1 0 0 1 0 0 0

2 0 1 1 0 1 1

3 1 0 1 0 0 1

4 0 1 1 0 0 1

5 1 0 0 1 0 0

6 0 1 1 0 1 1

7 0 1 0 1 0 0

8 0 0 0 0 1 0

9 0 0 0 0 0 0

aA = 10111111(−15110)
bB = 11111111(24510)
cR = 0001100010(9410)

Table 3.1: Example for online signed-digit adder

tree. Figure 3.6 shows the architecture of a signed-digit bit-serial
adder for 2-operand additions. Table 3.1 shows an example of
how 2-operand addition is performed for signed-digit inputs.

The construction of adder tree based on signed-digit adders
is also similar to non-conventional adder tree but the cycle time
is shorter since it is carry-free and bit-serial. The construction
of signed-digit adder tree is discussed in [50]. It gives several
optimizations for silicon area and delay for different number of
operands.

3.7 Comparison algorithms

In motion estimation, each SAD computed should be passed to
a comparison unit and checked if its value is less than the cur-
rent minimum value. The minimum SAD and motion vector
is updated when this is the case. In MPEG-1, MPEG-2, the
macroblock size is 16 by 16 and the final SAD size is 16 bits.

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 51

ol-CASFA

ol-CSFA

A+ A- B+ B-

R- R+
ol-SDFA

Figure 3.6: Bit-serial signed-digit adder (ol-CSFA stands for on-line carry-
save full adder)

A 16-bit comparison should be made. In contrast to MPEG-2,
H.264/AVC supports variable block size motion estimation and
the number of comparisons for each SAD is increased to 41. The
comparisons are divided into 12-bit, 13-bit, 14-bit, 15-bit and
16-bit types for 41 minimum SAD values. As comparison algo-
rithms can be MSB-first or LSB-first, the mode selected affects
only the complexity. MSB-first is common since the algorithm
can be terminated earlier. In the following sections a MSB-first
comparison algorithm is described.

3.7.1 Non-redundant comparison algorithm

In non-redundant number systems, implementing the compar-
ison of two numbers starting from the MSB is simple and the
process can be terminated earlier without examining all bits. For
example, it can be deduced that “0111” is larger than “0011” in
two’s complement format after examining two bits. For negative
numbers, the process is the same but the criteria determining
which one larger is changed. For example, “1100” is smaller than
“1011” in negative representation. In both cases, the distinction

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 52

is drawn as soon as the first different digit appears.

3.7.2 Signed-digit comparison algorithm

In the signed-digit number system, the comparison of two num-
bers is not as simple. Because of the property of number re-
dundancy, the distinction cannot be drawn as soon as the first
different digit appears. For example, “0111” is smaller than
“0010”. Similar cases occur for negative numbers.

An algorithm to perform on-line comparison is suggested [45].
It uses the fact that if the difference of two digit strings being
compared is equal to or greater than two, the comparison can be
terminated and result can be determined. The proof is shown
below [45].

Given two radix-2 signed-digit numbers P and Q which are
N-digit numbers such that

P =
0

∑

l=N−1

pl × 2l and Q =
0

∑

l=N−1

ql × 2l,

Suppose the comparison can determine that P is larger than
Q at the 2k digit. P and Q can be divided into

P =
k

∑

l=N−1

pl × 2l +
0

∑

l=k−1

pl × 2l

Q =
k

∑

l=N−1

ql × 2l +
0

∑

l=k−1

ql × 2l

where 0 ≤ k ≤ N − 1, pl, ql ∈ {1, 0, 1}.

P>Q ⇒ ∑k

l=N−1
pl×2l+

∑

0

l=k−1
pl×2l>

∑k

l=N−1
ql×2l+

∑

0

l=k−1
ql×2l

⇒
∑k

l=N−1
pl×2l−

∑k

l=N−1
ql×2l>

∑

0

l=k−1
ql×2l−

∑

0

l=k−1
pl×2l

⇒ ∑k

l=N−1
pl×2l−∑k

l=N−1
ql×2l>2×(2k−1)

⇒ ∑

0

l=N−1−k pl×2l−∑

0

l=N−1−k ql×2l>2×(1− 1

2k)≥2

CHAPTER 3. ARITHMETIC FOR VIDEO ENCODING 53

where max(
∑

0

l=k−1
ql×2l−∑

0

l=k−1
pl×2l)=2×(

∑

0

l=k−1
2l)=2×(2k−1).

As a result, if the comparison of two digit strings reaches to
the state that (pNpN−1...pk − qNqN−1...qk) ≥ 2, the comparison
can be terminated at k-th digit without examining all the lower
significant digits.

To sum up, in a radix-2 signed-digit comparator, once we find
out that the difference is larger than or equal to two, decision
can be made and the process can be terminated. As a result,
early termination is still valid in signed-digit computation.

3.8 Summary

In this chapter we have explained how different operators can
be implemented using different representations and processing
orders which can be employed for motion estimation. MSB-first
processing of addition, absolute difference, summation and com-
parison are explained and as we shall see, can lead to bit-level
pipeline and high hardware efficiency. Similar techniques can be
used in other parts of video coding such as integer transform,
deblocking filter, etc.

Chapter 4

VLSI architectures for video
encoding

4.1 Introduction

In this chapter variable block size motion estimation architec-
tures are evaluated for the requirements of the H.264/AVC stan-
dard. Suitable consideration of different design tradeoffs can
lead to an efficient architecture design for a given motion estima-
tion algorithm. The purpose of this chapter is to evaluate motion
estimation algorithms, mainly for full-search, from a hardware
point of view, assuming H.264/AVC. A new design metric that
considers processing speed in terms of throughput, silicon area
occupied, memory bandwidth requirement and power consump-
tion is introduced. Various VLSI architectures for full-search
motion estimation are evaluated based on this metric. We em-
ploy 1-D, 2-D systolic array, tree architectures and signed-digit
bit-serial architecture in our family of motion estimation proces-
sors. In the next section, our implementation platform is intro-
duced first. In the subsequent sections, different processor archi-
tectures will be described in detail. The first-reported MSB-first
bit-serial motion estimation processor will be described in de-
tail. The real implementation will be presented in next chapter.
A theoretical method to determine the efficiency of different ar-

54

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 55

chitectures are given in the last section.

4.2 Implementation platform - (FPGA)

A Field Programmable Gate Array (FPGA) [9] is a device that
consists of a large array of reconfigurable cells in a single chip.
Each of these cells is a computation unit which can be used to
implement logic functions. Configurable routing is used to allow
inter-cell communication across the reconfigurable cells. Xilinx
is a leading commercial company producing FPGA products and
the description that follows uses their terminology. A commonly
used member of this family is the Virtex series, the flagship
product being the Virtex-5 which as based on 65nm process
technology.

A typical FPGA contains an array of individual cell called
logic cell (LC) interconnected by a matrix of wires and pro-
grammable switches. Logic circuits are built based on these
cells and interconnect. FPGA also contains dedicated hard-
ware for common-use building blocks like block memories, I/O
pins, clock management blocks (DCM) , digital signal process-
ing blocks (DSP) and embedded microprocessors. These build-
ing blocks enable system on chip (SOC) development on FPGA
platforms.

4.2.1 Basic FPGA architecture

Each logic cell (LC) has look-up tables (LUT), D-type flip flops
(DFF) and fast carry logic. An N-input LUT in the FPGA, N=4
or N=6, is a memory-like component that can be programmed to
compute any function of up to N inputs. One output is produced
for each LUTs. DFFs can be used for registers, pipeline storage,
state machines, etc. Fast carry logic is a dedicated feature for
speeding up carry-based computation like addition. A basic

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 56

Figure 4.1: FPGA Logic Cell Architecture (Xilinx Virtex-II Pro series)

structure of LC in Xilinx Virtex-II Pro series with two 4-input
LUTs, two DFFs or latches, and fast carry logic chain is shown
in figure 4.1 [1].

Based on these logic cells and interconnects, an FPGA chip is
realized. Together with clock management blocks, I/O blocks,
microprocessors in the FPGA, the generic FPGA architecture is
produced.

4.2.2 DSP blocks in FPGA device

Recently, DSP block are included in FPGA fabrics [2] for high-
speed digital signal processing applications. In the first gener-
ation DSP blocks, e.g. Xilinx Virtex-II, only multipliers were
included. Later, multiply and add, multiply and subtract were
also included for different kinds of DSP applications. Filtering

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 57

Figure 4.2: DSP architecture in Xilinx Virtex-5 FPGA

and transform operations in video codec benefit from DSP re-
sources. Its high performance and low power consumption make
DSP blocks attractive compared with the same functions imple-
mented in configurable logic blocks. The second generation DSP
block architecture in Xilinx Virtex-5 FPGAs is shown in figure
4.2 [2].

4.2.3 Advantages employing FPGA

Moore’s Law [35] directly benefits development of high-speed,
high-density and low-power FPGA devices. Advancement in
FPGA architectures and process technologies, have narrowed
the performance, area, power gaps between FPGA and ASIC
devices [14]. Modern FPGA devices are suitable for complex,
large systems that in the past could only be implemented in
ASICs. With its reconfigurable nature, designs can be updated
at the hardware level easily without replacement of the whole
chip, which reduces the overall system cost. Moreover, with
advances in dynamic reconfiguration technologies, FPGA can

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 58

electively load the hardware within the period that the func-
tion is needed and detach the hardware afterwards [5]. As a
result, less logic resources are idle or wasted compared to ASIC
implementations in which all logic is fixed.

FPGAs benefit motion estimation by providing excellent logic
performance, large amounts of silicon resources and flexible hard-
ware. With its reconfigurable nature, a motion estimation proces-
sor can be customized based on application requirements. Our
family of motion estimation processors is a set of architectural
choices for reconfiguration. This “load when needed” method-
ology reduces the required resources and power consumption
needed and better fits the application requirement.

4.2.4 Commercial FPGA Device

Many commercial FPGA families are currently available on the
market. Xilinx (www.xilinx.com) offers the Virtex and Spar-
tan series, Altera (www.altera.com) offers Stratix and Cyclone
series and Actel offers the Fusion series (www.actel.com). All
commercial products range from high-end to low-end device. We
choose Virtex-II Pro platform from Xilinx for our implementa-
tion because it satisfies most of the requirements for our motion
estimation processors. These devices are expensive but a less
expensive choice, the Spartan series from Xilinx is a good sub-
stitute. The downside is that Spartan offers a smaller amount of
hardware resources and slower performance. Fortunately, it is
enough to fulfill low and mid-end applications in video process-
ing [14].

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 59

Address
generation unit

Processing array

Search area
Memory

Current Block
Memory

Motion vector
and min SAD

registers

Global address bus

Global data bus

data

data

sad

Motion vector

Motion estimation processor

Figure 4.3: Model of motion estimation processor

4.3 Top level architecture of motion estima-

tion processor

H.264/AVC top level architecture for a motion estimation co-
processor is shown in figure 4.3. In the motion estimation proces-
sor, there are four fundamental units, namely the pixel mem-
ory, processing array, address generation unit and motion vector
memory. Typically, there are two memories storing search area
and current block pixels. The processing array is designed to
calculate the required SAD. The address generation unit calcu-
lates the addresses for the following data in memory. For dif-
ferent search algorithms, different address generation schemes
are used. The resulting SADs and motion vectors are stored in
a small memory accessible via an external bus which acts as a
communication bridge between the motion estimation processor
and a general purpose processor.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 60

M

PE

M

PE PE PE

Figure 4.4: Data flow in systolic array over general implementation

4.4 Bit-parallel architectures for motion esti-

mation

In bit-parallel motion estimation architectures, systolic arrays
are commonly employed since they can effectively sustain high
bandwidth between memory and computation cores while at the
same time provide good performance by utilizing many compu-
tation elements in parallel. We will give background on systolic
arrays and explore alternatives in using systolic arrays for mo-
tion estimation.

4.4.1 Systolic arrays

A systolic array [26] is an array processor architecture that con-
sists of a number of identical processing elements inter-connected
via local communication links. The computation is performed in
a pipelined manner and results are passed through the process-
ing elements. Its advantages are low communication overhead,
simplicity and the architecture VLSI implementation. Figure
4.4 demonstrates the data flow in a systolic array as compared
with a general approach.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 61

Variable block size motion estimation algorithm

SADP,Q(m,n) =
∑P

i=0

∑Q

j=0
|c(i,j)−r(i+m,j+n)| (4.1)

−range ≤ m,n < +range, (4.2)

P,Q ∈ {4, 8, 16} , (4.3)

u = minm,n {SADP,Q (m,n)} (4.4)

MVmin(P,Q) = (m,n) (4.5)

where range is the search range having values ±16 or ±32.

Figure 4.5: Variable block size motion estimation algorithm

4.4.2 Mapping of a motion estimation algorithm onto
systolic array

The algorithm is first decomposed into basic operations and con-
verted into a form where each result is assigned to a unique
variable. Referring to chapter 2, the variable block size motion
estimation algorithm for full search is defined in figure 4.5.

Parameters P and Q have been added to reflect the vari-
able block size. In motion estimation, SAD is computed over
a four-dimensional index space, i, j, m, n for each macroblock
in a frame. Equation 4.1 shows two 2-D index spaces only.
The first one is generated by the indexes i, j for calculating
SADP,Q(m, n). The second one is generated by m, n. The mini-
mum SAD is found and a motion vector deduced after exploring
all m, n pairs in the full search. The indexes i, j can be projected
onto a 1D or 2D systolic array. The number of computation
nodes depends on the block size. The other way is to project
i, m onto the systolic plane and results in an array dependent
on block size and search range. The parallelism can be higher
if the search range is larger than the macroblock size. For dif-

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 62

FF(A) FF(B)|A-B|

Adder

|A-B| + S

S

AD-1DA B

S

|A-B| + S

AD-2D
(B)A A

S

|A-B| + S

FF(A)

|A-B|

Adder

|A-B| + S

SB

ADDB A+B

A

MINSAD MV

Min(SAD)

Compare

MUX

FF(Min SAD)

Motion vectorSAD

Figure 4.6: Fundamental elements in systolic and tree architectures

ferent mapping alternatives, a number of examples of mapping
motion estimation algorithms to systolic arrays is given by [24].
Each computation node handles a subtraction, an absolute value
operation, and an accumulation in the systolic architectures.

For the description of motion estimation architectures some
basic elements are defined. They are the processing element
(PE) such as AD-1D and AD-2D, the ADD node and MIN node.
The detailed dataflow for these nodes are shown in figure 4.6. In
figure 4.6, FF standards for flip flop and the absolute difference,
addition and comparison units are implemented in a bit-parallel

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 63

AD(1D)

AD(1D)

AD(1D)

AD(1D)

ADD MIN MV

R(I,0)R(I,1)R(I,2)R(I,15)

R(I+1,0)R(I+1,1)R(i+1,14) *

**R(I+2,0)R(i+2,13)

R(i+15,0) * * *

Reference block data

C(i,0) C(i,1) C(i,2) C(i,15)

*

* *

* * *

C(i+1,0)

C(i+2,0)

C(i+1,1) C(i+1,14)

C(i+2,13)

C(i+15,0)

Current block data

Figure 4.7: 1-D systolic architecture

fashion.

4.4.3 1-D systolic array architecture (LA-1D)

Figure 4.7 depicts the 1D systolic processing array. r(x, y) and
c(x, y) stand for reference block from search area and current
block respectively. It is classified as a local accumulation archi-
tecture since it involves summation within the processing node.
This design requires external memories to store the search area
and current block, resulting in a high memory bandwidth re-
quirement.

Each AD PE calculates the absolute difference of two pixels
from the reference block and current block, adds the result to
the already calculated partial sum for the same search position
given by the neighbour PE, and passes the result to the next

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 64

PE. At the end of the chain of PEs, the SAD calculation is fin-
ished. The result is compared with the previous minimum SAD
result within the MIN element. This architecture is scalable for
search range and block size. The area used is small but the
performance is slow compared to a 2D-array. It is suitable for
low-end applications.

4.4.4 2-D systolic array architecture (LA-2D)

The 2D systolic processing array is a two dimensional version of
the LA-1D architecture. Figure 4.8 shows its datapath and tim-
ing of the data flow. The reference data is passed horizontally
from one AD-2D to the next. Data reuse is possible by mak-
ing use of delay lines and by moving data from one PE to the
next. This architecture offers the advantage of further reducing
memory bandwidth compared to the LA-1D architecture. The
current data is initially shifted to each PE and will be stored
and reused until the current block motion vector is found. This
architecture requires large area but the performance is high be-
cause of the number of parallel computations. As a result, it is
suitable for high-end applications.

4.4.5 1-D Tree architecture (GA-1D)

The global accumulation architecture, GA-1D, is also referred
to as a “tree architecture”. Figure 4.9 below shows this ar-
chitecture for a 4x4 macroblock size. The absolute difference
of a previous and current pixel is calculated in the absolute
value PE and the result is accumulated in an adder-tree exter-
nal to the PE array. The adder tree is usually implemented as a
non-redundant adder-tree or carry-save adder tree with pipeline
registers inserted between the stages. The previous data are
fed continuously into the PEs whereas the current block data
is loaded when the current block is changed and are kept in

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 65

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

ADD ADD ADD MIN MV

C(0,0)

C(0,1)

C(0,2)

C(0,3)

C(0,15)

C(1,0)

C(1,1)

C(1,2)

C(1,14) C(15,0)

* *

*

*

Current block
data

r(i,0)r(i,1)r(i,2)r(i,15)

r(i+1,0)r(i+1,1)r(i+1,14)

r(i+2,1)r(i+2,13)

r(i+15,0)

*

* *

0

Reference block data

Figure 4.8: 2-D systolic architecture

registers if local caches are added.
This architecture reduces memory bandwidth for current pixel

data compared to the LA-1D architecture. This architecture can
also be fully pipelined in an FPGA or ASIC. In addition, ad-
vanced features such as variable block size motion estimation
can be easily supported in this architecture by adding immedi-
ate registers to store up SADs of subblocks.

4.4.6 2-D Tree architecture (GA-2D)

The GA-2D architecture depicted in figure 4.10 is the two di-
mensional extension of the GA-1D architecture, in which NxN
PEs are used, as illustrated for a 4x4 block size case in figure
4.10. As shown in the figure, the search area pixels are fed con-
tinuously into the PEs whereas the current block data is loaded
only once when the current block is changed.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 66

| A - B |

C (0 , 0)
C (1 , 0)
C (2 , 0)
C (3 , 0)
C (0 , 0)

.

.

.

C (0 , 1)
C (1 , 1)
C (2 , 1)
C (3 , 1)
C (0 , 1)

.

.

.

C (0 , 2)
C (1 , 2)
C (2 , 2)
C (3 , 2)
C (0 , 2)

.

.

.

C (0 , 3)
C (1 , 3)
C (2 , 3)
C (3 , 3)
C (0 , 3)

.

.

.

| A - B | | A - B | |A - B |

A D D A D D

A D D

A D D

M IN

M V

R (i , 0)
R (i + 1 , 0)
R (i + 2 , 0)

.

.

.

R (i , 1)
R (i + 1 , 1)
R (i + 2 , 1)

.

.

.

R (i , 2)
R (i + 1 , 2)
R (i + 2 , 2)

.

.

.

R (i , 3)
R (i + 1 ,3)
R (i + 2 ,3)

.

.

.

Figure 4.9: 1-D Tree architecture

The local communication between PEs reduces memory band-
width on reference data compared with GA-1D. Since it avoids
local accumulation and can be fully pipelined efficiently in FPGA,
the performance of this architecture is the best among four im-
plementation alternatives.

4.4.7 Variable block size support in bit-parallel archi-
tectures

There are two methods to support variable block sizes in bit-
parallel architectures. For local accumulation architectures like
LA-1D and LA-2D, first method is to include 16 partial SAD
registers in each node for 4x4 subblocks within a 16x16 mac-

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 67

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

| A-B |

Adder
tree(16 abs

value)

MIN

MV

C(0,0) C(0,1) C(0,2) C(0,3)

…
…

.

…
…

.

…
…

.

…
…

.

Current block data

R(I,0)

R(I,1)

R(I,2)

R(I,3)

R(I+1,0)

R(I+1,1)

R(I+1,2)

R(I+1,3)

R(I+1,0)

R(I+1,1)

R(I+1,2)

R(I+1,3)

? .

? .

? .

? .

Reference block data

Figure 4.10: 2-D tree architecture

roblock so that each register stores its corresponding subblock
SAD [6]. The second method is to divide the systolic array into
its smallest possible block size architecture (sub-systolic array).
For example, a 16x16 systolic array is divided into sixteen 4x4
systolic arrays, each handling a 4x4 SAD. The sixteen 4x4 SADs
are then combined to form a large SAD via SAD-reuse technique
through an adder tree [7]. The first method imposes a large reg-
ister overhead on each processing node and can have a large
impact on silicon area. The second may increases the required
bandwidth as the local communications between sub-systolic ar-
rays are broken.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 68

In tree architectures, the implementation is easier since there
is no partial SAD stored in the systolic elements. The support
of variable block sizes can be done in the adder tree by adding
intermediate registers connected to comparison units in differ-
ent stages of the adder tree. Similarly, using the SAD-reuse
technique, variable block size motion estimation is supported
without significantly sacrificing memory bandwidth and silicon
area.

4.5 Bit-serial motion estimation architecture

4.5.1 Data Processing Direction

In bit-serial implementations, data processing from the MSB
and LSB leads to the same result but performance may be dif-
ferent. Generally, addition and subtraction are LSB-first favored
algorithms but can be implemented in MSB-first by deploying a
redundant number system. The final operation in motion esti-
mation involves comparison, a MSB-first favored algorithm. The
comparison operation can finish earlier if it is processed MSB-
first. As a result, for better throughput, we choose a MSB-first
implementation for bit-serial motion estimation.

4.5.2 Algorithm mapping and dataflow design

When employing a bit-serial approach, the inherit bandwidth is
reduced since in each cycle the bandwidth required is divided
by n for n-bit pixels. As the bit-serial architecture is not deeply
pipelined, the pipeline flushing due to the effect of data hazard
introduced by data dependent algorithms such as TSS, DS is
smaller than that in systolic and tree designs. As a result, bit-
serial implementations are suitable for fast algorithms and thus
for low to mid-end applications.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 69

BLK A BLK B

BLK C
BLK D

(Current
block)M

V C

MV A

MV B

MV D

Previous Motion vector

Predicted Motion vector

Starting point

BLK D Search window

MV D = Median {MV A, MV B, MV C}

Figure 4.11: H.264/AVC motion vector prediction

4.5.3 Early termination scheme

There are two related advantages having a good initial value
for the minimum SAD. The first is that early termination of
comparisons to the current minimum SAD can be affected more
frequently, and the second is that updates to the minimum SAD
value take extra cycles, and better initialization can serve to re-
duce their occurrence. H.264/AVC uses motion vector predic-
tion mode (figure 4.11) and we can initializes the search to the
predicted location.

In the typical case, this serves to reduce the number of SAD
updates as the search is started with a near-minimum value.
Table 4.1 summarizes our simulation results in Matlab showing
the number of clock cycles needed to complete the comparison
operation for different video scenes with different motion vector
initialization strategies. A non early termination implementa-
tion requires 16 cycles since the longest word size is 16-bit for
the comparison. The News scene is an almost still motion video.
Zero-assumed motion and predicted MV initialization performs

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 70

Video type Sequential Zero MV Predicted MV

News 6.95 5.39 5.4

Flower 6.64 5.83 5.5

Stefan 7.26 6.54 6.46

Table 4.1: Number of cycles to complete comparison stage for different scenes
using different starting strategy (16 cycles for no early termination scheme)

better than a standard sequential scheme. In fast motion scenes,
such as flower and Stefan, which constitute a fast moving back-
ground and a sports scene, the H.264/AVC predicted MV ini-
tialization scheme performs the best and has an average of 5.79
cycles. On average our scheme offers a (16-5.79)/16=63.8% sav-
ings in comparison operations. For the entire motion estimation
computation, in total (12+16)=28 cycles (figure 4.20) are re-
quired in the worst case, and on average our scheme offers a
36.5% improvement.

4.5.4 Top-level architecture

Motion estimation involves the calculation of SAD values be-
tween current block and reference block as shown in equation
2.4. By rewriting equation 2.4 in bit-serial fashion, we get equa-
tion 4.6 with a triple summation.

SADP,Q(m,n)=
∑P

i=0

∑Q

j=0
|∑7

k=0
2k×(c(i,j,k)−r(i+m,j+n,k))| (4.6)

The double summation (P,Q) are mapped to the signed-digit
adder tree and computed spatially while the innermost sum-
mation (0 to 7) of bit-serial part is computed iteratively. The
remaining problem is how to generate signed-digit numbers from
current and reference pixel values. Both current and reference
pixels are positive 8-bit integers. The computation of their
difference in signed-digit representation can be done easily by

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 71

Current
block

memory

Reference
window

memeory

Conventional
number to
signed-digit

pair

SD-ADDER
TREE

CONTROLLER

41
COMPARAT

OR

41 Min.
SAD, MV
registers

Termination
detector

...

...

256

256

...

...

256
SD
pair

41
SADs

41

stop

Figure 4.12: Top level architecture of bit-serial motion estimation unit

making the current pixel positively weighed and the reference
pixel negatively weighed as discussed in section 3.5. The ab-
solute value operation can be done by on-the-fly checking of the
signed-digit number until 1 or -1 is detected for the first non-zero
digit. The positive weighing is interchanged with the negative
weighing part to complete the absolute value operation if -1 is
encountered.

Then, we describe the entire bit serial motion estimation
process in 4 stages: non-redundant positive number to signed-
digit number conversion, summation, comparison and early ter-
mination. The top level system is shown in figure 4.12.

4.5.5 Non redundant positive number to signed digit
conversion

As described in chapter 3, the |ci−ri| operation, where ci and ri
are 8-bit positive integers from the current and reference blocks,
can be converted to a SD representation by setting ci and ri as

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 72

 START

{R+, R-} <=
{0,0}

{c,r} = {1,0}
or

{0,1}

No

Get most
significant bit
From current
pixel and ref .

pixel

{R+,R-} = {c,r}

{c,r}={1,0}?yes

{R+,R-} = {r,c}

yes

No

Get next
significant bit

Get next
significant bit

Reset? Reset?

No No

Yes

Figure 4.13: Flow chart of non-redundant to signed-digit number conversion

being positively and negatively weighed respectively and finally
doing a sign-detection to check if changing the sign of result
is necessary. The circuit that implements this functionality re-
quires few hardware resources and little computation delay is
introduced. A finite state machine which detects the first non-
zero digit is required for the absolute value. Together with a
pair of multiplexers for interchanging the signed-digit, |ci − rj|
in signed-digit form is produced.

Figure 4.13 shows the flow chart for sign-detection of the
signed-digit number. In total there are 16 × 16 = 256 absolute
difference stages in our motion estimation processor.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 73

SAD4x4
 Adder tree

SAD4x4
 Adder tree

SAD4x4
 Adder tree

SAD4x4
 Adder tree

...

SAD Merger

Sixteen 4x4 adder tree

registers

4x8, 8x4, 8x8, 8x16,
16x8, 16x16 SAD

4x4SAD

Figure 4.14: Signed-digit adder tree that generates 41 SADs

4.5.6 Signed-digit adder tree

The macroblock size of H264/AVC is 16 pixels by 16 pixels with
a 4x4-block as its smallest sub-block. To find all the minimum
motion vectors of a 16x16-block and its subblocks, we employ of
a SAD-reuse strategy [7]. As a result, the 4x4-SAD computa-
tion becomes our primitive element and is reused to form other
SADs. Since the different macroblock modes are overlapped in
the spatial domain (Figure 2.5), the SAD can be calculated us-
ing 4x4 SADs and a sequence of merging steps to obtain other
SADs. For example, an 8x4 and 4x8-SAD can be formed by com-
bining corresponding values of 4x4-SADs (e.g. 4x4-SAD (Block
1, 2) in figure 2.5 to form 8x4-SAD(Block 17)). Similarly, an
8x8-SAD can be formed from 4x8-SADs, 16x8 and 8x16-SADs
can be calculated from 8x8-SADs and finally a 16x16-SAD is
combined from 16x8-SADs. The top level adder tree is shown
in figure 4.14.

The SAD for a 4x4 subblock is produced by 16 pairs of
operands summed in signed-digit format, implying we need to
add 32 bit operands in our adder tree. According to [50], we
could implement a 16-operand signed-digit adder tree based on

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 74

Full Adder

Aj Bj Cj

Sj

Sj+1Cj+1

ol-CASFA

ol-CSFA

ol-CSFA

A+ A- B+ B-

R- R+
ol-SDFA

Figure 4.15: On-line carry save and signed digit adders

two ol-CSFA trees and an ol-SDFA. These primitives are shown
in figure 4.15. Together, the hardware utilization in this adder
tree is minimized [50]. This is illustrated in figure 4.16 and fig-
ure 4.17 and consists of 8 levels with 8 cycles of on-line delay.
The total number of cycles to calculate the 12-bit summation
including the on-line delay is 8 + 8 = 16 cycles. The output
of a SAD4x4 adder tree is the SAD value of a 4x4-subblock in
signed-digit format. This value is passed to the SAD Merger
unit to calculate other necessary SADs.

4.5.7 SAD merger

In our design we need sixteen SAD4x4 adder trees to compute
the SAD of 16 subblocks in parallel. The sixteen SAD4x4 values
computed are passed to the SAD merger as inputs (figure 4.18).
The sixteen 4x4-SADs are fed to a series of ol-SDFAs, i.e. SAD
merger, and combined to form 4x8, 8x4, 8x8, 16x8, 8x16 and
16x16 SADs. The number shown in figure 4.18 indicates which
block’s SAD is calculated at that node. The block index is
shown in figure 2.5. In total, the number of ol-SDFAs in SAD
merger is 8+8+4+2+2+1=25. Pipelining registers are added
between SAD4x4 adder trees and the SAD merger to split the
combinatorial path and boost the operating frequency. In our

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 75

C S16 A D D E R
TR EE

p0 -p15

C S

OLFA
C S

OLF A
C S

OL FA
C S

OLFA
C S

OLFA
C S

OLFA
C S

OLF A
C S

OLFA
C S

OL FA
C S

O LFA
C S

OLF A
C S

O LFA
C S

O LFA
C S

OLFA
C S

p0 p1 p2 p3 p4 p5 p6 p 7 p8 p9 p1 0 p11 p1 2 p13 p14 p15

CS 16 AD DER TRE E

C a rry S ave

C arry S a ve

Figure 4.16: A 16-operand carry save adder tree

FPGA prototype, one pipeline register obtains a good balance
between maximum frequency and latency.

Finally, the 41 SAD values are passed to an on-line compara-
tor for final stage processing. Since the arrival times of different
SAD results are different, the completion times to determine the
minimum SAD vary. Table 4.2 shows the delay for each type of
SAD.

4.5.8 Signed-digit comparator

In the comparison stage, we compare the current SAD to the
current minimum SAD for each subblock type in a MSB-first
manner. A signed-digit comparator is used for this purpose.
The architecture of the comparator suggested in [45] is shown
in figure 4.19. If the number being compared has a difference
of two or more, we can determine which SD number is bigger.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 76

CS16 ADDER
TREE

p0+ … p15+

C S

CS16 ADDER
TREE

C S

p0- … p15-

OL_SDFA

A+ B+ A- B-

p n

To next OL_SDFA to
calculate other size SAD

SAD4x4_pos SAD4x4_neg

SAD4x4
Adder tree

Figure 4.17: 16-operand signed-digit adder tree for 4x4 SADs

SAD type Delay (cycles)

4x4 16

4x8,8x4 19

8x8 21

8x16,16x8 23

16x16 25

Table 4.2: On-line delay of different SAD types

The on-line comparator will stop when this situation arises. A
proof for this algorithm is given in [45] and described in chapter
3.7.2. The on-line comparator can determine the result in 2
cycles minimum.

4.5.9 Early termination controller

Early termination of the SAD computation allows the avoidance
of redundant calculations. In terms of processor throughput,
100% speed-up can be achieved when 50% of calculations can
be eliminated. In our case, we have to deal with the variable

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 77

ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA

ol-SDFA ol-SDFA ol-SDFA ol-SDFA

ol-SDFA ol-SDFA

ol-SDFA

ol-SDFA ol-SDFA

ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 5 6 3 4 7 8 9 10 13 14 11 12 15 16

25 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24

33 34 35 36

39 37 38 40

41

SAD4x4 index

From sixteen
SAD4x4 Adder

tree

SAD8x4

SAD4x8

SAD8x8

SAD16x8,
SAD8x16

SAD16x16

All the connection line is a 2-
bit line (Signed-digit number)

SAD Merger

Figure 4.18: SAD merger

block size effect, which affects our early termination scheme.
Since we have to compute 41 parallel comparisons, some can be
terminated earlier than the others. There exists dependencies
between successive types of SADs, e.g. 8x4 depends on 4x4, and
we cannot terminate the 4x4 summation process even if we are
sure the current 4x4 SAD must be rejected. For the sake of
simplicity, we check for early termination on all SADs and when
all have terminated, the current summation can be completed
and begins next searching position. Termination can be detected
by OR-ing all the comparator outputs.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 78

P+

P-
sign

mag
P0 P1

p1&&p0

q0 or
q1

Sign &&
p1

P2

M
U
X

p2&q2 || /p2&/q2

q+

q-
sign

mag
q0 q1

q1&&q0

p0 or
p1

Sign &&
q1

q2

M
U
X

p2&q2 || /p2&/q2

q0

q1

p0
p1

>=2?

{p2,p1,p0}

yes

{q2,q1,q0}

SD comparator

Figure 4.19: Architecture of on-line comparator

C
H

A
P

T
E

R
4
.

V
L
S
I

A
R

C
H

IT
E

C
T

U
R

E
S

F
O

R
V

ID
E

O
E

N
C

O
D

IN
G

79

C7 C 6 C5 C 4 C 3 C2 C 1 C0

R7 R 6 R5 R 4 R 3 R2 R 1 R0

A7 A 6 A 5 A 4 A 3 A2 A 1 A 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4x4 S A D

8 x4, 4x 8 S A D

8x8 S A D

b11 b 10 b 9 b8 b7 b 6 b5 b 4 b3 b2 b 1 b0b 12b13b14b 15

8x 16 , 16 x8
S A D

16x 16 S A D

b11 b 10 b 9 b8 b 7 b6 b5 b 4 b3 b 2 b1 b0b12b 13b14

b 11 b10 b9 b8 b 7 b6 b 5 b4 b3 b 2 b1 b 0b12b 13

b 11 b10 b9 b 8 b7 b6 b 5 b4 b 3 b2 b1 b 0b12

b11 b10 b9 b 8 b7 b 6 b5 b4 b 3 b2 b 1 b0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 6 17 1 8 19 2 0 21 22 23 2 4 25

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0

0

E arlies t te rm inat ion
t im e (10 + 2 c y c les)

2 6 27

La tes t term inat ion
t im e (15 + 2 c y c les)

C u rren t p ixel

R ef. p ixel

S D n um b er
co n verted

Figure 4.20: Timeline of bit-serial design for whole motion estimation computation process

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 80

4.5.10 Data scheduling and timeline

In a bit-serial based architecture, we need to handle word-to-
serial conversion which is unnecessary in a bit-parallel design.
In addition, we have to handle extra scheduling brought upon
by MSB-first arithmetic. For example, summation of 16 8-bit
signed-digit numbers results in a 12-bit result, which involves 8
cycles of on-line delay. We have to generate 8 consecutive cycles
of all-zero operands feeding into adder tree to compensate the
online delay. Similarly, a 16x16 SAD requires 12 consecutive
cycles of zeros as shown in figure 4.20. The 16-bit 16x16-SAD
result is calculated in 28 cycles in the worse case.

4.6 Decision metric in different architectural

types

In this section we analyze different bit-parallel architectures in
terms of throughput, occupied silicon area, memory bandwidth
requirement and power consumption. Their values are estimated
theoretically. The analysis can give designers a first impression
of how the characteristics of different design parameters are af-
fected by different architectures. We make the following assump-
tions in the analysis that follows. The unit areas for primitive
blocks are collected from the Xilinx ISE implementation tools.

1. The delay of a full adder constitutes 1 unit time.

2. A 1-bit full adder occupies 12 unit areas.

3. A multiplexor (MUX) occupies 6 unit areas.

4. A FF occupies 8 unit areas.

5. The maximum frequency of processors depends on the total
unit time delay between pipeline registers.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 81

Operation Unit time required

N-bit addition Nx1=N

N-bit abs(a-b) (N + 1) × 2 + 1 = 2N + 3

N-bit comparison N+1+1=N+2

Table 4.3: Delays of primitive operations employed in bit-parallel motion
estimation architectures

Component Unit area occupied

PE(1D) 12 × 12 + 2 × 9 × 12 + 6 × 8 + 8 × 12 = 504

PE(2D) 12 × 12 + 2 × 9 × 12 + 6 × 8 + 8 × 8 + 8 × 12 = 568

PE(Tree) 8 × 8 + 2 × 9 × 12 + 6 × 8 = 328

ADD 16 × 12 + 16 × 8 = 320

COMP 17 × 12 + 6 × 16 + (12 + 16) × 8 = 524

Table 4.4: Areas of primitive component employed in bit-parallel motion
estimation architectures

6. Block size of a macroblock is N × N .

The delays and areas for primitives are deduced in table 4.3
and 4.4. The PE for 2D systolic arrays require the largest hard-
ware demand and the PE for tree architectures require the least.
Since the calculation method is different between bit-serial and
bit-parallel approaches, the comparison shown here doesn’t in-
clude bit-serial architectures. A comparison between two will be
given in chapter 5 based on real data.

4.6.1 Throughput

We define throughput in terms of number of operations per-
formed in a cycle time. For systolic array type architectures,
a subtraction, an absolute value and an accumulation are per-
formed per cycle time. For the tree type architectures, a sub-
traction and an absolute value are performed per cycle time. As
a result, the delay in tree PEs is less than that of systolic PE

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 82

Architectures Operations per unit systolic cycle time

1D systolic ((2N + 3) + (N + 4))N + N + (N + 2)

= 3N2 + 9N + 2

2D systolic ((2N + 3) + (N + 4))N2 + N2 + N + 2

= 3N3 + 8N2 + N + 2

1D tree 1.63 × ((2N + 3)N + N2 + N + 2)

= 1.63 × (3N2 + 4N + 2)

2D tree 1.63 × ((2N + 3)N2 + (N2 − 1)N + N + 2)

= 1.63 × (3N3 + 3N2 + 2)

Table 4.5: Throughput of different architectural types (N: block size)

by an accumulation delay. Given that:

1. The delay of systolic PE per unit cycle is (9+1+9)+12= 31
unit.

2. The delay of tree PE per unit cycle is (9+1+9) = 19 unit.

A tree architecture can operate on average of a 31
19 = 1.63

higher frequency than the systolic array ideally. The maximum
throughput in table 4.5 can be deduced.

Table 4.5 shows the maximum throughput can be achieved
in these architectures. With more hardware resources, 2D ar-
chitectures can perform more operations than 1D architectures.
Tree architectures perform better than others with its higher
frequency.

Usually, data dependency prevents fully parallel operation of
processing elements. The calculations assume a 100% efficiency.
Among them, 2D architectures are more sensitive to data depen-
dencies. The degradation of 2D architectures is more significant
than 1D arrays when data hazards occur.

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 83

Architectures Bandwidth (bytes per unit systolic cycle time)

1D systolic 2N

2D systolic N + 1

1D tree (No cache) 3.26N

1D tree (With cache) 1.63N + 1.63

2D tree 1.63N + 1.63

Table 4.6: Bandwidth requirement of different architectural types

4.6.2 Memory bandwidth

Bandwidth requirements come from reading the current and ref-
erence block pixels. A pixel size is 1 byte. In FS, the reference
block of one search point is usually overlapped with that of pre-
vious reference blocks. The frequency of reading the same pixels
within the FS determines the memory bandwidth. If there are
no local caches for overlapped pixels, the resulting bandwidth
can be very high. Assume that tree architectures operates 1.63
higher frequency than that of systolic array, the maximum band-
width requirements of table 4.6 are drawn.

The operating frequencies required for motion estimations are
adjustable depending on the motion estimation algorithm. Full
search requires the highest frequency while fast algorithms are
less demanding. As a result, the memory bandwidth can be
lowered by employing a fast search algorithm.

4.6.3 Silicon area occupied and power consumption

Silicon areas approximately depend on operation count per unit
cycle while power consumptions depend on the bandwidth re-
quirement and throughput. Based on the assumption made
above and table 4.4, the following table 4.7 and 4.8 was cal-
culated.

α and β are weighting parameters combining the effects of
throughput and bandwidth. Typically the bandwidth constant

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 84

Architectures Silicon area

1D systolic 504N + 320 + 524

2D systolic 568N2 + 320N + 524

1D tree (No cache) 328N + 320N + 524

1D tree (With cache) 328N + 320N + 524 + 64N2

2D tree 328N2 + 320(N2 − 1) + 524

Table 4.7: Area estimation of different architectural types (Variable block
sizes not supported)

Architectures Power consumption

1D systolic α(3N2 + 9N + 2) + β(2N)

2D systolic α(3N3 + 8N2 + N + 2) + β(N + 1)

1D tree (No cache) 1.63α(3N2 + 4N + 2) + 1.63β(2N)

1D tree (With cache) 1.63α(3N2 + 4N + 2) + 1.63β(N + 1)

2D tree 1.63α(3N3 + 3N2 + 2) + 1.63β(N + 1)

Table 4.8: Power estimation of different architectural types (Variable block
sizes not supported)

is larger since reading or writing data from and to memory bus
demands larger power consumption.

4.7 Architecture selection for different appli-

cations

4.7.1 CIF and QCIF resolution

CIF and QCIF resolution are 352×288 and 176×144 respectively
and 30 frames per second is a standard frame rate. The mo-
tion estimation hardware is thus require to process 352×288×30

16×16 =
11880 macroblocks per second, which translates to 170 Gops/sec.
This resolution is commonly used in mobile video delivery or
video conferencing and real time encoding at this resolution is
desirable. Power consumption is also an issue in these appli-

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 85

cations. All architectures described are capable to handle the
encoding in real time whatever algorithms are employed. 1D ar-
chitectures require 200MHz and 2D architectures require 15MHz
at real time processing. The architecture finally chosen depends
on the other requirements such as area, power consumption or
memory bandwidth.

4.7.2 SDTV resolution

In standard television, 704 × 480 and 640 × 480 at 30 fps have
been commonly used for the last two decades. Careful design
needs to be made in order to achieve real time encoding. The
processing requires 704×480×30

16×16 = 39600 macroblocks per second,
which translates to 570 Gops/sec. Our 1D and bit-serial ar-
chitectures are not able to process in real time if full search is
employed. Operating frequency over 600MHz is required for 1D
architectures and it is not applicable in modern FPGA devices.
In contrast, only 50MHz is required for 2D architectures. Al-
ternatively, fast algorithms, e.g. TSS, DS, can be used with a
bit-serial design to achieve real time with some sort of picture
quality loss. In addition, power consumption is usually not an
issue as they are employed in a non-mobile device, e.g. set-top
box, television. As a result, 2D architectures, bit-serial archi-
tectures at fast searches suit this application domain.

4.7.3 HDTV resolution

In HDTV application, the resolution involves 720p, 1080i and
1080p. They are used in high-quality video editing or cinema
movie playback. The complexity is 4 times to 10 times higher
than for in DVD video. Particularly when variable block size,
multi-reference frames and sub-pixel motion estimation features
are used, the complexity increases are far beyond the MPEG-2
standard. To encode real time video in these cases, a fully par-

CHAPTER 4. VLSI ARCHITECTURES FOR VIDEO ENCODING 86

allel architecture with the highest parallelism is required. For
the highest profile 1080p, the motion estimation processor has
to process 1920×1080×30

16×16 = 243000 macroblocks per second (3499
Gops/sec) which is 20 times higher than encoding CIF video
in real time. Typically, only 2D bit-parallel architectures at
300MHz with ASIC technology or high-end FPGA implementa-
tion can achieve this throughput.

4.8 Summary

In this chapter, several architecture alternatives are discussed
together with their implementation strategies. Bit-parallel 1-D,
2-D and tree architectures are discussed and their variable block
size support analyzed. For bit-serial designs, we suggested a
MSB-first architecture supporting variable block sizes. We also
presented an early termination scheme to save power and boost
performance. Several applications are suggested for mapping of
architectures. The ranges of supported applications are from
low to high-end.

Chapter 5

Results and comparison

5.1 Introduction

In this chapter the result and comparison of different architec-
tures are presented. Based of the results, the family of motion
estimation processors supporting variable block size is built.
Lastly, we compare our architectures to previous work in the
literatures.

5.2 Implementation details

The proposed motion estimation architectures are written in
VHDL hardware language, implemented, simulated and verified
on a Xilinx Virtex-II Pro -6 speed grade device. The motion
estimation processors are synthesized using Simplicity Pro 8.4.
Place-and-route was done and the power consumption is esti-
mated using XPower provided by Xilinx ISE tools. The area
utilization, maximum frequency and estimated power consump-
tion are shown in following sections. In order to make a fair
comparison between different architectures, “performance per
slice/gate” and “power consumption per slice/gate” are indi-
cated to show our motion estimation processors efficiency on
FPGA platform.

87

CHAPTER 5. RESULTS AND COMPARISON 88

We compare both implementations of the architectures sup-
porting fixed block size and variable block size. The search
range is fixed to -16 to +15 so that the search area is 48 ×
48 pixels in size. The macroblock size is 16 by 16. The full
search algorithm is employed. To measure the efficiency of dif-
ferent architectures, we ignore the area occupied by data storage
for current block pixels, reference block pixels, motion vectors
and minimum SADs since they are required in other parts of
a H.264/AVC coder. The amount of area that can be ignored
depends on architectures. For 2D architectures the data storage
for the current block cannot be ignored since it is implemented
inside the systolic array. In contrast, for bit-serial architectures,
the minimum SADs and motion vectors can be stored in exter-
nal memories and this area is not counted. The throughput of

architectures is given by cycles per macroblock
max frequency where “cycles

per macroblock” depends on the particular motion estimation
algorithm.

5.2.1 Bit-parallel 1-D systolic array

Column 1 in Table 5.1 summarizes the 1D systolic array imple-
mentation without variable block size support. It consists of 16
processing elements, 1 ADD and 1 COMP component. Including
the pipeline speedups, it takes 16 cycles on average to calculate 1
SAD. The total number of cycles need is 32×32×16+17 = 16401
cycles to process one 16x16 macroblock.

Column 2 in Table 5.1 shows an implementation of a 1D
systolic array with variable block size support. Variable block
size support is done by the conversion of one 16-PEs array into
four 4-PEs arrays. An adder tree is connected to output of
these four arrays to produce SADs for larger block sizes. In this
design, we have to add 3 ADD and 3 COMP components for
4x4 SAD comparisons. It takes 32×32×16+20 = 16404 cycles

CHAPTER 5. RESULTS AND COMPARISON 89

Fixed block size variable block size

Design Strategy Bit parallel Bit parallel

Max frequency(MHz) 239 230

Area (Slices) 836 1457

Area (Gate) 16788 25158

Throughput (MB/s) 14424 14021

Max bandwidth required (MB/s) 7615 6228

Performance/Slice 17.3 9.6

Performance/Gate 0.859 0.557

Total power (mW) 1344 1794

Power/Slice (mW/Slice) 1.61 1.23

Power/gate (mW/gate) 0.080 0.071

Table 5.1: Results of 1D systolic array processor

to process a 16x16 macroblock.

5.2.2 Bit-parallel 2-D systolic array

Column 1 in Table 5.2 shows the implementation results for a 2D
systolic array without variable block size support. It consists of
16× 16 = 256 processing elements (PE), 16 ADD and 1 COMP
component. Because of the pipeline stages, it takes 16 cycles of
latency to calculate 1 SAD. When employing data dependency-
free algorithms, e.g. full search, on average only 1 cycle is re-
quired for calculation of 1 SAD because of pipelining. As a
result, the total number of cycles needed is 32× 32 + 17 = 1041
cycles for one 16x16 macroblock.

Column 2 in Table 5.2 shows the implementation results for
variable block size via the conversion of a 16x16-PEs array into
sixteen 4x4-PEs arrays. An adder tree is connected to the output
of these 16 arrays to form SADs of larger block size. In this
design, we need to add 48 ADD, 15 COMP units and an adder
tree to support variable block size. Similar to fixed block size

CHAPTER 5. RESULTS AND COMPARISON 90

Fixed block size variable block size

Design Strategy Bit parallel Bit parallel

Max frequency(MHz) 232 227

Area (Slices) 9478 10794

Area (Gate) 193345 215315

Throughput (MB/s) 222862 217433

Max bandwidth required (MB/s) 7424 29056

Performance/Slice 23.5 20.1

Performance/Gate 1.15 1.01

Total power (mW) 26755 29875

Power/Slice (mW/Slice) 2.82 2.77

Power/gate (mW/gate) 0.138 0.139

Table 5.2: Results of 2D systolic array processor

architectures, it takes 32 × 32 + 20 = 1044 cycles to process a
16x16 macroblock.

5.2.3 Bit-parallel Tree architecture

Table 5.3 shows the implementation results of 1D tree architec-
tures that includes variable block size support and pipelining.
Its performance is the most efficient among all 1D architectures.
The 1D tree architecture consists of 16 PEs, each handling an
absolute difference operation. Since accumulation is eliminated,
it operating frequency appears higher. In total, it takes 16390
cycles to perform a full search of 1 macroblock. For variable
block size support, four 4x1 trees are needed with 3 additional
comparison units added. It takes 16393 cycles to perform a full
search of 1 macroblock.

Table 5.4 shows the implementation results for 2D tree archi-
tectures. It has the highest throughput among all architectures
and stores the current block pixels in each of its PEs. Thus its
area may appear larger. This is a tradeoff as memory bandwidth

CHAPTER 5. RESULTS AND COMPARISON 91

Fixed block size variable block size

Design Strategy Bit parallel Bit parallel

Max frequency(MHz) 240 240

Area (Slices) 350 925

Area (Gates) 8281 20614

Throughput (MB/s) 14643 14641

Max. bandwidth required (MB/s) 7680 7680

Performance/Slice 41.8 15.8

Performance/Gate 1.768 0.71

Total power (mW) 1160 2834

Power/Slice (mW/Slice) 3.31 3.06

Power/gate (mW/gate) 0.140 0.137

Table 5.3: Results of 1D tree-based motion estimation processor

can be greatly reduced. Variable block size is supported by at-
taching comparison element at the correct position of the adder
tree to produce SADs of larger block sizes. Both architectures
take 1049 cycles to process 1 16x16 macroblock.

5.2.4 MSB-first bit-serial design

Bit-serial design fills the gap between 1D and 2D architectures
and balances throughput, bandwidth, area and power consump-
tion. It takes 18432 cycles to process one macroblock for a full
search algorithm. With variable-block-size support, table 5.5
gives its implementation results and capability.

CHAPTER 5. RESULTS AND COMPARISON 92

Fixed block size variable block size

Design Strategy Bit parallel Bit parallel

Max frequency(MHz) 240 239

Area (Slices) 5789 8513

Area (Gates) 142234 184329

Throughput (MB/s) 230547 228924

Max. bandwidth required (MB/s) 3920 3920

Performance/Slice 39.8 26.9

Performance/Gate 1.62 1.24

Total power (mW) 19324 32337

Power per Slice (mW) 3.34 3.79

Power per gate (mW/gate) 0.136 0.175

Table 5.4: Results of 2D tree-based motion estimation processor

variable block size

Design Strategy Bit serial

Max frequency(MHz) 420

Area (Slices) 2133

Area (Gate) 55301

Throughput (MB/s) 23068

Max. bandwidth required (MB/s) 13440

Performance/Slice 10.8

Performance/Gate 0.417

Total power (mW) 13919

Power/Slice (mW/slice) 6.5

Power/Gate (mW/gate) 0.252

Table 5.5: Results of MB-first bit-serial processor

CHAPTER 5. RESULTS AND COMPARISON 93

35

549

37

578

58

12

181

12

191

19
2

27
2

28
3

0

100

200

300

400

500

600

700

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

T
h
ro

u
g
h
p
u
t

(f
p
s)

CIF

SDTV

HDTV

Figure 5.1: Throughput of different motion estimation architectures at dif-
ferent resolutions

5.3 Comparison between motion estimation

architectures

5.3.1 Throughput and latency

The throughputs of different architectures at different resolu-
tions are shown in figure 5.1. The throughput of 2D bit-parallel
designs is the highest among all alternatives since its pipeline
and parallel characteristics. For example, 2D tree architectures
have ten times the throughput of a bit serial design. It also
provides ten times less latency than a bit serial design.

Comparing 1D architectures to the bit-serial design, the bit-
serial architecture has better throughput when they are working
at their maximum frequency. Latency is similar between 1D
systolic and bit serial architectures.

Two dimensional architectures are suitable for dealing with
high throughput applications like 1080p encoding, cinema qual-
ity video creation, etc. Low throughput applications, like video

CHAPTER 5. RESULTS AND COMPARISON 94

0

2000

4000

6000

8000

10000

12000

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

A
re

a
(S

li
ce

s)

Figure 5.2: Occupied slices of different motion estimation architectures

conferencing, are suitable for 1D systolic and bit serial architec-
tures.

5.3.2 Occupied resources

The occupied areas for different architectures are shown in figure
5.2. 2D architectures occupy the most resources, the second
being the bit-serial architecture. The 1D systolic array occupies
the least amount of resources. In general, the area occupied is
proportional to its performance.

As area occupation directly affects the price of hardware de-
vice, suitable architecture should be selected for minimizing pro-
duction cost. In modern technology, implementation of 2D ar-
chitectures on FPGA is still expensive since it requires over 10k
slices which is usually provided only in high-end FPGA devices.
1D and bit-serial architectures are a moderate choice for cost-
constrained applications.

CHAPTER 5. RESULTS AND COMPARISON 95

0

1000

2000

3000

4000

5000

6000

7000

8000

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

B
an

d
w

id
th

 r
eq

u
ir

em
en

t
@

C
IF

 3
0
 f

p
s

(M
B

y
te

/s
)

Figure 5.3: Bandwidth requirements of different motion estimation architec-
tures at CIF 30 fps

5.3.3 Memory bandwidth

The required bandwidth for CIF 30 fps of different architectures
are shown in figure 5.3. Bit-serial design has the largest band-
width requirement, 64 bytes/cycle, inherited by its non-systolic
architecture. The local communication in 1D, 2D systolic and
tree architectures significantly reduce bandwidth requirements.
Among 1D and 2D architectures, 1D architectures require more
bandwidth.

Memory bandwidth significantly affects the power consump-
tion. In battery-powered applications, high bandwidth architec-
tures should be avoided. On the other hand, memory is a slow
device compared to computation logic. Smaller bandwidth re-
quirement means we could process data at a higher throughput.

5.3.4 Motion estimation algorithm

Pipelining impedes efficient processing of data dependent al-
gorithms like fast motion estimation algorithms. The pipeline

CHAPTER 5. RESULTS AND COMPARISON 96

2

27

2

28

3

63
56

71 69

115

0

20

40

60

80

100

120

140

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

T
h
ro

u
g
h
p
u
t

 H
D

T
V

(f

p
s)

FS

TSS

Figure 5.4: Throughput of different architectures at different motion estima-
tion algorithms

must be flushed in the decision making process, which is a kind
of data hazard. Flushing a pipeline leads to wastage of resources
and execution time. In 1D or 2D systolic arrays, 16 and 32 cycles
are flushed respectively when a data hazard occurs. For exam-
ple, TSS in a 2D systolic array requires 448 cycles to calculate
SADs for 25 search points. The number of cycles per search
point is decreased from 1.017 to 17.92 cycles/search point.

In our bit-serial architecture, since it is not systolic based,
the efficiency for fast algorithms can be much higher. It is able
to process TSS in around 450 cycles compared to 18432 in FS.
The number of cycles per search points is almost kept constant.

Figure 5.4 shows the effect of different architectures by TSS.
Obviously, bit-serial design performs the best among the archi-
tectures. Figure 5.5 concludes the efficiency of different archi-
tectures per slice. FS and TSS are given for comparisons.

As a result, the algorithmic flexibility of a bit-serial design
is the highest among all architectures. It gives a larger design
space for algorithm designers to design any algorithms they like

CHAPTER 5. RESULTS AND COMPARISON 97

9.6 20.1 15.8 26.9 10.8

352

42

620

65

437

0

100

200

300

400

500

600

700

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

T
h
ro

u
g
h
p
u
t/

S
li

ce
 (

M
ac

ro
b
lo

ck
/S

li
ce

)

FS

TSS

Figure 5.5: Maximum throughput per slice of different motion estimation
architectures

and gets rid of hardware concern.

5.3.5 Power consumption

Power consumption is due to four main factors. The area oc-
cupied, operating frequency, bandwidth requirement, and algo-
rithm involved. Bandwidth can be reduced by introducing more
local memories, but the architecture gate count is increased.
The power consumption utilizations are shown in figure 5.6. The
high power consumption is due to the high frequency required by
bit-serial architectures. Employing fast algorithms other than
full search can greatly reduce its power consumption. Although
some quality may be lost, it is acceptable in many low-end ap-
plications. As a result, bit-serial design is still energy-efficient
in fast algorithms.

Since pipeline based architectures favor full search, those ar-
chitectures are not a good choice for minimizing power although
they require less bandwidth and operating frequency. Bit-serial

CHAPTER 5. RESULTS AND COMPARISON 98

0

1000

2000

3000

4000

5000

6000

7000

8000

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

P
o
w

er
 c

o
n
su

m
p
ti

o
n
 @

C
IF

 3
0
 f

p
s

(m
W

)

Figure 5.6: Power consumptions of different architectures

0

1

2

3

4

5

6

7

1DSYS 2DSYS 1DTree 2DTree BS

Architectures

P
o
w

er
/s

li
ce

 (
m

W
/s

li
ce

)

Figure 5.7: Power efficiencies of different motion estimation architectures

CHAPTER 5. RESULTS AND COMPARISON 99

is a good solution as it does not discard any calculations in fast
algorithms. Figure 5.7 concludes the power efficiencies of differ-
ent architectures per slice.

5.4 Comparison to ASIC and FPGA archi-

tectures in past literature

In this section we compare our first-reported bit-serial architec-
ture, the MSB-first bit-serial architecture, to previously reported
FPGA or ASIC designs. The bit-serial architecture is chosen for
comparisons as it is the first reported bit-serial motion estima-
tion processor for H.264/AVC.

The processors include bit-parallel and bit-serial architec-
tures with or without variable block size support. Since we can
obtain an equivalent gate count from Xilinx ISE tools, we are
able compare our architectures to ASIC implementations. No-
tice that the gate count collected from ISE tools likely to be is
overestimated. Readers should have a sense that the equivalent
gate counts collected from ASIC tools are usually smaller. Table
5.6 and table 5.7 show the comparisons.

In FPGA implementations, since variable block size is not
supported in some cases, their area utilizations are underesti-
mated. Thus, for those which don’t support variable block size,
their performance per slice are not used for comparison. For the
remaining, our bit-serial processor outperforms other variable-
block-size supported processors in performance per slice. Our
architecture is operating at the highest frequency among all ar-
chitectures as well because of the bit-serial design as well as the
0.13nm technology.

C
H

A
P

T
E

R
5
.

R
E

S
U

L
T

S
A

N
D

C
O

M
P
A

R
IS

O
N

100

[31] [34] [52] [53] [46] [38] [51] [30] Our Bit-serial

Design strategy BPa BP BP BP BS BS BP BP BSb

Max frequency(MHz) 103.84 191 380.7 197 352 425 120 51.49 420

Area (Slices) 1654 1876 31060 1699 1510 1945 7381 9788 2133

Throughput (MB/s) 18519 4752 371513 7125 5078 17456 29296 3036 23068

Performance/Slice 11.2 2.53 12 4.19 3.36 8.97 3.97 0.31 10.8

aBP is an abbreviation of bit-parallel.
bBS is an abbreviation of bit-serial.

Table 5.6: Results and comparison of motion estimation processors on FPGA devices

CHAPTER 5. RESULTS AND COMPARISON 101

[39] [22] [54] [55] Our Bit-serial

Design strategy BP BP BP BP BS

Num. PEs 256 256 16 16 N/A

Max frequency(MHz) 200 100 100 294 420

Area (Gate) 597k 154k 108k 61k 55k

Throughput (MB/s) 195313 97560 5560 17820 23068

Performance/gate 0.327 0.634 0.051 0.292 0.417

Table 5.7: Results and comparison of motion estimation processors on ASIC
devices

In ASIC comparison, we select only H.264/AVC supported
architectures for a fair comparison. The number of PEs in table
5.7 indicates what class of motion estimation processor belongs.
Typically, 16-PE architectures belong to 1D class. 256-PE ar-
chitectures belong to 2D class. In typical 1D implementation,
performance per slice is lowest while full parallel 2D architec-
tures obtain the highest score. Our bit-serial design scores in
between and sometimes better than 2D architectures even the
gate count is overestimated.

5.5 Summary

In this chapter a comparison of different architectures are pre-
sented and analyzed. We created a family of hardware sup-
porting a range of throughput, bandwidth, area, power, and
flexibility. For any application with well defined requirements,
a suitable architecture can be selected. This chapter also gives
an overview for designers to pick up an appropriate architecture
through these results.

Chapter 6

Conclusion

6.1 Summary

In this work, we studied and analyzed the hardware architec-
tures for motion estimation in the latest video codec standard
H.264/AVC. Through algorithmic, architectural and arithmetic
optimizations, we suggested and implemented a family of mo-
tion estimation processors on a FPGA platform. Modifications
were made to architectures proposed in previous literature to
support variable block sizes. We proposed a family of archi-
tectures with different throughputs, area utilizations, memory
bandwidths, power consumptions and algorithm flexibilities. As
a result, designers can select the appropriate one when all these
metrics are known.

6.1.1 Algorithmic optimizations

We studied several motion estimation algorithms in the past
literatures. The algorithms can be classified into two cate-
gories: exhaustive search and fast search. The former is com-
monly known as full search. The latter is comprised of a num-
ber of different approaches to perform motion estimation via
heuristic techniques. Those studied were three step search, two-
dimensional logarithmic search and diamond search which all

102

CHAPTER 6. CONCLUSION 103

have slight differences in their search qualities and complexi-
ties. We studied their computational requirements, searching
qualities and ease of implementation in hardware. The available
algorithms enable tradeoffs between the throughput and picture
quality in our motion estimation processors.

Our family of motion estimation processors is able to process
the motion estimation algorithms presented at near to 100%
processing element utilizations. High utilizations of the sys-
tolic and tree architectures can be achieved by employing a full
search. For data dependent algorithms such as TSS and DS, we
employ our bit-serial architectures to achieve a high utilization
ratio. As a result, our family of architectures can implement any
standard of algorithm with a high utilization rate, in terms of
maximizing the logic performance. This flexibility is important
in many areas. Within the given quality, developers always want
to achieve the highest performance via algorithm optimizations.

6.1.2 Architecture and arithmetic optimizations

It is possible to efficiently map motion estimation algorithms
into systolic arrays. Through systolic arrays, we can fully paral-
lelize the computations and reduce the required bandwidth. 1D
and 2D systolic and tree architectures were presented. We also
made modifications to systolic-based motion estimation hard-
ware to support variable block size motion estimation by em-
ploying adder trees to enable the reuse of partial SADs.

At the computer arithmetic level, we study both bit-parallel
and bit-serial approaches. In bit-parallel architectures, we em-
ploy conventional number systems to perform mathematical cal-
culations. 2D systolic array and 2D tree architectures are de-
veloped for high-end applications. Small area architectures such
as the 1D systolic array and 1D tree architectures are also de-
veloped to support low-end applications. We also proposed a

CHAPTER 6. CONCLUSION 104

bit-serial motion estimation processor for mid-end applications.
In the bit-serial design, we redefined the SAD operations present
and employed redundant number and signed digit number sys-
tems. After analyzing the properties of the comparison opera-
tion, we employ a MSB-first approach to solve motion estimation
jointly with the early termination scheme. We further optimized
the early termination scheme by a more accurate starting point
by employing the H.264/AVC motion vector prediction tech-
nique, which can reduce the updates of minimum SAD during
comparisons.

Hardware developers often search for the best tradeoffs be-
tween performance, bandwidth, area and power. Our motion
estimation processors provide different characteristics in which
some are performance maximized, some of area optimized, etc.
With predefined constraints on hand, hardware developers are
able to make tradeoffs within a short time, thus shorten the de-
velopment cycle. Without these measurements, designers can
only estimate the performance, area, etc based on experiences.

6.1.3 Implementation on a FPGA platform

Different architectures are synthesized, implemented and place-
and-routed on Xilinx Virtex-II Pro device using Xilinx ISE and
Synplicity as synthesis and implementation tools. The maxi-
mum frequency, slices occupied and power consumption are re-
ported. In bit-parallel architectures, encoding of HDTV at 28
fps can be achieved in 2D architectures. Our bit-serial archi-
tecture can perform encoding of CIF at 58 fps. In our FPGA
platform, the performance of our architectures is able to perform
real time encoding up to 1080p. An area-throughput chart for
architectures is shown in figure 6.1 showing different architec-
tures mapped to different applications. The area is in terms of
Xilinx Virtex-II slices and the throughput calculations assume

CHAPTER 6. CONCLUSION 105

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800

Throughput at CIF (fps)

A
re

a
(S

li
ce

s)

Figure 6.1: Area vs throughput in different motion estimation architectures

adequate memory bandwidth for I/O to the video coder core.
When employing general purpose processors, previous work

[20] shows that a Pentium 4 2.8E GHz processor can only per-
form encoding of CIF video at 0.28 fps when no algorithmic
optimizations are done. Motion estimation occupies 65% of the
total encoding time. As a result, our designs are at least 81
times faster than motion estimation implementations on gen-
eral purpose processors. The systolic, tree and bit-serial archi-
tectures proposed in this work show that an FPGA design can
have much higher performance than general purpose processors.
Moreover, the power consumption and memory bandwidth are
reduced at the same time as the power needed for microproces-
sors is in range of 70 to 100 Watts (http://www.intel.com and
http://www.amd.com).

In this work, we proposed the first MSB-first bit-serial vari-
able block size motion estimation architecture for H.264/AVC.
The architecture, with careful choosing of algorithms, is able to

CHAPTER 6. CONCLUSION 106

perform motion estimations efficiently on a low cost FPGA de-
vice. As an example, our bit-serial architecture is able to fit in
a low cost Spartan-3 device such as XC3S200.

6.2 Future work

Video coding systems can be accelerated by hardware because
of inherit opportunities for parallelism. Optimizations of video
coding through software are limited since modern general pur-
pose processors are not able to compute at several giga oper-
ations per second. Algorithms such as motion estimation can
not be implemented efficiently as in general purpose processors.
ASIC or FPGA technologies, making them necessary for high
performance solutions.

Besides motion estimation, many algorithms in video codec
can be accelerated:

1. Interpolation for fractional motion estimation that involves
a large amount of pixel filtering.

2. Integer transform from residue values to transformed coef-
ficients in the transform stage.

3. Deblocking filtering of pixels between blocks in the deblock-
ing stage.

Furthermore, higher radix (e.g. radix-4) bit-serial implemen-
tations of motion estimation processors may have performance
advantages (although at the cost of increased area) and may bet-
ter exploit the 6-input LUTs in the recently announced Xilinx
Virtex-5 device.

A family of hardware cores for video codecs can be built in
a similar fashion to this work. Although the complexities of
these stages appear smaller than that of the motion estimation,
they tend to be complicated in modern and future codecs. The

CHAPTER 6. CONCLUSION 107

effort to optimize these stages will be an important topic for the
future.

Appendix A

VHDL Sources

A.1 Online Full Adder

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity olFA is
Port (clk : in STD LOGIC;

x : in STD LOGIC;
y : in STD LOGIC; 10

z : in STD LOGIC;
s : out STD LOGIC;
c : out STD LOGIC);

end olFA;

architecture Behavioral of olFA is

signal s2: std logic;

begin 20

s2 <= x xor y xor z;
c <= (x and y) or (x and z) or (y and z);

process(clk)
begin

if(clk’event and clk=’1’) then

108

APPENDIX A. VHDL SOURCES 109

s <= s2;

end if;

end process; 30

end Behavioral;

A.2 Online Signed Digit Full Adder

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity olSDA is
Port (clk : in STD˙LOGIC;

a : in STD˙LOGIC;
b : in STD˙LOGIC;
c : in STD˙LOGIC; 10

d : in STD˙LOGIC;
neg : out STD˙LOGIC;
pos : out STD˙LOGIC);

end olSDA;

architecture Behavioral of olSDA is
component olFA
Port (clk : in STD˙LOGIC;

x : in STD˙LOGIC;
y : in STD˙LOGIC; 20

z : in STD˙LOGIC;
s : out STD˙LOGIC;
c : out STD˙LOGIC);

end component;

signal c1,s1: std˙logic;
signal c2,s2: std˙logic;
signal d˙p1: std˙logic;
signal b˙n: std˙logic;

30

begin

b˙n <= not(b);

APPENDIX A. VHDL SOURCES 110

neg <= not(c2);
pos <= s2;

u1: olFA port map (clk,a,b˙n,c,s1,c1);
u2: olFA port map (clk,c1,s1,d˙p1,s2,c2);

process (clk) 40

begin
if(clk’event and clk = ’1’) then

d_p1 <= not(d);

end if;

end process;

end Behavioral;

A.3 Online Full Adder Tree

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity olFA˙tree˙16op is
Port (clk : in STD˙LOGIC; 10

x1 : in STD˙LOGIC;
x2 : in STD˙LOGIC;
x3 : in STD˙LOGIC;
x4 : in STD˙LOGIC;
x5 : in STD˙LOGIC;
x6 : in STD˙LOGIC;
x7 : in STD˙LOGIC;
x8 : in STD˙LOGIC;
x9 : in STD˙LOGIC;
x10 : in STD˙LOGIC; 20

x11 : in STD˙LOGIC;
x12 : in STD˙LOGIC;
x13 : in STD˙LOGIC;

APPENDIX A. VHDL SOURCES 111

x14 : in STD˙LOGIC;
x15 : in STD˙LOGIC;
x16 : in STD˙LOGIC;
sum : out STD˙LOGIC;
carry : out STD˙LOGIC);

end olFA˙tree˙16op;
30

architecture Behavioral of olFA˙tree˙16op is

signal s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14: std˙logic;
signal c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14: std˙logic;

signal s5˙p1,s5˙p2: std˙logic;
signal s12˙p1: std˙logic;
signal x16˙p1,x16˙p2,x16˙p3: std˙logic;
signal s11˙sp,s12˙sp,c11˙sp,c12˙sp: std˙logic;
signal x16˙p2˙sp: std˙logic; 40

signal s6˙sp,s7˙sp,s8˙sp,c6˙sp,c7˙sp,c8˙sp: std˙logic;
signal s5˙p1˙sp: std˙logic;

component olFA
Port (clk : in STD˙LOGIC;

x : in STD˙LOGIC;
y : in STD˙LOGIC;
z : in STD˙LOGIC;
s : out STD˙LOGIC;
c : out STD˙LOGIC); 50

end component;

begin

-- level 1
u1: olFA port map (clk,x1,x2,x3,s1,c1);
u2: olFA port map (clk,x4,x5,x6,s2,c2);
u3: olFA port map (clk,x7,x8,x9,s3,c3);
u4: olFA port map (clk,x10,x11,x12,s4,c4); 60

u5: olFA port map (clk,x13,x14,x15,s5,c5);

-- level 2

-- No pipeline --------------------------------

u6: olFA port map (clk,c1,s1,c2,s6,c6);
u7: olFA port map (clk,s2,c3,s3,s7,c7);

APPENDIX A. VHDL SOURCES 112

u8: olFA port map (clk,c4,s4,c5,s8,c8);

70

-- level 3
u9: olFA port map (clk,c6,s6,c7,s9,c9);
u10: olFA port map (clk,s7,c8,s8,s10,c10);

-- level 4

-- No pipeline --------------------------------

u11: olFA port map (clk,c9,s9,c10,s11,c11);
u12: olFA port map (clk,s10,s5˙p2,x16˙p3,s12,c12);
--- 80

-- level 5
u13: olFA port map (clk,c11,s11,c12,s13,c13);
-- level 6
u14: olFA port map (clk,c13,s13,s12˙p1,s14,c14);

process(clk)
begin

if(clk’event and clk = ’1’) then

x16_p1 <= x16; 90

x16_p2 <= x16_p1;

x16_p3 <= x16_p2;

s12_p1 <= s12;

s5_p1 <= s5;

s5_p2 <= s5_p1;

end if;

end process;

sum <= s14; 100

carry <= c14;

end Behavioral;

A.4 SAD merger

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;

APPENDIX A. VHDL SOURCES 113

use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity olSDFA˙tree is
Port (clk : in STD˙LOGIC;

SAD˙4x4˙p : in STD˙LOGIC˙VECTOR (15 downto 0);
SAD˙4x4˙n : in STD˙LOGIC˙VECTOR (15 downto 0);
oSAD˙4x8˙p : out STD˙LOGIC˙VECTOR (7 downto 0); 10

oSAD˙4x8˙n : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙8x4˙p : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙8x4˙n : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙8x8˙p : out STD˙LOGIC˙VECTOR (3 downto 0);
oSAD˙8x8˙n : out STD˙LOGIC˙VECTOR (3 downto 0);
oSAD˙8x16˙p : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙8x16˙n : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙16x8˙p : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙16x8˙n : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙16x16˙p : out STD˙LOGIC; 20

oSAD˙16x16˙n : out STD˙LOGIC);
end olSDFA˙tree;

architecture Behavioral of olSDFA˙tree is

component olSDA
Port (clk : in STD˙LOGIC;

a : in STD˙LOGIC;
b : in STD˙LOGIC;
c : in STD˙LOGIC; 30

d : in STD˙LOGIC;
neg : out STD˙LOGIC;
pos : out STD˙LOGIC);

end component;

signal SAD˙8x4˙p, SAD˙8x4˙n : std˙logic˙vector(7 downto 0);
signal SAD˙4x8˙p, SAD˙4x8˙n : std˙logic˙vector(7 downto 0);
signal SAD˙8x8˙p, SAD˙8x8˙n : std˙logic˙vector(3 downto 0);
signal SAD˙8x16˙p, SAD˙8x16˙n : std˙logic˙vector(1 downto 0);
signal SAD˙16x8˙p, SAD˙16x8˙n : std˙logic˙vector(1 downto 0); 40

signal SAD˙4x8˙pipe˙n, SAD˙4x8˙pipe˙p: std˙logic˙vector(7 downto 0);
signal SAD˙8x8˙pipe˙n, SAD˙8x8˙pipe˙p: std˙logic˙vector(3 downto 0);
signal SAD˙8x16˙pipe˙n, SAD˙8x16˙pipe˙p: std˙logic˙vector(1 downto 0);
signal SAD˙16x8˙pipe˙n, SAD˙16x8˙pipe˙p: std˙logic˙vector(1 downto 0);

APPENDIX A. VHDL SOURCES 114

begin

-- 4x8 SAD
SAD˙4x8˙1˙2: olSDA port map (clk, SAD˙4x4˙p(0), SAD˙4x4˙n(0), 50

SAD˙4x4˙p(1), SAD˙4x4˙n(1),
SAD˙4x8˙pipe˙n(0), SAD˙4x8˙pipe˙p(0));

SAD˙4x8˙3˙4: olSDA port map (clk, SAD˙4x4˙p(2), SAD˙4x4˙n(2),
SAD˙4x4˙p(3), SAD˙4x4˙n(3),
SAD˙4x8˙pipe˙n(1), SAD˙4x8˙pipe˙p(1));

SAD˙4x8˙5˙6: olSDA port map (clk, SAD˙4x4˙p(4), SAD˙4x4˙n(4),
SAD˙4x4˙p(5), SAD˙4x4˙n(5),
SAD˙4x8˙pipe˙n(2), SAD˙4x8˙pipe˙p(2));

SAD˙4x8˙7˙8: olSDA port map (clk, SAD˙4x4˙p(6), SAD˙4x4˙n(6),
SAD˙4x4˙p(7), SAD˙4x4˙n(7), 60

SAD˙4x8˙pipe˙n(3), SAD˙4x8˙pipe˙p(3));
SAD˙4x8˙9˙10: olSDA port map (clk, SAD˙4x4˙p(8), SAD˙4x4˙n(8),

SAD˙4x4˙p(9), SAD˙4x4˙n(9),
SAD˙4x8˙pipe˙n(4), SAD˙4x8˙pipe˙p(4));

SAD˙4x8˙11˙12: olSDA port map (clk, SAD˙4x4˙p(10), SAD˙4x4˙n(10),
SAD˙4x4˙p(11), SAD˙4x4˙n(11),
SAD˙4x8˙pipe˙n(5), SAD˙4x8˙pipe˙p(5));

SAD˙4x8˙13˙14: olSDA port map (clk, SAD˙4x4˙p(12), SAD˙4x4˙n(12),
SAD˙4x4˙p(13), SAD˙4x4˙n(13),
SAD˙4x8˙pipe˙n(6), SAD˙4x8˙pipe˙p(6)); 70

SAD˙4x8˙15˙16: olSDA port map (clk, SAD˙4x4˙p(14), SAD˙4x4˙n(14),
SAD˙4x4˙p(15), SAD˙4x4˙n(15),
SAD˙4x8˙pipe˙n(7), SAD˙4x8˙pipe˙p(7));

-- 8x4 SAD
SAD˙8x4˙1˙5: olSDA port map (clk, SAD˙4x4˙p(0), SAD˙4x4˙n(0),

SAD˙4x4˙p(4), SAD˙4x4˙n(4),
SAD˙8x4˙n(0), SAD˙8x4˙p(0));

SAD˙8x4˙2˙6: olSDA port map (clk, SAD˙4x4˙p(1), SAD˙4x4˙n(1),
SAD˙4x4˙p(5), SAD˙4x4˙n(5), 80

SAD˙8x4˙n(1), SAD˙8x4˙p(1));
SAD˙8x4˙3˙7: olSDA port map (clk, SAD˙4x4˙p(2), SAD˙4x4˙n(2),

SAD˙4x4˙p(6), SAD˙4x4˙n(6),
SAD˙8x4˙n(2), SAD˙8x4˙p(2));

SAD˙8x4˙4˙8: olSDA port map (clk, SAD˙4x4˙p(3), SAD˙4x4˙n(3),
SAD˙4x4˙p(7), SAD˙4x4˙n(7),
SAD˙8x4˙n(3), SAD˙8x4˙p(3));

SAD˙8x4˙9˙13: olSDA port map (clk, SAD˙4x4˙p(8), SAD˙4x4˙n(8),
SAD˙4x4˙p(12), SAD˙4x4˙n(12),
SAD˙8x4˙n(4), SAD˙8x4˙p(4)); 90

APPENDIX A. VHDL SOURCES 115

SAD˙8x4˙10˙14: olSDA port map (clk, SAD˙4x4˙p(9), SAD˙4x4˙n(9),
SAD˙4x4˙p(13), SAD˙4x4˙n(13),
SAD˙8x4˙n(5), SAD˙8x4˙p(5));

SAD˙8x4˙11˙15: olSDA port map (clk, SAD˙4x4˙p(10), SAD˙4x4˙n(10),
SAD˙4x4˙p(14), SAD˙4x4˙n(14),
SAD˙8x4˙n(6), SAD˙8x4˙p(6));

SAD˙8x4˙12˙16: olSDA port map (clk, SAD˙4x4˙p(11), SAD˙4x4˙n(11),
SAD˙4x4˙p(15), SAD˙4x4˙n(15),
SAD˙8x4˙n(7), SAD˙8x4˙p(7));

100

-- 8x8 SAD
SAD˙8x8˙0: olSDA port map (clk, SAD˙4x8˙p(0), SAD˙4x8˙n(0),

SAD˙4x8˙p(2), SAD˙4x8˙n(2),
SAD˙8x8˙pipe˙n(0), SAD˙8x8˙pipe˙p(0));

SAD˙8x8˙1: olSDA port map (clk, SAD˙4x8˙p(1), SAD˙4x8˙n(1),
SAD˙4x8˙p(3), SAD˙4x8˙n(3),
SAD˙8x8˙pipe˙n(1), SAD˙8x8˙pipe˙p(1));

SAD˙8x8˙2: olSDA port map (clk, SAD˙4x8˙p(4), SAD˙4x8˙n(4),
SAD˙4x8˙p(6), SAD˙4x8˙n(6),
SAD˙8x8˙pipe˙n(2), SAD˙8x8˙pipe˙p(2)); 110

SAD˙8x8˙3: olSDA port map (clk, SAD˙4x8˙p(5), SAD˙4x8˙n(5),
SAD˙4x8˙p(7), SAD˙4x8˙n(7),
SAD˙8x8˙pipe˙n(3), SAD˙8x8˙pipe˙p(3));

-- 8x16 SAD
SAD˙8x16˙0: olSDA port map (clk, SAD˙8x8˙p(0), SAD˙8x8˙n(0),

SAD˙8x8˙p(1), SAD˙8x8˙n(1),
SAD˙8x16˙pipe˙n(0),SAD˙8x16˙pipe˙p(0));

SAD˙8x16˙1: olSDA port map (clk, SAD˙8x8˙p(2), SAD˙8x8˙n(2),
SAD˙8x8˙p(3), SAD˙8x8˙n(3), 120

SAD˙8x16˙pipe˙n(1),SAD˙8x16˙pipe˙p(1));

-- 16x8 SAD
SAD˙16x8˙0: olSDA port map (clk, SAD˙8x8˙p(0), SAD˙8x8˙n(0),

SAD˙8x8˙p(2), SAD˙8x8˙n(2),
SAD˙16x8˙pipe˙n(0),SAD˙16x8˙pipe˙p(0));

SAD˙16x8˙1: olSDA port map (clk, SAD˙8x8˙p(1), SAD˙8x8˙n(1),
SAD˙8x8˙p(3), SAD˙8x8˙n(3),
SAD˙16x8˙pipe˙n(1),SAD˙16x8˙pipe˙p(1));

130

-- 16x16 SAD
SAD˙16x16: olSDA port map (clk, SAD˙8x16˙p(0), SAD˙8x16˙n(0),

SAD˙8x16˙p(1), SAD˙8x16˙n(1),
oSAD˙16x16˙n, oSAD˙16x16˙p);

APPENDIX A. VHDL SOURCES 116

process (clk)
begin

if(clk’event and clk = ’1’) then

oSAD_4x8_p <= SAD_4x8_p;

oSAD_4x8_n <= SAD_4x8_n; 140

oSAD_8x4_p <= SAD_8x4_p;

oSAD_8x4_n <= SAD_8x4_n;

oSAD_8x8_p <= SAD_8x8_p;

oSAD_8x8_n <= SAD_8x8_n;

oSAD_8x16_p <= SAD_8x16_p;

oSAD_8x16_n <= SAD_8x16_n;

oSAD_16x8_p <= SAD_16x8_p;

oSAD_16x8_n <= SAD_16x8_n;

SAD_4x8_p <= SAD_4x8_pipe_p; 150

SAD_4x8_n <= SAD_4x8_pipe_n;

SAD_8x8_p <= SAD_8x8_pipe_p;

SAD_8x8_n <= SAD_8x8_pipe_n;

SAD_8x16_p <= SAD_8x16_pipe_p;

SAD_8x16_n <= SAD_8x16_pipe_n;

SAD_16x8_p <= SAD_16x8_pipe_p;

SAD_16x8_n <= SAD_16x8_pipe_n;

end if;

end process;

end Behavioral; 160

A.5 Signed digit adder tree stage (top)

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity sd˙16op˙tree is
Port (clk : in STD˙LOGIC;

-- rst: in STD˙LOGIC;
p : in STD˙LOGIC˙VECTOR (15 downto 0);
n : in STD˙LOGIC˙VECTOR (15 downto 0); 10

neg : out STD˙LOGIC;
pos : out STD˙LOGIC);

APPENDIX A. VHDL SOURCES 117

end sd˙16op˙tree;

architecture Behavioral of sd˙16op˙tree is

component olFA˙tree˙16op
Port (clk : in STD˙LOGIC;

x1 : in STD˙LOGIC;
x2 : in STD˙LOGIC; 20

x3 : in STD˙LOGIC;
x4 : in STD˙LOGIC;
x5 : in STD˙LOGIC;
x6 : in STD˙LOGIC;
x7 : in STD˙LOGIC;
x8 : in STD˙LOGIC;
x9 : in STD˙LOGIC;
x10 : in STD˙LOGIC;
x11 : in STD˙LOGIC;
x12 : in STD˙LOGIC; 30

x13 : in STD˙LOGIC;
x14 : in STD˙LOGIC;
x15 : in STD˙LOGIC;
x16 : in STD˙LOGIC;
sum : out STD˙LOGIC;
carry : out STD˙LOGIC);

end component;

component olSDA
Port (clk : in STD˙LOGIC; 40

a : in STD˙LOGIC;
b : in STD˙LOGIC;
c : in STD˙LOGIC;
d : in STD˙LOGIC;
neg : out STD˙LOGIC;
pos : out STD˙LOGIC);

end component;

signal p˙p, n˙p: std˙logic˙vector(15 downto 0);
signal neg˙p, pos˙p: std˙logic; 50

signal s1,s2,c1,c2: std˙logic;

begin

tree1: olFA˙tree˙16op port map (clk,p˙p(0),p˙p(1),
p˙p(2),p˙p(3),p˙p(4),p˙p(5),p˙p(6),p˙p(7),

APPENDIX A. VHDL SOURCES 118

p˙p(8),p˙p(9),p˙p(10),p˙p(11),p˙p(12)
,p˙p(13),p˙p(14),p˙p(15),s1,c1);

tree2: olFA˙tree˙16op port map (clk,n˙p(0),n˙p(1),
n˙p(2),n˙p(3),n˙p(4),n˙p(5),n˙p(6),n˙p(7), 60

n˙p(8),n˙p(9),n˙p(10),n˙p(11),n˙p(12),
n˙p(13),n˙p(14),n˙p(15),s2,c2);

olSDA1: olSDA port map (clk, c1,c2,s1,s2,neg˙p,pos˙p);

process(clk)
begin

if(clk’event and clk=’1’) then

p_p <= p; 70

n_p <= n;

neg <= neg_p;

pos <= pos_p;

end if;

end process;

end Behavioral;

80

A.6 Absolute element

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity abs˙stage is
Port (clk : in STD˙LOGIC;

msd : in STD˙LOGIC;
ref˙pixel : in STD˙LOGIC;
curr˙pixel : in STD˙LOGIC; 10

abs˙pos : out STD˙LOGIC;
abs˙neg : out STD˙LOGIC);

end abs˙stage;

architecture Behavioral of abs˙stage is

APPENDIX A. VHDL SOURCES 119

signal msd˙pos, msd˙neg : std˙logic;
signal exchange: std˙logic;

begin 20

exchange <= not(msd˙pos) and msd˙neg;

process(clk)
begin

if(clk’event and clk = ’1’) then

if(msd = ’1’) then

msd_pos <= curr_pixel;

msd_neg <= ref_pixel;

if((not(curr_pixel) and ref_pixel) = ’1’) then 30

abs_pos <= ref_pixel;

abs_neg <= curr_pixel;

else

abs_pos <= curr_pixel;

abs_neg <= ref_pixel;

end if;

else

if(exchange = ’1’) then

abs_pos <= ref_pixel;

abs_neg <= curr_pixel; 40

else

abs_pos <= curr_pixel;

abs_neg <= ref_pixel;

end if;

end if;

end if;

end process;

end Behavioral;

50

A.7 Absolute stage (top)

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

APPENDIX A. VHDL SOURCES 120

entity abs˙stage˙top is
Port (clk : in STD˙LOGIC;

msd : in STD˙LOGIC;
ref˙pixel : in STD˙LOGIC˙VECTOR (255 downto 0);
curr˙pixel : in STD˙LOGIC˙VECTOR (255 downto 0); 10

sd˙num˙pos : out STD˙LOGIC˙VECTOR (255 downto 0);
sd˙num˙neg : out STD˙LOGIC˙VECTOR (255 downto 0));

end abs˙stage˙top;

architecture Behavioral of abs˙stage˙top is

component abs˙stage
Port (clk : in STD˙LOGIC;

msd : in STD˙LOGIC;
ref˙pixel : in STD˙LOGIC; 20

curr˙pixel : in STD˙LOGIC;
abs˙pos : out STD˙LOGIC;
abs˙neg : out STD˙LOGIC);

end component;

begin

abs˙stage˙generate: for i in 0 to 255 generate
abs˙stage: abs˙stage port map (clk, msd, ref˙pixel(i), 30

curr˙pixel(i), sd˙num˙pos(i), sd˙num˙neg(i));
end generate;

end Behavioral;

A.8 Online comparator element

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity ol˙comp is

APPENDIX A. VHDL SOURCES 121

Port (clk : in STD˙LOGIC;
rst : in STD˙LOGIC;
p˙pos : in STD˙LOGIC; 10

p˙neg : in STD˙LOGIC;
q˙pos : in STD˙LOGIC;
q˙neg : in STD˙LOGIC;
result : out STD˙LOGIC);

end ol˙comp;

architecture Behavioral of ol˙comp is

signal sign˙p, sign˙q: std˙logic;
signal mag˙p, mag˙q: std˙logic; 20

signal s˙p, s˙q: std˙logic˙vector(2 downto 0);

signal s˙p0, s˙p1, s˙q0, s˙q1: std˙logic;
signal s˙p2, s˙q2: std˙logic;
--signal set˙p, set˙q, reset˙p, reset˙q: std˙logic;

begin

-- initialization
sign˙p <= p˙neg; 30

sign˙q <= q˙neg;

mag˙p <= p˙pos or p˙neg;
mag˙q <= q˙pos or q˙neg;

-- contatentation of bit 2, bit 1 and bit 0
s˙p <= s˙p2 & s˙p1 & s˙p0;
s˙q <= s˙q2 & s˙q1 & s˙q0;

process(clk,rst) 40

begin
if(rst = ’1’) then

s p0 <= ’0’;
s q0 <= ’0’;

s p1 <= ’0’;
s q1 <= ’0’;
s p2 <= ’0’;
s q2 <= ’0’;
result <= ’0’;

else 50

APPENDIX A. VHDL SOURCES 122

if(clk’event and clk = ’1’) then

-- bit 0 is always equal to mag of p and q

s_p0 <= mag_p;

s_q0 <= mag_q;

-- bit 1 is always depend to bit 0 and sign

s_p1 <= s_p0 xor sign_p;

s_q1 <= s_q0 xor sign_q;

60

-- bit 1 depends on bit 0 and bit 2, bit 2 has higher priority

if((s_p2 = ’0’ and s_q2 = ’0’) or

(s_p2 = ’1’ and s_q2 = ’1’)) then

s_p2 <= (not(sign_p) and s_p1) or

(s_p1 and s_p0) or (not(s_q1 or s_q0) and sign_q);

s_q2 <= (not(sign_q) and s_q1) or

(s_q1 and s_q0) or (not(s_p1 or s_p0) and sign_p);

else

s_p2 <= (not(sign_p) and s_p2) or

(s_p2 and s_p0) or (not(s_q2 or s_q0) and sign_q); 70

s_q2 <= (not(sign_q) and s_q2) or

(s_q2 and s_q0) or (not(s_p2 or s_p0) and sign_p);

end if;

if(((s_p>s_q)and(s_p-s_q >= 2)) or

((s_q>s_p)and(s_q-s_p>=2))) then

result <= ’1’;
else

result <= ’0’; 80

end if;

end if;

end if;

end process;

end Behavioral;

A.9 Comparator stage (top)

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;

APPENDIX A. VHDL SOURCES 123

use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity comp˙stage˙top is
Port (clk : in STD˙LOGIC;

rst : in STD˙LOGIC;
SAD˙4x4˙pos : in STD˙LOGIC˙VECTOR (15 downto 0);
SAD˙4x4˙neg : in STD˙LOGIC˙VECTOR (15 downto 0); 10

SAD˙4x8˙pos : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙4x8˙neg : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙8x4˙pos : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙8x4˙neg : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙8x8˙pos : in STD˙LOGIC˙VECTOR (3 downto 0);
SAD˙8x8˙neg : in STD˙LOGIC˙VECTOR (3 downto 0);
SAD˙8x16˙pos : in STD˙LOGIC˙VECTOR (1 downto 0);
SAD˙8x16˙neg : in STD˙LOGIC˙VECTOR (1 downto 0);
SAD˙16x8˙pos : in STD˙LOGIC˙VECTOR (1 downto 0);
SAD˙16x8˙neg : in STD˙LOGIC˙VECTOR (1 downto 0); 20

SAD˙16x16˙pos : in STD˙LOGIC;
SAD˙16x16˙neg : in STD˙LOGIC;
mv˙41˙p : out std˙logic˙vector(40 downto 0);
mv˙41˙n : out std˙logic˙vector(40 downto 0);
stop: out STD˙LOGIC);

end comp˙stage˙top;

architecture Behavioral of comp˙stage˙top is

component ol˙comp 30

Port (clk : in STD˙LOGIC;
rst : in STD˙LOGIC;
p˙pos : in STD˙LOGIC;
p˙neg : in STD˙LOGIC;
q˙pos : in STD˙LOGIC;
q˙neg : in STD˙LOGIC;
result : out STD˙LOGIC);

end component;

40

-- = Minimum Motion vectors and temp motion vectors=

signal min˙sad˙4x4˙p, min˙sad˙4x4˙n: std˙logic˙vector(191 downto 0);
signal temp˙sad˙4x4˙p, temp˙sad˙4x4˙n: std˙logic˙vector(191 downto 0);

signal min˙sad˙4x8˙p, min˙sad˙4x8˙n: std˙logic˙vector(103 downto 0);

APPENDIX A. VHDL SOURCES 124

signal temp˙sad˙4x8˙p, temp˙sad˙4x8˙n: std˙logic˙vector(103 downto 0);
signal min˙sad˙8x4˙p, min˙sad˙8x4˙n: std˙logic˙vector(103 downto 0);
signal temp˙sad˙8x4˙p, temp˙sad˙8x4˙n: std˙logic˙vector(103 downto 0);

50

signal min˙sad˙8x8˙p, min˙sad˙8x8˙n: std˙logic˙vector(55 downto 0);
signal temp˙sad˙8x8˙p, temp˙sad˙8x8˙n: std˙logic˙vector(55 downto 0);

signal min˙sad˙8x16˙p, min˙sad˙8x16˙n: std˙logic˙vector(29 downto 0);
signal temp˙sad˙8x16˙p, temp˙sad˙8x16˙n: std˙logic˙vector(29 downto 0);
signal min˙sad˙16x8˙p, min˙sad˙16x8˙n: std˙logic˙vector(29 downto 0);
signal temp˙sad˙16x8˙p, temp˙sad˙16x8˙n: std˙logic˙vector(29 downto 0);

signal min˙sad˙16x16˙p, min˙sad˙16x16˙n: std˙logic˙vector(15 downto 0);
signal temp˙sad˙16x16˙p, temp˙sad˙16x16˙n: std˙logic˙vector(15 downto 0); 60

signal comp˙result˙4x4: std˙logic˙vector(15 downto 0);
signal comp˙result˙4x8: std˙logic˙vector(7 downto 0);
signal comp˙result˙8x4: std˙logic˙vector(7 downto 0);
signal comp˙result˙8x8: std˙logic˙vector(3 downto 0);
signal comp˙result˙8x16: std˙logic˙vector(1 downto 0);
signal comp˙result˙16x8: std˙logic˙vector(1 downto 0);
signal comp˙result˙16x16: std˙logic; 70

signal sad˙4x4˙msd˙p, sad˙4x4˙msd˙n: std˙logic˙vector(15 downto 0);
signal sad˙4x8˙msd˙p, sad˙4x8˙msd˙n: std˙logic˙vector(7 downto 0);
signal sad˙8x4˙msd˙p, sad˙8x4˙msd˙n: std˙logic˙vector(7 downto 0);
signal sad˙8x8˙msd˙p, sad˙8x8˙msd˙n: std˙logic˙vector(3 downto 0);
signal sad˙8x16˙msd˙p, sad˙8x16˙msd˙n: std˙logic˙vector(1 downto 0);
signal sad˙16x8˙msd˙p, sad˙16x8˙msd˙n: std˙logic˙vector(1 downto 0);
signal sad˙16x16˙msd˙p, sad˙16x16˙msd˙n: std˙logic; 80

signal cnt: std˙logic˙vector(3 downto 0);

signal min4x4: std˙logic˙vector(15 downto 0);
signal min4x8,min8x4 : std˙logic˙vector(7 downto 0);
signal min8x8: std˙logic˙vector(3 downto 0);
signal min16x8,min8x16 : std˙logic˙vector(1 downto 0);
signal min16x16: std˙logic;

begin 90

APPENDIX A. VHDL SOURCES 125

mv˙41˙p <= sad˙4x4˙msd˙p & sad˙4x8˙msd˙p &

sad˙8x4˙msd˙p & sad˙8x8˙msd˙p &

sad˙8x16˙msd˙p & sad˙16x8˙msd˙p &

sad˙16x16˙msd˙p;
mv˙41˙n <= sad˙4x4˙msd˙n & sad˙4x8˙msd˙n &

sad˙8x4˙msd˙n & sad˙8x8˙msd˙n &

sad˙8x16˙msd˙n & sad˙16x8˙msd˙n &

sad˙16x16˙msd˙n;
100

sad4x4: for i in 0 to 15 generate
sad˙4x4˙msd˙p(i) <= min˙sad˙4x4˙p(11+12*i)

when min4x4(i)=’0’ else
temp sad 4x4 p(11+12*i);

sad 4x4 msd n(i) <= min sad 4x4 n(11+12*i)
when min4x4(i)=’0’

else temp sad 4x4 n(11+12*i);
end generate;

sad4x8: for i in 0 to 7 generate 110

sad 4x8 msd p(i) <= min sad 4x8 p(12+13*i)
when min4x8(i)=’0’

else temp sad 4x8 p(12+13*i);
sad 4x8 msd n(i) <= min sad 4x8 n(12+13*i)

when min4x8(i)=’0’

else temp sad 4x8 n(12+13*i);
sad 8x4 msd p(i) <= min sad 8x4 p(12+13*i)

when min8x4(i)=’0’

else temp sad 8x4 p(12+13*i);
sad 8x4 msd n(i) <= min sad 8x4 n(12+13*i) 120

when min8x4(i)=’0’

else temp sad 8x4 n(12+13*i);
end generate;

sad8x8: for i in 0 to 3 generate
sad 8x8 msd p(i) <= min sad 8x8 p(13+14*i)

when min8x8(i)=’0’

else temp sad 8x8 p(13+14*i);
sad 8x8 msd n(i) <= min sad 8x8 n(13+14*i)

when min8x8(i)=’0’ 130

else temp sad 8x8 n(13+14*i);
end generate;

sad8x16: for i in 0 to 1 generate

APPENDIX A. VHDL SOURCES 126

sad 8x16 msd p(i) <= min sad 8x16 p(14+15*i)
when min8x16(i)=’0’

else temp sad 8x16 p(14+15*i);
sad 8x16 msd n(i) <= min sad 8x16 n(14+15*i)

when min8x16(i)=’0’

else temp sad 8x16 n(14+15*i); 140

sad 16x8 msd p(i) <= min sad 16x8 p(14+15*i)
when min16x8(i)=’0’

else temp sad 16x8 p(14+15*i);
sad 16x8 msd n(i) <= min sad 16x8 n(14+15*i)

when min16x8(i)=’0’

else temp sad 16x8 n(14+15*i);

end generate;
150

sad 16x16 msd p <= min sad 16x16 p(15)
when min16x16=’0’

else temp sad 16x16 p(15);
sad 16x16 msd n <= min sad 16x16 n(15)

when min16x16=’0’

else temp sad 16x16 n(15);

ol comp 4x4 generate:
for i in 0 to 15 generate

ol comp 4x4: ol comp port map (clk,rst,SAD 4x4 pos(i), 160

SAD 4x4 neg(i),sad 4x4 msd p(i),
sad 4x4 msd n(i),comp result 4x4(i));

end generate;

ol comp 4x8 8x4 generate:
for i in 0 to 7 generate

ol comp 4x8: ol comp port map (clk,rst, SAD 4x8 pos(i),
SAD 4x8 neg(i),sad 4x8 msd p(i),
sad 4x8 msd n(i), comp result 4x8(i)); 170

ol comp 8x4: ol comp port map (clk,rst, SAD 8x4 pos(i),
SAD 8x4 neg(i),sad 8x4 msd p(i),
sad 8x4 msd n(i), comp result 8x4(i));

end generate;

ol comp 8x8 generate:
for i in 0 to 3 generate

ol comp 8x8: ol comp port map (clk,rst, SAD 8x8 pos(i),

APPENDIX A. VHDL SOURCES 127

SAD 8x8 neg(i),sad 8x8 msd p(i),
sad 8x8 msd n(i), comp result 8x8(i)); 180

end generate;

ol comp 16x8 8x16 generate:
for i in 0 to 1 generate

ol comp 16x8: ol comp port map (clk,rst, SAD 16x8 pos(i),
SAD 16x8 neg(i),sad 16x8 msd p(i),
sad 16x8 msd n(i), comp result 16x8(i));

ol comp 8x16: ol comp port map (clk,rst, SAD 8x16 pos(i),
SAD 8x16 neg(i),sad 8x16 msd p(i),
sad 8x16 msd n(i), comp result 8x16(i)); 190

end generate;

ol comp 16x16: ol comp port map (clk, rst, SAD 16x16 pos,
SAD 16x16 neg,sad 16x16 msd p,
sad 16x16 msd n,comp result 16x16);

stop <= comp result 4x4(0) and comp result 4x4(1)
and comp result 4x4(2) and comp result 4x4(3)
and comp result 4x4(4) and comp result 4x4(5)

and comp result 4x4(6) and comp result 4x4(7) 200

and comp result 4x4(8) and comp result 4x4(9)
and comp result 4x4(10) and comp result 4x4(11)
and comp result 4x4(12) and comp result 4x4(13)
and comp result 4x4(14) and comp result 4x4(15)

and comp result 4x8(0) and comp result 4x8(1)
and comp result 4x8(2) and comp result 4x8(3)

and comp result 4x8(4) and comp result 4x8(5)
and comp result 4x8(6) and comp result 4x8(7)

and comp result 8x4(0) and comp result 8x4(1)
and comp result 8x4(2) and comp result 8x4(3) 210

and comp result 8x4(4) and comp result 8x4(5)
and comp result 8x4(6) and comp result 8x4(7)

and comp result 8x8(0) and comp result 8x8(1)
and comp result 8x8(2) and comp result 8x8(3)
and comp result 8x16(0) and comp result 8x16(1)
and comp result 16x8(0) and comp result 16x8(1)

and comp result 16x16;

process (clk,rst) 220

begin
if(rst = ’1’) then

APPENDIX A. VHDL SOURCES 128

cnt <= "0000";
min4x4 <= (others => ’0’);
min4x8 <= (others => ’0’);
min8x4 <= (others => ’0’);
min8x8 <= (others => ’0’);
min8x16 <= (others => ’0’);
min16x8 <= (others => ’0’);
min16x16 <= ’0’; 230

temp sad 4x4 p <= (others => ’0’);
temp sad 4x4 n <= (others => ’0’);
temp sad 4x8 p <= (others => ’0’);
temp sad 4x8 n <= (others => ’0’);
temp sad 8x4 p <= (others => ’0’);
temp sad 8x4 n <= (others => ’0’);
temp sad 8x8 p <= (others => ’0’);
temp sad 8x8 n <= (others => ’0’);
temp sad 8x16 p <= (others => ’0’); 240

temp sad 8x16 n <= (others => ’0’);
temp sad 16x8 p <= (others => ’0’);
temp sad 16x8 n <= (others => ’0’);
temp sad 16x16 p <= (others => ’0’);
temp sad 16x16 n <= (others => ’0’);
min sad 4x4 p <= (others => ’1’);
min sad 4x4 n <= (others => ’1’);
min sad 4x8 p <= (others => ’1’);
min sad 4x8 n <= (others => ’1’);
min sad 8x4 p <= (others => ’1’); 250

min sad 8x4 n <= (others => ’1’);
min sad 8x8 p <= (others => ’1’);
min sad 8x8 n <= (others => ’1’);
min sad 8x16 p <= (others => ’1’);
min sad 8x16 n <= (others => ’1’);
min sad 16x8 p <= (others => ’1’);
min sad 16x8 n <= (others => ’1’);
min sad 16x16 p <= (others => ’1’);
min sad 16x16 n <= (others => ’1’);

260

else
if(clk’event and clk=’1’) then

cnt <= cnt + 1;

if(cnt = "0001") then

for i in 0 to 15 loop

APPENDIX A. VHDL SOURCES 129

if(comp_result_4x4(i) = ’1’) then

min4x4(i) <= not(min4x4(i));

end if;

end loop; 270

end if;

if(cnt = "0011") then

for i in 0 to 7 loop

if(comp_result_4x8(i) = ’1’) then

min4x8(i) <= not(min4x8(i));

end if;

if(comp_result_8x4(i) = ’1’) then

min8x4(i) <= not(min8x4(i));

end if; 280

end loop;

end if;

if(cnt="0101") then

for i in 0 to 3 loop

if(comp_result_8x8(i) = ’1’) then

min8x8(i) <= not(min8x8(i));

end if;

end loop;

end if; 290

if(cnt="0111") then

for i in 0 to 1 loop

if(comp_result_16x8(i) = ’1’) then

min16x8(i) <= not(min16x8(i));

end if;

if(comp_result_8x16(i) = ’1’) then

min8x16(i) <= not(min8x16(i));

end if;

end loop; 300

end if;

if(cnt="1001") then

if(comp_result_16x16 = ’1’) then

min16x16 <= not(min16x16);

end if;

end if;

for i in 0 to 15 loop 310

APPENDIX A. VHDL SOURCES 130

if(min4x4(i) = ’0’) then

temp_sad_4x4_p(191-12*i downto 180-12*i) <=

temp_sad_4x4_p(190-12*i downto 180-12*i) & sad_4x4_pos(i);

temp_sad_4x4_n(191-12*i downto 180-12*i) <=

temp_sad_4x4_n(190-12*i downto 180-12*i) & sad_4x4_neg(i);

min_sad_4x4_p(191-12*i downto 180-12*i) <=

min_sad_4x4_p(190-12*i downto 180-12*i)

& temp_sad_4x4_p(191-12*i);

min_sad_4x4_n(191-12*i downto 180-12*i) <=

min_sad_4x4_n(190-12*i downto 180-12*i) 320

& temp_sad_4x4_n(191-12*i);

else

min_sad_4x4_p(191-12*i downto 180-12*i) <=

min_sad_4x4_p(190-12*i downto 180-12*i) & sad_4x4_pos(i);

min_sad_4x4_n(191-12*i downto 180-12*i) <=

min_sad_4x4_n(190-12*i downto 180-12*i) & sad_4x4_neg(i);

temp_sad_4x4_p(191-12*i downto 180-12*i) <=

temp_sad_4x4_p(190-12*i downto 180-12*i)

& min_sad_4x4_p(191-12*i);

temp_sad_4x4_n(191-12*i downto 180-12*i) <= 330

temp_sad_4x4_n(190-12*i downto 180-12*i)

& min_sad_4x4_n(191-12*i);

end if;

end loop;

for i in 0 to 7 loop

if(min4x8(i) = ’0’) then

temp_sad_4x8_p(103-13*i downto 91-13*i) <=

temp_sad_4x8_p(102-13*i downto 91-13*i) & sad_4x8_pos(i);

temp_sad_4x8_n(103-13*i downto 91-13*i) <= 340

temp_sad_4x8_n(102-13*i downto 91-13*i) & sad_4x8_neg(i);

min_sad_4x8_p(103-13*i downto 91-13*i) <=

min_sad_4x8_p(102-13*i downto 91-13*i)

& temp_sad_4x8_p(103-13*i);

min_sad_4x8_n(103-13*i downto 91-13*i) <=

min_sad_4x8_n(102-13*i downto 91-13*i)

& temp_sad_4x8_n(103-13*i);

else

min_sad_4x8_p(103-13*i downto 91-13*i) <=

min_sad_4x8_p(102-13*i downto 91-13*i) & sad_4x8_pos(i); 350

min_sad_4x8_n(103-13*i downto 91-13*i) <=

min_sad_4x8_n(102-13*i downto 91-13*i) & sad_4x8_neg(i);

temp_sad_4x8_p(103-13*i downto 91-13*i) <=

temp_sad_4x8_p(102-13*i downto 91-13*i)

APPENDIX A. VHDL SOURCES 131

& min_sad_4x8_p(103-13*i);

temp_sad_4x8_n(103-13*i downto 91-13*i) <=

temp_sad_4x8_n(102-13*i downto 91-13*i)

& min_sad_4x8_n(103-13*i);

end if;

if(min8x4(i) = ’0’) then 360

temp_sad_8x4_p(103-13*i downto 91-13*i) <=

temp_sad_8x4_p(102-13*i downto 91-13*i) & sad_8x4_pos(i);

temp_sad_8x4_n(103-13*i downto 91-13*i) <=

temp_sad_8x4_n(102-13*i downto 91-13*i) & sad_8x4_neg(i);

min_sad_8x4_p(103-13*i downto 91-13*i) <=

min_sad_8x4_p(102-13*i downto 91-13*i)

& temp_sad_8x4_p(103-13*i);

min_sad_8x4_n(103-13*i downto 91-13*i) <=

min_sad_8x4_n(102-13*i downto 91-13*i)

& temp_sad_8x4_n(103-13*i); 370

else

min_sad_8x4_p(103-13*i downto 91-13*i) <=

min_sad_8x4_p(102-13*i downto 91-13*i) & sad_8x4_pos(i);

min_sad_8x4_n(103-13*i downto 91-13*i) <=

min_sad_8x4_n(102-13*i downto 91-13*i) & sad_8x4_neg(i);

temp_sad_8x4_p(103-13*i downto 91-13*i) <=

temp_sad_8x4_p(102-13*i downto 91-13*i)

& min_sad_8x4_p(103-13*i);

temp_sad_8x4_n(103-13*i downto 91-13*i) <=

temp_sad_8x4_n(102-13*i downto 91-13*i) 380

& min_sad_8x4_n(103-13*i);

end if;

end loop;

for i in 0 to 3 loop

if(min8x8(i) = ’0’) then

temp_sad_8x8_p(55-14*i downto 42-14*i) <=

temp_sad_8x8_p(54-14*i downto 42-14*i) & sad_8x8_pos(i);

temp_sad_8x8_n(55-14*i downto 42-14*i) <=

temp_sad_8x8_n(54-14*i downto 42-14*i) & sad_8x8_neg(i); 390

min_sad_8x8_p(55-14*i downto 42-14*i) <=

min_sad_8x8_p(54-14*i downto 42-14*i)

& temp_sad_8x8_p(55-14*i);

min_sad_8x8_n(55-14*i downto 42-14*i) <=

min_sad_8x8_n(54-14*i downto 42-14*i)

& temp_sad_8x8_n(55-14*i);

else

min_sad_8x8_p(55-14*i downto 42-14*i) <=

APPENDIX A. VHDL SOURCES 132

min_sad_8x8_p(54-14*i downto 42-14*i) & sad_8x8_pos(i);

min_sad_8x8_n(55-14*i downto 42-14*i) <= 400

min_sad_8x8_n(54-14*i downto 42-14*i) & sad_8x8_neg(i);

temp_sad_8x8_p(55-14*i downto 42-14*i) <=

temp_sad_8x8_p(54-14*i downto 42-14*i)

& min_sad_8x8_p(55-14*i);

temp_sad_8x8_n(55-14*i downto 42-14*i) <=

temp_sad_8x8_n(54-14*i downto 42-14*i)

& min_sad_8x8_n(55-14*i);

end if;

end loop;

410

for i in 0 to 1 loop

if(min8x16(i) = ’0’) then

temp_sad_8x16_p(29-15*i downto 15-15*i) <=

temp_sad_8x16_p(28-15*i downto 15-15*i) & sad_8x16_pos(i);

temp_sad_8x16_n(29-15*i downto 15-15*i) <=

temp_sad_8x16_n(28-15*i downto 15-15*i) & sad_8x16_neg(i);

min_sad_8x16_p(29-15*i downto 15-15*i) <=

min_sad_8x16_p(28-15*i downto 15-15*i)

& temp_sad_8x16_p(29-15*i);

min_sad_8x16_n(29-15*i downto 15-15*i) <= 420

min_sad_8x16_n(28-15*i downto 15-15*i)

& temp_sad_8x16_n(29-15*i);

else

min_sad_8x16_p(29-15*i downto 15-15*i) <=

min_sad_8x16_p(28-15*i downto 15-15*i) & sad_8x16_pos(i);

min_sad_8x16_n(29-15*i downto 15-15*i) <=

min_sad_8x16_n(28-15*i downto 15-15*i) & sad_8x16_neg(i);

temp_sad_8x16_p(29-15*i downto 15-15*i) <=

temp_sad_8x16_p(28-15*i downto 15-15*i)

& min_sad_8x16_p(29-15*i); 430

temp_sad_8x16_n(29-15*i downto 15-15*i) <=

temp_sad_8x16_n(28-15*i downto 15-15*i)

& min_sad_8x16_n(29-15*i);

end if;

if(min16x8(i) = ’0’) then

temp_sad_16x8_p(29-15*i downto 15-15*i) <=

temp_sad_16x8_p(28-15*i downto 15-15*i) & sad_16x8_pos(i);

temp_sad_16x8_n(29-15*i downto 15-15*i) <=

temp_sad_16x8_n(28-15*i downto 15-15*i) & sad_16x8_neg(i); 440

min_sad_16x8_p(29-15*i downto 15-15*i) <=

min_sad_16x8_p(28-15*i downto 15-15*i)

APPENDIX A. VHDL SOURCES 133

& temp_sad_16x8_p(29-15*i);

min_sad_16x8_n(29-15*i downto 15-15*i) <=

min_sad_16x8_n(28-15*i downto 15-15*i)

& temp_sad_16x8_n(29-15*i);

else

min_sad_16x8_p(29-15*i downto 15-15*i) <=

min_sad_16x8_p(28-15*i downto 15-15*i) & sad_16x8_pos(i);

min_sad_16x8_n(29-15*i downto 15-15*i) <= 450

min_sad_16x8_n(28-15*i downto 15-15*i) & sad_16x8_neg(i);

temp_sad_16x8_p(29-15*i downto 15-15*i) <=

temp_sad_16x8_p(28-15*i downto 15-15*i)

& min_sad_16x8_p(29-15*i);

temp_sad_16x8_n(29-15*i downto 15-15*i) <=

temp_sad_16x8_n(28-15*i downto 15-15*i)

& min_sad_16x8_n(29-15*i);

end if;

end loop;

460

if(min16x16 = ’0’) then

temp_sad_16x16_p(15 downto 0) <=

temp_sad_16x16_p(14 downto 0) & sad_16x16_pos;

temp_sad_16x16_n(15 downto 0) <=

temp_sad_16x16_n(14 downto 0) & sad_16x16_neg;

min_sad_16x16_p(15 downto 0) <=

min_sad_16x16_p(14 downto 0) & temp_sad_16x16_p(15);

min_sad_16x16_n(15 downto 0) <=

min_sad_16x16_n(14 downto 0) & temp_sad_16x16_n(15);

else 470

min_sad_16x16_p(15 downto 0) <=

min_sad_16x16_p(14 downto 0) & sad_16x16_pos;

min_sad_16x16_n(15 downto 0) <=

min_sad_16x16_n(14 downto 0) & sad_16x16_neg;

temp_sad_16x16_p(15 downto 0) <=

temp_sad_16x16_p(14 downto 0) & min_sad_16x16_p(15);

temp_sad_16x16_n(15 downto 0) <=

temp_sad_16x16_n(14 downto 0) & min_sad_16x16_n(15);

end if;

end if; 480

end if;

end process;

end Behavioral;

APPENDIX A. VHDL SOURCES 134

A.10 MSB-first motion estimation processor

library IEEE;
use IEEE.STD˙LOGIC˙1164.ALL;
use IEEE.STD˙LOGIC˙ARITH.ALL;
use IEEE.STD˙LOGIC˙UNSIGNED.ALL;

entity MSD˙SAD˙UNIT is
Port (clk : in STD˙LOGIC;

rst : in STD˙LOGIC;
curr˙pixel : in STD˙LOGIC˙VECTOR (255 downto 0);
ref˙pixel : in STD˙LOGIC˙VECTOR (255 downto 0); 10

mv˙addr : in STD˙LOGIC˙VECTOR (5 downto 0);
mv˙p: out STD˙LOGIC˙VECTOR (40 downto 0);
mv˙n: out STD˙LOGIC˙VECTOR (40 downto 0);
stop: out STD˙LOGIC);

end MSD˙SAD˙UNIT;

architecture Behavioral of MSD˙SAD˙UNIT is

component abs˙stage˙top
Port (clk : in STD˙LOGIC; 20

msd : in STD˙LOGIC;
ref˙pixel : in STD˙LOGIC˙VECTOR (255 downto 0);
curr˙pixel : in STD˙LOGIC˙VECTOR (255 downto 0);
sd˙num˙pos : out STD˙LOGIC˙VECTOR (255 downto 0);
sd˙num˙neg : out STD˙LOGIC˙VECTOR (255 downto 0));

end component;

component comp˙stage˙top
Port (clk : in STD˙LOGIC;

rst : in STD˙LOGIC; 30

SAD˙4x4˙pos : in STD˙LOGIC˙VECTOR (15 downto 0);
SAD˙4x4˙neg : in STD˙LOGIC˙VECTOR (15 downto 0);
SAD˙4x8˙pos : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙4x8˙neg : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙8x4˙pos : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙8x4˙neg : in STD˙LOGIC˙VECTOR (7 downto 0);
SAD˙8x8˙pos : in STD˙LOGIC˙VECTOR (3 downto 0);
SAD˙8x8˙neg : in STD˙LOGIC˙VECTOR (3 downto 0);
SAD˙8x16˙pos : in STD˙LOGIC˙VECTOR (1 downto 0);
SAD˙8x16˙neg : in STD˙LOGIC˙VECTOR (1 downto 0); 40

SAD˙16x8˙pos : in STD˙LOGIC˙VECTOR (1 downto 0);
SAD˙16x8˙neg : in STD˙LOGIC˙VECTOR (1 downto 0);

APPENDIX A. VHDL SOURCES 135

SAD˙16x16˙pos : in STD˙LOGIC;
SAD˙16x16˙neg : in STD˙LOGIC;
mv˙41˙p : out std˙logic˙vector(40 downto 0);
mv˙41˙n : out std˙logic˙vector(40 downto 0);
stop: out STD˙LOGIC);

end component;

50

component sd˙16op˙tree
Port (clk : in STD˙LOGIC;

p : in STD˙LOGIC˙VECTOR (15 downto 0);
n : in STD˙LOGIC˙VECTOR (15 downto 0);
neg : out STD˙LOGIC;
pos : out STD˙LOGIC);

end component;

component olSDFA˙tree
Port (clk : in STD˙LOGIC; 60

SAD˙4x4˙p : in STD˙LOGIC˙VECTOR (15 downto 0);
SAD˙4x4˙n : in STD˙LOGIC˙VECTOR (15 downto 0);
oSAD˙4x8˙p : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙4x8˙n : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙8x4˙p : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙8x4˙n : out STD˙LOGIC˙VECTOR (7 downto 0);
oSAD˙8x8˙p : out STD˙LOGIC˙VECTOR (3 downto 0);
oSAD˙8x8˙n : out STD˙LOGIC˙VECTOR (3 downto 0);
oSAD˙8x16˙p : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙8x16˙n : out STD˙LOGIC˙VECTOR (1 downto 0); 70

oSAD˙16x8˙p : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙16x8˙n : out STD˙LOGIC˙VECTOR (1 downto 0);
oSAD˙16x16˙p : out STD˙LOGIC;
oSAD˙16x16˙n : out STD˙LOGIC);

end component;

signal sd˙num˙pos, sd˙num˙neg: std˙logic˙vector(255 downto 0);
signal SAD˙4x4˙p, SAD˙4x4˙n: std˙logic˙vector(15 downto 0);
signal SAD˙8x4˙p, SAD˙8x4˙n : std˙logic˙vector(7 downto 0);
signal SAD˙4x8˙p, SAD˙4x8˙n : std˙logic˙vector(7 downto 0); 80

signal SAD˙8x8˙p, SAD˙8x8˙n : std˙logic˙vector(3 downto 0);
signal SAD˙8x16˙p, SAD˙8x16˙n : std˙logic˙vector(1 downto 0);
signal SAD˙16x8˙p, SAD˙16x8˙n : std˙logic˙vector(1 downto 0);
signal SAD˙16x16˙p, SAD˙16x16˙n: std˙logic;

signal msd: std˙logic;

APPENDIX A. VHDL SOURCES 136

begin

stage1˙absolute: abs˙stage˙top port map (clk, msd, 90

ref˙pixel, curr˙pixel, sd˙num˙pos, sd˙num˙neg);

tree˙generate:
for i in 0 to 15 generate

adder˙tree: sd˙16op˙tree port map (clk,
sd˙num˙pos(16*(i+1)-1 downto 16*i),
sd˙num˙neg(16*(i+1)-1 downto 16*i),
SAD˙4x4˙p(i),SAD˙4x4˙n(i));

end generate;
SAD˙merger: olSDFA˙tree port map (clk,SAD˙4x4˙p, 100

SAD˙4x4˙n, SAD˙4x8˙p, SAD˙4x8˙n,
SAD˙8x4˙p, SAD˙8x4˙n, SAD˙8x8˙p,
SAD˙8x8˙n,SAD˙8x16˙p, SAD˙8x16˙n,
SAD˙16x8˙p, SAD˙16x8˙n,SAD˙16x16˙p,
SAD˙16x16˙n);

stage3˙comparator: comp˙stage˙top port map (clk, rst,
SAD˙4x4˙p, SAD˙4x4˙n, SAD˙4x8˙p, SAD˙4x8˙n,

SAD˙8x4˙p, SAD˙8x4˙n, SAD˙8x8˙p, SAD˙8x8˙n,
SAD˙8x16˙p,SAD˙8x16˙n, SAD˙16x8˙p, 110

SAD˙16x8˙n, SAD˙16x16˙p, SAD˙16x16˙n,
mv˙p, mv˙n, stop);

process(clk)
begin

if(clk’event and clk = ’1’) then

if(rst = ’0’) then

msd <= ’0’;
else

msd <= ’1’; 120

end if;

end if;

end process;

end Behavioral;

Bibliography

[1] Virtex-2 User Guide. http://direct.xilinx.com/bvdocs/
userguides/ug012.pdf.

[2] Virtex-5 XtremeDSP Design Consideration.
http://direct.xilinx.com/bvdocs/userguides/ug193.pdf.

[3] Draft ITU-T Recommendation H.263, Video coding for low
bit rate communication, Version 2. 1998.

[4] G. Bjontegaard and K. Lillevold. Context-adaptive VLC
Coding of coefficients. In JVT document JVT-C028, Fair-
fax, May 2002.

[5] S. Bouchoux and E. Bourennane. Application based on Dy-
namic Reconfiguration of Field-programmable Gate Arrays:
JPEG 2000 Arithmetic Decoder. SPIE Journal in Optical
Engineering, 44(10):107001–107006, Oct. 2005.

[6] C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C.
Wang, and L. G. Chen. Analysis and Architecture Design
of Variable Block Size Motion Estimation for H.264/AVC.
IEEE Trans. on Circuits and Systems, 53(2):578–593, Feb.
2006.

[7] C. Y. Cho, S. Y. Huang, and J. S. Wong. An Embed-
ded Merging Scheme for H.264/AVC Motion Estimation.
In IEEE Int. Conf. on Image Processing, volume 3, pages
1016–1019, Sept. 2005.

137

BIBLIOGRAPHY 138

[8] W. C. Chung. Implementing the H.264/AVC
Video Coding Standard on FPGAs. In
Xcell publication, pages 18–21, Sept. 2005.
www.xilinx.com/publications/solguides/be 01/xc pdf/p18-
21 be1-dsp4.pdf.

[9] K. Compton and S. Hauck. Reconfigurable computing: sur-
vey of systems and software. ACM Computing Surveys,
34(2):171–210, June 2002.

[10] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan
Kaufmann Publishers, 2004.

[11] M. D. Erecgovac and T. Lang. On-Line Arithmetic: A De-
sign Methodology and Applications. In Proc. IEEE work-
shop. on VLSI Signal Processing, pages 252–263, 1988.

[12] E. M. Fakhouri. Variable block-size motion estimation. cite-
seer.ist.psu.edu/fakhouri97variable.html.

[13] A. Gersho and R. M. Gray. Vector Quantization and Signal
Compression. Kluwer Academic Publishers, 1992.

[14] B. Hedayati. Fpgas expand their roles as
best asic replacement. http://www.xilinx-
china.com/company/success/asic.htm.

[15] W. Hsu and H. Derin. Three-dimensional subband coding
of video. Proc. Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP), pages 1100–1103, Apr. 1988.

[16] ISO/IEC11172. Information technology - coding of moving
pictures and associated audio for digital storage media at up
to about 1.5 Mbit/s. (MPEG-1), 1993.

[17] ISO/IEC113818. Information technology - generic coding of
moving pictures and associated audio information. (MPEG-
2), 1995.

BIBLIOGRAPHY 139

[18] ISO/IEC14496-2. Amendment 1, Information technology -
coding of audio-visual objects - Part 2: Visual. 2001.

[19] ISO/IEC15444. Information technology - JPEG2000 image
coding system. 2000.

[20] V. Iverson, J. MacVeigh, and B. Reese. Real-time H.24-
AVC codec on Intel architectures. In Image Processing,
2004. ICIP ’04. 2004 International Conference on, vol-
ume 2, pages 757–760, Oct. 2004.

[21] J. R. Jain and A. K. Jain. Displacement Measurement and
its Application in Interframe Image Coding. IEEE Trans.
on Communication, 29(12):1799–1808, Dec. 1981.

[22] M. Kim, I. Hwang, and S. I. Chae. A fast VLSI Architecture
for Full-search Variable Block Size Motion Estimation in
MPEG-4 AVC/H.264. In Proc. of the ASP-DAC, volume 1,
pages 631–634, Jan. 2005.

[23] T. Koga, K. Iinuna, A. Hirano, Y. Iijima, and T. Ishiguro.
Motion Compensated Interframe Coding for Video Confer-
encing. In Proc. of National Telecomm. Conf, pages G5.3.1–
G5.3.5, New Orleans, Nov. 1981.

[24] T. Kormarek and P. Pirsch. Array Architectures for Block
Matching Algorithms. IEEE Trans. on Circuits and Sys-
tems, 36(10):1301–1308, 1989.

[25] P. M. Kuhn, G. Diebel, S. Herrmann, A. Keil, H. Mooshofer,
A. Kaup, R. M. Mayer, and W. Stechele. Complexity and
PSNR comparison of several fast motion estimation algo-
rithms for MPEG-4. Proc. SPIE, 3460:486–489, 1998.

[26] H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI).
Sparse Matrix Proceedings, 1979.

BIBLIOGRAPHY 140

[27] W. Lee, Y. Kim, R. J. Gove, and C. J. Read. Media Station
5000: Integrating Video and Audio. IEEE Trans. Multime-
dia, 1(2):50–61, 1994.

[28] M. Li. Arithmetic and Logic in Computer Systems. Wiley
Interscience, 2004.

[29] W. Li and E. Salari. Successive Elimination Algorithm
for Motion Estimation. IEEE Trans. Image Processing,
4(1):105–107, Jan. 1995.

[30] S. Lopez, F. Tobajas, A. Villar, V. de Armas, J. Lopez, and
R. Sarmiento. Low Cost Efficient Architecture for H.264
Motion Estimation. In Proc. of IEEE Int. Symp. on Circuits
and Systems, volume 1, pages 412–415, 2005.

[31] H. Loukil, F. Ghozzi, and A. Samet. Hardware implementa-
tion of Block Matching Algorithm with FPGA technology.
In IEEE Int. Conf. on Microelectronics, volume 16, pages
542–546, 2004.

[32] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Keros-
fsky. Low-complexity Transform and Quantization in
H.264/AVC. IEEE Trans. on Video Technology, 13(7):620–
644, July 2003.

[33] D. Marpe, H. Schwarz, and T. Wiegand. Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC
Video Compression Standard. IEEE Trans. on Circuits and
Systems for Video Tech., 13(7):620–636, July 2003.

[34] M. Mohammadzadeh, M. Eshghi, and M. Azadfar. An Op-
timized Systolic Array Architecture for Full Search Block
Matching Algorithm and its Implementation on FPGA
chips. In IEEE Int. Conf. NEWCAS, volume 3, pages 327–
330, 2005.

BIBLIOGRAPHY 141

[35] G. E. Moore. Cramming more components onto integrated
circuits. Electronics Magazine, 38(8), Apr. 1965.

[36] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura.
Implementation of RSA Algorithm Based on RNS Mont-
gomery Multiplication. Lecture Notes in Computer Science,
2162:364–376, May 2001.

[37] T. M. Oh, Y. R. Kim, W. G. Hong, and S. J. Ko. Partial
Norm Based Search Algorithm for Fast Motion Estimation.
Electron. Lett., 36(14):1195–1196, 2000.

[38] J. Olivares and J. Hormigo. Minimum Sum of Absolute
Differences Implementation in a Single FPGA Device. In
IEEE Int. Conf. on Field Programmable Logic, pages 986–
990, 2004.

[39] C. Ou, C. F. Le, and W. J. Hwang. An efficient VLSI ar-
chitecture for H.264 Variable block size motion estimation.
IEEE Trans. on Signal Processing, 51(4):1291–1299, Nov.
2005.

[40] B. Parhami. Computer Arithmetic: Algorithms and Hard-
ware Designs. Oxford University Press, 2000.

[41] K. R. Rao and P. Yip. Discrete Cosine Transform. Acad-
emic Press, 1990.

[42] I. E. G. Richardson. H.264 and MPEG-4 Video Compres-
sion. John Wiley Publisher, 2003.

[43] D. Salomon. Data Compression: The Complete Reference.
Springer, 2004.

[44] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J.
Taylor, editors. Residue number system arithmetic: mod-
ern applications in digital signal processing. IEEE Press,
Piscataway, NJ, USA, 1986.

BIBLIOGRAPHY 142

[45] C. L. Su and C. W. Jen. Motion Estimation using On-line
Arithmetic. In Proc. of IEEE Intl. Symp. on Circuits and
System, volume 1, pages 683–686, 2000.

[46] C. L. Su and C. W. Jen. Motion Estimation using MSD-
first Processing. In Proc. of IEEE circuits, device and and
systems, volume 150, pages 124–133, Apr. 2003.

[47] P. D. Symes. Digital Video Compression. McGraw-Hill,
2004.

[48] T. Wieg and Ed. Pattaya. Draft ITU-T Recommenda-
tion H.264 and Draft ISO/IEC 14496-10 AVC. In JVC
of ISO/IEC and ITU-T SG16/Q.6 Doc. JVT-G050, Mar.
2003.

[49] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kas-
sim. A Novel Unrestricted Center-Biased Diamond Search
Algorithm for Block Motion Estimation. IEEE Trans. on
Circuits and Systems, 8(4):369–377, Aug. 1998.

[50] J. Villalba, J. Hormigo, J. M. prades, and E. L. Zapata. On-
line Multioperand Addition Based on On-line Full Adders.
In IEEE Intl. Conf. on App. Specific systems, pages 322–
327, July 2005.

[51] C. Wei and M. Z. Gang. A novel SAD Computing Hardware
Architecture for Variable-size Block Matching Estimation
and Its Implementation with FPGA. In Proc. of IEEE Int.
Symp. on Circuits and Systems, volume 1, pages 683–686,
2000.

[52] S. Wong, B. Stougie, and S. Cotofana. Alternatives in
FPGA-based SAD Implementations. In IEEE Int. Conf.
on Field Programmable Logic, pages 449–452, Dec. 2002.

BIBLIOGRAPHY 143

[53] S. Wong, S. Vassiliadis, and S. Cotofana. A Sum of Absolute
Differences Implementation in FPGA Hardware. In Proc.
of 28th Euromico Conf., pages 183–188, Sept. 2002.

[54] S. Y. Yap and J. V. McCanny. A VLSI Architecture
for Advanced Video Coding Motion Estimation. In Proc.
IEEE Intl. Conf. on application-specific systems, arch., and
processors, pages 293–301, June 2003.

[55] S. Y. Yap and J. V. McCanny. A VLSI Architecture for
Variable Block Size Video Motion Estimation. IEEE Trans.
on Circuits and Systems, 51(7):384–389, July 2004.

[56] S. Zhu and K. K. Ma. A New Diamond Search Algorithm for
Fast Block Matching Motion Estimation. In Proc. of Intl.
Conf. on Information Communication and Signal Process-
ing (ICICS), pages 292–296, Sept. 1997.

[57] S. Zhu and K. K. Ma. A New Diamond Search Algorithm
for Fast Block Matching Motion Estimation. IEEE Trans.
Image Processing, 9(2):287–290, Feb. 2000.

