
Cryptographic Primitives
On Reconfigurable Platforms

Tsoi Kuen Hung

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science & Engineering

c
�

The Chinese University of Hong Kong

July, 2002

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

Abstract

There are increasing demands for cryptographic systems due to the rapid adoption

of electronic commerce and personal privacy concerns. Hardware based crypto-

graphic systems offer improved speed, lower power consumption, smaller foot-

print and perhaps higher security over purely software based systems. Field Pro-

grammable Gate Array (FPGA) technology offers a good compromise between the

speed of VLSI based implementations and the short development times and adapt-

ability of software systems.

This study illustrates that FPGAs are suitable for cryptographic systems by

implementing several cryptographic primitives. In particular, high performance

FPGA-based implementations of secret key, public key, key search and random

number generation systems were developed. The study also evaluates different ar-

chitecture and system parameters which will affect the performance of the designs.

The secret key algorithm implemented was the IDEA block cipher and a deeply

pipelined architecture was employed to achieve a throughput of 592Mbps. A vari-

able radix systolic Montgomery multiplier was developed to speed up implemen-

tations of the RSA public key algorithm, offering an efficient way to estimate the

performance and area tradeoffs of a long integer multiplier by varying the radix.

In order to demonstrate the ability of FPGAs for cryptanalysis, an RC4 key search

engine was developed which can search a 40-bit key within 2 days and achieves per-

formance which is 58 times faster than a 1.5GHz Intel Pentium 4 machine. Finally,

an area optimized random number generator using the Blum Blum Shub algorithm

was implemented. This 1024-bit BBS RNG can generate a secure random sequence

i

using less than 3% of a XCV1000E FPGA chip.

ii

Acknowledgments

I want to thank my supervisor Prof. LEONG, Heng Wai Philip for his help and guid-

ances through my master studies. I would also want to thank Prof. LEE, Kin Hong

and Prof. Wei Keh-wei Victor for their suggestions and to be my thesis marker.

Thanks also for Mr. Cheung Yu Hoi for his help in the IDEA project and Mr.

Norris Leong for his helpful guidance in tools and circuit designing.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Thesis Organization . 4

2 Background and Review 6

2.1 Introduction . 6

2.2 Cryptographic Algorithms . 6

2.3 Cryptographic Applications . 10

2.4 Modern Reconfigurable Platforms 11

2.5 Review of Related Work . 14

2.5.1 Montgomery Multiplier 14

2.5.2 IDEA Cipher . 16

2.5.3 RC4 Key Search . 17

2.5.4 Secure Random Number Generator 18

2.6 Summary . 19

3 The IDEA Cipher 20

3.1 Introduction . 20

3.2 The IDEA Algorithm . 21

3.2.1 Cipher Data Path . 21

iv

3.2.2 S-Box: Multiplication Modulo �������	� 23

3.2.3 Key Schedule . 24

3.3 FPGA-based IDEA Implementation 24

3.3.1 Multiplication Modulo �����
��� 24

3.3.2 Deeply Pipelined IDEA Core 26

3.3.3 Area Saving Modification 28

3.3.4 Key Block in Memory . 28

3.3.5 Pipelined Key Block . 30

3.3.6 Interface . 31

3.3.7 Pipelined Design in CBC Mode 31

3.4 Summary . 32

4 Variable Radix Montgomery Multiplier 33

4.1 Introduction . 33

4.2 RSA Algorithm . 34

4.3 Montgomery Algorithm – ��
���������� 35

4.4 Systolic Array Structure . 36

4.5 Radix- ��� Core . 37

4.5.1 The Original Kornerup Method (Bit-Serial) 37

4.5.2 The Radix- ��� Method . 38

4.5.3 Time-Space Relationship of Systolic Cells 38

4.5.4 Design Correctness . 40

4.6 Implementation Details . 40

4.7 Summary . 41

5 Parallel RC4 Engine 42

5.1 Introduction . 42

5.2 Algorithms . 44

5.2.1 RC4 . 44

5.2.2 Key Search . 46

v

5.3 System Architecture . 47

5.3.1 RC4 Cell Design . 47

5.3.2 Key Search . 49

5.3.3 Interface . 50

5.4 Implementation . 50

5.4.1 RC4 cell . 51

5.4.2 Floorplan . 53

5.5 Summary . 53

6 Blum Blum Shub Random Number Generator 55

6.1 Introduction . 55

6.2 RRNG Algorithm . 56

6.3 PRNG Algorithm . 58

6.4 Architectural Overview . 59

6.5 Implementation . 59

6.5.1 Hardware RRNG . 60

6.5.2 BBS PRNG . 61

6.5.3 Interface . 66

6.6 Summary . 66

7 Experimental Results 68

7.1 Design Platform . 68

7.2 IDEA Cipher . 69

7.2.1 Size of IDEA Cipher . 70

7.2.2 Performance of IDEA Cipher 70

7.3 Variable Radix Systolic Array . 71

7.4 Parallel RC4 Engine . 75

7.5 BBS Random Number Generator 76

7.5.1 Size . 76

7.5.2 Speed . 76

vi

7.5.3 External Clock . 77

7.5.4 Random Performance . 78

7.6 Summary . 78

8 Conclusion 81

8.1 Future Development . 83

Bibliography 84

vii

List of Figures

2.1 Encrypting and decryption processes. 7

2.2 Public key cryptography. 9

2.3 FPGA structure. 11

2.4 FPGA design flow. 13

3.1 Block diagram of the IDEA algorithm. 22

3.2 Block diagram of the multiplication modulo � ��� �	� 25

3.3 Architecture of the bit-parallel IDEA core. 27

3.4 Operating procedures of pipelined IDEA core. ����� �! " is the #%$'&
plaintext in the (�$'& round. 29

4.1 Top level overview of multiplier. All signals in this figure are k-bit

in width. 39

4.2 Space and time relationship of the systolic array. 39

4.3 Generalized data path of radix- �)� cell. 40

5.1 Datapath of the RC4 cell. 47

5.2 Timing diagram of the block RAM during the key schedule phase. . 48

5.3 Timing Diagram of Block RAM in PRNG Phase 49

5.4 Block diagram of parallel RC4 key search machine. 50

5.5 Block diagram showing component placement within an RC4 cell. . 52

5.6 Block RAM, RC4 Cell and local key module placement. 54

5.7 Floorplan of the completed design. 54

viii

6.1 Oscillator sampling using D-type flip-flop. 57

6.2 Overview of the RNG and PRNG. 59

6.3 RRNG circuit. 60

6.4 Circuit of External Clock. 61

6.5 Circuit of BBS PRNG. 62

7.1 Photograph of the Pilchard board. 69

7.2 Performance and radix relation. 73

7.3 Area and radix relation. 73

ix

List of Tables

2.1 Cost/performance tradeoffs between FPGA and microprocessor. . . 14

3.1 IDEA decryption subkeys *,+ �.- / derived from encryption subkeys

0�.- / . 12 - and *03 �- denote additive inverse modulo ����� and multi-

plicative inverse � ��� ��� of * - respectively. 25

4.1 Inputs and Outputs of Top Level Entity. 39

5.1 Host/key search engine handshaking protocol. 51

5.2 Components inside an RC4 cell. 52

6.1 Contents of registers in validation process. 63

6.2 Contents of registers in multiplication process. 64

6.3 Contents of registers in Mod process. 65

7.1 Size of IDEA design. 70

7.2 Speed of IDEA Design. 70

7.3 Measurement of different radixes (one systolic cell). 72

7.4 Number of systolic cells for different Virtex FPGA chips. 74

7.5 Device utilization summary. 75

7.6 RC4 Encryption Speed on Different Platforms. 76

7.7 Time required for an RC4 key search. 76

7.8 Device utilization summary. 77

7.9 RNG test results (NIST). 79

x

7.10 Input parameters for NIST test. 79

7.11 Performance summary. The software implementations are all based

on an Intel P4 1.5GHz PC and compiled by GCC (v2.95.3) with ‘-

O3’ enabled. The RSA and IDEA speeds are reported by OpenSSL

(v0.9.6c). 80

xi

Chapter 1

Introduction

1.1 Motivation

Cryptosystems are important.

The aim of cryptography is to secure information so that only the intended par-

ties can read the data. Cryptosystems had been developed for centuries. The ad-

vance of computer technologies and popularity of personal computers provides a

large base on which cryptographic applications are installed. The recent popularity

of the Internet and e-commerce have made strong demands on cryptography. Cryp-

tosystems today are all around our lives including banking systems using 3DES,

identification systems using PKI (Public Key Infrastructure), entertainment systems

using encrypted storages and even systems in electronic car locks. Developments in

cryptography have been growing faster then ever before due to increased research.

Hardware cryptographic platforms are helpful.

Many cryptographic algorithms are based on specialized arithmetic computa-

tions such as finite field arithmetic. For clients that only perform cryptographic

computations occasionally, the central processing unit (CPU) in a PC is sufficient.

However the work load on a server that will handle thousands of requests per second

many be unacceptably large. In addition, clients which have very limited comput-

ing resources, such as smartcards, mobile phones and handheld computers may not

1

Chapter 1 Introduction 2

have sufficient computing power. Special hardware cryptosystems can offer higher

performance than conventional CPUs. In addition, cryptosystems implemented in

software may have lower security than tamper proof hardware devices [And01].

FPGAs are suitable for building hardware cryptosystems.

The tradition way of building cryptographic hardware is using application spe-

cific integrated circuit (ASIC) technology. This methodology has many disadvan-

tages including high small volume cost, long design to product time, difficulties

in debugging and not able to adapt new changes after the system is built. A new

way to solve these problem is to build the design on FPGA platforms. FPGA chips

provide sufficient logic and storage elements on which complex algorithms can be

built. The reconfigurable characteristic makes it easier to adapt new cryptographic

protocols even after the hardware is installed. One aim of this research work is to

demonstrate that FPGA platforms are suitable for hardware cryptosystems. It is also

shown that FPGA systems are good for cryptanalysis applications.

Architecture differences affect performance.

For the same algorithm, different architectures can be applied to achieve differ-

ent design objectives. One of the most important issues are the cost-performance

tradeoffs. Cost in hardware design can be interpreted in different ways including

logic area, memory storage, power consumption, etc. Another commonly encoun-

tered problem is the parallel and serial tradeoff. One can build a deeply pipeline

system which use many cycles under a fast clock or a massively parallel system

that can process multiple data in one cycle. Even for the same design, different

parameters such as the radix used can dramatically change the system performance.

In this work, different ways to implement cryptographic algorithms using flexi-

ble architectures will be explored.

Chapter 1 Introduction 3

1.2 Objectives

The main objective of this research work was to develop primitive building blocks

for FPGA based hardware cryptosystems. The details research aim are:

4 Implement different cryptographic algorithms including public key, block and

stream ciphers and compare their performance with hardware and software

based systems. This is used to support the argument that building a cryp-

tosystem completely on an FPGA platform is possible.

4 Explore different system architectures and evaluate the impact on perfor-

mance.

4 Provide experimental results so that a designer can choose system parameters

(e.g. radix, area, throughput) which are most suitable for the given applica-

tion.

1.3 Contributions

In this work, a set of primitive components for building cryptosystems on hardware

platforms were implemented and evaluated. The primitives include an IDEA block

cipher; a long integer multiplier core for the efficient implementation of RSA public

key cryptographic algorithms; an RC4 stream cipher and also a random number

generator. In the implementations, different architectures were explored and various

optimization methods were used.

The main contributions of this dissertation are as follows:

4 A deeply pipelined IDEA block cipher was designed [MvOV01]. The IDEA

core offers 592Mbps throughput under 50MHz clock rate. The number of

rounds instantiated can be varied to meet different area constraints without

violating the 8.5 rounds minimum requirement in the algorithm. The upper

Chapter 1 Introduction 4

bound of the speed is also examized. This was developed in collaboration

with Mr. O.Y.H. Cheung and my duty was to design the pipeline states and

control. This implementation of IDEA was, at the time of publication, the

fastest reported implementation to date in FPGA technology.

4 A variable radix systolic Montgomery modular multiplier was developed [Mon85].

The performance tradeoff for different radixes could thus be easily examined.

Results for different radixes were measured and provide a fast way for de-

signers to select a design given the required resources and performance.

4 An RC4 key search engine was developed for cryptanalysis purposes [RSA00].

Its architecture was one of the first to exploit the massive memory bandwidth

in an FPGA for cryptanalysis applications. The RC4 key search engine de-

veloped in this work is the fastest reported implementation in any technology

and 58 times faster than a 1.5GHz Intel Pentium 4 CPU.

4 A compact and secure random number generator using the BBS (Blum Blum

Shub) algorithm [LMM86] was developed for cryptographic applications. For

a 1024-bit modulo, this design consumed less than 3% of an XCV1000E

chip. The results passed various RNG tests including the NIST RNG test

suite [A. 01] and the Diehard test [Mar02].

1.4 Thesis Organization

In Chapter 2, an introduction to cryptographic algorithms and the FPGA design

flow are presented. Also, a review of related work on cryptographic hardware is

given. Chapter 3 presents implementations of the IDEA block cipher which use

deep pipelining technique and Chapter 4 presents an implementation of a variable

radix systolic Montgomery multiplier which can be used in RSA cryptosystems. A

design of a massively parallel RC4 engine is described in Chapter 5. Chapter 6

shows an implementation of random number generator using a free oscillator and

Chapter 1 Introduction 5

the BBS algorithm. The results of the above designs are presented and evaluated in

Chapter 7. Finally, the conclusion and directions for future research are presented

in Chapter 8.

Chapter 2

Background and Review

2.1 Introduction

To construct primitive building blocks for a hardware cryptosystem, the crypto-

graphic algorithms must be studied. Also, we need to be familiar with the hardware

platform, i.e. FPGA systems in our research, to achieve the best performance from

them. To facilitate our studies and evaluate our results, related work on crypto-

graphic algorithms and hardware cryptosystems are reviewed in this chapter.

This chapter is organized as follows. Section 2.2 presented the architecture of

common cyrptosystems. The types of cryptographic algorithms are also explained

in this section. In section 2.3, the applications of cryptography are presented. The

structure and characteristics of FPGA platforms are explained in section 2.4. The

last section presented the reviewed related work.

2.2 Cryptographic Algorithms

The major concern of cryptography is to secure information from being intelligible

to whom it is not intended. A general view of a cryptosystem for communications

is shown in Figure 2.1. Some common terms used in cryptography are:

Encryption transformation of data into a form that is unreadable without some

appropriate knowledge.

6

Chapter 2 Background and Review 7

Encryption
Key

Decryption
Key

Decryption
Process

Encryption
Processciphertext ciphertext

communication channel
Receiver

plaintext
Transmitter

plaintext

secure region secure regionunsecure region

Figure 2.1: Encrypting and decryption processes.

Decryption reverse of encryption; transformation of encrypted data to the original

data with the assistance of some appropriate knowledge.

Cipher process, either in form of a software program or hardware circuit to per-

form encryption.

Plaintext data to be encrypted.

Ciphertext data after being encrypted.

Key secret information used during encryption and decryption.

Various algorithms have been proposed for cryptographic systems and these can

be divided into two major classes: public key algorithms and secret key algorithms.

In secret key algorithms, all keys are kept secret and shared by the parties involved.

In public key algorithms, the are two keys involved. One is the public key which is

made public. The other is the private key which is known only by the person that

can decrypt the message.

Secret Key Algorithms

Secret key algorithms are also referred to as symmetric key algorithms. In these

algorithms, the decryption key can be generated directly from, or is exactly the

encryption key, so both keys should be kept secret.

Secret key algorithms can be further classified into two subclasses: block ciphers

and stream ciphers. The block ciphers accept a data block of fixed size as input in

Chapter 2 Background and Review 8

each iteration and produce an output block of the same size. It is a bijective function

(one-to-one mapping) from the input plaintext block to the output ciphertext block.

Stream ciphers consider the input as a stream of bytes and produce an output byte

stream by combining the input with the generated key stream. In stream ciphers, the

output of a fixed input depends on the input value, the key value as well as the time

the input enters the cipher. That means two identical and adjacent input blocks will

be encrypted to different output blocks by a stream cipher.

Common block cipher algorithms include: DES (Data Encryption Standard)

[MvOV01], AES (Advanced Encryption Standard), RC2 (Rivest’s Cipher 2) [RSA00],

RC5 (Rivest’s Cipher 5) [MvOV01], IDEA (International Data Encryption Algo-

rithm) [MvOV01], Secure And Fast Encryption Routine (SAFER) [MvOV01], Blow-

fish [Sch93] and CAST-128 (Carlisle Adams and Stafford Tavares) [AT93]. Ex-

amples of stream ciphers include: RC4 (Rivest’s Cipher 4) [RSA00], Software-

optimized Encryption Algorithm (SEAL) [MvOV01] and VRA (Venkatesan, Ra-

jagopalan and Aiello) [ARV95]. In fact, there are many other stream ciphers based

on the Linear Feedback Shift Registers (LFSR) algorithm [MvOV01]. The process-

ing speed of a stream cipher is usually faster than that of a block cipher.

There are several modes under which block ciphers can operate. The most com-

monly used modes are the Electronic Codebook (ECB) mode and the Cipher Block

Chaining (CBC) mode [Sch96]. In ECB mode, the block ciphers are used directly

and the one-to-one mapping from plaintext block to ciphertext block is maintained.

In CBC mode, the output ciphertext block is fed back to the input port and XORed

with the next plaintext block to be encrypted. By doing so, the encryption of a block

is dependent upon the previous block and the one-to-one mapping characteristic is

eliminated, improving security.

A disadvantage of secret key algorithms is that the parties performing encryption

and decryption must somehow exchange keys. That means a secure channel must

be available for the key exchange to take place before the secure channel for data

can be established.

Chapter 2 Background and Review 9

Receiver’s
Public Key

Receiver’s
Private Key

Decryption
Process

Encryption
Processciphertext ciphertext

communication channel
Receiver

plaintext
Transmitter

plaintext

secure region secure regionunsecure region

Figure 2.2: Public key cryptography.

Public Key Algorithms

Public key algorithm was first introduced by Whitfield Diffie and Martin Hell-

man [DH76] in 1976. Figure 2.2 illustrates the idea behind public key cryptography.

The difference with Figure 2.1 is that the public key, which is used as the encryption

key here, is publicly available. The message encrypted using a public key can only

be decrypted by the corresponding private key. So anyone can send an encrypted

message but only the person with private key can decrypt it. This property can be

used to solve the key exchange problem associated with secret key algorithms. The

security of public key system depends on the difficulty of deriving the private key

from the public key.

Examples of public key algorithm include Diffie-Hellman [DH76], RSA [RSA78],

ElGamal [ElG85], and Merkle-Hellman knapsack [MH78].

In public key systems, the public key of a receiver is shared between sender

and receiver. Since this information is available to everyone, it is not necessary

to have some trusted means of key distribution before secure data communication

provided that the public keys are associated with their owners in a trusted manner.

The disadvantage of public key algorithms is that they require more computation to

achieve similar security compared with secret key algorithms.

Chapter 2 Background and Review 10

2.3 Cryptographic Applications

Cryptographic algorithms are used in a wild range of applications; including the

SSL (Secure Sockets Layer) [Net02] developed by Netscape Communications Co.,

SSH (Secure Shell) [TTTM02], IPSec (IP Security Protocol) [Req02c], Kerberos

[Req02a] and PGP (Pretty Good Privacy) [Req02b]. Besides networking appli-

cations, cryptographic algorithms are also applied to data storage. UNIX system

provide system tools to encrypt files [Ope02], word processors such as Microsoft

Word [Mic02] and Adobe Acrobat [Ado02] integrate the encryption/decryption

functions internally. Also, many data compressing tools such as Zip [BK02] and

RAR [RAR02] provide encryption. On static storages such as DVDs, cryptographic

algorithms are used to protect copyright by preventing illegal copying.

The following example illustrates the typical usage of cryptographic algorithms

on networking environment. Client C wants to download a file from server S

through an insecure network. The client should obtain the server’s public key in

advance. Before the file can be accessed, the client sends the server its request and

public key encrypted using the server’s public key. Since only the server has the

private key to decrypt this request, this will authenticate the server’s identity. Then

the server will send a session key to the client, encrypted by client’s public key.

After the client gets the session key, a secure communication channel is established

for client authentication and file transferring using either a block or stream cipher.

Note that public key cryptography, which is computationally expensive, is used

for the key exchange and involves a small amount of data. A secret key algorithm

is used for the potentially large amount of data involved in the file transfer. This

scheme reduces the amount of computation required by the server, thus improving

its overall efficiency without sacrificing security.

In this research, 4 cryptographic primitives were developed. By integrating

these primitives in a single design, the tasks in the above example can be imple-

mented in a single chip hardware cryptosystem. The Montgomery multiplier can be

Chapter 2 Background and Review 11

CLB

CLB LUT FF

PRM

PRM

PRM

PRM

CLB

CLB

CLB CLB

CLB

Figure 2.3: FPGA structure.

used to perform the RSA public key authentication while the BBS random number

generator can be used to generate the session key for the RC4 or IDEA secret key

ciphers. Actually, the designs can be used in many scenarios ranging from high-end

server side cryptographic accelerators to low power consumption handheld devices.

2.4 Modern Reconfigurable Platforms

The experiments in this research were implemented on Field Programmable Gate

Arrays (FPGA). FPGA is VLSI chip with some special features. The structure

of an FPGA is a 2-D array of Configurable Logic Blocks (CLB) surrounded by

connection wires. There are some primitives such as lookup tables (LUT) and

flip-flops (FF) inside the CLB. The functions of these primitives and connections

between them can be configured for different designs. Programmable routing ma-

trices (PRM), implemented in static RAMs, are used to connect the I/O ports of the

CLBs. A general structure outline of FPGAs is shown in Figure 2.3.

The advantages of FPGA designs over traditional VLSI designs are:

Chapter 2 Background and Review 12

4 Fast design to product time and chips can be reused for different designs.

4 Easy simulation and debugging. Software simulator and debugger provide

efficient methods of finding bugs and estimating of performance.

4 It is possible to use the same FPGA hardware platform for many different

cryptographic protocols. This make the design flexible and extensible.

4 Low cost prototyping for early designs which are subjected to be changed.

4 Design can be upgraded after deployment without hardware replacement.

Today’s advanced FPGA chips also offer a lot special components such as large

memory blocks (BlockRAM) and fast carry chains between adjacent logic blocks

[Xil02a]. Dedicated multipliers and clock distribution lines can also be found in

some designs. Due to the overheads associated with providing programmable logic,

FPGA designs usually have lower clock rate and lower logic density than traditional

VLSI designs using the same technology.

The FPGA design flow is shown in Figure 2.4. The design entry can be either

schematic capture or synthesis via a Hardware Description Language (HDL). The

schematic flow is more intuitive for small designs while the HDL flow provides an

efficient way to implement and manage large and complex designs.

In the synthesis approach, a netlist is generated describing the logic functions

and their interconnections. The functions are then mapped to the logic primitives of

the target FPGA platform. The placement of logic primitives and routing of connec-

tions are altered to find an optimized solution which will meet the constraints stated

by the designer. The implementation process generates a bitstream representing the

configuration of the FPGA, which can be download to the chip.

There are many cryptographic protocols that implementing all of them in a sin-

gle FPGA chip is not feasible. Once the applications agree on some protocols, they

seldom change. The dynamic reconfiguration capability of the FPGAs are suitable

for such scenarios. An example is secure network communications. Designers can

Chapter 2 Background and Review 13

Schematic Capture HDL Languages

Design Entry

Synthesis

Design

Netlist

Bitstream

Design Download

Reports

Design Verification
(Simulation)

Mapping

Place & Route

Bitstream Generation

Floorplanning

Implementation

Figure 2.4: FPGA design flow.

Chapter 2 Background and Review 14

FPGA Microprocessor
Unit Price high medium
Power Consumption low high
Operation Frequency low high
Memory Bandwidth high low
Hardware Parallelism high low
Customized for Application yes no
Design Time high low
Commondity Item no yes

Table 2.1: Cost/performance tradeoffs between FPGA and microprocessor.

implement all kinds of cryptographic protocols in different designs targeting the

same hardware (the FPGA chip). After the software determines which protocol

will be used, the bit stream of the corresponding design will be downloaded to the

FPGA. By doing so, a limited hardware resource can serve a wide range of require-

ments.

Table 2.1 summarizes the cost/performance tradeoffs of FPGA comparing to

microprocessor designs. It shows that, at the expense of lower clock rate and higher

price, FPGA designs can achieve higher performance than the microprocessor coun-

terparts through higher degrees of parallelism and customization.

2.5 Review of Related Work

2.5.1 Montgomery Multiplier

The Montgomery method [Mon85] is used in all high performance hardware and

software modular multipliers. Montgomery multiplier implementations are reviewed.

In 1993, Peter Kornerup [Kor93] proposed an algorithm for computing 5768�����9�
using as high-radix redundant number system. The algorithm required :<;.=?>A@?B
CED� F �G�
cycles per multiplication in radix �)� . This algorithm was adapted in our design. In

the same year, M. Shand and J. Vuillemin [SV93] form Paris Research Laboratory

Chapter 2 Background and Review 15

(PRL) presented a fast FPGA based implementation of RSA system with 1Mbps

throughput for 521-bit keys. This design was implemented on the PAM (Program-

able Active Memory) system with a matrix of 16 FPGA and the modulus used was

hardwired in the design.

A VLSI implementation with lookup table quotient estimation by Che-Han Wu

et al. [WSW C 99] showed that higher radix implementations could achieve speed

improvement at the expense of hardware overhead. ��#IH "/ � ��JLK<HM(N���OK cycles are

required for the radix- � / algorithm where n is the size of modulus and k is the size

of partitioned multiplier. The highest radix evaluated in that work was radix-16

which used 10% more logic than radix-2 system based on COMPASS cell library.

In 1997, Colin D. Walter [Wal97] showed that the product P,Q?��R�
S�,T�RVU should be

independent of the choice of radix for the best implementations of repeated addition.

There has been a lot of research on systolic Montgomery multipliers. Colin D.

Walter [Wal93] proposed a radix-2 system with ��#W��� cycles latency for an n-bit

multiplication. This design used a two dimensional array of systolic cells. For a

500-bit RSA design, this system was estimated to use about JS
X�VYZ� gates. Peter

Kornerup presented another linear systolic Montgomery multiplier [Kor94] which

had a similar latency. Our implementation of variable radix Montgomery multiplier

was based on this structure. The estimate throughput of this design is 100kbps

under a 100MHz clock. In 2000, Wei-Chang Tsai et al. [TSW00] introduced two

new systolic architectures for modular multiplication. Simulation using 0.35 [\�
CMOS technology shows that these 3-D systolic arrays had faster computing speed.

The double-layer system consuming 240k transistors achieved 244kbps for 1024-bit

RSA and the non-interlaced system consuming 209k transistors achieved 241kbps

throughput.

Besides the one presented by Shand, other implementations of Montgomery

multiplier based on FPGA platforms were reviewed. T. Blum and C. Paar [BP99]

Chapter 2 Background and Review 16

implemented a Montgomery exponentiation unit in systolic array architecture. Radix-

4, 8, 16 were implemented and Chinese remainder theorem was used for decryp-

tion. An 1024-bit RSA decryption, on a Xilinx XC4000 series, requires 10.18ms,

12.41ms and 12.52ms respectively for radix-4, 8, 16. A. Tiountchik and E. Trichina

[TT00] designed a 132-bit radix-2 linear systolic Montgomery multiplier on an Xil-

inx XC6000 FPGA chip. For this design, at least 4 XC6000 FPGAs are required

for a 512-bit key with estimated bit rate 800Kbps. M. K. Hani et al. [HTSH00] pre-

sented a complete RSA system using Walter’s systolic structure on Altera FLEX10KE

FPGA system. The core performance of this design was not reported.

2.5.2 IDEA Cipher

The block cipher we consider in this work is the IDEA cipher. Although IDEA

involves only simple 16-bit operations, software implementations of this algorithm

still cannot offer the encryption rate required for on-line encryption in high-speed

networks. Ascom’s implementation of IDEA (Ascom are the holders of the patent

on the IDEA algorithm) achieves Y^]._L`N
a�VYL� encryptions per seconds, or an equiv-

alent encryption rate of 23.53Mbps, on an Intel Pentium II 450MHz machine. Im-

plementation of IDEA using the Intel MMX multimedia instructions was proposed

by Helger [Lip98] and achieves Y^]cb��d
e�VY)� encryption per seconds or a equivalent

encryption rate 32.9Mbps, on an Intel Pentium II 233MHz machine. Our optimized

software implementation running on a Sun Enterprise E4500 machine with twelve

400MHz Ultra-IIi processor, performs ��]._)Yf
g�hY � encryptions per second or an

equivalent encryption rate of 147.13Mbps, still cannot be applied to applications

such as encryption for 155Mbps Asynchronous Transfer Mode (ATM) networks or

Gigabit Ethernet.

Hardware implementations offer significant speed improvements over software

implementations by exploiting parallelism among operators. In addition, they are

likely to be cheaper, having lower power consumption and smaller footprint than

Chapter 2 Background and Review 17

a high speed software implementation. A design of an IDEA processor which

achieves 528 Mb/sec on four XC4020XL devices was proposed by Mencer et. al.

[MMF98]. The first VLSI implementation of IDEA was developed and verified by

Bonnenberg et. al. in 1992 using a 1.5 [7� CMOS technology [BCF C 91]. This

implementation had an encryption rate of 44Mbps. In 1994, VINCI, a 177Mbps

VLSI implementation of the IDEA algorithm in 1.2 [7� CMOS technology, was

reported by Curiger et. al. [CBZ C 93, ZCB C 94]. A 355Mbps implementation in

0.8 [7� technology of IDEA was reported in 1995 by Wolter et. al. [WMSL95],

followed by a 424Mbps single chip implementation of 0.7 [7� technology by Sa-

lomao et. al. [SAF98] was reported. In 2000, Leong et. al. proposed a 500Mbps

bit-serial implementation of IDEA on an Xilinx Virtex XCV300-6 FPGA which is

scalable on larger devices [LCTL00]. Later, Goldstein et. al reported an implemen-

tation on the PipeRench FPGA which achieves 1013Mbps [GSB C 00]. A commer-

cial implementation of IDEA called the IDEACrypt Kernel developed by Ascom

achieves 720Mbps [Asc99b] at 0.25 [7� technology. The implementation derived

from the IDEACrypt Kernel, called the IDEACrypt Coprocessor, has a throughput

of 300Mbps [Asc99a].

2.5.3 RC4 Key Search

There have been two previously reported FPGA based RC4 key search machines.

In 1996, Goldberg and Wagner proposed an RC4 search engine using an Altera

RIPP10 board which had 8 FLEX8000 chips and four static RAM chips [GW96].

Their design could perform 4 parallel searches and each unit required 1286 cycles

per key. Kundarewich et al. proposed a key search engine using a single Altera

EPF10K20 complex programmable logic device (CPLD). In their implementation,

each search unit required 1304 cycles per key and 5 parallel searches could be made

at 10MHz [KWH99].

Chapter 2 Background and Review 18

2.5.4 Secure Random Number Generator

Many VLSI based RNGs (Random Number Generator) have been developed and

evaluated. The randomness of the generators may be based on electronic noise

[PC00], thermal noise [ZH01], oscillator noise [RRK98] or radioactive decay [hot02].

Most of these implementations include an amplified noise source and digital scram-

bling logic.

Real random number generators based on chaotic systems, provided a very

compact structure on standard CMOS designs. In 2001, Toni Stojanovski et al.

[sPK01] implemented a chaos-based RNG in a 0.8 [7� standard COMS chip uti-

lizing switched current techniques. The estimate output bit rate of this design is

1 Mbps. Also on 0.8 [7� CMOS process, Andrea Gerosa et al. [GBP01] imple-

mented a RNG based on a chaotic system. Their design with a pipelined ADC

(analog-to-digital converter) occupied ��]c���G� D silicon area.

There are many methods to generate pseudo random sequences. In 1986, Wol-

fram [Wol86] proposed a method to generate random numbers by connected cellular

automatas (CA). In the method, output of a CA is a function of the current outputs

of nearby CAs. This method is very suitable for hardware implementation where

concurrent operations are easy to achieved. P.D. Hortensius et al. [HMC89] pro-

posed a VLSI implementation of 1-D cellular automata in parallel structure. The

30-bit hybrid CA design was about 2.1 times larger than a 30-bit LFSR (linear feed-

back shift register) RNG while offering better randomness and faster clock rate due

to the nearest neighbor wiring. While selecting a suitable connection scheme and

automata function is not trivial in higher dimension designs for more randomness.

As many cryptographic accelerating hardware are FPGA based, it is more desir-

able to have FPGA PRNG (Pseudo Random Number Generator) modules instead.

Barry Shackleord et al. presented RNGs based on neighborhood-of-four cellular

automata [STCS01]. The design made use of the 4-input LUTs in Xilinx FPGA

to fully utilize the hardware and can generate 64-bit random numbers at frequency

Chapter 2 Background and Review 19

as high as 230MHz. Another FPGA implementation of PRNG was introduced by

Robert K. Watkins et al. in 2001 [WIF01]. Their design used a Genetic Algorithm

(GA) to generate a set of PRNGs. FIPS-140 was used as fitness function in the

evolution. This design, implemented on XESS XSV800 Virtex prototyping board,

relied on the reconfiguration ability at run time. The final product of the evolution

is a PRNG.

It is not possible to prove a sequence is random. Some basic tests were in-

troduced by Knuth [Knu81]. A compact and preliminary test suite was defined

in FIPS-140 by the National Institute of Standards and Technology (NIST). NIST

proposed a more comprehensive random and pseudo random number generator test

suite for cryptographic applications in 2001 [A. 01]. Another well known RNG test

suite is the Diehard test developed by Marsaglia [Mar02]. This is widely considered

the most stringent RNG test.

2.6 Summary

In this chapter, the algorithms and architectures commonly used in cryptosystems

has been introduced. The applications of cryptography in various fields were pre-

sented. Also, the characteristics and design flow of modern FPGA platforms were

explained. Related work on Montgomery multipliers, IDEA block ciphers, RC4 key

searching engines and secure random number generators were reviewed.

Chapter 3

The IDEA Cipher

3.1 Introduction

The proposed Encryption Standard (PES) is a block cipher introduced by Lai and

Massay [LM90] in 1990. It was then improved by the Lai, Massay and Murphy

[LMM91] in 1991. This version, with stronger security against differential anal-

ysis and truncated differentials [HL94, Knu95, Bor97], was called the Improved

PES (IPES). IPES was renamed to be the International Data Encryption Algorithm

(IDEA) in 1992. Claims have been made that the algorithm is the most secure block

encryption algorithm in the public domain [Sch96]. Except for weak key attacks,

the current best attack is by brute force on the 128-bit key space [Sch96].

In this chapter, an IDEA cipher implementation on an FPGA platform is de-

scribed. With a single core, this design can achieve a throughput of 592Mbps en-

cryption rate using a 50MHz operating frequency. The design is heavily pipelined

to maximize the throughput. A method for pre-computing keys is used in this design

to save logic resources. It can be used as a hardware accelerator in a cryptosystem

such as for Secure Shell (ssh) data transfer and Virtual Private Networks (VPN).

This chapter is organized as follows. In Section 3.2 the IDEA algorithm as well

as algorithms for multiplication modulo �����i�j� are described. The implementation

of IDEA cipher and interface are presented in Section 3.3. A summary is given

Section 3.4.

20

Chapter 3 The IDEA Cipher 21

3.2 The IDEA Algorithm

IDEA is a secret-key block cipher. The keys for both encryption and decryption

must be kept secret from unauthorized persons. Since the two keys are symmetric,

one can divide the decryption key from the encryption one or vice versa. The size

of the key is fixed to be 128 bits and the size of the data block which can be handled

in one encryption/decryption process is fixed to 64 bits. All data operations in the

IDEA cipher are in 16-bit unsigned integers. When processing data which is not a

integer multiple of 64-bit block, padding is required.

The security of IDEA algorithm is based on the mixing of three different kinds

of algebraic operations: XOR, addition and modular multiplication. This section

will explain the top structure of the cipher followed by the key scheduling algorithm

and the S-box (�����k�l���m���) algorithm.

3.2.1 Cipher Data Path

The IDEA block cipher shown in Figure 3.1 is based on a Feistel structure [Nyb96].

There are 8 identical rounds and an output transformation block in the original

IDEA data path. The output transformation, as shown in Figure 3.1, is actually

the upper half of a round with some inputs interchanged. We will reference this as

half round in the rest of the text. These iterative rounds are used to make differential

attacks more difficult.

The 64-bit input plaintext, X, is divided into four 16-bit sub-blocks, n � to npo .
After encryption, the four sub-blocks, q � to qro are concatenated to the 64-bit ci-

phertext. For every full round, six 16-bit subkeys, * � to * � are used. The half round

block only use 4 subkeys. A key block is used to store the 128-bit input key. The

subscript in the sub-key is the order which it is extracted from the key block. The

superscript of the sub-key is the round number in which it is used. For example, *N�s
is the fifth sub-key used in round 1. The decryption process shares the same data

path with different subkeys.

Chapter 3 The IDEA Cipher 22

X
1
 X
2
 X
3
 X
4

Z
2

(1)
Z
1

(1)
 Z
3

(1)
 Z
4

(1)

Z
6

(1)

Z
5

(1)

Z
2

(9)
Z
1

(9)
 Z
3

(9)
 Z
4

(9)

Y
1
 Y
2
 Y
3
 Y
4

one round

output

transformation

seven more

rounds

bitwise XOR of 16-bit sub-blocks

addition modulo 2
16
 of 16-bit integers

multiplication modulo 2
16
+1 of 16-bit integers with the

zero sub-block corresponding to 2
16

Figure 3.1: Block diagram of the IDEA algorithm.

Chapter 3 The IDEA Cipher 23

For the IDEA algorithm in Electronic Codebook mode (ECB) [Sch96], there is

no loop in the data dependency graph which implies that a deep pipeline technique

can be applied.

3.2.2 S-Box: Multiplication Modulo tvuxw0y{z
The IDEA algorithm uses �����|�l���r�}� multiplication as the main mixing operation.

It maps from the domain * D�~�� to *2�D ~�� C � . In the mapping, Ya��* D�~�� is mapped to

�Z������*2�D ~�� C � . By doing so, the cardinality of *��D ~�� C � is still 16, making it the same as

the other two operations. The original algorithm requires a domain transformation

before and after the � operation. Since this operation is the most computational

intensive one in the IDEA algorithm, one of the design considerations was to opti-

mize it. Many methods has been developed to speed up this calculation [CBK91].

In this design, we adapted the method proposed by Meier and Zimmerman [MZ91]

which uses a modulo � " adders with bit-pair recoding. This algorithm is explained

in the following pseudo code.

uint16 mulmod(uint16 x, uint16 y) {

uint16 xd, yd, th, tl;

uint32 t;

xd = (x - 1) & 0xFFFF;

yd = (y - 1) & 0xFFFF;

t = (uint32) xd * yd + xd + yd + 1;

tl = t & 0xFFFF;

th = t >> 16;

return (tl - th) + (tl <= th);

}

This algorithm requires a total of five additions and subtractions, one 16-bit

multiplication and one comparison. However, in IDEA one of the operands of a

Chapter 3 The IDEA Cipher 24

modular multiplication operation is always a subkey, so the second subtraction can

be eliminated if the associated subkeys are pre-decremented.

3.2.3 Key Schedule

In the key schedule, 52 subkeys are generated from a 128-bit input key. The subkeys

are formed by rotating the input key. The key scheduling process is:

4 Order the 52 subkeys as *d� �? � ,]h]h]\��*0� �? � , *0� D � ,]h]h] , *0� D � ,]<]h] , *0��� � ,]h]h] , *0�c� � ,

*0�c� � ,]h]h] , *0��� o .

4 Partition the 128-bit input key into eight 16-bit blocks. Assign them to the

first 8 subkeys, *0� �? � to *0� D D , directly.

4 Rotate the input key left by 25 bits to form a new key block. Another 8

subkeys can then be generated.

4 Repeat the rotation process whenever the subkeys in the current key block is

used up.

The decryption subkeys *,+�� / - can be computed from the encryption subkeys

with reference to Table 3.1.

3.3 FPGA-based IDEA Implementation

3.3.1 Multiplication Modulo tvuxw|y�z
Modular multiplication operations dominate the computation time in IDEA algo-

rithm. A careful and optimized design in this part can improve the complete design

significantly. Figure 3.2 shows the structure of modulo multiplication operations

using the algorithm decrypted in Section 3.2.2.

The adders in level 2 and the subtracters in level 4 are both implemented as 16-

bit adders with carry input. If we subtract 1 from every subkey in the pre-compute

Chapter 3 The IDEA Cipher 25

T0��� ����T9�	� Tk���
*�+�� / � HM*0� ��� 3 / � K 3 � HM*0� ��� 3 / � K 3 � HM*�� ��� 3 / � K 3 �* +�� / D 12* � ��� 3 / D 1|* � ��� 3 / � 1|* � ��� 3 / D*�+�� / � 12*0� ��� 3 / � 1|*0� ��� 3 / D 1|*0� ��� 3 / �
*�+�� / o HM*0� ��� 3 / o K 3 � HM*0� ��� 3 / o K 3 � HM*�� ��� 3 / o K 3 �*�+ � / s * �c� 3 / s * �c� 3 / s N/A* + � / � * �c� 3 / � * �c� 3 / � N/A

Table 3.1: IDEA decryption subkeys * + �.- / derived from encryption subkeys * �.- / .1|* - and * 3 �- denote additive inverse modulo � ��� and multiplicative inverse � ��� �X�
of * - respectively.

−1−1

1

?

Subkey

Output

Data

16 16

16 16

32

1616

16

17 32

{1, 0}

[31:16] [15:0]

Figure 3.2: Block diagram of the multiplication modulo � ��� ��� .

Chapter 3 The IDEA Cipher 26

process, the subtracter in the dashed box can be eliminated. This will save some

logic resources but cannot speed up the design since there is still a subtracter in

the same level. The operations on the same horizontal level can be carried out in

parallel. An exception is in the last level where the carry input of the adder depends

on the result of the comparator.

As shown in Figure 3.2, the critical path is indicated with a thick line. To get the

best performance in this module, the 16-bit multiplier is constructed by the Xilinx

CORE Generator [Xil00b] to maximize the throughput. The generated multiplier,

with output registers, has a latency of 4 clock cycles. To match the throughput of

the multiplier, every level is pipelined such that there are 7 cycles latency in the

modulo �Z���m��� component.

3.3.2 Deeply Pipelined IDEA Core

The architecture of the IDEA core has been shown in Figure 3.1. The � operators

are replaced by the component described in Section 3.3.1. There are 3 modular

multiplication in the critical path in a full round. Delays and output registers are

used to balance the critical path. To save area, delays are implemented with the

Xilinx Virtex SRL16E shift register primitives [Xil99, GA99].

The architecture of the IDEA core after inserting the delays is shown in Figure

3.3. The numbers in the circles represent the number of delay cycles added to the

path. There are 22 cycles of latency introduced in a full round and 7 cycles in a

half round. There for, a complete IDEA cipher has totally 183 cycles delay. Since

every single logic path has combinational delay shorter than that in the multiplier

from CoreGen, the throughput of the design is bound by the speed of the generated

multiplier. Thus, a faster multiplier implementation can improve the design.

In ECB mode, the design is fully pipelined and a 64-bit plaintext block can be

processed every cycle since there are no feedback paths. When encrypting a large

amount of data, the latency is not important.

Chapter 3 The IDEA Cipher 27

Z
3

(r)

Z
4

(r)
Z
1

(r)

Z
2

(r)

Z
5

(r)

Z
6

(r)
14
 14
 14
 14

7
7

7

7

Feedback

path

X

Feedback

control

Half-round

output

Figure 3.3: Architecture of the bit-parallel IDEA core.

Chapter 3 The IDEA Cipher 28

3.3.3 Area Saving Modification

The design can be modified to fit into a chip which is not large enough for the

complete eight and a half rounds. To use minimum logic resources, only one round

is used to perform the cipher function. To enable this configuration, a feedback

control must be added to the data input port in the full round design. As shown in

Figure 3.3, The there two possible inputs to the core: the plaintext block and the

output of the previous round. The operation is as follows:

4 Initially, the feedback control logic selects the plaintext block, X, as the input.

4 22 plaintext blocks are accepted to fill the pipeline.

4 Feedback logic then selects the outputs of the round as input. By doing so,

the data passes through the round logic again.

4 After 183 cycles, the half-round output is sampled to obtain the ciphertext

blocks. At the same time, the feedback control accepts plaintext input again.

Figure 3.4 illustrates the above procedure. The number of rounds instantiated

can be varied in the design. Trade off between area consumption and performance

thus can be easily evaluated. For example, if only one round is instantiated, the

scheme saves up to a factor of 8.5 in area.

3.3.4 Key Block in Memory

The key block storing the 128-bit input key needs to be shifted right 25 bits after

the current subkeys are used up. The number of subkeys generated by the 128-bit

key block, 8, is not a multiple of the subkeys required in a round. These mean

the round computation must stall waiting for another set of subkeys after shifting.

This either makes the control unnecessarily complex or introduces a irregular round

design. The key block must be restored to the initial state after a data block is

processed. The 25-bit shift prohibits the restoring procedure to be implemented by

Chapter 3 The IDEA Cipher 29

Pt
(1)
22

Pt
(1)
21

Pt
(1)
1

Pt
(1)
2

Step 1:
fill the pipeline
with input data

Plaintext

Pt
(2)
2

Pt
(2)
1

Pt
(1)
3

Pt
(1)
4

Step 2:
select the output
block and feedback
to input

feedback path

Pt
(8)
8

Pt
(8)
9

Pt
(9)
7

Pt
(9)
1

Step 3:
after 8 rounds,
select the output
from the half
round

feedback path

Ciphertext

Figure 3.4: Operating procedures of pipelined IDEA core. ����� �! " is the #�$'& plaintext
in the ($'& round.

Chapter 3 The IDEA Cipher 30

regular shifting. Also, the utilization rate of the key scheduling logic is very low.

Since design has computed all the required 52 subkeys after the first data block, it

is unwise to repeat the computation for every following blocks.

To avoid all these problems, the 52 subkeys are pre-computed in software and

stored in memory (SRL16Es) in the design. The bus width of the key memory is�
�� � bits which will provide the keys for a complete round. Just before entering the

next round, the key memory is rotated to prepare the next 6 subkeys. The advantages

of this design are:

4 No stall stages are required inside a round, thus simplifying control.

4 The round design is regular by assuming the required subkeys are always

ready.

4 The subkeys are computed only once, in software.

4 The logic for key scheduling is minimized to only several memories.

4 To eliminate the 1d� operation of subkey in multiplication ����������� , some

subkeys should have 1 subtracted from them in the pre-compute stage. The

scheduling process combines this in software. By doing so, 4 16-bit adders,

i.e. about 32 SLICEs, are eliminated in each round.

The above design is suitable for an area optimized IDEA core with less than

eight and a half rounds. For the design with all required rounds, no rotation in

memory is required and the subkeys can embedded in the operators for further op-

timization. The drawback of the pre-computed key design is that changing key in a

design requires runtime configuration.

3.3.5 Pipelined Key Block

For the deeply pipelined IDEA core, the values of subkeys are also pipelined. To

save storage area, shifting is used instead of pipelining. At the start, only the first 4

Chapter 3 The IDEA Cipher 31

subkeys, *0� " � to *0� " o are shifted. After 7 clock cycles, *d� " s is shifted. After another

7 clock cycles, *k� " � is shifted. This scheme ensures that the corresponding subkeys

are changed at the same time that the data blocks for the current round reach the

position in the pipeline where the subkeys are used.

3.3.6 Interface

The interface to the host system is simple. The host system writes a 64 bits plaintext

to the FPGA. The hardware sets a flag bit after it receives the data. This flag is

passed along the same pipeline as the data so that when the flag reaches the end of

the pipeline, the ciphertext is ready at the output port, and the host system can read

the encrypted message. This flag also serves as a busy flag for the input.

3.3.7 Pipelined Design in CBC Mode

In CBC mode, the input block must be XORed with the ciphertext of the previous

block and the design can only accept one plaintext block after the previous one

reaches the end of the pipe. This reduces the throughput by a factor of 183 and so

the deep pipeline technique does not have any advantages in this mode.

Since the block cipher is usually used in network communication software, such

as SSH, on the server side, there may be multiple connections using the same en-

cryption protocol. The server can input plaintext blocks belonging to different con-

nections (and hence different encryptions) in the pipelined design. There is no data

dependency in these blocks even in CBC mode. By doing so, the utilization rate

of the hardware is increased and the overall performance is improved. This method

requires the software to select the correct key scheduling components for different

connections. Assuming there are large number of concurrent connections such that

the pipeline can be filled, this scheme can achieve a 22 times speedup in CBC mode.

Chapter 3 The IDEA Cipher 32

3.4 Summary

A high-performance implementation of the IDEA block cipher was presented in

this chapter. The deeply pipelined implementation achieved an encryption rate of

592Mbps using a 50MHz clock. An area saving design which iterates over a number

of rounds and can be used in smaller chips was also implemented.

Chapter 4

Variable Radix Montgomery

Multiplier

4.1 Introduction

Modular-multiplication (mul-mod) is an operation commonly used in security re-

lated applications. Such applications include the RSA public key system and secure

random number generation. This class of computations usually involves vary large

numbers which range from 512 to 2048 bits in size. This chapter will address some

methods to improve the computation speed in a hardware implementation.

Various algorithms have been developed to improve the speed of mul-mod com-

putations. For example, the Montgomery method [Mon85] speeds up the calcula-

tion by converting the inputs to a � � -residue system. In the Montgomery method,

simple truncation and bit masks are used instead of trial division, to compute the

remainder. A systolic array implementation can achieve high performance by di-

viding a complex algorithm into small and regular parts. These small systolic cells

will work together to produce the final results of relatively higher speed. Combining

these two techniques can result in significantly improvements in the performance of

a mul-mod implementation.

33

Chapter 4 Variable Radix Montgomery Multiplier 34

The configuration parameters of the systolic structure will affect the perfor-

mance of the design. One of the most important parameters is the radix used in-

side the systolic cell. Different radixes will result in different size and speed. In this

chapter, we explore the relationship between the radix parameter and the size/speed.

This chapter was organized as following. Section 4.2 introduced the algorithms

of RSA cryptography. Section 4.3 and 4.4 explained the Montgomery algorithm

and systolic array structure. The structure radix- �)� Montgomery multiplier core

was presented in section 4.6. The implementation details was shown in section 4.7.

Finally, the systolic architecture and brief results are summarized.

4.2 RSA Algorithm

RSA [RSA78] is a secure public key cryptography standard used widely in many ap-

plications. It was first invented in 1977 by Ronald Rivest, Adi Shamir, and Leonard

Adleman. The RSA algorithm can be applied in both encryption and authentication

systems.

The basic idea of RSA is quite simple. There are two large prime numbers: p

and q. These two primes are kept secretly from unauthorized parties. The modulus

N is the product of the p and q:

������
�� .
By selecting a public exponent, e, such that:

 �¡ �%H�R)�OH'��1��VK<H��,1��OK�KI��� ,
the receiver can compute the private exponent from these parameters:

�¢��R 3 �£�����pH�H'�p1��OK¤H��,1��OK�K .
However, if p and q are not known, N must be factorized to obtain the private

exponent, and such a factorization is intractable using current technology for larger

N.

Chapter 4 Variable Radix Montgomery Multiplier 35

To speed up the encryption process, the public exponent, e, is chosen to be small

in practical applications. The ITU-T (International Telecommunications Union,

ITU-T) suggests values of e such as � � ��� and � ��� �	� .
The encryption/decryption processes can be represented by the following equa-

tions (where C is the ciphertext and M is the message):

¥ ��¦§6m�����0� , ¦ � ¥0¨ �����0�
The size of the RSA key is given by the number of bits of the modulus N. For

reasonable security, common practice is to use RSA keys greater than 1024 bits in

length.

4.3 Montgomery Algorithm – © ª « ¬ ­8®°¯
The security of RSA is based on the difficulty in factoring integers which are the

product of two large primes. Modular multiplication of large integers also pose

difficulties using general hardware. One of the most efficient ways to compute the

modular multiplication, H���
��9Kv�����k� , is the Montgomery algorithm [Mon85].

The Montgomery algorithm converts the input numbers into a special residual

system. By doing this, the computation of H��������±K is transformed to be H������0� " K ,
where n is the bit width of N such that � " 3 �p�²� ³´� " . The algorithm actually

computes #µ1e� bit data. Let ¶��·� " . ¶2+ , the inverse of R modulo N, is computed

by ¶2+'¶¸� �9������# . Assume the R’ and N’ are computed in advance such that

¶�¶ + 1a��� + �·� .
Transform the inputs in the following way:

�,+^�·H���
±¶0Kv�����0� and �d+E�¹H?�°
�¶0Kv������� .

Then the modular multiplication

��+��ºH���+�
��d+�
�¶ 3 �xKv�����0�

Chapter 4 Variable Radix Montgomery Multiplier 36

can be computed by:

t := A’ * B’;

m := (t * N’) mod R;

u := (t + m * N)/R;

if u >= n then

return u - n

else

return u;

The above procedure involves only the division and mod of R, where R is a

power of 2, greatly simplifying the computation since they become shifts and bit

masks respectively. The final result can be obtained by converting u back to a

normal number system.

The implementations of Montgomery algorithm can be divided into two dif-

ferent strategies: redundant representation and systolic array. The latter will be

discussed in detail in later sections.

4.4 Systolic Array Structure

Hardware implementations of large integer computations can be done efficiently

using a systolic array. This design style is characterized by high clock rates and is

implemented using simple processing elements.

Each systolic cell has the same structure and is responsible for a small portion

of the number. The radix of the cell can vary in different designs. Higher radixes

will consider more bits at a time with reduced number of clock cycles. This is at

the expense of increased logic count and reduced clock frequency. One extreme is

the fully parallel design which considers all bits at a time. Another extreme is the

radix-2 design which considers only 1 bit per cell.

Chapter 4 Variable Radix Montgomery Multiplier 37

It is a challenge to find the optimal radix to fulfill design objectives. Redesigning

the systolic cell to check the performance for every radix is not efficient. In this

work, a general radix systolic multiplier cell is proposed. It uses a 2’s complement

number system and the radix can be changed by setting a few parameters. The

design was developed in VHDL so it can be synthesized on different hardware.

Developers can optimize the critical part of the model for special target platform. It

is a fast and reliable way to find out the optimal are/performance tradeoff.

4.5 Radix- » (Core

In this section, the original method of systolic Montgomery design from Peter Ko-

rnerup [Kor94] is described for completeness. The method to extend the design to

variable radix is then described.

4.5.1 The Original Kornerup Method (Bit-Serial)

for i := 0 to n

step_1: q := S mod 2;

step_2: S := (S + qN) div 2 + aB;

end for;

The proof of the correctness of this algorithm is given in [Kor93]. This algo-

rithm is only suitable for computing with an odd modulus N which presents no

problems in practice. To make the algorithm suitable for a systolic implementation,

step 2 can be modified as follows:

¼e½ ��¾ ¼ 1¿�� À ���v¾ �°�	�� À �ÁUZ� (4.1)

Since �k� ¼ �����0� , then
¼ 1¿� is always even i.e. Â 3lÃD has no remainder. Since

� is an odd number, then �Ä��� is always even i.e. Å C �D has no remainder. The

first term in (4.1) is generated by right shifting the previous result. The second term

Chapter 4 Variable Radix Montgomery Multiplier 38

is generated by pre-computing Å C �D . The last term is the product of B and the LSB

from A. A is shifted in every iteration and an a new a is generated then. The actual

computation in hardware is to sum up 3 numbers (all n bits in width) within a clock

cycle. Each systolic cell sums parts of the numbers and stores the carries for next

clock cycle.

4.5.2 The Radix- t%Æ Method

for i := 0 to n/k

step_1: q := (S*N’) mod (2ˆk);

step_2: S := (S + qN) div (2ˆk) + aB;

end for;

In this method, the step 2 can be modified as:

¼Á½ �Ä¾ ¼� � À �e�£¾ �� � À �ÁUZ���Ç¾ H ¼ �����0���VKi���EH��È�����k���hK� � À
(4.2)

The last term (referenced as ’f’ in the rest of this paper) will be within the range

of [0, ���,1§�]. This suggests that the computation is still a sum of 3 inputs except

the k LSBs.

The structure of a n-bit (actually n+2-bit in hardware) radix- � � Montgomery

multiplier is shown in Figure 4.1. The extra bits in hardware are to eliminate the

need for final reduction after Montgomery multiplication.

The inputs and outputs of the top level entity in Figure 4.1 are shown in table

4.1. F-cell in the figure computes the last term in Equation 4.2. Let ÉW�·Ê�Ë)Ì D (. In

every clock cycle, one systolic cell outputs j bits of S in the corresponding location.

4.5.3 Time-Space Relationship of Systolic Cells

The figure 4.2 shows the time-space relationship of the systolic cells. It shows that

by inserting registers between cells, one can control the computation of iterations

in which a cell performs according to the cell’s location in the array.

Chapter 4 Variable Radix Montgomery Multiplier 39

s-cell r-cells-cell

N’ mod kN/k

N mod k

f-cell

a

f
q

s

0

B

Figure 4.1: Top level overview of multiplier. All signals in this figure are k-bit in
width.

name direction general width�Í�Î� in n+2� in n (bit-length)��+Ï�����l� in ÐÑ� D H�T�UZ�LQ?5%K¼ =xÒ � out ÐÑ� D H�T�UZ�LQ?5%K
Note: A is shifted ÐÑ� D H�T�Ul�LQ�5%K LSBs to the r-cell every clock cycle.

Table 4.1: Inputs and Outputs of Top Level Entity.

r4r

r4c

r4c

r4c

r4c

0space (k th cell)

time (t)

Figure 4.2: Space and time relationship of the systolic array.

Chapter 4 Variable Radix Montgomery Multiplier 40

cc

c

k
k

k

k

k

k

2k

2k

2k

2k

k+1

k+1

2k+1

2k+1

(n−1)

(n−1)

(n−1)

(n−1)

(n−1)

(n−1)

(n−1)

(n−1)

(z)

k

Add1

((n−1)(n−1))

((n−1)(n−1))

1
(n−1)

1

k

Add3

k f

os(n−1)

k

si

((n−1)(n−1))

((n−1)(n−1))

Add2
(2(n−1)−3n+1)2

(2(n−1)−3n+1)2

2 3

Add4

(z)

Figure 4.3: Generalized data path of radix- �)� cell.

4.5.4 Design Correctness

The correctness of the design depends on handling carries and matching the bit

widths of each of the terms. Figure 4.3 shows the bit width of each component of

an r-cell. The numbers in the parentheses are the maximum values passed though

the paths and #Ó�¹� � . It can be seen from in the figure that no overflow will occur

on any signal.

4.6 Implementation Details

A set of VHDL files was developed to describe the behaviors of the components

in the model. The width of I/O and internal signals were controlled by generic at-

tributes of the entities. So there are no hard coded bit widths in the system. The

radix and bit width of the design are controlled by two constants in the top level

entity. These two parameters propagate through out the design in a top down fash-

ion. By changing the value of the two constants in the top level entity, the complete

Chapter 4 Variable Radix Montgomery Multiplier 41

design can be transformed to any radix base as needed. Since the generic attributes

are resolved during the synthesis stage, this will not introduce any overhead on the

target hardware. The bottleneck of the design is the multiplier used to compute UZ�
and ��� . To make the design as flexible as possible, the default VHDL operator, ‘*’,

was used. Designers are free to replace the multiplier used, provided that the I/O

and timing requirements are matched. For example, the fast 18-bit unsigned multi-

pliers in the Xilinx VirtexII chip can be used to replace the ordinary ‘*’ operator in

VHDL.

4.7 Summary

In this chapter, a method to construct a variable radix systolic Montgomery multi-

plier hardware was presented. The width of the datapath of these designs can be

changed via generic parameters. By doing so, the radixes in the multiplier can be

adjusted by designer. This will help to measure the performance of different designs

efficiently.

Chapter 5

Parallel RC4 Engine

5.1 Introduction

In this chapter, an implementation of the alleged RC4 cipher which achieves signifi-

cant performance improvement over a microprocessor implementation is presented.

RC4 is used for encryption in products such as the secure sockets layer (SSL) proto-

col, the secure shell (SSH) protocol, the wired equivalent privacy (WEP) algorithm

(part of the IEEE 802.11b wireless LAN security standard), Lotus Notes, Oracle

Secure SQL, Microsoft Office and Adobe Acrobat (Acrobat 4.x or older). Further-

more, the key size is often limited to 40 bits due to US export restrictions.

A brute force key search can be used to determine the key used to encrypt a

message by trying every possible key to decrypt the message. Such a key search is

trivially parallelizable and successful key searches using loosely coupled micropro-

cessors in a distributed computing approach have successfully been applied to the

56-bit DES algorithm and the 56-bit RC5 algorithm.

Application specific integrated circuits (ASICs) have also been used by the Elec-

tronic Frontier Foundation (EFF) to implement a DES key search engine, called

“Deep Crack”, which could search 88 billion keys per second [Ele98]. The ma-

chine solved the “Blaze Challenge” and the RSA Laboratories DES–III challenge,

the latter on January 1999 in 22 hours [RSA99]. One limitation of an ASIC based

implementation is that they are hardwired for specific problems.

42

Chapter 5 Parallel RC4 Engine 43

There have been two previously reported FPGA based RC4 key search ma-

chines. In 1996, Goldberg and Wagner proposed an RC4 search engine using an

Altera RIPP10 board which had 8 FLEX8000 chips and four static RAM chips

[GW96]. Their design could perform 4 parallel searches and each unit required

1286 cycles per key. Kundarewich et. al. proposed a key search engine using a

single Altera EPF10K20 complex programmable logic device (CPLD). In their im-

plementation, each search unit required 1304 cycles per key and 5 parallel searches

could be made at 10MHz [KWH99].

The RC4 implementation described in the chapter integrates the key search con-

troller and 96 parallel RC4 decryption engines on a single Xilinx Virtex XCV1000E

FPGA (much larger FPGA devices are already available). Although the RC4 imple-

mentation operates at a clock frequency which is an order of magnitude lower than

that of the latest microprocessors, the FPGA implementation achieves a significant

speedup due to the following features:

4 Parallelism in the implementation of the RC4 core allows several operations

to be completed in a single cycle.

4 On-chip resources were used to achieve a very low latency, high bandwidth

memory interface

4 The memory used was dual-ported, allowing for higher memory transfer effi-

ciency.

4 Floorplanning was used to minimize interconnect delays

4 A large number of the encryption cores were used in parallel.

In this implementation, each search unit requires approximately 800 cycles per key

and 96 such units are integrated on a single FPGA.

The rest of the chapter is organized as follows: in Section 5.2, the RC4 and key

search algorithms are described. Section 5.3 describes the architecture of the RC4

Chapter 5 Parallel RC4 Engine 44

implementation. Implementation details are presented in Section 5.4. Finally, there

is a summary on this work in Section 5.5.

5.2 Algorithms

5.2.1 RC4

RC4 is a stream cipher designed by Ron Rivest and was originally proprietary to

RSA Data Security [Sch96]. The algorithm was leaked anonymously to the Cypher-

punks mailing list in 1994. The RC4 algorithm generates a key dependent pseudo-

random number sequence of arbitrary length.

In the description below, two 256 byte arrays are used, namely the K-block, K

and the S-block, S. Note that the K-block does not change during the encryption

process.

The RC4 algorithm can be divided into 2 phases: a key scheduling phase and the

pseudorandom number generator (PRNG) phase. Both phases must be performed

for every new key.

In the key scheduling phase, a scrambling process is used to produce a key

dependent permutation of Y^�<�)�h]h]h]��)b)b in the S array. In the initialization stage, the

S array is set to the identity permutation using the formula
¼�Ô Q�Õ%��QÎH�Q
�§Y^�h�8]h]<]Î�)b�b)K

and the K array is set to the key, repeating as necessary to fill the array. The S array

is scrambled by selecting two indices Q and É and then swapping
¼�Ô Q�Õ and

¼�Ô É)Õ . In

pseudocode form, the key schedule is computed as follows:

keyschedule()

{

/* initialization */

for i = 0 to 255

s[i] = i;

Chapter 5 Parallel RC4 Engine 45

/* scrambling */

j = 0;

for i = 0 to 255

{

j = j + K[i] + S[i];

swap S[i] and S[j];

}

}

The PRNG phase is similar to the key schedule. Indices Q and É are selected

and
¼�Ô Q?Õ and

¼�Ô ÉLÕ swapped. The output of the PRNG is the value of the S array

indexed by
¼�Ô Q�ÕV� ¼�Ô ÉLÕ (i.e.

¼�Ô.¼�Ô Q?Õh� ¼�Ô É)Õ�Õ). Encryption or decryption is achieved by

performing an exclusive-OR of the pseudorandom number output with the plaintext

or ciphertext respectively. The pseudocode below shows the process for encryption

of the plaintext in the pt array, the result being written to the ciphertext array ct:

prng()

{

i = 0;

j = 0;

while not end of stream

{

i = (i + 1) mod 256;

j = (j + S[i]) mod 256;

swap S[i] and S[j];

t = S[i] + S[j];

ct[i] = pt[i] xor S[t];

}

}

Chapter 5 Parallel RC4 Engine 46

5.2.2 Key Search

The design described in this chapter performs a known plaintext attack via a key

search [Sch96]. In a known plaintext attack, it is assumed that the ciphertext as well

as the corresponding plaintext is available and one wishes to deduce the key used

for encryption. The same architecture, with additional filtering logic (e.g. to detect

if the message is 7-bit ascii) could be used for a ciphertext only attack.

If the plaintext and ciphertext are known and # bytes in length, checking that

the ciphertext, ¡ � , when decrypted using a key (is the same as the plaintext �E� , is

equivalent to checking if the first # bytes of the PRNG produces the sequence pt xor

ct.

If � RC4 key search units are available, Q is an index used to identify each RC4

key search unit, and T ¡ JÖH ¡ 5L�i��(^K checks to see if the PRNG produced with key (
gives ¡ 5L� , the key search procedure can be described in psuedocode form as:

keysearch()

{

k = 0;

cxp = pt xor ct;

forever

{

for i = 0 to N-1 (in parallel)

{

found = rc4(cxp, k + i)

if (found(i))

return k + i;

}

k = k + N;

}

}

Chapter 5 Parallel RC4 Engine 47

j_pre

K-Block

i

j
key

found

addrA

dinA
doutA

doutB

addrB

dinB

t_pre
t

8

8

8 8

8

88
8

8

8

8

8

8

8

8

8888

8
8

8

8

8

8
8

40

RAMB4_S8_S8

S-Block

found

cxp

Figure 5.1: Datapath of the RC4 cell.

5.3 System Architecture

5.3.1 RC4 Cell Design

The datapath of a single RC4 cell is shown in Figure 5.1. The core component of

the RC4 cell is the S-block for the S array, which is implemented using a 4096-bit

on-chip Block RAM [Xil00a], configured as an 8-bit wide dual port memory. Since

the RC4 algorithm requires only �|
×�)b � ����Y�JL� bits of memory for the S array, the

Block RAM is divided into two halves via the most significant bit of the address.

As the key scrambling phase for a new key is being computed in one half of the

RAM, initialization for the next key is done in the other half. This scheme saves

256 cycles and hereafter, this combined initialization and scrambling step will be

referred to as the key schedule phase.

Each iteration of the key schedule phase requires 3 clock cycles as shown in

Figure 5.2. In the first clock cycle, i is passed into port A of the Block RAM as an

Chapter 5 Parallel RC4 Engine 48

S[j]0

j0 j1

S[j]1

S[j]0 S[j]1

doutB

weB

clock

doutA

addrA

addrB

weA

zbuff[i] zbuff[i+1]

S[i] S[i+1]

i+1i

S[i] S[i+1]0 1

Figure 5.2: Timing diagram of the block RAM during the key schedule phase.

address, and the initialization of S for the next key is done at the same time via port

B. In the second clock cycle, the value of S[i] becomes available and j is computed.

In the last clock cycle, S[j] is available and the contents of S[i] and S[j] are swapped

and written back to S. The total clock cycles required for the key schedule pahse are

768 (�§_�
��)b �).
The PRNG phase (see Figure 5.3) also requires 3 clock cycles per iteration,

hence a total of ` � �0�§_�# cycles are required to test each key (for an # byte long

ciphertext). Operations in this phase are similar to those of the key schedule phase

except that
¼

does not require initialization. The t value is ready (as the t pre signal)

in the first clock cycle of the next iteration. The output, s[t], is read and compared

with the cxp value in following cycle.

A possible memory contention problem exists in the last clock cycle of each

iteration in the key schedule and PRNG phases, since it is possible that both ports

attempt to write the same data to the same address, producing unpredictable results

[Xil00a]. To avoid this conflict, a comparator is added to the RC4 cell (not shown in

the schematic) so that if i and j are equal, the write enable to the memory is disabled.

The operation performed in this clock cycle is to swap S[i] and S[j]. If the array

indexes are the same, there will be no swap and no data losses.

Chapter 5 Parallel RC4 Engine 49

compare key i

S[j]0 S[j]1

j0

S[j]0 S[j]1S[i] S[i+1]+ +t_pre

S[j]0 S[j]1S[i] S[i+1]S[t_pre]

j1

doutB

weB

clock

doutA

addrA

addrB

weA

S[i] S[i+1]

i+1i

t_pre t_pre

Figure 5.3: Timing Diagram of Block RAM in PRNG Phase

Finally, a latch called found in the RC4 cell is used to indicate whether the key

being tested matches the plaintext. This latch is cleared if the byte produced by

a decryption does not match ¡ 5L� (as described in Section 5.2.2). Should the latch

remain high after all bytes of the plaintext have been tested, the key being tested is

the desired key.

5.3.2 Key Search

The top level block diagram of the design is shown in figure 5.4. All RC4 cells are

identical. Each cell accepts a key input and sets a flag if the input is a valid key.

There is one global key register which is initialized by the host and routed to all

RC4 cells. A local key is computed in each cell by summing the global key with a

cell offset, which is a unique value ranging from 0 to 95. By using this scheme, the

RC4 cell array can process 96 different keys in parallel, after which, 96 is added to

the global key.

All RC4 cells share a common control unit, implemented as a simple finite state

machine (FSM). This unit controls the state of all the RC4 cells, updates the global

Chapter 5 Parallel RC4 Engine 50

functional
unit

RC4
functional

unit

RC4
functional

unit

RC4

Control Bus

local key local key local key

global key

unit
control

I/O
interface

(cxp signal)Expected Random Bit Stream

Figure 5.4: Block diagram of parallel RC4 key search machine.

key and also provides the interface to a host computer (discussed in Section 5.3.3).

5.3.3 Interface

In the host/key search engine interface protocol, the host must download the ex-

pected PRNG sequence cxp and then the start key value for the key search. After

the search engine receives the start key, it works independently of the host, testing

new keys until it detects that the found flag of an RC4 cell has been asserted (in

which case the FSM halts). The host then can read the global key and offset which

produces cxp. The host and key search engine communicate via a set of 3 64-bit

read and 2 64-bit write registers.

The interface protocol is detailed in Table 5.1. Write registers are used by the

host to send the start key (w0) and expected PRNG sequence, cxp (w1) to the key

search engine. After the key has been found, the host can read back the global key

value (r0), and the offset of the RC4 cell which asserted the found flag (r1, r2).

5.4 Implementation

The design is modularized and floorplanning was done to reduce implementation

time as well as improve the maximum frequency of the design. In this section,

Chapter 5 Parallel RC4 Engine 51

Step Action Register State
1 Host writes expected PRNG sequence (cxp) w1 idle
2 Host writes start key w0 start
3 Host polls flag registers r1, r2 searching
4 Search engine writes 96-bit offset r1, r2 halt
5 Host reads global key r0 idle
6 Host reads offset r1, r2 idle

Table 5.1: Host/key search engine handshaking protocol.

details of the implementation are presented.

5.4.1 RC4 cell

There are 8 major components inside an RC4 cell, the dual port RAMs and the 40-

bit local key registers being excluded from the RC4 cell for reasons described in

Section 5.4.2. The names of the components and their functions are listed in Table

5.2.

The RC4 cell was designed to fit into a JGT��OØÈ
 � ¡ ��Ð Ò �G# Virtex-E config-

urable logic block (CLB) array. All components are structural HDL descriptions

containing only primitives provided by the Xilinx library. The physical placement

of components were fixed using relative location (RLOC) attributes. The complete

cell is a RPM (Relationally Placed Macro) which can be instantiated multiple times

in the top level design. The block diagram in Figure 5.5 shows the layout of com-

ponents within the RC4 cell. In the figure, the small rectangular boxes represent a

slice (two logic cells, where each logic cell contains a 4 input lookup table) and two

adjacent slices form a Virtex-E CLB. This scheme ensures low local routing delays.

The multiplexer for the K unit, which is used to select a byte from a 40-bit

key, is implemented using tristate buffers (TBUFs) and do not use CLB resources.

This scheme replaces the large multiplexer in Figure 5.1 and reduces both logic and

routing resources.

Chapter 5 Parallel RC4 Engine 52

name function
D unit 8-bit 2-to-1 MUX

select portB data input
A unit 8-bit 3-to-1 MUX

select portB address input
F unit 8-bit compare and registers

generate found signal
W unit 8-bit compare

detect Block RAM address conflict
I unit combinational logic to

control MSB of portB address
J unit two 8-bit adders with registers outputs

compute the j value
T unit 8-bit adder with registered outputs

compute the t value
K unit 5-to-1 8-bit mux (using tristate buffers)

select byte from K-block

Table 5.2: Components inside an RC4 cell.

T

CLB.S0CLB.S1

D A F W I J

Figure 5.5: Block diagram showing component placement within an RC4 cell.

Chapter 5 Parallel RC4 Engine 53

5.4.2 Floorplan

On the XCV1000E FPGA, the 96 Block RAMs are grouped into 6 columns. Ad-

jacent Block RAMs are separated by 4 rows of CLBs. The RC4 cell described in

Section 5.4.1 was designed to have the same pitch as the Block RAM and hence,

each of the 96 RC4 cells is placed adjacent to a Block RAM which is used for the

S-block.

The 40-bit local key is another module used in the design. This module is a

40-bit adder with registered outputs and is used to latch the sum of the global key

and the offset of the RC4 cell. To avoid breaking the fast carry chain, this module is

implemented as a column which is 20 slices (or 5 RC4 cells) high (see Figure 5.6).

Five local keys are grouped together and placed perpendicular to their correspond-

ing RC4 cells as shown in Figure 5.6. Since the local key modules have no direct

connections to the Block RAMs, placing them away from the Block RAM column

does not increase the routing delay. Since the TBUFs and CLBs are independent,

the RC4 cell overlaps with the local key module in a section where the RC4 cell

only uses TBUFs and the local key module only uses the CLBs.

Figure 5.7 shows the floorplan of the completed design. It can be seen that the

RC4 cells and local key modules are placed close to the Block RAM columns. The

control unit is located in the center where the distance to all RC4 cells is minimized.

5.5 Summary

In this chapter, a highly parallelized RC4 key search engine based on FPGA device

was presented. Both high level design using VHDL and low level optimizations

using floorplanning tools are implemented in the design.

Chapter 5 Parallel RC4 Engine 54

L
ocal K

ey M
odule

L
ocal K

ey M
odule

L
ocal K

ey M
odule

L
ocal K

ey M
odule

L
ocal K

ey M
odule

RC4 cell

RC4 cell

RC4 cell

RC4 cell

RC4 cell

Block
RAM

Block
RAM

Block
RAM

Block
RAM

Block
RAM

Figure 5.6: Block RAM, RC4 Cell and local key module placement.

Figure 5.7: Floorplan of the completed design.

Chapter 6

Blum Blum Shub Random Number

Generator

6.1 Introduction

Random number generators (RNG) are important in many security related applica-

tions such as key generation in cryptography [Ram89] and challenge generation in

authentication protocols [TTTM02]. Most cryptographic systems rely on the unpre-

dictability and irreproducibility of generated random sequences. Other applications

using random number extensively are circuit testing, computer-based gaming, mod-

eling of genetic systems and simulation. The main purpose of this work is to study

a highly random hardware RNG based on a bit serial implementation.

There are two classes of random number generators: real random number gen-

erators (RRNG) and pseudo random number generators (PRNG). Both RRNGs and

PRNGs can produce a random bit stream for external use. The RRNG makes use

of a non-deterministic source which may be the electronic noise, thermal noise or

even radioactive decay [hot02]. PRNGs generate pseudo random numbers based on

a deterministic algorithm. PRNGs require a starting state value called a seed. A

common practice is to seed the PRNG using a RRNG and then use the PRNG to

generate random numbers for the application.

55

Chapter 6 Blum Blum Shub Random Number Generator 56

There are two major performance criteria for RNGs: randomness and genera-

tion rate. A good RNG for cryptographic applications must be able to generate an

unpredictable (at least to the external world) random sequence. On the other hand,

the RNG must generate random numbers fast enough for various applications such

as SSH servers and PKI based e-commerce systems.

This chapter introduces an implementation of a cryptographically secure hard-

ware random number generator which can generate random numbers at an average

rate of 211bps. The design includes one RRNG and one PRNG. The random se-

quence is actually a BBS (Blum Blum Shub) [LMM86] sequence and takes a ran-

dom number generated by the RRNG as a seed. It is desirable to have a small, flex-

ible and modular RNG, since cost, footprint and ease of interfacing are improved.

The chapter is organized as follows. The real random number generator algo-

rithm was first introduced in Section 6.2. Then the BBS algorithm was described in

Section 6.3. The top architecture of the RNG and the design details were presented

in Section 6.4 and Section 6.5. The last section gave a summary of the design.

6.2 RRNG Algorithm

The physical random number source used is the phase-noise of a free-running oscil-

lator. We chose this source since it has the least external components for an FPGA

and the circuit can be powered directly by the FPGA chip. There are two clocks in

the design: a slow and unstable external clock, Ù ; and a fast and accurate internal

clock, Ù & . This is achieved by using an edge-triggered D-type flip-flop with Ù ; as

clock input and feeding the Ù & to the data input. By doing so, the two square waves

are mixed together to produce a output Ù / . Figure 6.1 shows this structure.

The output rate of this method depends on the slow clock, Ù ; , which is delib-

erately designed to have high phase noise. Since this clock is not stable and the

frequency varies with time, the throughput of the device is not fixed.

Chapter 6 Blum Blum Shub Random Number Generator 57

Fh

F l

Fr

Clk

QD

D−FF
Fh

F l

Fr

Figure 6.1: Oscillator sampling using D-type flip-flop.

There are several factors which affect the quality of the randomness of the algo-

rithm. The first situation is that the duty cycle of clock Ù ; may not be 50%. In this

situation, Ù / will have unequal probability of being ‘0’ or ‘1’. A parity filter which

will even the number of ‘0’ and ‘1’ in a bit stream was applied to Ù / . It can be shown

[RRK98] that the probability of a ‘1’ generated by the filter is Y^]�bÚ1f� " 3 �¤HÏ�¢1ÓY^]cb)K "
where p is the probability of ‘1’ in raw random stream Ù / and n is the number of

flip-flops in the parity filter. As n increases, the value of the expression tends to 0.5.

The second factor is the selection of clock frequency. If the variation of the period in

Ù ; is not large enough, there will be correlation between bits and so the value of the

output can be predicted to some extent from the previous values. Previous research

[RRK98] has shown that the standard deviation of the period of Ù ; should at least

be 0.75 times the period of Ù & . A third factor affecting the quality of the RNG is

the random source itself. As there are both periodic and aperiodic electro-magnetic

noise inside a computer system, there may be a patten in the output sequence as

the result of coupling of periodic noise. The source of periodic noise includes the

mains AC power supply, the master clocks on various bus systems, nearby wire-

less communication devices, etc. There is no way to eliminate this factor since

the developing environment and the target environment are different and subject to

change. The only way to test the quality of the RRNG is to test the results before

installation and reject if it fails to pass the test suit.

Chapter 6 Blum Blum Shub Random Number Generator 58

6.3 PRNG Algorithm

The BBS algorithm [LMM86] was used in this design due to its high security.

Some believe that the BBS algorithm is the most secure PRNG method available

[VMD98]. The security of BBS is based on its long period and the difficulty in

predicting the sequence even if all previously generated bits are known. Despite the

strong security of the algorithm, the BBS sequence generator is simple and easy to

understand. The following equation generates the BBS sequence n - where Q is a

positive integer.

n - C � ��n D- �����d¦
The M used here is a product of two large prime numbers p and q, which both

have a remainder of 3 when divided by 4. n � is a seed which is co-prime with M.

As proofed in [LMM86], a deterministic algorithm to compute the unique quadratic

residue n 3 � �����0¦ such that HÑn 3 � K D �����0¦ ��n � requires the knowledge of the

prime factors of ¦ . So ¦ needs not to be kept secret as long as � and � are kept

secret.

This algorithm is appropriate for use in cryptographic applications. Since large

integer arithmetic is involved, it is slow comparing with other PRNGs. However, it

has a strong security proof [LMM86], which relates the quality of the generator to

the difficulty of integer factorization. The output of the generator is formed from

the ÐÑ� D H?ÐÑ� D ¦gK least significant bits of n - . The original algorithm only outputs 1

(least significant) bit per iteration. But Vazirani and Vazirani [VV84] showed that

we can safely use at least ÐÑ� D H?ÐÑ� D ¦�K bits and the prediction of this sequence is as

hard as factoring M. The typical bit width of M is 512 or 1024. Using a larger size

will increase the number of available bits in each iteration, however, this is at the

expense of larger storage area and computing power requirements.

Chapter 6 Blum Blum Shub Random Number Generator 59

RRNG

Buffer
seed

PRNG

Buffer
ext_clk

FPGA Chip

other design

host
random output

Figure 6.2: Overview of the RNG and PRNG.

6.4 Architectural Overview

A complete RNG was designed on a single FPGA chip with few external compo-

nents. Since the target is to be used for cryptographic hardware, the circuit size of

the generator should be as small as possible, leaving more logic resources for other

functions. The generated data can be stored in a buffer for other logic on the same

chip or read by the host system as a direct random source for software applications.

The design can be separated into two parts: the RRNG part and the PRNG part.

Fig 6.2 shows the relation between the two parts. The RRNG first fills its buffer with

random bits. This buffer will then be used as a seed in the PRNG part if constraints

are met. The output of PRNG is also stored in a buffer which can be read by a host

computer or other modules on the same chip. These two parts work independently.

6.5 Implementation

In this section, the implementation details are presented and the considerations be-

hind the implementation are explained. The implemented design includes a 1024-

bit BBS PRNG. The size of the BBS algorithm can be easily changed by appending

more registers and increasing counter size. The modulus M in BBS algorithm is

hardwired in the design.

Chapter 6 Blum Blum Shub Random Number Generator 60

QD QD QD QD

Fh

F l

Fh

F l

Dual Port RAM
PRNGPortBPortA

Figure 6.3: RRNG circuit.

6.5.1 Hardware RRNG

The RRNG circuit inside FPGA is shown in Figure 6.3. Two clocks are used in

the design. Ù & is a 100MHz high frequency clock generated by the PC DIMM

interface. This clock is also the master clock for other parts in the design. Ù ; is a

low frequency clock generated by an RC circuit which ranges from 225Hz to 1MHz.

This RC circuit is constructed outside the FPGA chip and is sensitive to electronic

and thermal noise. A variable resistor was used for testing the circuit using different

clock rate. The digital mixing of Ù & and Ù ; was implemented as shown in Figure

6.1. We call the output of this circuit, Ù / , the raw random bit stream. A parity filter

with 4 stages was applied to the raw random bit stream to accomplish the duty cycle

bias. This is necessary since experiment results show that the duty cycle of Ù & was

approximately 54%.

The dual port BlockRAM acts as both a buffer storage and interface. The ran-

dom bit stream is written to the memory through one port under Ù ; . The PRNG

circuit reads this stream through another port under Ù & . The RRNG circuit also

contains a counter (not shown in Fig 6.3) whose output is used as the address for

the BlockRAM.

The RRNG circuit starts generating a real random bit stream after power up.

Chapter 6 Blum Blum Shub Random Number Generator 61

F l

Figure 6.4: Circuit of External Clock.

When the buffer is full, the write enable is dis-asserted and the contents of the

buffer remain unchanged. It will then assert a full signal to other parts of the circuit

indicating that there are new random data in the buffer. When the PRNG requires

a new stream of random bits, the circuit is reset and the process restarts. This is

necessary since the stored random data may not pass the BBS seed validation. In

this case, the BBS PRNG discards the current data and requests new data.

Fig 6.4 shows the design of the low frequency oscillator. The inverters used

in the circuit are from a TTL 74LS74 chip. The charge on the capacitor and the

resistance of the resistor will be affected by the background noise. This is the source

of randomness in the design.

6.5.2 BBS PRNG

Fig 6.5 shows the data path of BBS PRNG. Note that all datapaths are one bit in

width.

The computation part of the PRNG is a bit serial ALU. The signal op selects its

operation modes:

�2ÛÝÜ2� Ò �Þ� Ò �8�
ßàààá àààâ
�e�e�§� ¥ - " if op = 0 and sub = 0

��1a� if op = 0 and sub = 1

��� ¥ - " otherwise

Chapter 6 Blum Blum Shub Random Number Generator 62

Y

Z

z_flag 1_flag

Dual Port RAM

PortAPortB

X

M

c_in

A B

ALU op

c_out
sumcarry

sub

random data

rrng_in

8

Figure 6.5: Circuit of BBS PRNG.

There are 4 1024-bit shift registers in the design: M, X, Y and Z. Register M

stores the value of M which will not be changed. Register X stores the value of n - .
This value is initialized to a random seed from the RRNG and refreshed after each

iteration. Register Y and Z can be combined to form a 2048-bit register, register

YZ, to store the temporary results of ALU operations. All registers are constructed

by cascading SRL16E components to reduce area consumption. The SRL16E is a

single LUT configured as a 16-bit shift register with enable.

There are two internal flag registers: 0 flag and 1 flag. When the output of ALU

is 0, the 0 flag is set. Else if the ALU result is 1, the 1 flag is set. These two flags

are examined by the control FSM (finite state machine). The FSM also requires

3 counters (not shown in the circuit). Two of them are 10-bit counters which are

used for arithmetic operations. The other one is used for storing random data to the

buffer and should be 4 bits (i.e. :ÞÐ�� D ÐÑ� D �VYL��J F) in size.

The BBS PRNG performs three functions: seed validation, multiplication and

modulo operations.

Seed Validation

One requirement for the BBS algorithm is that the seed, n � must be co-prime

Chapter 6 Blum Blum Shub Random Number Generator 63

Register Value before validation Value after validation
M M M
X M don’t care
Y n � 0 or 1
Z n � n �

Table 6.1: Contents of registers in validation process.

with the modulo M. Euclid’s method [Knu81] of finding ^¡ ��HÑn � ��¦gK was per-

formed. The following pseudo code shows the algorithm used:

seed_validation() {

get_seed:

x = read(RRNG);

M = modulus;

gcd_sub:

M = M - x;

if (M == 1) return(seed = x);

if (M == 0) goto get_seed;

if (M < 0) M = M + x;

swap x, M;

goto gcd_sub;

}

Table 6.1 shows the content of every registers before and after validation process

starts.

The addition and subtraction in the process are performed in a serial manner.

The LSB of register X and Y are passed to ALU as operand and the registers are

shifted to right after each clock cycle. A single +/- operation will consume 1024

clock cycles then. To test if ãG1�5 is smaller than zero, the carry bit is checked.

Since we assume all operands (n � and M) are positive, the carry bit should be zero

after subtraction if the result is also positive.

Chapter 6 Blum Blum Shub Random Number Generator 64

Register Value before Mul Value after Mul
M M M
X n - n -Y 0 HÞn D- K�ä s �å�åæ D s �MçZ n - HÞn D- K ä D sås æ �Mç

Table 6.2: Contents of registers in multiplication process.

Multiplication

Table 6.2 shows the values of all registers before and after the multiplication

process. The following pseudo code shows the procedures of performing a multi-

plication. Note that 1024 cycles are required to perform an add in the line labeled

L1.

multiplication() {

repeat 1024 times {

LSB(Z) = 1 then

L1: Y = Y + X;

else Y = Y;

shift_right_one_bit(YZ);

}

}

Modulo

The result in register YZ is now n D- . The design then subtracts the contents of

register Y by that of register M. Y is recovered if a negative result is generated.

Register YZ is then shifted left by 1 bit and the process repeated. After 1024 it-

erations, the value stored in register Y is the result of n D- �����p¦ . The following

pseudo code performs the Mod operation.

mod(M, YZ) {

repeat 1024 times {

Chapter 6 Blum Blum Shub Random Number Generator 65

Register Value before Mod Value after Mod
M M M
X n - n -Y HÑn D- K�ä s �å�åæ D s �Mç n D- �����k¦Z HÑn D- K ä D sås æ �Mç don’t care

Table 6.3: Contents of registers in Mod process.

Y = Y - M;

if (Y < 0) Y = Y + M;

L1: YZ = shift_left_1bit(YZ);

}

}

Table 6.3 shows the values of registers before and after the Mod process.

The algorithm is simple division using the paper-and-pencil method except that

the quotient is not stored. There are faster methods for finding the remainder but the

design described can be implemented in a manner which utilizes very little circuit

area.

One implementation detail should be noted. In the pseudo code, register YZ is

shifted left by one bit. In actual hardware this is not possible since the shift register

is implemented by SRL16E components which can only shift in one direction. In

most other operations including the validation, multiplication and backup, the reg-

isters shift in the right direction. The line labeled L1 is the only exception in the

design. Our decision here was to make the hardware simple and uniform. This shift

left operation is transformed to a shift right of 2047 bits through the ALU. We may

implement the Y and Z registers in D-type flip-flops with selected inputs and leave

the X and M registers unchanged. This will simplify the control unit but the size of

the design will grow. As a SRL16E can replace 16 shift registers, the size of register

Y and Z will grow by a factor of 16. Considering that we have only 4 registers in

the complete design, this will make the design about 4.5 times larger. Thus this

Chapter 6 Blum Blum Shub Random Number Generator 66

approach was not used.

Restoring Register X

After the Mod operation, the result, n D- �����S¦ , is then stored in register Y.

We need to restore the registers’ value to prepare for the next iteration. This is

done by copying Y to X and Z. At the same time, zero is shifted in Y. The flag

registers and carry register should also be cleared. After the restoring, the values in

the registers are the same as list in the second column in Table 6.2. At the beginning

of restoring, 10 LSBs in register Y are also shifted to the buffer in PRNG. This is

the pseudo random bit stream generated in this iteration.

6.5.3 Interface

The PRNG buffer is also implemented in a dual port BlockRAM. As the pseudo

random bit stream is shifting in one port, the host or other circuit in the same FPGA

can read the random data through another port with 8-bit bus. The PRNG will

assert a full signal when the BlockRAM is filled up. After detecting the full signal,

the external design or host can start reading the data. There is also a reset signal

which is used to clear the full signal.

Since random numbers are required, overwriting the data in the buffer when the

buffer is full will not affect the randomness of the result. Thus no other handshaking

circuit is needed. To read a continuous sequence from the design for evaluation, a

double buffer method is used. As the host reads one buffer, the PRNG is writing to

the other.

6.6 Summary

In this chapter, two serial RNGs were introduced. The RRNG senses the external

noise and produces a raw random bit stream. This raw random data is used as a

seed in the PRNG which uses the BBS algorithm. The output pseudo random bit

Chapter 6 Blum Blum Shub Random Number Generator 67

stream is stored in buffers and can be used by either host or other circuit in the same

chip. The entire generation process does not involve any CPU operations or use any

memory storage in the host system. Thus security of the design is enhanced since

the RNG state can be kept internal to the FPGA device. A serial architecture, which

reduces circuit size, admittedly at the expense of speed, was used.

Chapter 7

Experimental Results

7.1 Design Platform

The results presented in this chapter are based on the following environment unless

otherwise specified:

Design Entry VHDL

Target FPGA Platform Xilinx VirtexE family (XCV1000E-6)

Target Prototype Platform Pilchard

Simulation Tools Synopsys VSS 2000.12

Synthesis Tools Synopsys FPGA Compiler II

Implementation Tools Xilinx ISE 4.1i

Host Platform Linux on Pentium III 800

Software Drivers Language ANSI C

The prototypes are based on the Pilchard platform (Figure 7.1) [PMO C 01] which

uses the SDRAM bus instead of the PCI bus used in conventional FPGA boards. We

used this platform for the following reasons:

Simple Interface For most designs, the interfacing signals required are minimized.

Besides clocks, only data I/O and read write signals are used. This simple

design also provide more logic resources for the algorithm.

68

Chapter 7 Experimental Results 69

Figure 7.1: Photograph of the Pilchard board.

High Throughput The Pilchard platform interfaces to the host PC through the sys-

tem memory bus. Since this bus is more highly coupled with the CPU than

the traditionally used PCI bus, latency is reduced and bandwidth is increased.

Suitable FPGA Chip Onboard The Xilinx Virtex chip onboard provides useful

components including DLLs (Delay Lock Loop), BlockRAMs, tristate buffers,

etc. FPGAs of different sizes can be mounted on the board.

7.2 IDEA Cipher

In the experiment, two kind of IDEA cores was implemented. One is the flat (un-

pipelined) version without any intermediate registers and the other is the deeply

pipelined version. The results of these two versions are compared in this section.

Chapter 7 Experimental Results 70

SLICEs Logic Utilization
flat core 848 6%
flat design (8 rounds + 1 half round) 7919 64%
pipelined core 1269 10%
pipelined design (1 round area optimized) 1363 11%

Table 7.1: Size of IDEA design.

flat design pipelined design
Number of cores 1 1
Clock rate (MHz) 14.5 83.7
Encryption per second (
��VY)�) 1.6 9.3
Encryption rate(Mb/sec) 102 592
Latency (clock cycles) 9 1407 =(�O`)b9
����Á`)

Table 7.2: Speed of IDEA Design.

7.2.1 Size of IDEA Cipher

The sizes of a single IDEA core in both versions as well as the sizes of the complete

design are shown in Table 7.1. In the complete design, the interface to the host

system are included. The flat version core is smaller due to the absence of pipeline

registers.

In the both designs, there is a shift-register component for storing the sub keys.

Since these registers were implemented in SRL16E primitives, it takes only 96 half

slices (48 slices).

7.2.2 Performance of IDEA Cipher

Table 7.2 shows the speed of different IDEA implementations. Both designs use

only one round of IDEA core and the key is stored in subkey memories. For both

designs, increasing the number of round cores in a cipher will not affect the la-

tency but allow the design to process more data at the same time. Thus the average

throughput of the designs is increased.

Chapter 7 Experimental Results 71

Data from the host are written directly to the core using a burst mode transfer of

175 64-bit plaintext blocks. This is the latency of the pipelined core. By doing so,

the pipeline is filled up and the performance is optimized. After the latency period

of the design, the ciphertext is written to a buffer implemented in BlockRAM. The

results are read by the host from the IDEA processor by doing a burst mode transfer

of the contents of the BlockRAM. The decryption process is similar except the

ciphertext is written to the IDEA core and the plaintext appears in the BlockRAM.

The key component is also reconfigured for the decryption process.

Further improvement could be achieved by floorplanning. It is also possible

to increase the encryption rate by scaling, i.e. to place multiple IDEA ciphers in

parallel on a single chip. When using a platform with larger (è 64-bit) data bus,

this scale up method can increase the throughput linearly.

7.3 Variable Radix Systolic Array

For an n-bit Montgomery multiplication using a radix 4 system, we must use an

H�#é�G�)K -bit multiplier to ensure that Y�� ¼ ����� , eliminating the need for reduction

after each multiplication. Such a multiplier requires : " CEDo F systolic cells. The data

should be packed with leading Y s before passed to the multiplier. After
" CEDD �¹�

clock cycles, the result is computed and stored in the multiplier. Another
" CEDD ���

clock cycles are needed to shift out the remaining digits of the result. In total, n+4

clock cycles are needed for a complete multiplication. One systolic cell (either r4c

or r4r) has four 2-bit output multipliers, two 4-bit adders, one 3-bit adder and one

2-bit adder. The critical path is from the 2-bit output multiplier to the 4-bit adder

and then to the 3-bit adder.

To test the correctness of the design, a test bench was developed. The test bench

contains only the 3 main components listed in the top level entity of Chapter 4. The

interface is implemented such that the input parameters can be changed easily. The

driver will test the hardware for all the possible cases by checking against the results

Chapter 7 Experimental Results 72

radix max. freq. size
(MHz). (SLICEs)

2 143.205 10
4 77.797 35
8 61.132 76

16 49.801 81
32 41.599 115
64 41.064 141

128 35.120 180
256 37.448 209
512 34.400 265

1024 30.487 312
2048 29.444 364
4096 29.727 419
8192 30.723 485

16384 29.702 542
32768 29.847 632
65536 30.234 677

Table 7.3: Measurement of different radixes (one systolic cell).

generated by software. The test showed that the implementations was correct.

The performances of different radixes have been evaluated in this section. Table

7.3 show the figures reported by implementation tools.

The performance of the design is evaluated by how fast it can compute a multi-

plication. The time required to finish a modular multiplication is �I�ëê�;ì=íê � êÞîxê�; 6íïð / 6 Ã?ñ 6 " êÞî . The

number of clock cycles needed for a radix- �L� is �EHO: " CED� F �X�OK .The relation between

performance and radix # is represented in Fig. 7.2. The area of systolic cell also

changes with radix. Fig. 7.3 shows the relation between them.

The results show that the higher the radix, the better the performance. When

the radix changes from � � to � � C � , the bit width of the multipliers used inside the

systolic cell changes from (to (G�Ç� . This will introduce more logic levels on

the critical path of the design. And so the maximum frequency decreases with

increasing radix. At the same time, the number of clock cycles needed to compute

the product is reduced. The ratio of clock cycles of radix-k and radix-[k+1] is about

Chapter 7 Experimental Results 73

0 2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

Ti
m

e
fo

r a
 m

ul
tip

lic
at

io
n

(u
s)

log2(radix)

1026−bit
514−bit

Figure 7.2: Performance and radix relation.

0 2 4 6 8 10 12 14 16
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 104

A
re

a
(S

LI
C

E
s)

log2(radix)

1026−bit
514−bit
Xilinx XCV1000 capacity

Figure 7.3: Area and radix relation.

Chapter 7 Experimental Results 74

radix cells for a 1024-bit cells which can fit on an
multiplication XCV300 XCV600 XCV1000

2 513 307 691 1228
4 257 87 197 351
8 171 40 90 161

16 128 37 85 151
32 103 26 60 106
64 85 21 49 87

128 74 17 38 68
256 64 14 33 58
512 57 11 26 46

1024 52 9 22 39
2048 47 8 18 33
4096 43 7 16 29
8192 40 6 14 25

16384 37 5 12 22
32768 35 4 10 19
65636 33 4 10 18

Note: The second column is the number of cells required for a 1024-bit multiplica-
tion.

Table 7.4: Number of systolic cells for different Virtex FPGA chips.

� C �� . When (is not too large, this ratio is more significant than the increase in logic

levels. When (becomes vary large, e.g. ò 128, the logic levels are more significant

than clock count. The performance will be decreasing in this range. The second

range was not observed since the area requirements were already unrealistically

large before it was reached.

The area is an important limiting factor. If the design cannot fit in a single chip,

the timing performance is greatly reduced by the inter chip communication. In a

n-bit radix- � � system, there are : " CEDD � F systolic cells. For example, the XCV1000E

chip can only support up to 351 radix-4 systolic cells and 58 radix-256 systolic

cells. Table 7.4 shows the possible number of cells which can be placed on different

Virtex FPGA chips. The number may be different if special hardware, e.g. the fast

multipliers in VirtexII [Xil02b], are used.

Chapter 7 Experimental Results 75

DLLs 1 out of 4 25%
BLOCKRAMs 96 out of 96 100%
SLICEs 5178 out of 12288 42%
TBUFs 4608 out of 12544 36%

Table 7.5: Device utilization summary.

7.4 Parallel RC4 Engine

An implementation of the RC4 key search engine was synthesized and implemented.

The design was successfully tested on the Pilchard platform by performing key

searches on randomly generated 40-bit keys. The performance was compared with

an optimized software implementation on various general purpose microprocessors.

The RC4 engine containing 96 RC4 cells was designed for 50MHz operation as

reported by the Xilinx timing analyzer. The system RAM bus interface operates at

100MHz. Resource utilization as reported by the implementation tools are listed in

Table 7.5. Since each RC4 core requires ` � �7�W_�# cycles to test a key and #���� was

used, a single RC4 key is tested in 792 cycles (�Ob�[¼). Hence the average encryption

time when all 96 cells operate in parallel is 165ns.

An optimized software implementation of the RC4 algorithm was used to com-

pare the speed of the RC4 key search engine with that of a contemporary micropro-

cessor. The key is generated and stored in memory and the size of expected pseudo

random bit stream was 8 bytes. The speed measurements (for 1000 encryptions)

only consider the computation time and involve no I/O operations. The GNU GCC

compiler v2.9 was used to compile the program source using the ‘-O3’ optimization

flag. The speed of the microprocessor based implementation is compared with that

of the FPGA implementation in Table 7.6. The 50MHz FPGA implementation is

approximately 60 times faster than the 1.5GHz Pentium 4 implementation.

Table 7.7 shows the time required to search a complete 40-bit and 56-bit RC4

key space. Since FPGA chips with more logic resources and faster clock rate are

Chapter 7 Experimental Results 76

Platform Frequency Time Normalized
MHz us Time

Sun Ultra IIi 400 49456 299
SGI R12000A 400 11318 68.6
Intel P4 1500 9618 58.3
This work 50 165 1

Table 7.6: RC4 Encryption Speed on Different Platforms.

Platform 40-bit key 56-bit key
hours years

Sun Ultra IIi 15084 113007
SGI R12000A 3451 25861
Intel Pentium 4 1361 10269
This work 50 377

Table 7.7: Time required for an RC4 key search.

already available, the performance of the FPGA RC4 key search engine can be

further improved. A Xilinx XCV3200E has double the number of block RAMs,

and the XC2V8000 can contain 672 RC4 engines.

7.5 BBS Random Number Generator

7.5.1 Size

The size of the design is quite small that it uses less than 3% of the logic resources

in the FPGA chip. Table 7.8 is the report on hardware sources used by the complete

1024-bit design including interface to host.

7.5.2 Speed

The TRACE tool reports minimum clock period to be 9.648ns. To simplify the de-

sign, 100MHz clock is used for this implementation. The frequency of the external

Chapter 7 Experimental Results 77

Name of resource count Utilization
External GCLKIOBs 2 50%
BLOCKRAMs 2 2%
SLICEs 347 3%

Table 7.8: Device utilization summary.

clock is variable and independent of the design throughput.

For a n-bit design, # D clock cycles are used for a single multiplication. The

product will be ��# bits. Subtracting from the MSB to compute n D ������¦ requires

n iterations. Assuming half of the iterations require only subtraction and shifting

while the other half of them require an extra addition (recover process), a mod

operation requires _�]�b�# D clock cycles. After the mod operation, the registers must

be reinitialized so another n clock cycles are needed.

To generate a value in the random sequence, JE]cb�# D �×# clock cycles are required,

where n is the size of the modules in term of bit. For a 256-bit design, 4719616

clock cycles are required. That means a 1024-bit random value is generated every

47.2ms. Since only the last 10 bits are used as random data, the throughput of the

design is 211bps.

7.5.3 External Clock

The randomness of the RNG depends on the frequency fluctuation of the external

clock [RRK98]. The mean frequency of the external clock does not affect the ran-

domness when there is a large gap between frequencies of the two clocks (2 to 3

degree of orders in this design). The peak-to-peak voltage of the external clock is

_^]ìJZb�ó§Y^].YLb V. The duty cycle of the clock various from 51% to 54% for high and

low frequencies respectly. There is no trival frequency drift in time domain. The

most important characteristic of the external clock is the frequency variation. The

frequency variation ranges in óN�Ob�ô�õ .

Chapter 7 Experimental Results 78

7.5.4 Random Performance

The experimental results are tested using the NIST test suite (version 1.4) [A. 01]

and the Diehard Random Test [Mar02]. The hardware RRNG and the BBS PRNG

were tested independently.

For the NIST test suit, the test sequences were 1M bits in size. This size is larger

than the usual 20000 bits since some of the tests (e.g. Random Excursions, etc.)

require more then �hY)� bits data for a single pass. The sample size, i.e. the number

of bit sequences to pass the tests is 50. The hardware RNG performance under

different external clock frequencies are presented in Table 7.9. Table 7.10 shows

the tests applied to the RNG outputs and the input parameters used. The significant

level ö was chosen to be 0.01. If the calculated P-value is larger than 0.01, the test

is passed. All these parameters were set according to the recommendation in the

NIST documents [A. 01].

This result indicates that the random sequences from both the RRNG and PRNG

can pass all the tests applied. In both cases, there are failed results for some patterns

in Aperiodic-Template test. But this will only affect the pass rate of the test.

In the Diehard test suit, all random sequences generated by the BBS PRNG

can pass all the tests. For the hardware RRNG, only the sequences generated for

external clock frequencies lower than 3kHz can pass the test. Using an external

clock with frequency higher than this value will result in failure in all tests. The

reason is that the noise variation in frequency decreases with increasing frequency

and hence the randomness is affected.

7.6 Summary

This chapter presented the results for the implemented designs and compared them

with other software and hardware implementations. The results of these implemen-

tations were summarized in Table 7.11. In each case the FPGA implementation was

Chapter 7 Experimental Results 79

Ext clk (Hz) pass all tests
RNG PRNG

225 YES YES
500 YES YES
750 YES YES
1k YES YES
2k YES YES
25k YES YES
50k YES YES
75k YES YES
100k YES YES
250k YES YES
500k YES YES
750k YES YES
1M YES YES

Table 7.9: RNG test results (NIST).

Name of Test Parameters
Frequency N/A
Block Frequency blk=10500
Cumulative Sums N/A
Runs N/A
Longest Run of Ones N/A
Rank N/A
Discrete Fourier Transform N/A
Nonperiodic Template Matchings blk=9
Overlapping Template Matchings blk=9
Universal Statistical blk=7

ini.=1280
Approximate Entropy blk=5
Random Excursions N/A
Random Excursions Variant N/A
Serial blk=5
Lempel-Ziv Complexity N/A
Linear Complexity blk=500

Table 7.10: Input parameters for NIST test.

Chapter 7 Experimental Results 80

Design Measurement Our Performance Software
IDEA cipher through put 592Mbps 5.9Mbps
Montgomery through put 256Mbps 11.4Mbps
Multiplier (1024-bit design) (radix- �����)
RC4 key search Time to search 50 hours 377 hours

40-bit key space
RRNG through put 250kpbs -
PRNG through put 211bps -

(1024-bit design)

Table 7.11: Performance summary. The software implementations are all based on
an Intel P4 1.5GHz PC and compiled by GCC (v2.95.3) with ‘-O3’ enabled. The
RSA and IDEA speeds are reported by OpenSSL (v0.9.6c).

significantly faster than a software implementation on an Intel Pentium 4 1.5GHz

PC. Apart from the speed advantages, FPGAs also offer benefits in terms of foot-

print and power consumption over microprocessors which are important in embed-

ded applications. The parameters affecting the performance were also presented.

The performance of the designs are measured with throughput and area consump-

tion. The results of the test suits applied to the RNG were listed.

Chapter 8

Conclusion

Through design examples, this thesis illustrated that the FPGA platform is suitable

for building high performance hardware cryptographic systems. The FPGA designs

can adapt various algorithms in various architectures. Several problems have been

addressed:

Parallel and Serial Trade Off

The parallel implementation of the IDEA block cipher and the serial implemen-

tation of the BBS PRNG are two extreme examples of parallel and serial architec-

tures. The parallel structure was improved by deep pipelining and increasing the

utilization of hardware. The throughput of the improved design was 592Mbps. The

serial implementation of BBS was extremely small, using less than 3% of an FPGA

chip.

Tradeoffs between parallel and serial extremes are important. Within the given

resources, developers always want to achieve the highest performance. The variable

radix Montgomery multiplier implementation offers the flexibility of evaluating the

tradeoff. By synthesizing designs using different radixes, a developer can choose an

optimal radix for his/her design based on the area and timing constraints. Without

these measurements, designers can only estimate the performance of the systolic

design based on experience, or they may implement different designs to compare

the results. This work provides an efficient yet accurate way for designers to predict

the performance of a systolic Montgomery multiplier on an FPGA platform. The

81

Chapter 8 Conclusion 82

results show that the larger the radix, the faster the design. However, area also

increases with radix and the area requirements exceed the resources available on an

XCV1000 device for radixes larger than � ��� .
High Performance Parallel Structure

This research also evaluated a parallel computing structure on the system level.

The RC4 implementation presented in this thesis had a massively parallel structure

in which 96 RC4 cores are placed on a single FPGA chip. Actually more cores can

be used since the current design uses less than 50% of the logic area. This structure

is about 58 times faster than a software implementation on a Pentium 4 1.5GHz

CPU. The parallel architecture proposed in this thesis shows that an FPGA design

can have much higher performance than a general purpose processors.

Modern microprocessor have a higher clock frequency than FPGAs, however,

there are two large limitations in microprocessor implementations: low memory

bandwidth and less processing units. The memory units in FPGA chips are divided

in to small pieces and scatted all around the chip. Each of these units has their

own I/O channel and can work independently, while most microprocessor systems

have only one memory channel which in controlled centrally. Speed improvement

in microprocessor system depends on the caching and pre-fetching. If data cannot

fit in the cache and the process of the data is so simple that the processing time are

shorter than the data accessing time, the microprocessor will waste a lot of time in

idle waiting. On the other hand, FPGA design can fully utilize the on chip memories

through dedicate data processing units. The superscaler and pipelined architecture

in a microprocessor which can achieve parallelism to some degree. However, this is

limited by data dependencies and the number of ALUs. The number of processing

units in the RC4 FPGA design is much higher than that of a microprocessor. Since

all the cores have their own data and logic, data dependencies do not affect the

parallelism.

Improved Security and Efficiency

The increasing needs of high quality and efficient random number generator

Chapter 8 Conclusion 83

raised from various fields including business, academic, consumer products. Since

many cryptography systems use FPGA chips as hardware accelerator, a build in

random number generator is definitely a requirement. In the design presented, the

random seed is generated by sampling the frequency of an external clock. For a suf-

ficiently slow external clock, which has large amounts of jitter, the resulting random

numbers can pass the stringent DIEHARD test. The BBS PRNG is one of the most

secure pseudo random number generators and is suitable for cryptography related

applications. The proposed serial design has a particularly small area utilization.

FPGA designs can offer sufficient computing power for today’s cryptographic

applications. The design architecture can be varied to adapt new algorithm or differ-

ent design constraints. From high performance cryptanalysis systems to small size

serial RNG, the adaptability and usability of FPGAs in cryptographic applications

have been shown.

8.1 Future Development

The examples presented in this thesis can be integrated together to form a complete

hardware cryptographic solution. By modifying open source security applications

such as OpenSSL or integrating to the system level security protocols such as PAM

(Pluggable Authentication Modules), this cryptography system on a chip can offer

improvements both in speed and security. Finally, the reconfigurability of FPGA

chips makes it possible to prepare all possible cryptography protocols, but only

those currently used by the system need be downloaded to the hardware, saving

logic resources and hence cost.

Bibliography

[A. 01] A. Rukhin, el. A Statistical Test Suit For Random and Pseudorandom

Number Generators for Cryptographic Applications. NIST Special

Publication 800-22, 2001.

[Ado02] Adobe System Inc. Add security to PDF documents, 2002.

http://www.adobe.com/epaper/tips/acr5secure/pdfs/acr5secure.pdf.

[And01] Ross Anderson. Security Engineering - a Guide to Building Depend-

able Distributed Systems. John Wiley & Sons, 2001.

[ARV95] W. Aiello, S. Rajagopalan, and R. Venkatesan. Design of practical

and provably good random number generators. In Proceedings of the

Sixth Annual ACM-SLAM Symposium on discrete Algorithm, pages 1–

9, 1995.

[Asc99a] Ascom. IDEACrypt Coprocessor Data Sheet, 1999.

http://www.ascom.ch/infosec/downloads/IDEACrypt Coprocessor.pdf.

[Asc99b] Ascom. IDEACrypt Kernel Data Sheet, 1999.

http://www.ascom.ch/infosec/downloads/IDEACrypt Kernel.pdf.

[AT93] C. Adams and S. Tavares. Designing s-boxes for ciphers resistant to

differential cryptanalysis. In Proceedings of the 3rd Symposium on

State and Progress of Research in Cryptography, Rome, Italy, pages

181–190, 1993.

84

[BCF C 91] H. Bonnenberg, A. Curiger, N. Felber, H. Kaeslin, and X. Lai. VLSI

implementation of a new block cipher. In Proceedings of the IEEE

International Conference on Computer Design: VLSI in Computer and

Processors, pages 501–513, 1991.

[BK02] Eli Biham and Paul C. Kocher. Known Plaintext Attack on the PKZIP

Stream Cipher, 2002. ftp://ripem.msu.edu/pub/crypt/docs/kocher-pkzip-

attack.txt.

[Bor97] J. Borst. Differential-linear cryptanalysis of IDEA. ESAT–

COSIC Technical Report 96–2, Department of Electrical Engineering,

Katholieke Universiteit Leuven, February 1997.

[BP99] T. Blum and C. Paar. Montgomery modular exponentiation on recon-

figurable hardware. In Proceedings of the 14th IEEE Symposium on

Computer Arithmetic, pages 70–77, April 1999.

[CBK91] A. V. Curiger, H. Bonnenberg, and H. Kaeslin. Regular VLSI archi-

tectures for multiplication modulo � " �}� . IEEE Journal of Solid-State

Circuits, 26(7):990–994, July 1991.

[CBZ C 93] A. Curiger, H. Bonnenberg, R. Zimmerman, N. Felber, H. Kaeslin,

and W. Fichtner. VINCI: VLSI implementation of the new secret-key

block cipher IDEA. In Proceedings of the IEEE Custom Integrated

Circuits Conference, pages 15.5.1–15.5.4, 1993.

[DH76] W. Diffie and M.E. Hellman. New directoins in cryptography. IEEE

Transactions on Information Theory 22, pages 644–654, 1976.

[Ele98] Electronic Frontier Foundation. Cracking DES. O’Reilly, 1998.

[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Transactions on Information Theory 3,

pages 469–472, 1985.

85

[GA99] M. George and P. Alfke. Linear Feedback Shift Registers in Virtex De-

vices. Xilinx, Inc., August 1999. Application Note XAPP210, Version

1.0.

[GBP01] A. Gerosa, R. Bernardini, and S. Pietri. A fully integrated 8-bit, 20

mhz, truly random numbers generator, based on a chaotic system. In

SSMSD. 2001 Southwest Symposium on Mixed-Signal Design, pages

87–92, 2001.

[GSB C 00] S. C. Goldstein, H. Schmit, M. Budiu, M. Moe, and R. R. Taylor.

PipeRench: A reconfigurable architecture and compiler. Computer,

33(4):70–77, April 2000.

[GW96] I. Goldberg and D. Wagner. Architectural considerations for cryp-

tographic hardware. http://www.cs.berkeley.edu/ ÷ iang/issac/hardware/,

1996.

[HL94] M. Hellman and S. Langford. Differential-linear cryptanalysis. In

Advances in Cryptology, Proceedings of Eurocrypt 1994, pages 26–

36, 1994.

[HMC89] P.D. Hortensius, R.D McLeod, and H.C. Card. Parallel random number

generation for VLSI systems using cellular automata. IEEE Transac-

tions on Computers, 38(10):1466–1473, Oct. 1989.

[hot02] HotBits: Genuine random numbers, generated by radioactive decay,

2002. http://www.fourmilab.ch/hotbits/.

[HTSH00] M.K. Hani, Siang Lin Tan, and N. Shaikh-Husin. FPGA implementa-

tion of RSA public-key cryptographic coprocessor. In Proceedings of

TENCON 2000, volume 2, pages 6–11, 2000.

[Knu81] D. Knuth. The Art of Computer Programming: Vol. 2, Seminumerical

Algorithms. Addison-Wesley, 1981.

86

[Knu95] L. R. Knudsen. Truncated and higher order differentials. In Proceed-

ings of the Second International Workshop on Fast Software Encryp-

tion, pages 196–211, 1995.

[Kor93] P. Kornerup. High-radix modular multiplication for cryptosystems. In

11th Symposium on Computer Arithmetic, pages 277–283, Jul 1993.

[Kor94] P. Kornerup. A systolic, linear-array multiplier for a class of right-shift

algorithms. IEEE Transactions on computers, 43:892–898, Aug 1994.

[KWH99] P.D. Kundarewich, S.J.E. Wilton, and A.J. Hu. A CPLD–based RC4

cracking system. In IEEE Proceedings of the Canadian Conference on

Electrical and Computer Engineering, pages 397–401, 1999.

[LCTL00] M. P. Leong, O. Y. H. Cheung, K. H. Tsoi, and P. H. W. Leong.

A bit-serial implementation of the international data encryption al-

gorithm (IDEA). In Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 122–131, April

2000.

[Lip98] Helger Lipmaa. IDEA: A cipher for multimedia architectures. In Se-

lected Areas in Cryptography ’98, pages 253–268, August 1998.

[LM90] X. Lai and J. Massay. A proposal for a new block encryption stan-

dard. In Advances in Cryptology, Proceedings of Eurocrypt 1990,

pages 389–404, 1990.

[LMM86] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-

random number generator. SIAM Journal on computing, 15(2), 1986.

[LMM91] X. Lai, J. Massay, and S. Murphy. Markov ciphers and differential

cryptanalysis. In Advances in Cryptology, Proceedings of Eurocrypt

1991, pages 17–38, 1991.

87

[Mar02] George Marsaglia. DIEHARD: a battery of tests for random number

generators, 2002. http://stat.fsu.edu/ geo/diehard.html.

[MH78] R.C. Merkle and M.E. Hellman. Hiding information and signatures

in trapdoor knapsacks. IEEE Transactions on Information Theory 24,

pages 525–530, 1978.

[Mic02] Microsoft Co. Office XP Document Security, 2002.

http://www.microsoft.com/Office/techinfo/enterprisezone/itcolumn07.asp.

[MMF98] O. Mencer, M. Morf, and M. J. Flynn. Hardware software tri-design

of encryption for mobile communication units. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, volume 5, pages 3045–3048, May 1998.

[Mon85] P. Montgomery. Modular multiplication without trial division. In

Mathematics of Computation, volume 44, pages 519–521, Apr 1985.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.

Handbook of Applied Cryptography. CRC Press, 5th edition, 2001.

[MZ91] C. Meier and R. Zimmerman. A multiplier modulo (� " �j�). Diploma

thesis, Institut für Integrierte Systeme, ETH, Zürich, Switzerland,

February 1991.

[Net02] Netscape Communications Co. The SSL Protocol, 2002.

http://wp.netscape.com/eng/ssl3/draft302.txt.

[Nyb96] K Nyberg. Generalized feistel networks. Advances in Cryptology,

Asiacrypt’96 Springer-Verlag, pages 91–104, 1996.

[Ope02] The Open Group. The Single UNIX Specification, Version 2, 2002.

http://www.opengroup.org/onlinepubs/7908799/xsh/crypt.html.

88

[PC00] Craig S. Patrie and J. Alvin Connelly. A noise-based ic random num-

ber generator for applications in cryptography. In IEEE Transactions

on Circuits and Systems – I: fundamental Theory and Application, vol-

ume 47, pages 615–621, 2000.

[PMO C 01] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok,

M.Y. Wong, and K.H. Lee. Pilchard – a reconfigurable computing plat-

form with memory slot interface. In Proceedings of the IEEE Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM),

2001.

[Ram89] R. Ramaswamy. Application of a key generation and distribution al-

gorithm for secure communication in open systems interconnection

architecture. In Security Technology, 1989. Proceedings. 1989 Inter-

national Carnahan Conference on, 1989, pages 175–180, 1989.

[RAR02] RAR Lab. RAR Archiver, 2002. http://www.rarlab.com.

[Req02a] Request For Comments. The Kerberos Network Authentication Service

(V5), 2002. http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1510.html.

[Req02b] Request For Comments. OpenPGP Message Format, 2002.

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2440.html.

[Req02c] Request For Comments. Security Architecture for the Internet Proto-

col, 2002. http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2401.html.

[RRK98] R.C. Fairfield, R.L. Mortenson, and K.B. Coulthart. An LSI Random

Number Generator (PRN). Springer-Verlag, pages 203–230, 1998.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. In Communication

ACM, volume 21, pages 120–126, Feb 1978.

89

[RSA99] RSA Labs. DES III Challenge. http://www.rsa.com/rsalabs/des3/, 1999.

[RSA00] RSA Labs. FAQ, 2000. http://www.rsasecurity.com/rsalabs/faq/index.html.

[SAF98] S. L. C. Salomao, V. C. Alves, and E. M. C. Filho. HiPCrypto: A high-

performance VLSI cryptographic chip. In Proceedings of the Eleventh

Annual IEEE ASIC Conference, pages 7–11, 1998.

[Sch93] B. Schneier. Description of a new variable-length key, 64-bit block

cipher (blowfish). In Proceedings of 1st Internal Workshop on Fast

Software Encryption, Springer-Verlag, pages 191–204, 1993.

[Sch96] B. Schneider. Applied Cryptography. John Wiley & Sons, second

edition, 1996.

[sPK01] Toni stojanovski, Johnny Pil, and Ljupco Kocarev. Chaos-based ran-

dom number generators. Part II: practical realization. IEEE Transac-

tions on Circuits and Systems – I: fundamental Theory and Applica-

tion, 48(3):382–385, March 2001.

[STCS01] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg Snider.

FPGA implementation of neighborhood-of-four cellular automata ran-

dom number generators. Technical report, HP Labs Technical Reports,

2001.

[SV93] M. Shand and J. Vuillemin. Fast implementations of RSA cryptogra-

phy. In Proceedings., 11th Symposium on Computer Arithmetic, pages

252 –259, 1993.

[TSW00] Wei-Chang Tsai, C.B. Shung, and Sheng-Jyh Wang. Two systolic ar-

chitectures for modular multiplication. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 8(1):103 –107, Feb. 2000.

90

[TT00] A. Tiountchik and E. Trichina. Modular exponentiation on fine-grained

fpga. In Proceedings. 13th Symposium on Integrated Circuits and Sys-

tems Design, pages 139 –143, 2000.

[TTTM02] T. Rinne, T. Ylonen, Tero Kivinen, and M Saarinen Sami. SSH Authen-

tication Protocol. Network Working Group, Interrnet-Draf, Internet

Engineering Task Force (IETF), 2002.

[VMD98] F. Montoya Vitini, J. Monoz Masque, and A. Peinado Dominguez.

Bound for linear complexity of BBS sequences. In Electronics Let-

ters, volume 34, pages 450–451, 1998.

[VV84] U. Vazirani and V. Vazirani. Efficient and secure pseudo-random num-

ber generation. In Advances in Cryptology – CRYPTO ’84, Lecture

Notes in Computer Science No. 196, Springer-Verlag, pages 193–202,

1984.

[Wal93] Colin D. Walter. Systolic modular multiplication. IEEE Transactions

on Computers, 42(3):376–378, March 1993.

[Wal97] Colin. D. Walter. Space/time trade-offs for higher radix modular mul-

tiplication using repeated addition. IEEE Transactions on Computers,

pages 139–141, Feb 1997.

[WIF01] Robert K. Watkins, Jason C. Isaacs, and Simon Y. Foo. Evolvable

random number generators: A schemata-based approach. In 2001 Ge-

netic and Evolutionary Computation Conference Late Breaking Pa-

pers, pages 469–473, 2001.

[WMSL95] S. Wolter, H. Matz, A. Schubert, and R. Laur. On the VLSI implemen-

tation of the international data encryption algorithm IDEA. In Pro-

ceedings of the IEEE International Symposium on Circuits and Sys-

tems, volume 1, pages 397–400, 1995.

91

[Wol86] S. Wolfram. Random sequence generation by cellular automata. Ad-

vances in Applied Mathematics, 7:123 – 169, 1986.

[WSW C 99] Che-Han Wu, Ming-Der Shieh, Chien-Hsing Wu, Ming-Hwa Sheu,

and Jia-Lin Sheu. A VLSI architecture of fast high-radix modular

multiplication for RSA cryptosystem. In ISCAS ’99. Proceedings of

the 1999 IEEE International Symposium on Circuits and Systems, vol-

ume 1, pages 500–503, 1999.

[Xil99] Xilinx, Inc. Xilinx Libraries Guide, 1999.

[Xil00a] Xilinx. Using the Virtex Block SelectRAM+ Features, 2000. Applica-

tions Note XAPP130.

[Xil00b] Xilinx, Inc. Xilinx Coregen Reference Guide, 2000. Version 3.1i.

[Xil02a] Xilinx Inc. Virtex-E Extended Memory: Detailed Functional Descrip-

tion, 2002.

[Xil02b] Xilinx Inc. Virtex-II: Detailed Functional Description, 2002.

[ZCB C 94] R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber,

and W. Fichtner. A 177Mb/sec VLSI implementation of the interna-

tional data encryption algorithm. IEEE Journal of Solid-State Circuits,

29(3):303–307, March 1994.

[ZH01] Huang Zhun and Chen Hongyi. A truly random number generator

based on thermal noise. In Proceedings of 4th International Confer-

ence on ASIC, pages 862–864, 2001.

92

Publications

Full Length Conference Papers

4 K.H. Tsoi, K.H. Lee and P.H.W. Leong: A Massively Parallel RC4 Encryp-

tion Engine, FCCM 2002;

4 K.H. Tsoi, O.Y.H. Cheung and P.H.W. Leong: A Variable-Radix Systolic

Montgomery Multiplier, FCCM 2002;

4 O. Y. H. Cheung, K. H. Tsoi, Philip Heng Wai Leong, M. P. Leong: Tradeoffs

in Parallel and Serial Implementations of the International Data Encryption

Algorithm IDEA. CHES 2001: pp. 333-347 2001

4 M.P. Leong, O.Y.H. Cheung, K.H. Tsoi, and P.H.W. Leong, A Bit-Serial Im-

plementation of the International Data Encryption Algorithm IDEA”, Pro-

ceedings of the IEEE Symposium on Field-Programmable Custom Comput-

ing Machines (FCCM), Napa Valley, California USA, pp. 122-131, 2000

93

