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ABSTRACT 
 

 

This thesis describes the design and implementation of two pattern recognition systems 

on field-programmable gate arrays (FPGAs) that operate based on ‘time delays’. 

 The idea was inspired by the concept of spiking neural networks (SNNs) which 

suggests information processing in biological neural systems is based on precise timing 

of action potentials or spikes. Both systems developed process patterns in the form of 

spatiotemporal spike sequences – patterns of spikes distributed over a population of 

neurons (“space”) and time. The pattern processor in both systems is a time-delay 

network consisting of programmable delays and coincidence detectors, which 

respectively perform pattern learning and matching. The network is implemented using 

an innovative ‘clock-free’ design approach that exploits the architecture and hardware 

resources of FPGAs. 

 The first system performs pattern learning and recognition tasks while the 

second operates as an auto-associative memory – a type of memory where stored data is 

retrieved via partial presentation of the original copy. Both systems demonstrate 

effective and fast processing of pattern recognition tasks with relatively low hardware 

cost. 
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CHAPTER 1  
 
 

INTRODUCTION 
 

 

 

1.1 Aims and Motivation 
 

Humans are granted with highly sophisticated ability to learn and distinguish patterns, 

for example, recognizing a face, reading handwriting and understanding spoken words. 

Research in pattern recognition has been undertaken intensively for the past five 

decades with a common goal to establish similar capabilities in machines. However, 

design and implementation of a pattern recognizer that is realistic and efficient on 

hardware remain a challenging task. 

There are varieties of pattern recognition techniques, ranging from simple 

matching of patterns against stored templates to more complex methods of using 

artificial neural networks (ANNs) [30]. The work in this thesis was inspired by the idea 

of spiking neural networks (SNNs). Neurons in the nervous system communicate using 

short electrical pulses called action potentials, or spikes [42, 44]. SNNs represent the 

most recent generation of ANN models where precise timing of individual spikes is 

believed to be playing an important role in the functioning of the brain [1, 42]. 

Biological studies and the concept of SNNs suggest that information is encoded in the 

‘time relationship’ or ‘delays’ between spikes [43, 46, 47]. 

 Field-programmable gate arrays (FPGAs), on the other hand, are programmable 

logic devices that offer a great scale of flexibility in design and implementation of 

digital circuits due to their reprogrammability. These devices consist of hundreds of 
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thousands of logic elements with massive programmable connections [59, 60]. Readily 

available and affordable to users, FPGAs are widely popular for hardware 

implementation and design prototyping [41, 7, 15, 23, 39, 54, 48]. 

The aim of this thesis is to develop pattern recognition systems that process 

patterns based on ‘time delays’ on FPGAs. The motivation of this work is two-fold. 

Firstly, we would like to explore the use of time delays in pattern recognition processing 

and realize the idea into concrete hardware implementations on FPGAs. Secondly, we 

hope the hardware models developed and the approach we used may contribute to the 

discovery of an innovative design methodology for creating fast-processing circuits, for 

applications including but not limited to pattern recognition. In particular, we aim to 

develop fast-processing pattern recognition models by exploiting the architecture and 

hardware resources of FPGAs. 

 

1.2 Thesis Outline 
 

Research in pattern recognition has a long history. Chapter 2 introduces the basics of 

pattern recognition and provides the background details that led us to the idea of 

developing our pattern recognition systems. The fundamentals of SNNs and FPGAs are 

introduced in this chapter. We also gain insight into existing works of other researchers 

and introduce the idea of our pattern recognition models. 

In Chapter 3, we describe the functionality and the design of our pattern 

recognition model, and demonstrate how such model can be implemented by taking 

advantage of the FPGA architecture. We explore how information could be encoded 

into spike patterns through time delays and explain how our model learns and 

recognizes spike patterns. 

Based on the same principle of using time delays, we develop a memory model 

on an FPGA in Chapter 4. The memory belongs to the family of auto-associative 

memories where data is retrieved through partial presentation of the original copy. The 

system stores and recalls spike patterns. 
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In Chapter 5, we present the results for tests and hardware implementation for 

the two systems developed in Chapter 3 and 4, respectively. The results provide a good 

demonstration of the viability of implementing a pattern recognizer based on time 

delays. 

 In the final chapter, we summarize our work in this thesis and provide possible 

directions for future work. 
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CHAPTER 2  
 
 

BACKGROUND  
 

 

 

2.1 Introduction 
 

This chapter provides the background for the work we intend to present in this thesis. 

 The overview of pattern recognition and its various approaches is first provided 

in Section 2.2. Section 2.3 introduces the fundamental concept of spiking neural 

networks (SNNs), which provides the inspiration for our work in developing a pattern 

recognition system based on time delays. An overview of existing pattern recognition 

models developed by other researchers is covered in Section 2.4, while Section 2.5 

provides an introduction to field-programmable gate arrays (FPGAs) and examples of 

FPGA-based pattern recognizers. Finally, the last section of this chapter describes the 

basic idea of a delay-based pattern recognition system we aim to develop. 

 

2.2 Pattern Recognition 
 

In machine learning, pattern recognition is the study of how machines can learn to 

distinguish patterns of interest and make sound decisions about the categories of the 

patterns [30]. Research in pattern recognition has been around for about 50 years. 

However, pattern recognition systems with high speed processing power, low cost and 

small size, and efficient implementation, remain elusive. 
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Figure 2.1: Example of a simple statistical classification 

 

There are four best known approaches for pattern recognition: 1) template 

matching, 2) statistical classification, 3) syntactic or structural matching, and 4) 

artificial neural networks (ANNs). 

Template matching is one of the classical and the simplest approaches to pattern 

recognition. In this approach, patterns to be recognized are directly matched against 

stored templates or prototypes. The templates themselves could be learned from 

available training samples. However, template matching is computationally demanding 

and may not be the most efficient and effective approach to pattern recognition when 

dealing with complex or noisy patterns. 

 The statistical classification approach classifies patterns based on the statistical 

distributions of features. Each pattern is usually represented by a point in a 

representation space of the features and classes of patterns are represented by regions in 

that feature space. For example, suppose the average value of height and weight for 

women is 165 cm and 57 kg, respectively, and for men is 180 cm and 72 kg, 

respectively; a statistical classifier may estimate the probability distribution of the two 

features, i.e. height and weight, from training samples and establish a decision boundary 

for classification, as illustrated in Figure 2.1. A person with height 182 cm and weight 

75 kg will then be classified as a man in this example. 

Syntactic or structural matching adopts a hierarchical approach to pattern 

recognition. This method decomposes a given complex pattern into sub-patterns which 

are themselves built from yet simpler sub-patterns. The given complex pattern is then 

classified based on the interrelationships between the sub-patterns and itself. For
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Figure 2.2: A simple feedforward artificial neural network 

 

example, a complex pattern such as an animal may be described in terms of its sub-

patterns such as head, limbs, legs, or tail, and be classified into an appropriate category 

based on relationships between the sub-patterns and its complex pattern. 

Artificial neural networks (ANNs) can be applied to a variety of problems 

including pattern recognition and are inspired by biological neural systems [53, 18]. 

This approach has attracted significant attention due to its ability to learn complex non-

linear input-output relationships. The learning process often involves updating network 

configurations and connection weights so that a network can efficiently adapt itself to 

learn patterns and perform classification tasks [32, 52, 17, 56]. Among various types of 

ANN models, feedforward networks such as multilayer perceptrons, redial basis 

function networks, Kohonen’s self-organizing map and SNNs are commonly used for 

pattern recognition tasks [2, 13, 65, 31]. 
 

2.3 Spiking Neural Networks 
 

Spiking neural networks (SNNs) are the third generation of ANN models that include 

the factor of time in addition to neuronal and synaptic mechanisms modeled in previous 

generations of ANNs [42, 61]. These ANN models take into account the precise firing 

times of neurons, which are believed to be main features in cognitive processing [1, 19]. 
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Figure 2.3: (a) A simple spiking neural network; (b) Spike emission of an integrator 
neuron; (c) Spike emission of a coincidence detector neuron 

 

Neurons in the nervous system process and transmit information using action 

potentials, or spikes [42, 44]. Information is believed to be encoded in the time delays 

between spikes [43, 46, 47, 8]. In general, the biological model of a neuron emits a 

spike whenever the temporal integration of incoming action potentials generated by its 

pre-synaptic neurons exceeds a given threshold, Vth, as illustrated in Figure 2.3 (a) and 

(b) [27, 29, 33]. Nevertheless, the specific firing behavior of a neuron may however 

vary depending on parameters such as the threshold of membrane potential and the 

inter-spike interval of pre-synaptic neuron emissions. The firing behavior may vary 

from the role of “integrator”, as in Figure 2.3 (b), to the role of “coincidence detector”, 
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as in Figure 2.3 (c) [35, 49]. For integrator, most of the input spikes integrated over a 

period of time contribute to the emission of an output spike; while for coincidence 

detector, only quasi-synchronously arriving input spikes trigger an output spike 

emission. Integrator and coincidence detector are two of the best known spiking neuron 

models suggested in biological research [28, 35]. 

 Biological and theoretical results have shown that SNNs are potentially more 

powerful than traditional ANNs [43, 45, 63], and are able to perform signal-processing 

tasks in a robust and energy-efficient manner. Due to these advantages, SNNs have 

attracted attention in various bio-sensing applications including olfactory sensing [11, 

34], auditory systems [25, 36, 37, 71], image processing [12, 40] and pattern recognition 

[73, 57, 6]. 

 

2.4 Existing Works on SNN and Time Delay-based Pattern 
Recognition 

 

Various SNN and time delay-based pattern recognition systems were studied by 

researchers. This section provides examples of theoretical and simulation models of 

such systems. Examples for hardware models in FPGA implementations are given in 

Section 2.5.3. 

 Hopfield presented a computational model for pattern recognition based on 

action potential timing [26]. He suggested that a given pattern in the form of analog 

variables could be represented by a pattern consisting of action potentials or spikes 

occurring in a given time relationship, and the recognition computation in this 

representation could be performed by a network that uses time delays and coincidence 

detection. The time delays are organized in a way such that the spikes of a pattern, 

which occur at different times, arrive simultaneously at a coincidence detection neuron, 

which performs recognition. 

 An adaptive SNN architecture with an online learning procedure for visual 

pattern recognition was proposed by Wysoski et al. [74]. The architecture comprises 

four layers of integrate-and-fire neurons. The network learns different views of an 

object through training samples presented to it online and adaptively changes its 

structure to respond optimally to different visual patterns. The system performs face 
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recognition by collecting multiple frames of visual data for processing before making a 

final decision. 

 Gupta and Long presented a 2-layer SNN model for character recognition [21]. 

The network consists of integrate-and-fire neurons and uses spike time-dependent 

plasticity (STDP) for learning, where STDP is a well-known type of learning rule based 

on the order of pre- and post-synaptic neurons’ firing times [9, 58, 62]. Their results 

showed that 43 out of a set of 48 characters were successfully recognized by the 

network. Unlike Hopfield’s model mentioned earlier, which emphasizes representation 

of a generic analog input pattern via a set of neurons firing with a time relationship; an 

input pattern in the models from Gupta and Long, and Wysoski et al., is a set of image 

pixels each represented by a neuron with constant “ON” and “OFF” states to represent 

pixel contrast. 

 Apart from SNN-based pattern recognition models, there are other models that 

operate based on time delays such as time-delay neural network-based models [22, 38, 

70]. However, these models are primarily used to work with continuous data especially 

in speech processing and time series prediction, and fundamentally different from SNN-

based models that process information-encoded temporal spike patterns. Our goal for 

this thesis is to develop pattern recognition systems with functionality based on the 

fundamentals of SNNs, i.e. similar to how the brain possibly performs pattern 

recognition tasks through the use of time delays. We aim to develop basic pattern 

recognition models that work with temporal spike patterns and potentially be useful for 

development of more complex pattern recognition systems in the future. 

 

2.5 Field-Programmable Gate Arrays 
 

Since their invention in the mid-1980s, field-programmable gate arrays (FPGAs) have 

grown significantly in popularity due to their effective programmability and 

reconfigurability [53, 10, 5, 16, 20, 24, 51]. These advantages allow different design 

choices to be evaluated and adopted in a very short time. Unlike custom application-

specific integrated circuit (ASIC) implementations, FPGAs are readily available at 

reasonable cost and allow great reduction in a development cycle. 
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2.5.1 Architecture and logic resources 
 

The architecture of an FPGA consists of an array of programmable logic blocks with 

interconnect resources, as well as Input/Output blocks on the border of the chip, as 

illustrated in Figure 2.4. 

The logic blocks constitute the main logic resources for implementing sequential 

and combinational circuits. The logic resources in each logic block are usually 

organized as small units of logic elements or cells. Each logic element often consists of 

two basic components – an n-input look-up table (LUT) and a register. An n-input LUT 

is basically a function generator that can implement any boolean function of n variables, 

while a register is a basic programmable storage element. The terminology used in the 

organization of logic resources may vary from one FPGA vendor to another. For 

example, Xilinx refers logic blocks as ‘configurable logic blocks’ (CLBs) [76], while 

Altera refers them as ‘logic array blocks’ (LABs) [3]. 

 

 

 
 

Figure 2.4: Basic FPGA architecture 
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Figure 2.5: Logic resources in a Xilinx Spartan-3E CLB 

 

 

Figure 2.5 illustrates an example of a CLB in a Xilinx Spartan-3E device. The 

logic resources are organized as ‘slices’ in each CLB. Each slice contains two logic 

cells, where each of them comprises a 4-input LUT and a register. There are also 

additional hardware features in a slice, such as multiplexers (muxes), carry and 

arithmetic logic for implementing circuits that would otherwise require additional LUTs. 

Next to every CLB, there is a ‘switch matrix’ that provides programmable connections 

between slices of the same or different CLB(s) via interconnect. 

In addition to the basic logic resources, modern FPGAs nowadays come with 

embedded higher-level logic functions that are commonly used such as multipliers, 

memories and processors. Having these commonly-used functions embedded into the 

chip allows savings in area and better speed performance compared to building them 

from basic logic resources. The availability of embedded processors such as PowerPC 

and ARM enables the development of a-system-on-a-reconfigurable-chip. Besides these 

hard-macro processors, there are also soft processors such as MicroBlaze and Nios II 

that can be implemented using the FPGA logic resources. 
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2.5.2 Interconnect resources 
 

Interconnect resources are programmable routing channels between functional entities 

in an FPGA, such as logic elements, Input/Output blocks and embedded memories [66]. 

They are usually segmented into different lengths and geometrically optimized for 

optimum connectivity. 

 Figure 2.6 illustrates the organization of interconnect resources in a Xilinx 

Spartan-3E FPGA. There are four types of interconnect segments in the device – single, 

double, hex (shown respectively in the top, middle and bottom boxes of the figure) and 

long lines. Single lines route signals to neighboring CLBs horizontally, vertically and 

diagonally. Double lines route signals to every first and second CLB away horizontally 

and vertically, in four directions; while hex lines route signals to every third and sixth 

CLB away, also in four directions. Long lines span across the chip and connect to one 

out of every six CLBs. 

Placement and routing of hardware logic are often optimized by FPGA design 

tools. The design tools place and route associated logic within a logic block or adjacent 

logic blocks to optimize for speed performance and area efficiency. 

 

 

Figure 2.6: Interconnect resources in a Xilinx Spartan-3E device 
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2.5.3 SNN-based pattern recognizers on FPGAs 
 

Apart from theoretical models, hardware implementations of SNN models were also 

explored in research [68, 69, 12, 14, 50, 64, 67]. This section provides examples of 

SNN-based pattern recognizers implemented on FPGAs. 

An FPGA implementation of a frequency discriminator using a 3-layer SNN was 

presented by Upegui et al. [67]. Each layer of the network contains 10 neurons. Each 

neuron was implemented using a finite state machine as control unit, a memory to store 

parameters, and other sequential logic to perform learning and computations. The 

hardware model demonstrated positive response to waveforms of different frequencies. 

Caron et al. presented an FPGA-based SNN for pattern recognition where 

matching is achieved through synchronization of firing neurons [12]. The SNN uses a 

bit slice architecture where neurons are organized into slices or columns of 1-bit wide. 

Each neuron is implemented using a block RAM for synaptic weight storage, along with 

serial adders and sequential logic to perform computations. The system demonstrated 

accurate pattern matching results in an image recognition task. 

 Schrauwen et al. proposed a speech recognition system on an FPGA using a 

liquid state machine (LSM), a recurrent network of spiking neurons where only the 

output layer is trained [64]. The system uses a serial-processing, serial-arithmetic 

architecture to achieve savings in hardware resources. The work showed that a 

relatively small implementation of a real-time speech recognizer compared with 

existing solutions is viable with a tradeoff in speed. 

 Another example of FPGA-based pattern recognition system using an SNN, also 

for speech recognition application, was presented by Cassidy et al. [14]. The 

architecture consists of an array of 32 identical integrate-and-fire neurons, each of them 

implemented using a 16-bit digital accumulator and memories. The system 

demonstrated consistent spike responses to respective input speech patterns. 
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2.6 The Central Idea 
 

Having introduced the background in previous sections, this section describes the basic 

idea of our work that was fundamentally inspired by the concept of SNNs. 

 As described in Section 2.4 and 2.5.3, various pattern recognition models based 

on SNNs were proposed by researchers. These models are either in theoretical or 

simulation form, or in hardware implemented using conventional design practices and 

standard digital circuits. In our work, we look into the use of time delays for pattern 

recognition tasks and explore a novel design approach for implementing a delay-based 

pattern recognition system on an FPGA. The basis of our pattern recognition model is 

fundamentally similar to that in Hopfield’s theoretical model described in Section 2.4, 

which uses a time-delay network and coincidence detection for recognition computation. 

We further expand from this basis into a more concrete hardware model and realize it 

on an FPGA with a novel and unique design approach. 

 FPGAs consist of rich hardware resources which are potentially useful for 

implementing delays. We develop our pattern recognition circuit by exploiting these 

massive resources available on FPGAs. Typically, processing speed of a standard digital 

system designed using conventional synchronous approach is often limited by clock 

frequencies of the circuit. Power consumption is also relatively high in synchronous 

circuits when operating at a high clock rate. We aim to build a hardware model for 

pattern recognition that uses only combinational logic and interconnect resources, with 

no sequential clocking elements. This unique design approach would allow high-speed 

processing of pattern recognition tasks with relatively low hardware cost. The approach 

could possibly improve processing speed of a digital system to a level beyond 

conventional synchronous circuits could achieve, along with the benefit of power 

savings. Furthermore, exploitation of interconnect resources for implementing delays 

would allow significant savings on logic elements and free up those resources for other 

logic implementations. The approach may also potentially contribute to development of 

fast-processing circuits beyond FPGA platforms in the future since delays implemented 

using wires are easier and less expensive to fabricate. 
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 Based on this basic idea and similar approach, we also develop an auto-

associative memory in Chapter 4. The memory is fully implemented on an FPGA with 

pattern learning capability. 

 As SNNs are also often referred to as pulsed neural networks, the terms “spike” 

and “pulse” are used interchangeably in this thesis. 
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CHAPTER 3  
 
 

DELAY-BASED PATTERN RECOGNITION 
 

 

 

3.1 Introduction 
 

The aim of this chapter is to demonstrate the feasibility of FPGA implementation of a 

delay-based pattern recognition circuit. The circuit is inspired by the concept of spiking 

neural networks (SNNs) where time delays are believed to be crucial in neurobiological 

processing [44, 46, 47]. FPGAs consist of massive logic and interconnect resources 

which are potentially useful for implementing delays. The work in this chapter looks 

into the use of time delays for pattern recognition and the exploitation of FPGA 

hardware resources as programmable delays for implementing a delay-based pattern 

recognition circuit. In particular, the work explores the design of a basic programmable 

delay line that serves as a fundamental structure for building such pattern recognition 

circuits. A prototype is developed to demonstrate a complete system with pattern 

learning capability. 

 

3.1.1 Programmable delays and pattern recognition 
 

Inspired by the concept of SNNs, we propose a basic pattern recognition circuit that 

uses time delays in the processing of patterns. The patterns are in the form of spike or 

pulse sequences.  
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Figure 3.1: Delay-based pattern recognition 

 

The pattern recognition circuit consists of two basic components – 

programmable delay lines and a coincidence detector. As illustrated in Figure 3.1, for 

an input pattern presented to the circuit, each of the spikes is fed through a dedicated 

programmable delay line that is connected to the coincidence detector. If the 

programmable delay lines could be trained through delay adaptation such that 

coincidence of delayed spikes is triggered at the coincidence detector, then one could 

train the circuit to remember a given pattern and the circuit would detect the trained 

pattern when the same pattern is presented to it again. The coincidence detector is an 

AND gate and a detection of coincidence of the delayed spikes results in an assertion of 

an output spike indicating that the pattern is detected. 

 

3.1.2 Spatiotemporal spike sequence 
 

Neurons in the nervous system communicate using actions potentials, which are, in 

general, referred to as ‘spikes’, or ‘pulses’. A delay-based pattern recognition circuit 

described in this chapter processes patterns in the form of spatiotemporal spike 

sequences. A spatiotemporal spike sequence is a pattern of spikes distributed over both 

a population of neurons (“space”) and time. 
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Figure 3.2: Mapping of spatiotemporal spike sequence onto programmable delay lines 

 

We define a spatiotemporal spike sequence to be represented by a vector of k 

elements {x0, x1, ... , xk-1} with each element having b temporal values {r0, r1, … , rb-1}, 

as illustrated in Figure 3.2. Each temporal value could represent a piece of data and they 

all have a pulse width, tres, with a zero time gap between pulses. For example, for a k-

element vector with 8 temporal values, each of the xi elements could represent an 

integer in {0, 1, … , 7}, while a vector with 26 temporal values could represent a set of 

characters {A, B, … , Z}. Through this temporal coding scheme, a vector of a data type 

is translated into a sequence of pulses, or spikes. For a k-element, b-temporal value 

vector, the total number of possible patterns that could be produced is bk. 

In terms of hardware mapping and representation, each xi element of a k-element, 

b-temporal value vector could be represented by a programmable delay line capable of 

producing b different delays, as illustrated in Figure 3.2. 

 

3.1.3 FPGA interconnect resources 
 

The architecture of an FPGA consists of massive logic and interconnect resources. The 

design of programmable delay lines described in this chapter effectively utilizes those 

hardware resources and takes advantage of the interconnect routing architecture for 

building a delay-based pattern recognition circuit. 
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Without loss of generality, Xilinx Spartan-3E family FPGAs were used in this 

work due to their low cost and high performance benefits. Interconnect scheme of these 

devices is previously described in Section 2.5.2 of Chapter 2. 

 

3.2 Design and Implementation of Programmable Delay 
Lines 

 

In this section, we describe the design of a basic programmable delay line that serves as 

a basic structure for constructing longer programmable delay lines in a delay-based 

pattern recognition circuit. The implementation of the primitives used in a 

programmable delay line that enable the programmability of the delay line is also 

described. The last part of this section illustrates how an FPGA-targeted pattern 

recognition circuit could be constructed by using these basic programmable delay lines. 

 

3.2.1 Basic programmable delay line 
 

The size of programmable delay lines used in a pattern recognition circuit varies 

depending on the needs and specifications of the patterns to be trained. For patterns with 

larger pulse width and number of temporal values, i.e. larger tres and b, larger amount of 

delays are required and hence longer programmable delay lines. 

 We describe the design of a basic programmable delay line that serves as a 

fundamental structure for building longer programmable delay lines for the size of 

interest. The architecture is based on the physical layout organization of logic and 

interconnect resources in an FPGA. The architecture effectively utilizes the logic and 

interconnect resources available to create a programmable delay line. Figure 3.3 

illustrates the architecture of the basic programmable delay line. It consists of a chain of 

LUTs each from adjacent CLBs connecting one after another serially. The basic 

programmable delay line is extendable to a longer programmable delay line by 

appending more LUTs to the end of the delay line. 
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 Figure 3.3: Architecture of basic programmable delay line 

 

The LUTs are the basic primitives of the basic programmable delay line. Each of 

the LUTs functions as a ‘delay switch’ as well as a connection point for interconnect 

segments. The delay switch is a 3-to-1 multiplexer (mux) providing options to select 

between a single, a double, or a hex line connection. 

The topology of the delay switch connections is organized in the same fashion as 

the FPGA’s interconnect scheme. Figure 3.3 illustrates the connections between the 

LUTs using each type of interconnect segment. Note that the output from each LUT 

provides a single, double, and hex line connection to the respective receiving LUTs (not 

shown explicitly for every LUT in the figure). For example, the output from the first 

LUT is routed to the second LUT via a single line; to the third LUT via a double line; 

and to the seventh LUT via a hex line. Similarly, the output from the second LUT is 

routed to the third LUT via a single line; to the fourth LUT via a double line; and to the 

eighth LUT (if exists, when appended for building a longer programmable delay line) 

via a hex line. 

Conforming to the fundamentals of conductivity, the longer an interconnect wire 

the larger the resistance and capacitance, and hence resulting in a larger delay. Table 3.1 

shows a set of characterization results obtained via the vendor’s timing analysis tools. A 

piece of single line produces an average delay of 0.51 ns, while a double and a hex line 

produce average delays of 0.68 ns and 0.80 ns, respectively. Each delay switch has an 

average delay of 0.56 ns. For estimation, we could approximate one LUT-interconnect 

pair as producing a 1 ns delay. 
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 Delays (ns) 
 Single line Double line Hex line LUT (delay switch) 

  0.52 0.66 0.79 0.58 
 0.49 0.68 0.78 0.58 
 0.50 0.71 0.80 0.55 
 0.51 0.70 0.79 0.56 
 0.48 0.70 0.81 0.56 
 0.51 0.67 0.81 0.55 
 0.53 0.68 0.78 0.58 
 0.53 0.67 0.79 0.55 
 0.49 0.66 0.81 0.54 
 0.50 0.66 0.81 0.55 

Average 0.51 0.68 0.80 0.56 
 

Table 3.1: Characterized delays of interconnects and LUTs 

 

Delay switch settings for 
DS0 to DS6 

Resulting LUTs and 
interconnects used 

Delays (ns) 

S,X,X,X,X,X,H 2 LUTs + 1 hex 2.13 
S,X,D,X,D,X,D 4 LUTs + 3 doubles 4.09 
S,X,D,X,D,S,S 5 LUTs + 2 doubles + 2 singles 5.22 
S,X,D,S,S,S,S 6 LUTs + 1 double + 4 singles 6.18 
S,S,S,S,S,S,S 7 LUTs + 6 singles 7.15 

 

Table 3.2: Resulting delays against different delay switch settings 

 

By applying appropriate settings to each of the delay switches, a basic 7-LUT 

programmable delay line with delay switches DS0 to DS6 from input to output as 

shown in Figure 3.3 is able to produce a series of variable delays ranging from 2 ns to 7 

ns, as shown in Table 3.2. For example, a {DS0,DS1,DS2,DS3,DS4,DS5,DS6} = 

{S,X,X,X,X,X,H} setting on the delay switches DS0 to DS6 produces a delay of 2.13 ns; 

a {S,X,D,X,D,X,D} setting gives a 4.09 ns delay; and a {S,S,S,S,S,S,S} setting gives a 

7.15 ns delay; where S, D, H, X denote single, double, hex line connection and don’t 

care, respectively. The resulting delays against different delay switch settings were 

measured and characterized from simulation. The results also agree with estimation 

based on summation of individual average delays of LUTs and interconnect wires by 

using the values in Table 3.1. 
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With the extendable nature of the FPGA fabric, a greater range of delays can be 

achieved by extending the delay line, creating a longer variable delay line. 

 

3.2.2 Programmable delay switches 
 

In order to allow programmability of the delay line, each of the LUTs on a delay line is 

implemented as a 16-bit addressable shift register (SRL16), a built-in feature available 

in Spartan-3E LUTs. This is shown in Figure 3.4. The A[3:0] inputs provide access to 

any bit in the shift register through the Q output. 

The A[2:0] inputs on each of the LUTs are connected to a hex, a double, and a 

single line connection, respectively. A[3] is unused and connected to ground. To select 

which of the A[3:0] inputs is output through Q, we determine the truth table values for 

the output versus the A[3:0] inputs. This is simply Q = A[m], where m ∈ {0, 1, 2, 3}, 

and A[m] is the selected input that we would like to output through Q, as shown in 

Table 3.3. This logic implementation can also be thought of as a 3-to-1 mux with 

selection determined via input and output mapping. By shifting in the truth table values 

for Q output into the shift register, we can reflect which of the A[2:0] inputs (hex, 

double, or single line connection) is output through Q. More precisely, a LUT will be 

configured to select single line connection by shifting Q[15:0] = AAAA into the shift 

register, while Q[15:0] = CCCC and Q[15:0] = F0F0 are used for double and hex line 

connections, respectively. Hence, a delay line is programmable to generate a desired 

delay by shifting an appropriate shift register value into each of the LUTs. 

 

 

Figure 3.4: Implementing LUT as 16-bit shift register 
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Ground (unused) Hex Double Single    Q[15:0] 
A[3] A[2] A[1] A[0] Q  Single AAAA 

0 0 0 0 Q[0]  Double CCCC 
0 0 0 1 Q[1]  Hex F0F0 
0 0 1 0 Q[2]    
0 0 1 1 Q[3]    
0 1 0 0 Q[4]    
0 1 0 1 Q[5]    
0 1 1 0 Q[6]    
0 1 1 1 Q[7]    
1 0 0 0 Q[8]    
1 0 0 1 Q[9]    
1 0 1 0 Q[10]    
1 0 1 1 Q[11]    
1 1 0 0 Q[12]    
1 1 0 1 Q[13]    
1 1 1 0 Q[14]    
1 1 1 1 Q[15]    

 

Table 3.3: Shift register values for configuring delay switches to select between single, 
double, or hex line connections 

 

3.2.3 Pattern recognition array 
 

CLBs in a standard Xilinx FPGA constitute the main logic resources for implementing 

digital circuits. The CLBs are arranged in a regular array of rows and columns. Each 

CLB in a Spartan-3E FPGA comprises four slices, two on each left and right side of the 

CLB. Each slice contains two LUTs. The two slices on the left are called SLICEM and 

support both logic and shift register functions that are useful for implementing 

programmable delay switches. 

The basic programmable delay line presented serves as a fundamental structure 

for building programmable delay lines in a delay-based pattern recognition circuit. By 

taking advantage of the array-based CLB architectural layout organization of logic and 

interconnect resources in Spartan-3E FPGAs, a pattern recognition circuit consisting of 

programmable delay lines could be implemented as a block of N×N CLBs array, with 

two LUTs per CLB in each horizontal and vertical direction, as illustrated in Figure 3.5.
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Figure 3.5: N×N CLBs pattern recognition array 

 

All the LUTs illustrated in the figure are SLICEM LUTs. The total number of LUTs in 

the array, L, is therefore: 

 

L = 2N × 2N = 4N2     (3.1) 

 

 Figure 3.6 illustrates an example of a 8×8 CLBs pattern recognition array that 

stores and detects patterns of a 4-element vector {x0, x1, x2, x3}. The first two elements 

of the vector x0 and x1 are stored via the horizontal programmable delay lines while the 

last two elements x2 and x3 are stored via the vertical programmable delay lines. For 

example, x0 is stored via the bottom-most horizontal delay line in each CLB row. The 

delay lines in each direction are connected one after another from one CLB row or 

column to the next CLB row or column, for respective vector elements. The connections 

between the horizontal or vertical delay lines are made via the shortest available routing
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Figure 3.6: 8×8 CLBs pattern recognition array storing a 4-element vector patterns 

 

path determined by the vendor’s FPGA design tools. The direction of a programmable 

delay line is flexible to be defined differently. For example, the horizontal delay lines 

may go alternating from left to right and from right to left instead of always from left to 

right as shown in Figure 3.6. In addition, a programmable delay line may also be 

formed with a mix of horizontal and vertical delay lines as long as there are unused 

LUT and interconnect resources available. 

The pattern recognition array has the flexibility of storing and detecting different 

and independent sets of spatiotemporal patterns of k-element, b-temporal value vectors. 

Each set of patterns could have its own specifications in terms of number of elements 

and delay requirements. The specifications of the patterns could also potentially be 

defined differently and may not necessarily be limited to what is defined in Section 

3.1.2. For example, each xi element of a k-element vector could potentially be having 

different number of temporal values instead of the same. 
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Figure 3.7: A pattern recognition array storing two different and independent sets of 
patterns, {A0, A1, A2} and {B0, B1} 

 

Figure 3.7 illustrates an example of a pattern recognition array that stores two 

different and independent sets of spatiotemporal patterns – a set of 3-element vector 

patterns {A0, A1, A2} and a set of 2-element vector patterns {B0, B1}. The first set of 

patterns {A0, A1, A2} is stored via the horizontal programmable delay lines while the 

second set {B0, B1} is stored via vertical programmable delay lines. 

 The length of a programmable delay line may vary, depending on the needs of 

the amount of delay required. For example, the A0 element in the first set of patterns that 

requires lesser amount of delay compared to A1 element may take up 2 rows of the 

horizontal programmable delay lines, while the latter may take up 8 rows of the 

programmable delay lines. 
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 The input and output of a programmable delay line could start and end at any 

LUTs within the array as long as there are sufficient LUT and interconnect resources 

available to meet the pattern requirements. 

 

3.3 Training 
 

The network can be trained to recognize a given pattern through delay adaptation of the 

input spikes Xi to a target spike Xtarget using a training algorithm. The pseudo code of the 

training algorithm is described as below. 

 

Pseudo code of training algorithm 

1) Initialize all programmable delay lines to the minimum delay 

2) For each Xi spike in the pattern, 

delay Xi by incrementing the delay of its programmable delay line until it 

coincides with Xtarget spike 

 

Each Xi spike is fed trough a dedicated programmable delay line. In the 

initialization stage of the training process, each of the programmable delay lines is 

initialized to the minimum delay. After that, the training algorithm adapts the delay of 

each of the input spikes Xi such that it coincides with the target spike Xtarget by 

incrementing the delay of the associated programmable delay line, as illustrated in 

Figure 3.8. 

 

 

Figure 3.8: Delay adaptation of input spikes to a target spike 
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The training is deemed to be completed when all of the input spikes Xi are 

adapted to the target spike Xtarget to cause a coincidence. After the training, when the 

same pattern is introduced to the circuit, the output of the circuit will be asserted to 

indicate a detection of the trained pattern. 

 

3.4 Delay-based Pattern Recognition Prototype 
 

To demonstrate the proof-of-concept of the delay-based pattern recognition circuit and 

the feasibility of its FPGA implementation, a prototype consisting of a 10×10 CLBs 

pattern recognition array with pattern learning capability is implemented. 

 Figure 3.9 shows the block diagram of the implemented pattern recognition 

prototype. The entire circuit was implemented on a Xilinx Spartan-3E XC3S1600E 

family FPGA that uses 90nm process technology with logic resources density of 33,192 

logic cells. The training process is orchestrated by a MicroBlaze soft processor. The 

shift registers of the LUTs on each programmable delay line are connected one after 

another as a chain. The configuration values of the delay switches are fed serially into 

the programmable delay lines from the MicroBlaze processor through a Fast Simplex 

Link (FSL) interface and a parallel-to-serial converter. A pattern generator is 

implemented as a state machine that generates spatiotemporal patterns of Xi spikes and a 

target spike Xtarget. The entire circuit including the training logic utilizes 13.5% 

(4,494/33,192) of the total logic cells available on the FPGA while the pattern 

recognition array takes up 1.3% (416/33,192). 

 

 

Figure 3.9: Delay-based pattern recognition prototype 
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Figure 3.10: Simulation result of a trained pattern {x0, x1} = {E, A} 

 

The array is configured to train and detect patterns of a 2-element, 8-temporal 

value vector {x0, x1}, with a pulse width tres of 5 ns. Each of the xi elements represent a 

set of 8 characters {A, B, … , H}. x0 and x1 are fed in through the horizontal and vertical 

programmable delay lines respectively. The programmable delay lines in each direction 

are cascaded one after another to build a long programmable delay line with a sufficient 

amount of delay to store the pattern. 

 Figure 3.10 shows the simulation result of a pattern {x0, x1} = {E, A} after 

training. Before training, x0 and x1 spikes do not coincide with each other or the target 

spike Xtarget. After training, x0 and x1 spikes are adapted to Xtarget and coincidence occurs. 

When the same pattern {E, A} is introduced to the circuit again, the output of the AND 

gate is asserted indicating that the trained pattern is detected. 

 

3.5 Utilization and Capacity 
 

The size of a delay-based pattern recognition circuit may vary depending on the 

specifications of the patterns to be stored. This section discusses about estimation of 

hardware resource utilization of programmable delay lines for storing and detecting 

patterns of a given k-element, b-temporal value vector. The capacity of a pattern 

recognition array for storing and detecting different and independent sets of patterns is 

also discussed in this section. 
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3.5.1 Hardware utilization of programmable delay lines 
 

As illustrated in Figure 3.2, for a programmable delay line capable of producing b 

temporal values of different delays of equal width tres, the total delay could be produced 

by the programmable delay line is: 

 

Dline = b × tres         (3.2) 

 

Furthermore, as discussed in Section 3.2.1, based on characterization results of 

interconnect and LUT delays, we could approximate one LUT-interconnect pair 

producing a delay of 1 ns. We could therefore estimate the utilization of a 

programmable delay line, Uline, in terms of the number of LUTs, as: 

 

Uline ≈ Dline = b × tres     (3.3) 

 

Hence, for a given k-element, b-temporal value vector, the total utilization of 

programmable delay lines in terms of the number of LUTs in a delay-based pattern 

recognition circuit, Uset, could be estimated as: 

 

Uset  ≈ Uline × k            (3.4) 

 

For example, for a 4-element, 8-temporal value vector, which could produce a 

total of 84 = 4096 possible spatiotemporal patterns, if a pulse width tres of 3 ns is used, 

the utilization of the circuit is Uset ≈ 96 LUTs, which is very compact in size. 

 

3.5.2 Capacity of a pattern recognition array 
 

As proposed in Section 3.2.3, a delay-based pattern recognition circuit consisting of 

programmable delay lines of the presented design could be implemented as a block of 

N×N CLBs array. Here, we discuss the potential storage capacity of a pattern 

recognition array. 
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We define the capacity, C, as the total number of different and independent sets 

of spatiotemporal patterns, each represents a k-element and b-temporal value vector, 

storable by an N×N CLBs pattern recognition array. Based on calculations in terms of 

number of LUTs from Equation 3.1 and Equation 3.4, the capacity of a pattern 

recognition array could be estimated as: 

 

C ≈ L/Uset = 4N2 / (b × tres × k)        (3.5) 

 

For example, for a 30×30 CLBs array, the capacity for storing different and 

independent sets of patterns each of a 4-input, 8-temporal value vector is C ≈ 4×302 / 

(8×3×4) = 37 sets of patterns, where each set is having 84 = 4096 possible 

spatiotemporal patterns. With the approximation of one LUT-interconnect pair 

producing a delay of 1 ns, the capacity of a pattern recognition array could be increased 

in proportion to the number of LUTs in the array. Hence, for modern FPGAs with high 

hardware resource density, a larger pattern recognition array could be realized for 

storing a large number of patterns. 
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CHAPTER 4  
 
 

A BIOLOGICALLY-INSPIRED 
AUTO-ASSOCIATIVE MEMORY 

 

 

 

4.1 Introduction 
 

A conventional memory, in the context of engineering or computing, stores a data 

element at a unique address and is capable of retrieving the data element back upon 

presentation of the complete address. In contrast, an auto-associative memory is a type 

of “content-addressable” memory which does not require an address in order to retrieve 

data, but instead retrieve a data element in response to a partial presentation of the 

original copy [72]. 

In this chapter, the design and implementation of a biologically-inspired auto-

associative memory on an FPGA is presented. The design is conceptualized and 

developed based on a spiking neural network (SNN) model. The architecture effectively 

utilizes the massive logic and interconnect resources available in an FPGA to model 

axonal delay elements in biological neural networks. Time delays, rather than binary 

values are used to represent numeric data; and coincidence is used to perform pattern 

matching. 

Figure 4.1 illustrates the function of the SNN-based auto-associative memory. 

The system first learns a certain input pattern through a training process. The memory 

consists of programmable delays and coincidence detectors. The input pattern is stored 

by adapting the programmable delays connected to the coincidence detectors. After 
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Figure 4.1: SNN-based auto-associative memory 

 

training, when a partial input pattern is presented, the complete version of the training 

pattern will be retrieved from the memory and a sustained periodic replay of the pattern 

effected. 

 Similar to the pattern recognition prototype developed in Chapter 3, the pattern 

processing unit of the memory is also implemented using a clockless design approach. 

The system is however implemented on an FPGA from a different vendor to 

demonstrate that such delay-based pattern recognition models and the clockless design 

approach are viable across different FPGA platforms and not only limited to specific 

FPGA devices. 

 

4.2 Spatiotemporal Spike Sequence 
 

Similar to the delay-based pattern recognition system developed in Chapter 3, the auto-

associative memory stores and reproduces memories in the form of spatiotemporal 

spike sequences. 
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Figure 4.2: A temporal pattern {x0, x1, x2, x3} = {2, 0, 1, 3} 

 

Here, we define a spatiotemporal spike sequence to be represented by a vector of 

k elements {x0, x1, ... , xk-1}, with each xi representing the time between a reference 

signal and the rising edge of a pulse. Through this temporal coding scheme, a vector of 

real numbers is translated into a sequence of pulses, or spikes, as shown in Figure 4.2. 

 

4.3 Derivation of Model 
 

The SNN-based memory model developed in this chapter was derived from a Java-

based spiking memory model described by Wills [72]. Wills’ work aims to develop a 

SNN-based auto-associative memory model capable of storing and retrieving memories 

in the form of spatiotemporal spike sequences or patterns. The model developed by 

Wills stores a number of different spatiotemporal spike sequences as an auto-associative 

memory so that any stored pattern can be recalled by the network when presented with a 

partial version of that pattern. 

 In Wills’ model, each neuron is endowed with several multi-input coincidence 

detectors each of which may be used to detect spikes. The input spikes to a neuron’s 

coincidence detector are referred to as the ‘context spikes’ for the given neuron. There 

are time-delay connections between the neuron outputs and the inputs to other neurons’ 

coincidence detectors. The recall of a particular spatiotemporal spike sequence is 
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manifested by the recurrent activation of that spatiotemporal spike sequence within the 

population of neurons. Thus, there is a closed network of neurons that will spike 

repeatedly if stimulated in the correct temporal sequence. Because each neuron may 

have multiple coincidence detectors, each neuron can participate in multiple 

spatiotemporal spike patterns. As well, this auto-associative memory model can store 

multiple patterns and recall them concurrently. 

We explore a SNN model that stores a single simple pattern in comparison to 

Wills’ software-based model which can store and concurrently recall multiple patterns. 

In our simplified model, each neuron in the network is associated with only one 

coincidence detector that responds to the context spikes of a particular stored pattern, 

and in turn contributes to the recurrent activation of that single pattern. 

While many of the existing FPGA implementations of SNNs are based on 

standard digital designs with sequential logic [12, 14, 64, 67], where speed performance 

is often limited by clock frequencies of such circuits; the SNN developed in this chapter 

uses only combinational logic and no sequential clocking elements are involved in the 

feedforward path. Hence, the memory has the potential to process patterns at very high 

speed and low latency, at a level beyond a conventional synchronous circuit could 

achieve. 

 

4.4 Architecture 
 

Having introduced the ideas behind our SNN-based auto-associative memory model, 

this section describes precisely the architecture of the memory. 

 

4.4.1 Programmable delay lines 
 

Information, i.e. patterns, are stored via programmable delay lines that interconnect the 

neurons. A k-input pattern requires k spikes to represent that pattern with each spike 

corresponding to the output of a neuron. Thus, the SNN model for the k-input pattern 

consists of k neurons, each with a multi-input coincidence detector. The input spikes to 

a neuron’s coincidence detector are referred to as the ‘context spikes’ for the given
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Figure 4.3: Network configuration of a 4-input auto-associative memory with two 
contexts 

 

neuron. The inputs of the coincidence detector are driven by a subset of the other k-1 

neurons, which are in turn referred to as the ‘context spike neurons’. Each input of the 

coincidence detector is connected to its context spike neuron through a programmable 

delay line. If each multi-input coincidence detector receives c context spikes, then a 

total of k × c programmable delay lines are required to form the network between each 

output neuron and its associated context spike neurons. Figure 4.3 illustrates a network 

configuration of a SNN-based auto-associative memory for the case of k = 4 and c = 2. 

 Figure 4.4 illustrates the detailed architecture for the programmable delay lines. 

The inputs of an output neuron Ni are connected to its context spike neurons Nj through 

programmable delay lines. Using the programmable delay lines, the interconnection of 

each output neuron with its associated context spike neurons forms a closed feedback 

network that drives the recurrent activation of the stored spike pattern. In comparison to 

the delay line architecture developed in Chapter 3, which explores the utilization of 

inter-logic block routing resources for implementing delays, the design in this chapter 

focuses on utilizing the interconnect resources within a logic block. 
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Figure 4.4: Architecture of programmable delay lines 

 

 The spikes of an input pattern consist of pulses of equal width tspike. Each 

programmable delay line consists of a cascade of n delay elements, where n is 

determined based on the maximum programmable delay, dmax, for the delay line. dmax is 

essentially the maximum allowable delay for the context spike to be adapted to the 

target spike. With similar design goals as in Chapter 3, the delay lines are designed such 

that they nicely fit the FPGA architecture and allow compact block-structure 

implementations. Each delay element is well represented by a Logic Array Block (LAB) 

in an Altera Cyclone II FPGA. The delay of each delay element can be set as long delay 

dlong or short delay dshort, through the configuration of the control multiplexer (mux). 

The long delay is an interconnection of 15 logic elements (LEs) while the short delay is 

a direct connection of a single wire, as illustrated in Figure 4.5. The total delay of an n-

delay element delay line, dline, must satisfy ndshort ≤ dline ≤ ndlong. The feedback 

connection from an output neuron to a delay line introduces an additional delay of
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Figure 4.5: Delay element 

 

dfeedback. The total delay imposed on a spike, dtotal, is therefore: 

 

dtotal = dline + dfeedback       (4.1) 

 

4.4.2 Coincidence detectors 
 

A coincidence detector detects the coincidence of delayed context spikes and is 

implemented using a logical ‘AND’ gate. Since an AND operation between two 

coincidence pulses with a small time offset produces a pulse with smaller width, the 

recurrently recalled pattern will eventually disappear. To overcome this problem, two 

solutions were implemented. The second solution was an improvement over the first 

one. 

 In the first solution, the output of the AND gate is delayed and regenerated 

through a two-input OR gate, as shown in Figure 4.6. The delay element used here is 

also implemented using interconnect resources. With a wider pulse at the output of the 

OR gate, there is also a possibility that all the outputs of the network will eventually 

settle at the logical high state. Hence, a toggle flip-flop is used to select between the
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Figure 4.6: Pulse-muxing coincidence detector 

 

 

Figure 4.7: Coincidence detector with constant-width pulse generator 

 

smaller and larger pulse over time, maintaining the original pulse width and sustaining 

the recall of the pattern indefinitely. 

 The second solution uses less hardware resources and provides much better 

control of the pulse width. In this solution, the output of the AND gate is connected to a 

pulse generator circuit that produces pulses of constant width. The output spike from the 

AND gate triggers the D flip-flop to logical high state which later gets reset back to low 

state through a fixed-delay feedback that resets the D flip-flop, as shown in Figure 4.7. 

The delay element used in the feedback loop is also implemented using interconnect 

resources. With this solution, all the spikes in the pattern are always maintained with a 

constant pulse width and the recall of the pattern can therefore be sustained indefinitely. 
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4.5 Training Algorithm 
 

A particular spike pattern is stored in the SNN using a training algorithm consisting of 

two steps – establishing the correct context neuron interconnection and setting the 

correct delays for the programmable delay lines, as described in the pseudo code below.  

 

Pseudo code of training algorithm 

1) For each Ni spike in the pattern, 

• Identify a set of preceding context spikes Nj that triggers Ni 

• Make a connection from each context spike neuron Nj to Ni neuron 

2) For each context spike Nj of Ni spike, 

• Adapt the delay of Nj spike such that it coincides with Ni spike 

 

For each output neuron Ni representing a spike in a pattern, the algorithm 

identifies a set of preceding context spike neurons Nj that triggers the target output 

neuron Ni. The architecture developed in this chapter uses simple 4-input patterns (k = 4) 

for testing to demonstrate the feasibility of the design and the number of preceding 

context spikes c is set to 2. The training pattern is treated with wrap-around in the time 

domain, i.e. the last spike in the pattern is treated as being the one preceding the first 

spike. This configuration enables the recurrent recall of the pattern. The recall of the 

pattern is achieved through presentation of a sub-pattern with contiguous spikes, i.e. a 

subset of spikes with neighboring time relationship in the original pattern. To set the 

delay from the context spike to the target spike, the algorithm calculates the delay 

between the context spike and the target spike, dcontext,target, for achieving coincidence; 

and determines the number of delay elements required, nreq, based on a delay function. 

The delay function, D, in terms of the number of delay elements, n, is initially 

characterized and obtained from simulation. The delay muxes on the programmable 

delay lines are then configured appropriately as according to the value of nreq calculated. 

 For example, consider a temporal pattern of {x0, x1, x2, x3} = {2, 0, 1, 3}, each xi 

spike in the pattern is represented by the output neuron Ni spike, respectively. Each 

spike has width tspike and the period of the pattern is 4 unit intervals. For N0 spike in this 

pattern, its preceding context spikes are N2 and N1 spikes. The delay from N2 spike to N0
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Figure 4.8: Connections between context neurons and the target neurons of an example 
pattern {2, 0, 1, 3} 

 
 

spike, d2,0; and from N1 spike to N0 spike, d1,0; is equal to 1 unit interval and 2 unit 

intervals, respectively. The algorithm makes a connection from each of the preceding 

context spike neurons N2 and N1 to the target neuron N0 through appropriate 

configurations of the context muxes as in Figure 4.8. Similarly, for each of N1, N2 and 

N3, the algorithm identifies the preceding context spikes and makes connections from 

the preceding context spikes neurons to the target neurons. The connections between the 

N0, N1, N2 and N3 target neurons and their respective context spike neurons for the 

example pattern are shown in Figure 4.8. The recall of the pattern can be achieved via 

presentation of a contiguous sub-pattern such as {x1, x2} = {0, 1}, {x0, x2} = {2, 1}, {x0, 

x3} = {2, 3} or {x1, x3} = {0, 3}. 
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4.6 Implementation 
 

This section describes a complete implementation of the SNN-based auto-associative 

memory on a single FPGA. 

 

4.6.1 The complete system 
 

Figure 4.9 shows the top-level block diagram of the entire memory system. 

A 400MHz PLL-clocked counter and a set of registers are used to capture the 

timing of the training pattern. A ‘pattern start’ pulse is given to the system to signal the 

start of the training pattern and activate the counter. The registers store the timing for 

each spike of the training pattern. The Nios II soft processor runs a C-program that 

executes the training algorithm, reads the spike timings from the registers, calculates the 

delays between spikes, and applies appropriate settings on context neurons connections 

and delay configurations. This base design serves as a representation of the potential for 

the utilization of the massive logic and interconnect resources available in an FPGA as 

delay elements for building a fast-processing SNN-based memory architecture. The 

system is capable of learning and recalling a 4-input pattern with temporal coding {x0, 

x1, x2, x3} where each xi represents a real number encoded in the pattern. 

 

 

 
 

Figure 4.9: Complete system of the SNN-based auto-associative memory 
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The generation of an input pattern to the auto-associative memory is achieved 

using a hardware state machine that produces the spatiotemporal spike sequence. It is 

run on a PLL clock with a frequency of 1/tspike for generating the required input pattern. 

While the duration of an action potential emitted by a biological neuron is 

typically 1-2 ms [55], the SNN-based memory developed in the initial stage was 

configured to work with a pulse width tspike of 60 ns to save on hardware resources and 

keep the entire network in manageable size since larger pulse widths would require 

more delay elements. In order to examine the maximum speed performance, the 

memory was later optimized for processing with patterns of smaller pulse width, which 

is later discussed in Section 4.6.2. 

The delay function that is used to determine the number of delay elements 

required for achieving coincidence was characterized and obtained from simulation. By 

plotting the amount of delay, D, against the number of delay elements, n, we obtain the 

delay function: 

 

D = 6n + 29     (4.2) 

 

where D is expressed in nanoseconds. The plot of the delay function is shown in Figure 

4.10.  

 

 
 

Figure 4.10:  Plot of delay function 
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Figure 4.11:  Simulation result of pattern {x0, x1, x2, x3} = {4, 2, 0, 1} 

 

 

The simulation results found that one LAB delay element provides a delay of 6 

ns when enabled, i.e. dlong = 6 ns. In this work, since we used simple patterns for which 

the context spike delay was no more than 3 unit intervals (i.e. dmax = 60 ns × 3 = 180 ns), 

it was determined that 32 delay elements per delay line was used to provide sufficient 

context spike delay of up to 180 ns. Equation 4.2 verifies that one delay element does 

indeed provide a 6 ns delay and also implies that there is an overhead of 29 ns 

propagation delay across the delay line and the feedback connection.  

Figure 4.11 shows a sample simulation result of an input pattern with temporal 

coding {x0, x1, x2, x3} = {4, 2, 0, 1}. Each spike of the pattern is of a 60 ns pulse width 

and the period of the pattern is 5 unit intervals, or 300 ns. By applying the algorithm on 

the input pattern, the preceding context spikes for each of N0, N1, N2 and N3 output 

neurons are N1 and N3, N3 and N2, N0 and N1, and N2 and N0, respectively. The 

respective number of delay elements required to adapt each of the context spikes to the 

target spike was also determined by applying the delay function in Equation 4.2. For the 

N0 spike in this pattern, the context spikes N1 and N3 were delayed by 120 ns (15 delay 

elements) and 180 ns (25 delay elements), respectively, for them to achieve coincidence 

that results in the triggering of N0 spike. In the figure, N1 spike was triggered first in 

response to the input of its context spikes x2 and x3. 
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Output Neuron Context Neurons Delay (unit DEs) 
N0 N1 

N3 
15 
25 

N1 N3 
N2 

5 
15 

N2 N0 
N1 

5 
25 

N3 N2 
N0 

5 
15 

 

Table 4.1: Context neurons and delay settings of each output neuron 

 

Table 4.1 shows the settings of the context neurons for this pattern and the 

respective number of delay elements required to achieve coincidence for each output 

neuron as a result of the learning process. The recall of the pattern was successfully 

triggered by stimulating the first two spikes of the pattern, i.e. {x2, x3} = {0, 1}. 

The entire auto-associative memory system was implemented and tested on an 

Altera Cyclone II EP2C35 family FPGA, which uses 90nm technology and allows 

resource utilization of up to 33,216 LEs, with 16 LEs per LAB.  

Figure 4.12 shows the test results of pattern {4, 2, 0, 1} captured on an 

oscilloscope. The outputs of N0, N1, N2 and N3 neurons were shown in the order from 

top to bottom of the figure respectively. The pattern was successfully recalled and 

sustains itself indefinitely. 

Table 4.2 indicates the hardware resource utilization for the implementation of 

the auto-associative memory. The entire system utilizes 22% (7,206/33,216) of the total 

LEs available on the FPGA while the SNN takes up 13% (4,305/33,216). It is 

interesting to see that the SNN is implemented exactly as expected where the circuit 

consists of almost entirely combinational logic (4,304/4,305). The LUTs associated with 

the interconnect wires used to implement the delay elements takes up 95% (4,096/4,305) 

of the total LEs used in the SNN while logic takes up 5% (209/4,305). The LUTs are 

used to buffer the interconnect wires and not for logic. For a delay line consisting of 32 

LABs in the presented architecture, the resulting total delay is 221 ns. Interconnect 

contributed 149.5 ns of the total delay and LUTs 71.5 ns. Because interconnect
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Figure 4.12: The recall of pattern {4, 2, 0, 1} captured on oscilloscope 

 

 Entire System SNN 
Total logic elements 7,206 / 33,216 (22%) 4,305 / 33,216 (13%) 
Combinational functions 6,957 / 33,216 (21%) 4,304 / 33,216 (13%) 
Dedicated logic registers 1,510 / 33,216 (5%) 4 / 33,216 (<1%) 
Delay element’s LUTs - 4,096 / 4,305 (95%) 
Logic - 209 / 4,305 (5%) 

 

Table 4.2: Resource utilization on cyclone II FPGA 

 

contributes more to the delay than the LUTs by area, it is more efficient to add more 

delay as necessary by increasing the amount of routing used in the interconnect. 

 The figure for SNN utilization in terms of total LEs consumption also agrees 

with the estimation based on architectural parameters described by Equation 4.3:  

 

USNN ≈ [(Bline × L) + Bcd] × ELAB    (4.3) 
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Here, Bline represents the total number of LABs utilized in a delay line, which in turn is 

made up of the number of LABs utilized for context selection mux, mmux, and the 

number of delay elements, n. L is the total number of delay lines in the SNN and can be 

represented by the term (k × c), where k is the number of inputs to the network and c is 

the number of context neuron connections, as described in Section 4.4. Bcd represents 

the total number of LABs utilized for coincidence detectors which is essentially the 

product of the number of LABs utilized for one coincidence detector, mcd, and the 

number of SNN outputs, k. ELAB is the total number of LEs available per LAB (i.e. 16 

for Cyclone II FPGAs). Equation 4.3 can therefore be more specifically expressed as: 

 

USNN ≈ [(mmux + n) × (k × c) + (k × mcd)] × ELAB   (4.4) 

 

mmux is 1, mcd is 2, n is 32 while k and c are 4 and 2, respectively, for the presented SNN. 

 Given the compact size of the SNN, the capacity of the memory can be 

expanded by replicating the SNN for multiple pattern storage. The total number of 

storable patterns, P, on a given FPGA can therefore be estimated by: 

 

P ≈ EFPGA / USNN     (4.5) 

 

where EFPGA is the total number of LEs available on an FPGA. With the availability of 

high-density FPGAs such as Stratix IV with 820k LEs, the total number of storable 

patterns could be up to 200 if the memory is implemented on such a platform.   

 

4.6.2 Optimizing for speed performance and size 
 

To examine the maximum speed performance of the memory, it is interesting to 

optimize the architecture for operating with even smaller pulse width. The architecture 

was later optimized to work with tspike as small as 6 ns. 

The optimization is achieved by reducing the length of the programmable delay 

lines since lesser delay elements are required to process patterns with smaller pulse 

width. The optimized architecture not only could allow a rapid processing of patterns 
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with considerably small pulse widths and inter-spike intervals but also smaller and more 

compact in terms of size. The delay function for the optimized memory is: 

 

D = 6n + 6        (4.6) 

 

The delay produced by one LAB delay element when enabled remained at 6 ns while 

the overhead propagation delay is reduced significantly to 6 ns. 

The auto-associative memory with the optimized architecture was tested with 

the same set of random patterns and correct operation was achieved in all instances both 

in simulation and in hardware. Figure 4.13 shows the recall of a temporal pattern {x0, x1, 

x2, x3} = {1, 0, 4, 2} captured on an oscilloscope. In the pattern, each spike has a 6 ns 

pulse width and the period of the pattern is 5 unit intervals, or 30 ns. 

The context spikes N1 and N2 were delayed by 6 ns (nreq = 0) and 12 ns (nreq = 1) 

respectively to achieve coincidence and cause triggering of the N0 spike. The recall of 

the pattern can be successfully triggered from a partial representation of the pattern, i.e. 

{x0, x1} = {1, 0}. Note that N3 spike was triggered first in response to the input of its 

context spikes x0 and x1. 

 

 

 

 
Figure 4.13: Recall of pattern {1, 0, 4, 2} captured on oscilloscope; voltage 5V/div, time 
10ns/div 
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In terms of hardware resource utilization, the entire system utilizes 8% 

(2,764/33,216) of the total LEs available on the FPGA while the SNN takes up less than 

1% (328/33,216). Given the compact size of the optimized architecture, approximately 

2500 patterns could be stored in high-density FPGAs such as Stratix IV. 
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CHAPTER 5  
 
 

RESULTS  
 
 
 

5.1 Introduction 
 

Having described the design and implementation of the delay-based pattern recognition 

circuit and the auto-associative memory in Chapter 3 and 4, respectively, this chapter 

presents the results of tests and hardware utilization of the two systems. 

 

5.2 Delay-based Pattern Recognition Circuit 
 

This section elaborates on the delays evaluation of programmable delay lines presented 

in Chapter 3. It also presents the simulation result of a manually-trained pattern as well 

as the test results for the pattern recognition prototype described in the same chapter. 

The hardware utilization and physical layout of the pattern recognition prototype are 

also presented. 

 

5.2.1 Delays of programmable delay lines 
 

As described in Chapter 3, programmable delay lines in a delay-based pattern 

recognition circuit play an important role in adjusting the arrival time of spikes of a 

temporal pattern for triggering a coincidence event. A pattern is trained and recognized 

through the detection of coincidence of delayed spikes. 
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Delay switch settings for 
DS0 to DS6 

Resulting LUTs and 
interconnects used 

Delays (ns) 

S,X,X,X,X,X,H 2 LUTs + 1 hex 2.13 
S,X,D,X,D,X,D 4 LUTs + 3 doubles 4.09 
S,X,D,X,D,S,S 5 LUTs + 2 doubles + 2 singles 5.22 
S,S,S,X,D,X,D 5 LUTs + 2 doubles + 2 singles 5.19 
S,S,X,D,X,D,S 5 LUTs + 2 doubles + 2 singles 5.21 
S,X,D,S,S,S,S 6 LUTs + 1 double + 4 singles 6.18 
S,S,S,S,X,D,S 6 LUTs + 1 double + 4 singles 6.17 
S,S,S,S,S,X,D 6 LUTs + 1 double + 4 singles 6.18 
S,S,S,S,S,S,S 7 LUTs + 6 singles 7.15 

 

Table 5.1: Resulting delays against different combinations of delay switch settings for 
7-LUT programmable delay line 

 

 

The design of the programmable delay line allows many combinations of delay 

switch settings that produce a series of variable delays. A spike has various signal paths 

to propagate through a delay line depending on the settings of the delay switches. Each 

of the various signal paths may have a different number of LUTs and the type of 

interconnects used along the path, and hence a different resulting delay. 

A basic 7-LUT programmable delay line as described in Section 3.2.1 of 

Chapter 3 was simulated to evaluate the delays produced across different combinations 

of delay switch settings. Table 5.1 shows the list of all possible combinations of delay 

switch settings and the simulated delays for these settings. Some of the combinations of 

the settings resulted in the same number and type of LUTs and interconnects, and hence 

gave a similar delay. For example, the settings of {S,X,D,X,D,S,S}, {S,S,S,X,D,X,D} 

and {S,S,X,D,X,D,S} all resulted in the use of 5 LUTs, 2 double line and 2 single line 

connections, and produced a delay of about 5.2 ns. The signal path resulted from each 

of these three settings is illustrated in Figure 5.1 (a), (b) and (c), respectively. 
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Figure 5.1 (a)-(c): Resulting signal path for delay switch settings of {S,X,D,X,D,S,S}, 
{S,S,S,X,D,X,D} and {S,S,X,D,X,D,S}, respectively 

 

 

Longer programmable delay lines with more combinations of hex line 

connections and signal paths were also evaluated and similar results were obtained. 

Table 5.2 shows the list of possible combinations of delay switch settings and the 

simulated delays for a 9-LUT programmable delay line. In this example, both 

{S,X,X,X,X,X,H,X,D} and {S,X,D,X,X,X,X,X,H} resulted in the use of 3 LUTs, 1 hex 

line and 1 double line connections, and produced a similar delay of close to 3.1 ns. The 

resulting signal path for each of these settings is illustrated in Figure 5.2 (a) and (b), 

respectively. 
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Delay switch settings for 
DS0 to DS8 

Resulting LUTs and 
interconnects used 

Delays (ns) 

S,X,X,X,X,X,H,X,D 3 LUTs + 1 hex + 1 double 3.08 
S,X,D,X,X,X,X,X,H 3 LUTs + 1 hex + 1 double 3.05 
S,X,X,X,X,X,H,S,S 4 LUTs + 1 hex + 2 singles 3.71 
S,S,X,X,X,X,X,H,S 4 LUTs + 1 hex + 2 singles 3.62 
S,S,S,X,X,X,X,X,H 4 LUTs + 1 hex + 2 singles 3.64 
 

Table 5.2: Resulting delays against different combinations of delay switch settings with 
hex line connections for 9-LUT programmable delay line 

 

 

 
 

Figure 5.2 (a) and (b): Resulting signal path for delay switch settings of 
{S,X,X,X,X,X,H,X,D} and {S,X,D,X,X,X,X,X,H}, respectively 

 

5.2.2 Simulation of pattern recognition 
 

A simulation was set up for the testing of pattern recognition of five ASCII characters, 

each having 26 possible values from ‘A’ to ‘Z’, which in this case is detecting patterns 

of a 5-element, 26-temporal value vector. 
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Figure 5.3: Encoding of characters ‘A’ to ‘Z’ into temporal space of 200 ns 

 

 

Five programmable delay lines were implemented on a Xilinx Spartan-3E FPGA 

and simulated using the vendor’s FPGA design tools. Each delay line is a cascade of 9 

rows of 20-LUT delay lines that gives variable delays ranging from 62 ns to 200 ns. 

This range of delays is sufficient for the testing of patterns with 26 temporal values each 

having a 5 ns pulse width. Figure 5.3 illustrates the encoding of characters ‘A’ to ‘Z’ 

into the temporal space of this delay range. The delays of characters ‘A’ and ‘Z’ 

respectively represent the maximum and minimum delays needed. Character ‘A’ 

requires a delay of 200 ns while ‘Z’ needs 62 ns. All the 26 temporal values are fit into 

the temporal space with pulse width of 5.52 ns. 
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Figure 5.4: Simulation result of the detection of a manually-trained 5-element, 26-
temporal value vector pattern 

 

 By knowing the value needed for delaying a particular temporal value, it is 

straight forward to manually train a pattern by configuring the delay switch settings of 

the delay lines. Figure 5.4 shows the simulation result of the detection of a manually 

trained pattern. The pattern represents a ‘HELLO’ word, i.e. {x0, x1, x2, x3, x4} = {H, E, 

L, L, O}, and all the spikes were manually adapted to trigger coincidence. 

 

5.2.3 Pattern recognition prototype 
 

As presented in Section 3.4 of Chapter 3, a prototype was developed to demonstrate the 

feasibility of the implementation of a delay-based pattern recognition circuit. The 

prototype was implemented on a Xilinx Spartan-3E XC3S1600E device available on a 

Spartan-3E development board. The board comes with a 50MHz oscillator, a 64MByte 

SDRAM, 4 slide switches, 4 push-button switches, 8 surface-mount LEDs and three 6-

pin expansion connectors that are useful for design testing [75]. It also has an on-board 

USB-based FPGA download interface. 

 The prototype comprises a pattern recognition array, pattern learning blocks and 

a pattern generator. The FPGA has a density of 33,192 logic cells. Figure 5.5 shows the 

physical layout of the prototype on the FPGA. The pattern recognition array consists of 
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Figure 5.5: Physical layout of pattern recognition prototype on Xilinx Spartan-3E 
XC3S1600E FPGA 

 

a 10×10 CLBs array of programmable delay lines and a coincidence detector. It utilizes 

416/33,192 (1.3%) of the total logic cells available on the FPGA. The entire system 

including the pattern learning blocks and the pattern generator utilizes 4,494/33,192 

(13.5%) of logic cells. 

 

5.2.4 Detection of patterns with pattern recognition prototype 
 

This section shows the results obtained from both simulation and hardware for the tests 

conducted on the pattern recognition prototype. 
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Figure 5.6: Simulation result for the detection of pattern {x0, x1} = {A, D} on pattern 
recognition prototype 

 

The pattern recognition array is configured to train and detect patterns of a 2-

element and 8-temporal value vector, {x0, x1}. Each xi element represents a set of 8 

characters {A, B, …, H}. x0 and x1 are fed in through the horizontal and vertical delay 

lines, respectively. The delay lines in each horizontal and vertical direction are cascaded 

to build a long delay line with sufficient delay to store the pattern. 

Figure 5.6 shows the simulation result for the detection of a pattern {x0, x1} = {A, 

D} with a pulse width of 5 ns. In the initialization stage of the training process, each 

delay line was initialized to produce minimum delay. Each input spike was then delayed 

incrementally until it coincided with Xtarget spike, inserted after the last spike of the 

training pattern. Upon completion of training, the signals for the delayed version of x0 

and x1 spikes, i.e. xd0 and xd1, were adapted to Xtarget and coincidence of the two spikes 

resulted. After training, when the same pattern {A, D} is presented to the circuit again, 

the output of the coincidence detector is asserted indicating the detection of the trained 

pattern. 

The prototype was implemented and tested on a Spartan-3E FPGA for the 

learning and recognition of various 2-element, 8-temporal value vector patterns. Each 

delay line for the xi spike was measured to provide a series of variable delays ranging 

from 30 ns to 71 ns, which was sufficient to encode patterns of an 8-temporal value 

vector with 5 ns pulse width. All patterns tested were successfully trained and detected 

by the prototype. The results from the hardware tests are shown in Figure 5.7. The 

signals were output through the 6-pin expansion connectors. 
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Figure 5.7 (a)-(e): Results of the detection of various 2-element, 8-temporal value 
vector patterns {A, D}, {G, B}, {F, E}, {C, E} and {H, A}, respectively, on Spartan-3E 
FPGA; voltage 2V/div, time 25ns/div 
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5.3 Auto-associative Memory 
 

This section elaborates on the delays simulated on the auto-associative memory 

presented in Chapter 4, for both pre- and post-optimized versions of the system. The 

section also describes the pulse-narrowing effect experienced in the recall of patterns 

and presents results in relation to before and after solutions to the problem are 

implemented. The results for the hardware tests and resource utilization are also 

presented in this section. 

 

5.3.1 Delay as a function of delay elements 
 

The 4-input auto-associative memory with two context spike inputs per coincidence 

detector described in Chapter 4 was initially developed to process patterns with pulse 

width tspike of 60 ns and context spike delay of no more than 3 unit intervals, i.e. 60 ns × 

3 = 180 ns. 

From simulation, it was measured that one delay element gives a delay of 6 ns 

when enabled. Each programmable delay line in the auto-associative memory consists 

of 32 delay elements to give sufficient context spike delay of up to 180 ns. The amount 

of delay produced by a delay line against the number of delay elements enabled was 

measured and collected from simulation. Four delay lines were randomly picked for the 

measurement of delay. The plot of the delay, D, against the number of delay elements 

enabled, n, is shown in Figure 5.8. From the plot, the delay is increasing linearly with 

the number of delay elements enabled, which is technically true since all the delay 

elements are identical. The plot can be represented by an equation, which is referred to 

as the delay function. 

 

D = 6n + 29            (5.1) 

 

It was observed that when all the delay elements are disabled, there is an overhead of 29 

ns propagation delay across the delay line and the feedback connection.  
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Figure 5.8: Plot of delay for 32-delay-element delay lines 

 

 In order to examine the performance of the memory in terms of speed, the 

design was later optimized for operating with smaller pulse width. The optimization was 

achieved by reducing the length of the programmable delay lines since lesser delay 

elements are needed for patterns with smaller pulse width. The design was optimized to 

process patterns with pulse width as small as the delay of a delay element, i.e. 6 ns. 

Each delay line was shortened from 32 delay elements to just 2 delay elements. Each 

delay element still provides a 6 ns delay when enabled while the overhead propagation 

delay was reduced significantly to just 6 ns. The optimized design processes patterns 

with pulse width of 6 ns and context spike delay of no more than 3 unit intervals. The 6 

ns propagation delay is also being utilized as a delay for 1 unit interval. For example, 

for the case of context spike delay of 1 unit interval, i.e. 6 ns, both delay elements on 

the delay line are disabled to meet the delay requirement. The plot of the delay against 

the number of delay elements enabled for four randomly selected delay lines is shown 

in Figure 5.9. The delay function for the optimized memory is expressed in Equation 5.2. 

 

D = 6n + 6           (5.2) 



5.3  Auto-associative Memory  61 
 

 

 

Figure 5.9: Plot of delay for 2-delay-element delay lines 

 

5.3.2 Coincidence pulses and recall of patterns 
 

A coincidence detector in the auto-associative memory is implemented using an ‘AND’ 

gate. Since two coincidence pulses arrive at a coincidence detector may have a small 

time difference, an AND operation between the two pulses produces an output pulse 

with smaller width. Each output pulse from a coincidence detector is fed back to the 

delay lines and the stored pattern is subsequently recalled for the next cycle. Due to the 

pulse-narrowing effect, the recurrently recalled pattern will eventually disappear over 

time, as shown in Figure 5.10. 

With the two solutions described in Section 4.4.2 of Chapter 4, i.e. pulse-muxing 

coincidence detector and coincidence detector with constant-width pulse generator, the 

recall of a pattern can be sustained indefinitely. Figure 5.11 shows the simulation result 

for the recall of a pattern using the pulse-muxing coincidence detector. The output pulse 

of a coincidence detector is toggled between a smaller and a larger pulse over time and 

hence sustaining the recall of a pattern. 

The solution with constant-width pulse generator provides a more efficient fix to 

the pulse-narrowing effect. Patterns recalled with this solution are always maintained 

with a constant pulse width and sustained indefinitely, as shown in Figure 5.12.  
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Figure 5.10: Pulse-narrowing effect on a recalled pattern 

 

 

 
 

Figure 5.11: Recall of pattern {4, 2, 0, 1} with pulse-muxing coincidence detectors 

 

 

 
 

Figure 5.12: Recall of pattern {1, 0, 4, 2,} using coincidence detectors with constant-
width pulse generator 
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5.3.3 Hardware test results 
 

The auto-associative memory developed was simulated and tested on an Altera Cyclone 

II FPGA with twelve simple 4-input patterns. The settings of the pattern include spikes 

in random as well as diagonal directions, as illustrated in Figure 5.13. A perfect success 

rate of learning and recalling the patterns was achieved from the testing. The network 

successfully learned from the training patterns and recalled them recurrently. 

 

 

 
 
 

Figure 5.13:  Random patterns tested on the auto-associative memory 
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Figure 5.14 (a)-(c): Results of the recall of patterns {2, 0, 1, 3}, {0, 1, 3, 4} and {1, 4, 0, 
3}, respectively, on Cyclone II FPGA; voltage 2V/div, time 10ns/div 
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Pattern Output Neuron Context Neurons Delay (unit DEs) 
 N0 N2 

N1 
0 
1 

{2, 0, 1, 3} N1 N3 
N0 

1 
2 

 N2 N1 
N3 

0 
2 

 N3 N0 
N2 

0 
1 

 N0 N3 
N2 

0 
1 

{0, 1, 3, 4} N1 N0 
N3 

0 
1 

 N2 N1 
N0 

1 
2 

 N3 N2 
N1 

0 
2 

 N0 N2 
N1 

0 
1 

{1, 4, 0, 3} N1 N3 
N0 

0 
2 

 N2 N1 
N3 

0 
1 

 N3 N0 
N2 

1 
2 

 

Table 5.3: Context neurons and delay settings of trained patterns 

 

Figure 5.14 (a), (b) and (c) show the hardware test results for the recall of 

patterns {2, 0, 1, 3}, {0, 1, 3, 4} and {1, 4, 0, 3}, respectively. The pulse width for each 

spike of the patterns is 6 ns and the period for each pattern is 5 unit intervals, i.e. 30 ns. 

The settings of the context neurons and the respective number of delay elements 

required resulted from the training process for these patterns are shown in Table 5.3. 
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5.3.4 Hardware resource utilization 
 

An Altera DE2 board was used for the testing of the auto-associative memory. The 

board comes with a Cyclone II EP2C35 family FPGA, which was used for the 

implementation of the memory. In addition to the FPGA, the board also equipped with 

other useful hardware features such as a 50MHz oscillator, an 8MByte SDRAM, 4 

push-button switches, 18 toggle switches, 27 user LEDs and two 40-pin expansion 

connectors [4]. The FPGA is configured through an on-board USB download interface. 

The Cyclone II device has a total of 33,216 logic elements. Figure 5.15 (a) and 

(b) show the physical layout of the auto-associative memory for the case of pre and post 

optimization, respectively. The pre-optimized system processes patterns with pulse 

width of 60 ns and the SNN consists of 32-delay-element delay lines. The entire system 

utilizes 22% (7,206/33,216) of the total logic elements available on the FPGA while the 

SNN takes up 13% (4,305/33,216). The size of the SNN is significantly reduced for the 

case of the optimized system where the length of the delay lines is reduced to 2 delay 

elements. The hardware utilization for the entire optimized system is 8% (2,764/33,216) 

of the total logic elements available while the SNN consumed less than 1% 

(328/33,216). The optimized system not only improved in size but also processes 

patterns at higher speed with pulse width of 6 ns. 
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Figure 5.15: Physical layout of auto-associative memory on Cyclone II EP2C35 FPGA 
with (a) 32-delay-element delay lines SNN; and (b) the optimized SNN with 2-delay-
element delay lines 
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5.4 Summary 
 

The results from the pattern recognition prototype and the auto-associative memory 

both demonstrate that an implementation of a time-delay pattern recognition circuit by 

exploiting the logic and interconnect resources in an FPGA is achievable, and the 

systems developed effectively perform simple learning and recognition tasks. 

Table 5.4 compares our implementations with some of the existing pattern 

recognizers developed by other researchers, described previously in Section 2.5.3 of 

Chapter 2. Although the scale and functionality are fundamentally different across those 

systems, the comparison gives a high-level idea of the uniqueness and benefits of our 

models in terms of design approach and implementation. From the table, it can be seen 

that all the three existing pattern recognizers are implemented using conventional design 

approach with standard sequential and combinational logic, and clock; with processing 

speed in the range of 50-100 MHz. In contrast, the pattern processor (i.e. SNN) in our 

systems is implemented using a ‘clock-free’ design approach with LUTs and 

interconnect resources, which enables high speed processing of patterns with pulse 

width as small as 5 ns. The unique design approach not only gives advantage in 

processing speed but also allows a relatively compact implementation. In the same table, 

the Image Recognizer developed by Caron et al. is among the fastest with the system 

clocked at 100 MHz. The system however consumes a relatively large amount of logic 

resources with a total of ~32,242 logic cells. For systems with slower processing speed 

such as the Speed Recognizer proposed by Cassidy et al., at a clock rate of 50 MHz, the 

logic utilization is also close to 20,000 logic cells. In comparison, the pattern processor 

in our systems that could process patterns with pulse width of 5 ns only utilizes 416 

logic cells. The hardware consumption for the programmable delays is relatively low in 

both of our systems and that gives plenty of room for larger implementations aiming to 

store more patterns or patterns of larger scale. In addition, the implementation of 

learning module using soft processor allows flexibility for training algorithm 

modification with relatively low impact on hardware size. 
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Pattern 
Recognition 

Systems 

Main Functional 
Blocks 

Hardware 
Utilization 

Processing 
Speed 

Frequency 
Discriminator 
(Upegui et al.) 

3-layer SNN: 30 neurons 
Neuron hardware: 
• control unit – FSM 
• weights – memory 
• learning modules 

~3000 LCs 
(on Spartan-2 
XC2S200) 

Clocked at 
54.4 MHz 

Image 
Recognizer 
(Caron et al.) 

SNN: 648 neurons 
Neuron hardware: 
• weights – BRAMs 
• synapses – adders 
• membrane model 

~32424 LCs 
126×36Kb BRAMs 
(on Virtex-5 
XC5VSX50T) 

Clocked at 
100 MHz 

Speech 
Recognizer 
(Cassidy et al.) 

SNN: 32 neurons 
Neuron hardware: 
• 16-bit accumulator 
• dual-port memory 

~19168 LCs 
10×18Kb BRAMs 
(on Spartan-3 
XC3S1500) 

Clocked at 
50 MHz 

Delay-based 
Pattern 
Recognition 
Prototype 

10×10 CLBs SNN Array 
• programmable delay 

lines 
• coincidence detector 
Learning module – 
MicroBlaze processor 

SNN: 416 LCs 
System: 4494 LCs 
(on Spartan-3E 
XC3S1600E) 

SNN: clock-free 
Pulse width: 5ns 

Auto-associative 
Memory 

1-layer SNN: 4 neurons 
• programmable delay 

lines 
• coincidence detectors 
Learning module – Nios 
II processor 

SNN: 328 LEs 
System: 7206 LEs 
 (on Cyclone II 
EP2C35) 

SNN: clock-free 
Pulse width: 6ns 

 

Table 5.4: Comparison of example pattern recognizers with our systems; FSM – finite 
state machine; BRAMs – block RAMs; LCs – logic cells; LEs – logic elements 
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CHAPTER 6  
 
 

CONCLUSION 
 

 

 

6.1 Summary and Key Insights 
 

In this thesis, we have developed two pattern recognition systems that process 

spatiotemporal spike patterns on field-programmable gate arrays (FPGAs). 

 Borrowing the idea from spiking neural networks (SNNs), which suggests the 

brain possibly processes information based on action potential timing; the systems were 

developed with a similar principle: perform pattern learning and recognition tasks 

through the use of time delays. Patterns being processed are in the form of 

spatiotemporal spike sequences, which represent the spiking activity of neurons over 

time. Information is encoded in spike patterns via time delays. Both systems developed 

use a time-delay network consisting of programmable delay lines and coincidence 

detectors to process patterns. 

 The first system, i.e. the Delay-based Pattern Recognition Prototype in Chapter 

3, learns spatiotemporal spike patterns and performs recognition of learned patterns. 

Learning is achieved through adaptation of delay lines to spike timing of patterns while 

recognition is attained via coincidence detection of delayed spikes. The design of a 

programmable delay line is explored with the exploitation of FPGA architecture and 

interconnect scheme. The delay lines are extendable for patterns with larger delay 

requirements and can be organized into a compact array for better area efficiency. The 

test results demonstrate that a hardware realization of a time-delay pattern recognizer is 



6.2  Future Directions  71 
 

 

viable, and that FPGA logic and interconnect resources are effective for implementing 

programmable delays. The system developed has a 10×10 CLBs array of delay lines and 

a coincidence detector, and consumes only 416 logic cells. The pattern recognizer 

demonstrates processing of spike patterns with 2 elements and 8 temporal values, and 5 

ns pulse width. 

 The second system, i.e. the Auto-associative Memory in Chapter 4, performs 

memory tasks of storing and recalling spatiotemporal spike patterns. The system 

operates as an auto-associative memory where a complete pattern is retrieved via partial 

presentation of the original copy. The memory learns a pattern through identification of 

context spikes and adaptation of delay lines to the timing of context spikes. Memory 

recall is achieved through coincidence of delayed context spikes. The system uses a 

closed feedback SNN that drives recurrent recall of a stored pattern. The delay lines are 

built from small units of delay elements and the delay produced by each delay line 

exhibits a linear relationship with the number of active delay elements. The SNN 

utilizes only 328 logic elements for storing a 4-input pattern with 6 ns pulse width. The 

compact size of the SNN is beneficial for implementation of memory blocks of larger 

storage capacity through replication of the SNN. 

  Unlike existing pattern recognition systems which are usually implemented 

using conventional design practices and standard circuitries; we explored and adopted a 

‘clock-free’ design approach in the implementation of our models. The pattern 

processing unit in our systems uses only combinational logic and interconnect resources. 

This unique design approach allows fast processing of patterns with pulse width as 

small as 5 ns. The approach may potentially provide inspiration to the design of ultra-

high performance digital processors for applications beyond pattern recognition. 

 

6.2 Future Directions 
 

Having demonstrated the feasibility of realizing a delay-based pattern recognizer, for 

future work, it would be interesting to explore a ‘user-interactive’ pattern recognizer 

with external inputs from the environment. Given the fast-processing capability of the 

models developed in this thesis, it would be beneficial to extend the research into 
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developing a pattern recognizer that could learn and recognize patterns introduced 

directly from the environment, and perform specific user tasks. 

Patterns in the real world are complex. A second possible area of study is to 

explore a more sophisticated model for complex pattern recognition tasks. A complex 

pattern such as a speech can be broken down into levels of sub-patterns such as 

sentences, words and characters. One possible approach is to model a pattern recognizer 

in a “hierarchical manner” where computation and recognition of higher-level complex 

patterns could be made via processing of sub-patterns from lower levels. 

A third interesting area to look at is to exploit the present architecture for 

working with temporal patterns of longer duration, with minimum increase in hardware 

cost. A possible method is to divide a long temporal pattern into shorter “time blocks” 

for processing. This could possibly be achieved through a more sophisticated software 

algorithm and some hardware memory resources. 

A fourth consideration is to make the present systems to be more automated and 

easily accustomed to target patterns of different sizes and timing requirements. For 

example, in the present systems, the length of delay lines for a target pattern is manually 

determined via simulation. It would be beneficial if the systems could automatically 

determine the length of delay lines when presented with a target pattern. 

 Another consideration is to assess the robustness of these delay-based systems 

against temperature variation. Since delays may vary across different temperatures, 

patterns trained at one temperature may not be detected at another temperature. Hence, 

it would be beneficial to incorporate temperature variation factors into pattern learning 

so that delays trained are tolerable across different temperatures. 
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