

DELAY-BASED PATTERN RECOGNITION USING

FIELD-PROGRAMMABLE GATE ARRAYS

C. H. ANG

A thesis submitted in fulfilment of the requirements for the degree of

Master of Philosophy

SCHOOL OF ELECTRICAL AND INFORMATION ENGINEERING

2013

i

ABSTRACT

This thesis describes the design and implementation of two pattern recognition systems

on field-programmable gate arrays (FPGAs) that operate based on ‘time delays’.

 The idea was inspired by the concept of spiking neural networks (SNNs) which

suggests information processing in biological neural systems is based on precise timing

of action potentials or spikes. Both systems developed process patterns in the form of

spatiotemporal spike sequences – patterns of spikes distributed over a population of

neurons (“space”) and time. The pattern processor in both systems is a time-delay

network consisting of programmable delays and coincidence detectors, which

respectively perform pattern learning and matching. The network is implemented using

an innovative ‘clock-free’ design approach that exploits the architecture and hardware

resources of FPGAs.

 The first system performs pattern learning and recognition tasks while the

second operates as an auto-associative memory – a type of memory where stored data is

retrieved via partial presentation of the original copy. Both systems demonstrate

effective and fast processing of pattern recognition tasks with relatively low hardware

cost.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Assoc. Prof.

Philip Leong for his guidance, inspiring ideas and advices, precious time in reviewing

my work, encouragement and constant support throughout the entire period of my

studies.

 I would also like to thank my associate supervisor, Prof. André van Schaik,

Assoc. Prof. Craig Jin and Dr. Alistair McEwan for their valuable advices, discussions

and feedback on my work.

 I am grateful to Dr. Richard Davis, Dr. Elaine Ou and Dr. Roberto Cardu for

their valuable comments and discussions, as well as for reviewing my manuscripts.

 I thank all my colleagues at the University of Sydney for their daily help,

sharing of ideas and support.

 Finally, I thank my parents, and my wife, for their love, sacrifices and

continuous support.

iii

CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 AIMS AND MOTIVATION .. 1

1.2 THESIS OUTLINE .. 2

CHAPTER 2 BACKGROUND .. 4

2.1 INTRODUCTION .. 4

2.2 PATTERN RECOGNITION .. 4

2.3 SPIKING NEURAL NETWORKS .. 6

2.4 EXISTING WORKS ON SNN AND TIME DELAY-BASED PATTERN

RECOGNITION .. 8

2.5 FIELD-PROGRAMMABLE GATE ARRAYS .. 9

2.5.1 Architecture and logic resources 10

2.5.2 Interconnect resources ... 12

2.5.3 SNN-based pattern recognizers on FPGAs 13

2.6 THE CENTRAL IDEA ... 14

CHAPTER 3 DELAY-BASED PATTERN RECOGNITION .. 16

3.1 INTRODUCTION .. 16

3.1.1 Programmable delays and pattern recognition 16

3.1.2 Spatiotemporal spike sequence .. 17

3.1.3 FPGA interconnect resources .. 18

3.2 DESIGN AND IMPLEMENTATION OF PROGRAMMABLE DELAY LINES

 .. 19

Contents iv

3.2.1 Basic programmable delay line .. 19

3.2.2 Programmable delay switches ... 22

3.2.3 Pattern recognition array ... 23

3.3 TRAINING .. 27

3.4 DELAY-BASED PATTERN RECOGNITION PROTOTYPE 28

3.5 UTILIZATION AND CAPACITY .. 29

3.5.1 Hardware utilization of programmable delay lines 30

3.5.2 Capacity of a pattern recognition array 30

CHAPTER 4 A BIOLOGICALLY-INSPIRED AUTO-ASSOCIATIVE MEMORY 32

4.1 INTRODUCTION .. 32

4.2 SPATIOTEMPORAL SPIKE SEQUENCE ... 33

4.3 DERIVATION OF MODEL .. 34

4.4 ARCHITECTURE ... 35

4.4.1 Programmable delay lines ... 35

4.4.2 Coincidence detectors .. 38

4.5 TRAINING ALGORITHM .. 40

4.6 IMPLEMENTATION ... 42

4.6.1 The complete system ... 42

4.6.2 Optimizing for speed performance and size 47

CHAPTER 5 RESULTS .. 50

5.1 INTRODUCTION .. 50

5.2 DELAY-BASED PATTERN RECOGNITION CIRCUIT 50

5.2.1 Delays of programmable delay lines 50

5.2.2 Simulation of pattern recognition 53

5.2.3 Pattern recognition prototype .. 55

5.2.4 Detection of patterns with pattern recognition prototype 56

5.3 AUTO-ASSOCIATIVE MEMORY ... 59

5.3.1 Delay as a function of delay elements 59

5.3.2 Coincidence pulses and recall of patterns 61

Contents v

5.3.3 Hardware test results ... 63

5.3.4 Hardware resource utilization ... 66

5.4 SUMMARY ... 68

CHAPTER 6 CONCLUSION .. 70

6.1 SUMMARY AND KEY INSIGHTS .. 70

6.2 FUTURE DIRECTIONS ... 71

BIBLIOGRAPHY .. 73

PUBLICATIONS ... 82

1

CHAPTER 1

INTRODUCTION

1.1 Aims and Motivation

Humans are granted with highly sophisticated ability to learn and distinguish patterns,

for example, recognizing a face, reading handwriting and understanding spoken words.

Research in pattern recognition has been undertaken intensively for the past five

decades with a common goal to establish similar capabilities in machines. However,

design and implementation of a pattern recognizer that is realistic and efficient on

hardware remain a challenging task.

There are varieties of pattern recognition techniques, ranging from simple

matching of patterns against stored templates to more complex methods of using

artificial neural networks (ANNs) [30]. The work in this thesis was inspired by the idea

of spiking neural networks (SNNs). Neurons in the nervous system communicate using

short electrical pulses called action potentials, or spikes [42, 44]. SNNs represent the

most recent generation of ANN models where precise timing of individual spikes is

believed to be playing an important role in the functioning of the brain [1, 42].

Biological studies and the concept of SNNs suggest that information is encoded in the

‘time relationship’ or ‘delays’ between spikes [43, 46, 47].

 Field-programmable gate arrays (FPGAs), on the other hand, are programmable

logic devices that offer a great scale of flexibility in design and implementation of

digital circuits due to their reprogrammability. These devices consist of hundreds of

1.2 Thesis Outline 2

thousands of logic elements with massive programmable connections [59, 60]. Readily

available and affordable to users, FPGAs are widely popular for hardware

implementation and design prototyping [41, 7, 15, 23, 39, 54, 48].

The aim of this thesis is to develop pattern recognition systems that process

patterns based on ‘time delays’ on FPGAs. The motivation of this work is two-fold.

Firstly, we would like to explore the use of time delays in pattern recognition processing

and realize the idea into concrete hardware implementations on FPGAs. Secondly, we

hope the hardware models developed and the approach we used may contribute to the

discovery of an innovative design methodology for creating fast-processing circuits, for

applications including but not limited to pattern recognition. In particular, we aim to

develop fast-processing pattern recognition models by exploiting the architecture and

hardware resources of FPGAs.

1.2 Thesis Outline

Research in pattern recognition has a long history. Chapter 2 introduces the basics of

pattern recognition and provides the background details that led us to the idea of

developing our pattern recognition systems. The fundamentals of SNNs and FPGAs are

introduced in this chapter. We also gain insight into existing works of other researchers

and introduce the idea of our pattern recognition models.

In Chapter 3, we describe the functionality and the design of our pattern

recognition model, and demonstrate how such model can be implemented by taking

advantage of the FPGA architecture. We explore how information could be encoded

into spike patterns through time delays and explain how our model learns and

recognizes spike patterns.

Based on the same principle of using time delays, we develop a memory model

on an FPGA in Chapter 4. The memory belongs to the family of auto-associative

memories where data is retrieved through partial presentation of the original copy. The

system stores and recalls spike patterns.

1.2 Thesis Outline 3

In Chapter 5, we present the results for tests and hardware implementation for

the two systems developed in Chapter 3 and 4, respectively. The results provide a good

demonstration of the viability of implementing a pattern recognizer based on time

delays.

 In the final chapter, we summarize our work in this thesis and provide possible

directions for future work.

4

CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter provides the background for the work we intend to present in this thesis.

 The overview of pattern recognition and its various approaches is first provided

in Section 2.2. Section 2.3 introduces the fundamental concept of spiking neural

networks (SNNs), which provides the inspiration for our work in developing a pattern

recognition system based on time delays. An overview of existing pattern recognition

models developed by other researchers is covered in Section 2.4, while Section 2.5

provides an introduction to field-programmable gate arrays (FPGAs) and examples of

FPGA-based pattern recognizers. Finally, the last section of this chapter describes the

basic idea of a delay-based pattern recognition system we aim to develop.

2.2 Pattern Recognition

In machine learning, pattern recognition is the study of how machines can learn to

distinguish patterns of interest and make sound decisions about the categories of the

patterns [30]. Research in pattern recognition has been around for about 50 years.

However, pattern recognition systems with high speed processing power, low cost and

small size, and efficient implementation, remain elusive.

2.2 Pattern Recognition 5

Figure 2.1: Example of a simple statistical classification

There are four best known approaches for pattern recognition: 1) template

matching, 2) statistical classification, 3) syntactic or structural matching, and 4)

artificial neural networks (ANNs).

Template matching is one of the classical and the simplest approaches to pattern

recognition. In this approach, patterns to be recognized are directly matched against

stored templates or prototypes. The templates themselves could be learned from

available training samples. However, template matching is computationally demanding

and may not be the most efficient and effective approach to pattern recognition when

dealing with complex or noisy patterns.

 The statistical classification approach classifies patterns based on the statistical

distributions of features. Each pattern is usually represented by a point in a

representation space of the features and classes of patterns are represented by regions in

that feature space. For example, suppose the average value of height and weight for

women is 165 cm and 57 kg, respectively, and for men is 180 cm and 72 kg,

respectively; a statistical classifier may estimate the probability distribution of the two

features, i.e. height and weight, from training samples and establish a decision boundary

for classification, as illustrated in Figure 2.1. A person with height 182 cm and weight

75 kg will then be classified as a man in this example.

Syntactic or structural matching adopts a hierarchical approach to pattern

recognition. This method decomposes a given complex pattern into sub-patterns which

are themselves built from yet simpler sub-patterns. The given complex pattern is then

classified based on the interrelationships between the sub-patterns and itself. For

2.3 Spiking Neural Networks 6

Figure 2.2: A simple feedforward artificial neural network

example, a complex pattern such as an animal may be described in terms of its sub-

patterns such as head, limbs, legs, or tail, and be classified into an appropriate category

based on relationships between the sub-patterns and its complex pattern.

Artificial neural networks (ANNs) can be applied to a variety of problems

including pattern recognition and are inspired by biological neural systems [53, 18].

This approach has attracted significant attention due to its ability to learn complex non-

linear input-output relationships. The learning process often involves updating network

configurations and connection weights so that a network can efficiently adapt itself to

learn patterns and perform classification tasks [32, 52, 17, 56]. Among various types of

ANN models, feedforward networks such as multilayer perceptrons, redial basis

function networks, Kohonen’s self-organizing map and SNNs are commonly used for

pattern recognition tasks [2, 13, 65, 31].

2.3 Spiking Neural Networks

Spiking neural networks (SNNs) are the third generation of ANN models that include

the factor of time in addition to neuronal and synaptic mechanisms modeled in previous

generations of ANNs [42, 61]. These ANN models take into account the precise firing

times of neurons, which are believed to be main features in cognitive processing [1, 19].

2.3 Spiking Neural Networks 7

Figure 2.3: (a) A simple spiking neural network; (b) Spike emission of an integrator
neuron; (c) Spike emission of a coincidence detector neuron

Neurons in the nervous system process and transmit information using action

potentials, or spikes [42, 44]. Information is believed to be encoded in the time delays

between spikes [43, 46, 47, 8]. In general, the biological model of a neuron emits a

spike whenever the temporal integration of incoming action potentials generated by its

pre-synaptic neurons exceeds a given threshold, Vth, as illustrated in Figure 2.3 (a) and

(b) [27, 29, 33]. Nevertheless, the specific firing behavior of a neuron may however

vary depending on parameters such as the threshold of membrane potential and the

inter-spike interval of pre-synaptic neuron emissions. The firing behavior may vary

from the role of “integrator”, as in Figure 2.3 (b), to the role of “coincidence detector”,

2.4 Existing Works on SNN and Time Delay-based Pattern Recognition 8

as in Figure 2.3 (c) [35, 49]. For integrator, most of the input spikes integrated over a

period of time contribute to the emission of an output spike; while for coincidence

detector, only quasi-synchronously arriving input spikes trigger an output spike

emission. Integrator and coincidence detector are two of the best known spiking neuron

models suggested in biological research [28, 35].

 Biological and theoretical results have shown that SNNs are potentially more

powerful than traditional ANNs [43, 45, 63], and are able to perform signal-processing

tasks in a robust and energy-efficient manner. Due to these advantages, SNNs have

attracted attention in various bio-sensing applications including olfactory sensing [11,

34], auditory systems [25, 36, 37, 71], image processing [12, 40] and pattern recognition

[73, 57, 6].

2.4 Existing Works on SNN and Time Delay-based Pattern
Recognition

Various SNN and time delay-based pattern recognition systems were studied by

researchers. This section provides examples of theoretical and simulation models of

such systems. Examples for hardware models in FPGA implementations are given in

Section 2.5.3.

 Hopfield presented a computational model for pattern recognition based on

action potential timing [26]. He suggested that a given pattern in the form of analog

variables could be represented by a pattern consisting of action potentials or spikes

occurring in a given time relationship, and the recognition computation in this

representation could be performed by a network that uses time delays and coincidence

detection. The time delays are organized in a way such that the spikes of a pattern,

which occur at different times, arrive simultaneously at a coincidence detection neuron,

which performs recognition.

 An adaptive SNN architecture with an online learning procedure for visual

pattern recognition was proposed by Wysoski et al. [74]. The architecture comprises

four layers of integrate-and-fire neurons. The network learns different views of an

object through training samples presented to it online and adaptively changes its

structure to respond optimally to different visual patterns. The system performs face

2.5 Field-Programmable Gate Arrays 9

recognition by collecting multiple frames of visual data for processing before making a

final decision.

 Gupta and Long presented a 2-layer SNN model for character recognition [21].

The network consists of integrate-and-fire neurons and uses spike time-dependent

plasticity (STDP) for learning, where STDP is a well-known type of learning rule based

on the order of pre- and post-synaptic neurons’ firing times [9, 58, 62]. Their results

showed that 43 out of a set of 48 characters were successfully recognized by the

network. Unlike Hopfield’s model mentioned earlier, which emphasizes representation

of a generic analog input pattern via a set of neurons firing with a time relationship; an

input pattern in the models from Gupta and Long, and Wysoski et al., is a set of image

pixels each represented by a neuron with constant “ON” and “OFF” states to represent

pixel contrast.

 Apart from SNN-based pattern recognition models, there are other models that

operate based on time delays such as time-delay neural network-based models [22, 38,

70]. However, these models are primarily used to work with continuous data especially

in speech processing and time series prediction, and fundamentally different from SNN-

based models that process information-encoded temporal spike patterns. Our goal for

this thesis is to develop pattern recognition systems with functionality based on the

fundamentals of SNNs, i.e. similar to how the brain possibly performs pattern

recognition tasks through the use of time delays. We aim to develop basic pattern

recognition models that work with temporal spike patterns and potentially be useful for

development of more complex pattern recognition systems in the future.

2.5 Field-Programmable Gate Arrays

Since their invention in the mid-1980s, field-programmable gate arrays (FPGAs) have

grown significantly in popularity due to their effective programmability and

reconfigurability [53, 10, 5, 16, 20, 24, 51]. These advantages allow different design

choices to be evaluated and adopted in a very short time. Unlike custom application-

specific integrated circuit (ASIC) implementations, FPGAs are readily available at

reasonable cost and allow great reduction in a development cycle.

2.5 Field-Programmable Gate Arrays 10

2.5.1 Architecture and logic resources

The architecture of an FPGA consists of an array of programmable logic blocks with

interconnect resources, as well as Input/Output blocks on the border of the chip, as

illustrated in Figure 2.4.

The logic blocks constitute the main logic resources for implementing sequential

and combinational circuits. The logic resources in each logic block are usually

organized as small units of logic elements or cells. Each logic element often consists of

two basic components – an n-input look-up table (LUT) and a register. An n-input LUT

is basically a function generator that can implement any boolean function of n variables,

while a register is a basic programmable storage element. The terminology used in the

organization of logic resources may vary from one FPGA vendor to another. For

example, Xilinx refers logic blocks as ‘configurable logic blocks’ (CLBs) [76], while

Altera refers them as ‘logic array blocks’ (LABs) [3].

Figure 2.4: Basic FPGA architecture

2.5 Field-Programmable Gate Arrays 11

Figure 2.5: Logic resources in a Xilinx Spartan-3E CLB

Figure 2.5 illustrates an example of a CLB in a Xilinx Spartan-3E device. The

logic resources are organized as ‘slices’ in each CLB. Each slice contains two logic

cells, where each of them comprises a 4-input LUT and a register. There are also

additional hardware features in a slice, such as multiplexers (muxes), carry and

arithmetic logic for implementing circuits that would otherwise require additional LUTs.

Next to every CLB, there is a ‘switch matrix’ that provides programmable connections

between slices of the same or different CLB(s) via interconnect.

In addition to the basic logic resources, modern FPGAs nowadays come with

embedded higher-level logic functions that are commonly used such as multipliers,

memories and processors. Having these commonly-used functions embedded into the

chip allows savings in area and better speed performance compared to building them

from basic logic resources. The availability of embedded processors such as PowerPC

and ARM enables the development of a-system-on-a-reconfigurable-chip. Besides these

hard-macro processors, there are also soft processors such as MicroBlaze and Nios II

that can be implemented using the FPGA logic resources.

2.5 Field-Programmable Gate Arrays 12

2.5.2 Interconnect resources

Interconnect resources are programmable routing channels between functional entities

in an FPGA, such as logic elements, Input/Output blocks and embedded memories [66].

They are usually segmented into different lengths and geometrically optimized for

optimum connectivity.

 Figure 2.6 illustrates the organization of interconnect resources in a Xilinx

Spartan-3E FPGA. There are four types of interconnect segments in the device – single,

double, hex (shown respectively in the top, middle and bottom boxes of the figure) and

long lines. Single lines route signals to neighboring CLBs horizontally, vertically and

diagonally. Double lines route signals to every first and second CLB away horizontally

and vertically, in four directions; while hex lines route signals to every third and sixth

CLB away, also in four directions. Long lines span across the chip and connect to one

out of every six CLBs.

Placement and routing of hardware logic are often optimized by FPGA design

tools. The design tools place and route associated logic within a logic block or adjacent

logic blocks to optimize for speed performance and area efficiency.

Figure 2.6: Interconnect resources in a Xilinx Spartan-3E device

2.5 Field-Programmable Gate Arrays 13

2.5.3 SNN-based pattern recognizers on FPGAs

Apart from theoretical models, hardware implementations of SNN models were also

explored in research [68, 69, 12, 14, 50, 64, 67]. This section provides examples of

SNN-based pattern recognizers implemented on FPGAs.

An FPGA implementation of a frequency discriminator using a 3-layer SNN was

presented by Upegui et al. [67]. Each layer of the network contains 10 neurons. Each

neuron was implemented using a finite state machine as control unit, a memory to store

parameters, and other sequential logic to perform learning and computations. The

hardware model demonstrated positive response to waveforms of different frequencies.

Caron et al. presented an FPGA-based SNN for pattern recognition where

matching is achieved through synchronization of firing neurons [12]. The SNN uses a

bit slice architecture where neurons are organized into slices or columns of 1-bit wide.

Each neuron is implemented using a block RAM for synaptic weight storage, along with

serial adders and sequential logic to perform computations. The system demonstrated

accurate pattern matching results in an image recognition task.

 Schrauwen et al. proposed a speech recognition system on an FPGA using a

liquid state machine (LSM), a recurrent network of spiking neurons where only the

output layer is trained [64]. The system uses a serial-processing, serial-arithmetic

architecture to achieve savings in hardware resources. The work showed that a

relatively small implementation of a real-time speech recognizer compared with

existing solutions is viable with a tradeoff in speed.

 Another example of FPGA-based pattern recognition system using an SNN, also

for speech recognition application, was presented by Cassidy et al. [14]. The

architecture consists of an array of 32 identical integrate-and-fire neurons, each of them

implemented using a 16-bit digital accumulator and memories. The system

demonstrated consistent spike responses to respective input speech patterns.

2.6 The Central Idea 14

2.6 The Central Idea

Having introduced the background in previous sections, this section describes the basic

idea of our work that was fundamentally inspired by the concept of SNNs.

 As described in Section 2.4 and 2.5.3, various pattern recognition models based

on SNNs were proposed by researchers. These models are either in theoretical or

simulation form, or in hardware implemented using conventional design practices and

standard digital circuits. In our work, we look into the use of time delays for pattern

recognition tasks and explore a novel design approach for implementing a delay-based

pattern recognition system on an FPGA. The basis of our pattern recognition model is

fundamentally similar to that in Hopfield’s theoretical model described in Section 2.4,

which uses a time-delay network and coincidence detection for recognition computation.

We further expand from this basis into a more concrete hardware model and realize it

on an FPGA with a novel and unique design approach.

 FPGAs consist of rich hardware resources which are potentially useful for

implementing delays. We develop our pattern recognition circuit by exploiting these

massive resources available on FPGAs. Typically, processing speed of a standard digital

system designed using conventional synchronous approach is often limited by clock

frequencies of the circuit. Power consumption is also relatively high in synchronous

circuits when operating at a high clock rate. We aim to build a hardware model for

pattern recognition that uses only combinational logic and interconnect resources, with

no sequential clocking elements. This unique design approach would allow high-speed

processing of pattern recognition tasks with relatively low hardware cost. The approach

could possibly improve processing speed of a digital system to a level beyond

conventional synchronous circuits could achieve, along with the benefit of power

savings. Furthermore, exploitation of interconnect resources for implementing delays

would allow significant savings on logic elements and free up those resources for other

logic implementations. The approach may also potentially contribute to development of

fast-processing circuits beyond FPGA platforms in the future since delays implemented

using wires are easier and less expensive to fabricate.

2.6 The Central Idea 15

 Based on this basic idea and similar approach, we also develop an auto-

associative memory in Chapter 4. The memory is fully implemented on an FPGA with

pattern learning capability.

 As SNNs are also often referred to as pulsed neural networks, the terms “spike”

and “pulse” are used interchangeably in this thesis.

16

CHAPTER 3

DELAY-BASED PATTERN RECOGNITION

3.1 Introduction

The aim of this chapter is to demonstrate the feasibility of FPGA implementation of a

delay-based pattern recognition circuit. The circuit is inspired by the concept of spiking

neural networks (SNNs) where time delays are believed to be crucial in neurobiological

processing [44, 46, 47]. FPGAs consist of massive logic and interconnect resources

which are potentially useful for implementing delays. The work in this chapter looks

into the use of time delays for pattern recognition and the exploitation of FPGA

hardware resources as programmable delays for implementing a delay-based pattern

recognition circuit. In particular, the work explores the design of a basic programmable

delay line that serves as a fundamental structure for building such pattern recognition

circuits. A prototype is developed to demonstrate a complete system with pattern

learning capability.

3.1.1 Programmable delays and pattern recognition

Inspired by the concept of SNNs, we propose a basic pattern recognition circuit that

uses time delays in the processing of patterns. The patterns are in the form of spike or

pulse sequences.

3.1 Introduction 17

Figure 3.1: Delay-based pattern recognition

The pattern recognition circuit consists of two basic components –

programmable delay lines and a coincidence detector. As illustrated in Figure 3.1, for

an input pattern presented to the circuit, each of the spikes is fed through a dedicated

programmable delay line that is connected to the coincidence detector. If the

programmable delay lines could be trained through delay adaptation such that

coincidence of delayed spikes is triggered at the coincidence detector, then one could

train the circuit to remember a given pattern and the circuit would detect the trained

pattern when the same pattern is presented to it again. The coincidence detector is an

AND gate and a detection of coincidence of the delayed spikes results in an assertion of

an output spike indicating that the pattern is detected.

3.1.2 Spatiotemporal spike sequence

Neurons in the nervous system communicate using actions potentials, which are, in

general, referred to as ‘spikes’, or ‘pulses’. A delay-based pattern recognition circuit

described in this chapter processes patterns in the form of spatiotemporal spike

sequences. A spatiotemporal spike sequence is a pattern of spikes distributed over both

a population of neurons (“space”) and time.

3.1 Introduction 18

Figure 3.2: Mapping of spatiotemporal spike sequence onto programmable delay lines

We define a spatiotemporal spike sequence to be represented by a vector of k

elements {x0, x1, ... , xk-1} with each element having b temporal values {r0, r1, … , rb-1},

as illustrated in Figure 3.2. Each temporal value could represent a piece of data and they

all have a pulse width, tres, with a zero time gap between pulses. For example, for a k-

element vector with 8 temporal values, each of the xi elements could represent an

integer in {0, 1, … , 7}, while a vector with 26 temporal values could represent a set of

characters {A, B, … , Z}. Through this temporal coding scheme, a vector of a data type

is translated into a sequence of pulses, or spikes. For a k-element, b-temporal value

vector, the total number of possible patterns that could be produced is bk.

In terms of hardware mapping and representation, each xi element of a k-element,

b-temporal value vector could be represented by a programmable delay line capable of

producing b different delays, as illustrated in Figure 3.2.

3.1.3 FPGA interconnect resources

The architecture of an FPGA consists of massive logic and interconnect resources. The

design of programmable delay lines described in this chapter effectively utilizes those

hardware resources and takes advantage of the interconnect routing architecture for

building a delay-based pattern recognition circuit.

3.2 Design and Implementation of Programmable Delay Lines 19

Without loss of generality, Xilinx Spartan-3E family FPGAs were used in this

work due to their low cost and high performance benefits. Interconnect scheme of these

devices is previously described in Section 2.5.2 of Chapter 2.

3.2 Design and Implementation of Programmable Delay
Lines

In this section, we describe the design of a basic programmable delay line that serves as

a basic structure for constructing longer programmable delay lines in a delay-based

pattern recognition circuit. The implementation of the primitives used in a

programmable delay line that enable the programmability of the delay line is also

described. The last part of this section illustrates how an FPGA-targeted pattern

recognition circuit could be constructed by using these basic programmable delay lines.

3.2.1 Basic programmable delay line

The size of programmable delay lines used in a pattern recognition circuit varies

depending on the needs and specifications of the patterns to be trained. For patterns with

larger pulse width and number of temporal values, i.e. larger tres and b, larger amount of

delays are required and hence longer programmable delay lines.

 We describe the design of a basic programmable delay line that serves as a

fundamental structure for building longer programmable delay lines for the size of

interest. The architecture is based on the physical layout organization of logic and

interconnect resources in an FPGA. The architecture effectively utilizes the logic and

interconnect resources available to create a programmable delay line. Figure 3.3

illustrates the architecture of the basic programmable delay line. It consists of a chain of

LUTs each from adjacent CLBs connecting one after another serially. The basic

programmable delay line is extendable to a longer programmable delay line by

appending more LUTs to the end of the delay line.

3.2 Design and Implementation of Programmable Delay Lines 20

 Figure 3.3: Architecture of basic programmable delay line

The LUTs are the basic primitives of the basic programmable delay line. Each of

the LUTs functions as a ‘delay switch’ as well as a connection point for interconnect

segments. The delay switch is a 3-to-1 multiplexer (mux) providing options to select

between a single, a double, or a hex line connection.

The topology of the delay switch connections is organized in the same fashion as

the FPGA’s interconnect scheme. Figure 3.3 illustrates the connections between the

LUTs using each type of interconnect segment. Note that the output from each LUT

provides a single, double, and hex line connection to the respective receiving LUTs (not

shown explicitly for every LUT in the figure). For example, the output from the first

LUT is routed to the second LUT via a single line; to the third LUT via a double line;

and to the seventh LUT via a hex line. Similarly, the output from the second LUT is

routed to the third LUT via a single line; to the fourth LUT via a double line; and to the

eighth LUT (if exists, when appended for building a longer programmable delay line)

via a hex line.

Conforming to the fundamentals of conductivity, the longer an interconnect wire

the larger the resistance and capacitance, and hence resulting in a larger delay. Table 3.1

shows a set of characterization results obtained via the vendor’s timing analysis tools. A

piece of single line produces an average delay of 0.51 ns, while a double and a hex line

produce average delays of 0.68 ns and 0.80 ns, respectively. Each delay switch has an

average delay of 0.56 ns. For estimation, we could approximate one LUT-interconnect

pair as producing a 1 ns delay.

3.2 Design and Implementation of Programmable Delay Lines 21

 Delays (ns)
 Single line Double line Hex line LUT (delay switch)

 0.52 0.66 0.79 0.58
 0.49 0.68 0.78 0.58
 0.50 0.71 0.80 0.55
 0.51 0.70 0.79 0.56
 0.48 0.70 0.81 0.56
 0.51 0.67 0.81 0.55
 0.53 0.68 0.78 0.58
 0.53 0.67 0.79 0.55
 0.49 0.66 0.81 0.54
 0.50 0.66 0.81 0.55

Average 0.51 0.68 0.80 0.56

Table 3.1: Characterized delays of interconnects and LUTs

Delay switch settings for
DS0 to DS6

Resulting LUTs and
interconnects used

Delays (ns)

S,X,X,X,X,X,H 2 LUTs + 1 hex 2.13
S,X,D,X,D,X,D 4 LUTs + 3 doubles 4.09
S,X,D,X,D,S,S 5 LUTs + 2 doubles + 2 singles 5.22
S,X,D,S,S,S,S 6 LUTs + 1 double + 4 singles 6.18
S,S,S,S,S,S,S 7 LUTs + 6 singles 7.15

Table 3.2: Resulting delays against different delay switch settings

By applying appropriate settings to each of the delay switches, a basic 7-LUT

programmable delay line with delay switches DS0 to DS6 from input to output as

shown in Figure 3.3 is able to produce a series of variable delays ranging from 2 ns to 7

ns, as shown in Table 3.2. For example, a {DS0,DS1,DS2,DS3,DS4,DS5,DS6} =

{S,X,X,X,X,X,H} setting on the delay switches DS0 to DS6 produces a delay of 2.13 ns;

a {S,X,D,X,D,X,D} setting gives a 4.09 ns delay; and a {S,S,S,S,S,S,S} setting gives a

7.15 ns delay; where S, D, H, X denote single, double, hex line connection and don’t

care, respectively. The resulting delays against different delay switch settings were

measured and characterized from simulation. The results also agree with estimation

based on summation of individual average delays of LUTs and interconnect wires by

using the values in Table 3.1.

3.2 Design and Implementation of Programmable Delay Lines 22

With the extendable nature of the FPGA fabric, a greater range of delays can be

achieved by extending the delay line, creating a longer variable delay line.

3.2.2 Programmable delay switches

In order to allow programmability of the delay line, each of the LUTs on a delay line is

implemented as a 16-bit addressable shift register (SRL16), a built-in feature available

in Spartan-3E LUTs. This is shown in Figure 3.4. The A[3:0] inputs provide access to

any bit in the shift register through the Q output.

The A[2:0] inputs on each of the LUTs are connected to a hex, a double, and a

single line connection, respectively. A[3] is unused and connected to ground. To select

which of the A[3:0] inputs is output through Q, we determine the truth table values for

the output versus the A[3:0] inputs. This is simply Q = A[m], where m ∈ {0, 1, 2, 3},

and A[m] is the selected input that we would like to output through Q, as shown in

Table 3.3. This logic implementation can also be thought of as a 3-to-1 mux with

selection determined via input and output mapping. By shifting in the truth table values

for Q output into the shift register, we can reflect which of the A[2:0] inputs (hex,

double, or single line connection) is output through Q. More precisely, a LUT will be

configured to select single line connection by shifting Q[15:0] = AAAA into the shift

register, while Q[15:0] = CCCC and Q[15:0] = F0F0 are used for double and hex line

connections, respectively. Hence, a delay line is programmable to generate a desired

delay by shifting an appropriate shift register value into each of the LUTs.

Figure 3.4: Implementing LUT as 16-bit shift register

3.2 Design and Implementation of Programmable Delay Lines 23

Ground (unused) Hex Double Single Q[15:0]
A[3] A[2] A[1] A[0] Q Single AAAA

0 0 0 0 Q[0] Double CCCC
0 0 0 1 Q[1] Hex F0F0
0 0 1 0 Q[2]
0 0 1 1 Q[3]
0 1 0 0 Q[4]
0 1 0 1 Q[5]
0 1 1 0 Q[6]
0 1 1 1 Q[7]
1 0 0 0 Q[8]
1 0 0 1 Q[9]
1 0 1 0 Q[10]
1 0 1 1 Q[11]
1 1 0 0 Q[12]
1 1 0 1 Q[13]
1 1 1 0 Q[14]
1 1 1 1 Q[15]

Table 3.3: Shift register values for configuring delay switches to select between single,
double, or hex line connections

3.2.3 Pattern recognition array

CLBs in a standard Xilinx FPGA constitute the main logic resources for implementing

digital circuits. The CLBs are arranged in a regular array of rows and columns. Each

CLB in a Spartan-3E FPGA comprises four slices, two on each left and right side of the

CLB. Each slice contains two LUTs. The two slices on the left are called SLICEM and

support both logic and shift register functions that are useful for implementing

programmable delay switches.

The basic programmable delay line presented serves as a fundamental structure

for building programmable delay lines in a delay-based pattern recognition circuit. By

taking advantage of the array-based CLB architectural layout organization of logic and

interconnect resources in Spartan-3E FPGAs, a pattern recognition circuit consisting of

programmable delay lines could be implemented as a block of N×N CLBs array, with

two LUTs per CLB in each horizontal and vertical direction, as illustrated in Figure 3.5.

3.2 Design and Implementation of Programmable Delay Lines 24

Figure 3.5: N×N CLBs pattern recognition array

All the LUTs illustrated in the figure are SLICEM LUTs. The total number of LUTs in

the array, L, is therefore:

L = 2N × 2N = 4N2 (3.1)

 Figure 3.6 illustrates an example of a 8×8 CLBs pattern recognition array that

stores and detects patterns of a 4-element vector {x0, x1, x2, x3}. The first two elements

of the vector x0 and x1 are stored via the horizontal programmable delay lines while the

last two elements x2 and x3 are stored via the vertical programmable delay lines. For

example, x0 is stored via the bottom-most horizontal delay line in each CLB row. The

delay lines in each direction are connected one after another from one CLB row or

column to the next CLB row or column, for respective vector elements. The connections

between the horizontal or vertical delay lines are made via the shortest available routing

3.2 Design and Implementation of Programmable Delay Lines 25

Figure 3.6: 8×8 CLBs pattern recognition array storing a 4-element vector patterns

path determined by the vendor’s FPGA design tools. The direction of a programmable

delay line is flexible to be defined differently. For example, the horizontal delay lines

may go alternating from left to right and from right to left instead of always from left to

right as shown in Figure 3.6. In addition, a programmable delay line may also be

formed with a mix of horizontal and vertical delay lines as long as there are unused

LUT and interconnect resources available.

The pattern recognition array has the flexibility of storing and detecting different

and independent sets of spatiotemporal patterns of k-element, b-temporal value vectors.

Each set of patterns could have its own specifications in terms of number of elements

and delay requirements. The specifications of the patterns could also potentially be

defined differently and may not necessarily be limited to what is defined in Section

3.1.2. For example, each xi element of a k-element vector could potentially be having

different number of temporal values instead of the same.

3.2 Design and Implementation of Programmable Delay Lines 26

Figure 3.7: A pattern recognition array storing two different and independent sets of
patterns, {A0, A1, A2} and {B0, B1}

Figure 3.7 illustrates an example of a pattern recognition array that stores two

different and independent sets of spatiotemporal patterns – a set of 3-element vector

patterns {A0, A1, A2} and a set of 2-element vector patterns {B0, B1}. The first set of

patterns {A0, A1, A2} is stored via the horizontal programmable delay lines while the

second set {B0, B1} is stored via vertical programmable delay lines.

 The length of a programmable delay line may vary, depending on the needs of

the amount of delay required. For example, the A0 element in the first set of patterns that

requires lesser amount of delay compared to A1 element may take up 2 rows of the

horizontal programmable delay lines, while the latter may take up 8 rows of the

programmable delay lines.

3.3 Training 27

 The input and output of a programmable delay line could start and end at any

LUTs within the array as long as there are sufficient LUT and interconnect resources

available to meet the pattern requirements.

3.3 Training

The network can be trained to recognize a given pattern through delay adaptation of the

input spikes Xi to a target spike Xtarget using a training algorithm. The pseudo code of the

training algorithm is described as below.

Pseudo code of training algorithm

1) Initialize all programmable delay lines to the minimum delay

2) For each Xi spike in the pattern,

delay Xi by incrementing the delay of its programmable delay line until it

coincides with Xtarget spike

Each Xi spike is fed trough a dedicated programmable delay line. In the

initialization stage of the training process, each of the programmable delay lines is

initialized to the minimum delay. After that, the training algorithm adapts the delay of

each of the input spikes Xi such that it coincides with the target spike Xtarget by

incrementing the delay of the associated programmable delay line, as illustrated in

Figure 3.8.

Figure 3.8: Delay adaptation of input spikes to a target spike

3.4 Delay-based Pattern Recognition Prototype 28

The training is deemed to be completed when all of the input spikes Xi are

adapted to the target spike Xtarget to cause a coincidence. After the training, when the

same pattern is introduced to the circuit, the output of the circuit will be asserted to

indicate a detection of the trained pattern.

3.4 Delay-based Pattern Recognition Prototype

To demonstrate the proof-of-concept of the delay-based pattern recognition circuit and

the feasibility of its FPGA implementation, a prototype consisting of a 10×10 CLBs

pattern recognition array with pattern learning capability is implemented.

 Figure 3.9 shows the block diagram of the implemented pattern recognition

prototype. The entire circuit was implemented on a Xilinx Spartan-3E XC3S1600E

family FPGA that uses 90nm process technology with logic resources density of 33,192

logic cells. The training process is orchestrated by a MicroBlaze soft processor. The

shift registers of the LUTs on each programmable delay line are connected one after

another as a chain. The configuration values of the delay switches are fed serially into

the programmable delay lines from the MicroBlaze processor through a Fast Simplex

Link (FSL) interface and a parallel-to-serial converter. A pattern generator is

implemented as a state machine that generates spatiotemporal patterns of Xi spikes and a

target spike Xtarget. The entire circuit including the training logic utilizes 13.5%

(4,494/33,192) of the total logic cells available on the FPGA while the pattern

recognition array takes up 1.3% (416/33,192).

Figure 3.9: Delay-based pattern recognition prototype

3.5 Utilization and Capacity 29

Figure 3.10: Simulation result of a trained pattern {x0, x1} = {E, A}

The array is configured to train and detect patterns of a 2-element, 8-temporal

value vector {x0, x1}, with a pulse width tres of 5 ns. Each of the xi elements represent a

set of 8 characters {A, B, … , H}. x0 and x1 are fed in through the horizontal and vertical

programmable delay lines respectively. The programmable delay lines in each direction

are cascaded one after another to build a long programmable delay line with a sufficient

amount of delay to store the pattern.

 Figure 3.10 shows the simulation result of a pattern {x0, x1} = {E, A} after

training. Before training, x0 and x1 spikes do not coincide with each other or the target

spike Xtarget. After training, x0 and x1 spikes are adapted to Xtarget and coincidence occurs.

When the same pattern {E, A} is introduced to the circuit again, the output of the AND

gate is asserted indicating that the trained pattern is detected.

3.5 Utilization and Capacity

The size of a delay-based pattern recognition circuit may vary depending on the

specifications of the patterns to be stored. This section discusses about estimation of

hardware resource utilization of programmable delay lines for storing and detecting

patterns of a given k-element, b-temporal value vector. The capacity of a pattern

recognition array for storing and detecting different and independent sets of patterns is

also discussed in this section.

3.5 Utilization and Capacity 30

3.5.1 Hardware utilization of programmable delay lines

As illustrated in Figure 3.2, for a programmable delay line capable of producing b

temporal values of different delays of equal width tres, the total delay could be produced

by the programmable delay line is:

Dline = b × tres (3.2)

Furthermore, as discussed in Section 3.2.1, based on characterization results of

interconnect and LUT delays, we could approximate one LUT-interconnect pair

producing a delay of 1 ns. We could therefore estimate the utilization of a

programmable delay line, Uline, in terms of the number of LUTs, as:

Uline ≈ Dline = b × tres (3.3)

Hence, for a given k-element, b-temporal value vector, the total utilization of

programmable delay lines in terms of the number of LUTs in a delay-based pattern

recognition circuit, Uset, could be estimated as:

Uset ≈ Uline × k (3.4)

For example, for a 4-element, 8-temporal value vector, which could produce a

total of 84 = 4096 possible spatiotemporal patterns, if a pulse width tres of 3 ns is used,

the utilization of the circuit is Uset ≈ 96 LUTs, which is very compact in size.

3.5.2 Capacity of a pattern recognition array

As proposed in Section 3.2.3, a delay-based pattern recognition circuit consisting of

programmable delay lines of the presented design could be implemented as a block of

N×N CLBs array. Here, we discuss the potential storage capacity of a pattern

recognition array.

3.5 Utilization and Capacity 31

We define the capacity, C, as the total number of different and independent sets

of spatiotemporal patterns, each represents a k-element and b-temporal value vector,

storable by an N×N CLBs pattern recognition array. Based on calculations in terms of

number of LUTs from Equation 3.1 and Equation 3.4, the capacity of a pattern

recognition array could be estimated as:

C ≈ L/Uset = 4N2 / (b × tres × k) (3.5)

For example, for a 30×30 CLBs array, the capacity for storing different and

independent sets of patterns each of a 4-input, 8-temporal value vector is C ≈ 4×302 /

(8×3×4) = 37 sets of patterns, where each set is having 84 = 4096 possible

spatiotemporal patterns. With the approximation of one LUT-interconnect pair

producing a delay of 1 ns, the capacity of a pattern recognition array could be increased

in proportion to the number of LUTs in the array. Hence, for modern FPGAs with high

hardware resource density, a larger pattern recognition array could be realized for

storing a large number of patterns.

32

CHAPTER 4

A BIOLOGICALLY-INSPIRED
AUTO-ASSOCIATIVE MEMORY

4.1 Introduction

A conventional memory, in the context of engineering or computing, stores a data

element at a unique address and is capable of retrieving the data element back upon

presentation of the complete address. In contrast, an auto-associative memory is a type

of “content-addressable” memory which does not require an address in order to retrieve

data, but instead retrieve a data element in response to a partial presentation of the

original copy [72].

In this chapter, the design and implementation of a biologically-inspired auto-

associative memory on an FPGA is presented. The design is conceptualized and

developed based on a spiking neural network (SNN) model. The architecture effectively

utilizes the massive logic and interconnect resources available in an FPGA to model

axonal delay elements in biological neural networks. Time delays, rather than binary

values are used to represent numeric data; and coincidence is used to perform pattern

matching.

Figure 4.1 illustrates the function of the SNN-based auto-associative memory.

The system first learns a certain input pattern through a training process. The memory

consists of programmable delays and coincidence detectors. The input pattern is stored

by adapting the programmable delays connected to the coincidence detectors. After

4.2 Spatiotemporal Spike Sequence 33

Figure 4.1: SNN-based auto-associative memory

training, when a partial input pattern is presented, the complete version of the training

pattern will be retrieved from the memory and a sustained periodic replay of the pattern

effected.

 Similar to the pattern recognition prototype developed in Chapter 3, the pattern

processing unit of the memory is also implemented using a clockless design approach.

The system is however implemented on an FPGA from a different vendor to

demonstrate that such delay-based pattern recognition models and the clockless design

approach are viable across different FPGA platforms and not only limited to specific

FPGA devices.

4.2 Spatiotemporal Spike Sequence

Similar to the delay-based pattern recognition system developed in Chapter 3, the auto-

associative memory stores and reproduces memories in the form of spatiotemporal

spike sequences.

4.3 Derivation of Model 34

Figure 4.2: A temporal pattern {x0, x1, x2, x3} = {2, 0, 1, 3}

Here, we define a spatiotemporal spike sequence to be represented by a vector of

k elements {x0, x1, ... , xk-1}, with each xi representing the time between a reference

signal and the rising edge of a pulse. Through this temporal coding scheme, a vector of

real numbers is translated into a sequence of pulses, or spikes, as shown in Figure 4.2.

4.3 Derivation of Model

The SNN-based memory model developed in this chapter was derived from a Java-

based spiking memory model described by Wills [72]. Wills’ work aims to develop a

SNN-based auto-associative memory model capable of storing and retrieving memories

in the form of spatiotemporal spike sequences or patterns. The model developed by

Wills stores a number of different spatiotemporal spike sequences as an auto-associative

memory so that any stored pattern can be recalled by the network when presented with a

partial version of that pattern.

 In Wills’ model, each neuron is endowed with several multi-input coincidence

detectors each of which may be used to detect spikes. The input spikes to a neuron’s

coincidence detector are referred to as the ‘context spikes’ for the given neuron. There

are time-delay connections between the neuron outputs and the inputs to other neurons’

coincidence detectors. The recall of a particular spatiotemporal spike sequence is

4.4 Architecture 35

manifested by the recurrent activation of that spatiotemporal spike sequence within the

population of neurons. Thus, there is a closed network of neurons that will spike

repeatedly if stimulated in the correct temporal sequence. Because each neuron may

have multiple coincidence detectors, each neuron can participate in multiple

spatiotemporal spike patterns. As well, this auto-associative memory model can store

multiple patterns and recall them concurrently.

We explore a SNN model that stores a single simple pattern in comparison to

Wills’ software-based model which can store and concurrently recall multiple patterns.

In our simplified model, each neuron in the network is associated with only one

coincidence detector that responds to the context spikes of a particular stored pattern,

and in turn contributes to the recurrent activation of that single pattern.

While many of the existing FPGA implementations of SNNs are based on

standard digital designs with sequential logic [12, 14, 64, 67], where speed performance

is often limited by clock frequencies of such circuits; the SNN developed in this chapter

uses only combinational logic and no sequential clocking elements are involved in the

feedforward path. Hence, the memory has the potential to process patterns at very high

speed and low latency, at a level beyond a conventional synchronous circuit could

achieve.

4.4 Architecture

Having introduced the ideas behind our SNN-based auto-associative memory model,

this section describes precisely the architecture of the memory.

4.4.1 Programmable delay lines

Information, i.e. patterns, are stored via programmable delay lines that interconnect the

neurons. A k-input pattern requires k spikes to represent that pattern with each spike

corresponding to the output of a neuron. Thus, the SNN model for the k-input pattern

consists of k neurons, each with a multi-input coincidence detector. The input spikes to

a neuron’s coincidence detector are referred to as the ‘context spikes’ for the given

4.4 Architecture 36

Figure 4.3: Network configuration of a 4-input auto-associative memory with two
contexts

neuron. The inputs of the coincidence detector are driven by a subset of the other k-1

neurons, which are in turn referred to as the ‘context spike neurons’. Each input of the

coincidence detector is connected to its context spike neuron through a programmable

delay line. If each multi-input coincidence detector receives c context spikes, then a

total of k × c programmable delay lines are required to form the network between each

output neuron and its associated context spike neurons. Figure 4.3 illustrates a network

configuration of a SNN-based auto-associative memory for the case of k = 4 and c = 2.

 Figure 4.4 illustrates the detailed architecture for the programmable delay lines.

The inputs of an output neuron Ni are connected to its context spike neurons Nj through

programmable delay lines. Using the programmable delay lines, the interconnection of

each output neuron with its associated context spike neurons forms a closed feedback

network that drives the recurrent activation of the stored spike pattern. In comparison to

the delay line architecture developed in Chapter 3, which explores the utilization of

inter-logic block routing resources for implementing delays, the design in this chapter

focuses on utilizing the interconnect resources within a logic block.

4.4 Architecture 37

Figure 4.4: Architecture of programmable delay lines

 The spikes of an input pattern consist of pulses of equal width tspike. Each

programmable delay line consists of a cascade of n delay elements, where n is

determined based on the maximum programmable delay, dmax, for the delay line. dmax is

essentially the maximum allowable delay for the context spike to be adapted to the

target spike. With similar design goals as in Chapter 3, the delay lines are designed such

that they nicely fit the FPGA architecture and allow compact block-structure

implementations. Each delay element is well represented by a Logic Array Block (LAB)

in an Altera Cyclone II FPGA. The delay of each delay element can be set as long delay

dlong or short delay dshort, through the configuration of the control multiplexer (mux).

The long delay is an interconnection of 15 logic elements (LEs) while the short delay is

a direct connection of a single wire, as illustrated in Figure 4.5. The total delay of an n-

delay element delay line, dline, must satisfy ndshort ≤ dline ≤ ndlong. The feedback

connection from an output neuron to a delay line introduces an additional delay of

4.4 Architecture 38

Figure 4.5: Delay element

dfeedback. The total delay imposed on a spike, dtotal, is therefore:

dtotal = dline + dfeedback (4.1)

4.4.2 Coincidence detectors

A coincidence detector detects the coincidence of delayed context spikes and is

implemented using a logical ‘AND’ gate. Since an AND operation between two

coincidence pulses with a small time offset produces a pulse with smaller width, the

recurrently recalled pattern will eventually disappear. To overcome this problem, two

solutions were implemented. The second solution was an improvement over the first

one.

 In the first solution, the output of the AND gate is delayed and regenerated

through a two-input OR gate, as shown in Figure 4.6. The delay element used here is

also implemented using interconnect resources. With a wider pulse at the output of the

OR gate, there is also a possibility that all the outputs of the network will eventually

settle at the logical high state. Hence, a toggle flip-flop is used to select between the

4.4 Architecture 39

Figure 4.6: Pulse-muxing coincidence detector

Figure 4.7: Coincidence detector with constant-width pulse generator

smaller and larger pulse over time, maintaining the original pulse width and sustaining

the recall of the pattern indefinitely.

 The second solution uses less hardware resources and provides much better

control of the pulse width. In this solution, the output of the AND gate is connected to a

pulse generator circuit that produces pulses of constant width. The output spike from the

AND gate triggers the D flip-flop to logical high state which later gets reset back to low

state through a fixed-delay feedback that resets the D flip-flop, as shown in Figure 4.7.

The delay element used in the feedback loop is also implemented using interconnect

resources. With this solution, all the spikes in the pattern are always maintained with a

constant pulse width and the recall of the pattern can therefore be sustained indefinitely.

4.5 Training Algorithm 40

4.5 Training Algorithm

A particular spike pattern is stored in the SNN using a training algorithm consisting of

two steps – establishing the correct context neuron interconnection and setting the

correct delays for the programmable delay lines, as described in the pseudo code below.

Pseudo code of training algorithm

1) For each Ni spike in the pattern,

• Identify a set of preceding context spikes Nj that triggers Ni

• Make a connection from each context spike neuron Nj to Ni neuron

2) For each context spike Nj of Ni spike,

• Adapt the delay of Nj spike such that it coincides with Ni spike

For each output neuron Ni representing a spike in a pattern, the algorithm

identifies a set of preceding context spike neurons Nj that triggers the target output

neuron Ni. The architecture developed in this chapter uses simple 4-input patterns (k = 4)

for testing to demonstrate the feasibility of the design and the number of preceding

context spikes c is set to 2. The training pattern is treated with wrap-around in the time

domain, i.e. the last spike in the pattern is treated as being the one preceding the first

spike. This configuration enables the recurrent recall of the pattern. The recall of the

pattern is achieved through presentation of a sub-pattern with contiguous spikes, i.e. a

subset of spikes with neighboring time relationship in the original pattern. To set the

delay from the context spike to the target spike, the algorithm calculates the delay

between the context spike and the target spike, dcontext,target, for achieving coincidence;

and determines the number of delay elements required, nreq, based on a delay function.

The delay function, D, in terms of the number of delay elements, n, is initially

characterized and obtained from simulation. The delay muxes on the programmable

delay lines are then configured appropriately as according to the value of nreq calculated.

 For example, consider a temporal pattern of {x0, x1, x2, x3} = {2, 0, 1, 3}, each xi

spike in the pattern is represented by the output neuron Ni spike, respectively. Each

spike has width tspike and the period of the pattern is 4 unit intervals. For N0 spike in this

pattern, its preceding context spikes are N2 and N1 spikes. The delay from N2 spike to N0

4.5 Training Algorithm 41

Figure 4.8: Connections between context neurons and the target neurons of an example
pattern {2, 0, 1, 3}

spike, d2,0; and from N1 spike to N0 spike, d1,0; is equal to 1 unit interval and 2 unit

intervals, respectively. The algorithm makes a connection from each of the preceding

context spike neurons N2 and N1 to the target neuron N0 through appropriate

configurations of the context muxes as in Figure 4.8. Similarly, for each of N1, N2 and

N3, the algorithm identifies the preceding context spikes and makes connections from

the preceding context spikes neurons to the target neurons. The connections between the

N0, N1, N2 and N3 target neurons and their respective context spike neurons for the

example pattern are shown in Figure 4.8. The recall of the pattern can be achieved via

presentation of a contiguous sub-pattern such as {x1, x2} = {0, 1}, {x0, x2} = {2, 1}, {x0,

x3} = {2, 3} or {x1, x3} = {0, 3}.

4.6 Implementation 42

4.6 Implementation

This section describes a complete implementation of the SNN-based auto-associative

memory on a single FPGA.

4.6.1 The complete system

Figure 4.9 shows the top-level block diagram of the entire memory system.

A 400MHz PLL-clocked counter and a set of registers are used to capture the

timing of the training pattern. A ‘pattern start’ pulse is given to the system to signal the

start of the training pattern and activate the counter. The registers store the timing for

each spike of the training pattern. The Nios II soft processor runs a C-program that

executes the training algorithm, reads the spike timings from the registers, calculates the

delays between spikes, and applies appropriate settings on context neurons connections

and delay configurations. This base design serves as a representation of the potential for

the utilization of the massive logic and interconnect resources available in an FPGA as

delay elements for building a fast-processing SNN-based memory architecture. The

system is capable of learning and recalling a 4-input pattern with temporal coding {x0,

x1, x2, x3} where each xi represents a real number encoded in the pattern.

Figure 4.9: Complete system of the SNN-based auto-associative memory

4.6 Implementation 43

The generation of an input pattern to the auto-associative memory is achieved

using a hardware state machine that produces the spatiotemporal spike sequence. It is

run on a PLL clock with a frequency of 1/tspike for generating the required input pattern.

While the duration of an action potential emitted by a biological neuron is

typically 1-2 ms [55], the SNN-based memory developed in the initial stage was

configured to work with a pulse width tspike of 60 ns to save on hardware resources and

keep the entire network in manageable size since larger pulse widths would require

more delay elements. In order to examine the maximum speed performance, the

memory was later optimized for processing with patterns of smaller pulse width, which

is later discussed in Section 4.6.2.

The delay function that is used to determine the number of delay elements

required for achieving coincidence was characterized and obtained from simulation. By

plotting the amount of delay, D, against the number of delay elements, n, we obtain the

delay function:

D = 6n + 29 (4.2)

where D is expressed in nanoseconds. The plot of the delay function is shown in Figure

4.10.

Figure 4.10: Plot of delay function

4.6 Implementation 44

Figure 4.11: Simulation result of pattern {x0, x1, x2, x3} = {4, 2, 0, 1}

The simulation results found that one LAB delay element provides a delay of 6

ns when enabled, i.e. dlong = 6 ns. In this work, since we used simple patterns for which

the context spike delay was no more than 3 unit intervals (i.e. dmax = 60 ns × 3 = 180 ns),

it was determined that 32 delay elements per delay line was used to provide sufficient

context spike delay of up to 180 ns. Equation 4.2 verifies that one delay element does

indeed provide a 6 ns delay and also implies that there is an overhead of 29 ns

propagation delay across the delay line and the feedback connection.

Figure 4.11 shows a sample simulation result of an input pattern with temporal

coding {x0, x1, x2, x3} = {4, 2, 0, 1}. Each spike of the pattern is of a 60 ns pulse width

and the period of the pattern is 5 unit intervals, or 300 ns. By applying the algorithm on

the input pattern, the preceding context spikes for each of N0, N1, N2 and N3 output

neurons are N1 and N3, N3 and N2, N0 and N1, and N2 and N0, respectively. The

respective number of delay elements required to adapt each of the context spikes to the

target spike was also determined by applying the delay function in Equation 4.2. For the

N0 spike in this pattern, the context spikes N1 and N3 were delayed by 120 ns (15 delay

elements) and 180 ns (25 delay elements), respectively, for them to achieve coincidence

that results in the triggering of N0 spike. In the figure, N1 spike was triggered first in

response to the input of its context spikes x2 and x3.

4.6 Implementation 45

Output Neuron Context Neurons Delay (unit DEs)
N0 N1

N3
15
25

N1 N3
N2

5
15

N2 N0
N1

5
25

N3 N2
N0

5
15

Table 4.1: Context neurons and delay settings of each output neuron

Table 4.1 shows the settings of the context neurons for this pattern and the

respective number of delay elements required to achieve coincidence for each output

neuron as a result of the learning process. The recall of the pattern was successfully

triggered by stimulating the first two spikes of the pattern, i.e. {x2, x3} = {0, 1}.

The entire auto-associative memory system was implemented and tested on an

Altera Cyclone II EP2C35 family FPGA, which uses 90nm technology and allows

resource utilization of up to 33,216 LEs, with 16 LEs per LAB.

Figure 4.12 shows the test results of pattern {4, 2, 0, 1} captured on an

oscilloscope. The outputs of N0, N1, N2 and N3 neurons were shown in the order from

top to bottom of the figure respectively. The pattern was successfully recalled and

sustains itself indefinitely.

Table 4.2 indicates the hardware resource utilization for the implementation of

the auto-associative memory. The entire system utilizes 22% (7,206/33,216) of the total

LEs available on the FPGA while the SNN takes up 13% (4,305/33,216). It is

interesting to see that the SNN is implemented exactly as expected where the circuit

consists of almost entirely combinational logic (4,304/4,305). The LUTs associated with

the interconnect wires used to implement the delay elements takes up 95% (4,096/4,305)

of the total LEs used in the SNN while logic takes up 5% (209/4,305). The LUTs are

used to buffer the interconnect wires and not for logic. For a delay line consisting of 32

LABs in the presented architecture, the resulting total delay is 221 ns. Interconnect

contributed 149.5 ns of the total delay and LUTs 71.5 ns. Because interconnect

4.6 Implementation 46

Figure 4.12: The recall of pattern {4, 2, 0, 1} captured on oscilloscope

 Entire System SNN
Total logic elements 7,206 / 33,216 (22%) 4,305 / 33,216 (13%)
Combinational functions 6,957 / 33,216 (21%) 4,304 / 33,216 (13%)
Dedicated logic registers 1,510 / 33,216 (5%) 4 / 33,216 (<1%)
Delay element’s LUTs - 4,096 / 4,305 (95%)
Logic - 209 / 4,305 (5%)

Table 4.2: Resource utilization on cyclone II FPGA

contributes more to the delay than the LUTs by area, it is more efficient to add more

delay as necessary by increasing the amount of routing used in the interconnect.

 The figure for SNN utilization in terms of total LEs consumption also agrees

with the estimation based on architectural parameters described by Equation 4.3:

USNN ≈ [(Bline × L) + Bcd] × ELAB (4.3)

4.6 Implementation 47

Here, Bline represents the total number of LABs utilized in a delay line, which in turn is

made up of the number of LABs utilized for context selection mux, mmux, and the

number of delay elements, n. L is the total number of delay lines in the SNN and can be

represented by the term (k × c), where k is the number of inputs to the network and c is

the number of context neuron connections, as described in Section 4.4. Bcd represents

the total number of LABs utilized for coincidence detectors which is essentially the

product of the number of LABs utilized for one coincidence detector, mcd, and the

number of SNN outputs, k. ELAB is the total number of LEs available per LAB (i.e. 16

for Cyclone II FPGAs). Equation 4.3 can therefore be more specifically expressed as:

USNN ≈ [(mmux + n) × (k × c) + (k × mcd)] × ELAB (4.4)

mmux is 1, mcd is 2, n is 32 while k and c are 4 and 2, respectively, for the presented SNN.

 Given the compact size of the SNN, the capacity of the memory can be

expanded by replicating the SNN for multiple pattern storage. The total number of

storable patterns, P, on a given FPGA can therefore be estimated by:

P ≈ EFPGA / USNN (4.5)

where EFPGA is the total number of LEs available on an FPGA. With the availability of

high-density FPGAs such as Stratix IV with 820k LEs, the total number of storable

patterns could be up to 200 if the memory is implemented on such a platform.

4.6.2 Optimizing for speed performance and size

To examine the maximum speed performance of the memory, it is interesting to

optimize the architecture for operating with even smaller pulse width. The architecture

was later optimized to work with tspike as small as 6 ns.

The optimization is achieved by reducing the length of the programmable delay

lines since lesser delay elements are required to process patterns with smaller pulse

width. The optimized architecture not only could allow a rapid processing of patterns

4.6 Implementation 48

with considerably small pulse widths and inter-spike intervals but also smaller and more

compact in terms of size. The delay function for the optimized memory is:

D = 6n + 6 (4.6)

The delay produced by one LAB delay element when enabled remained at 6 ns while

the overhead propagation delay is reduced significantly to 6 ns.

The auto-associative memory with the optimized architecture was tested with

the same set of random patterns and correct operation was achieved in all instances both

in simulation and in hardware. Figure 4.13 shows the recall of a temporal pattern {x0, x1,

x2, x3} = {1, 0, 4, 2} captured on an oscilloscope. In the pattern, each spike has a 6 ns

pulse width and the period of the pattern is 5 unit intervals, or 30 ns.

The context spikes N1 and N2 were delayed by 6 ns (nreq = 0) and 12 ns (nreq = 1)

respectively to achieve coincidence and cause triggering of the N0 spike. The recall of

the pattern can be successfully triggered from a partial representation of the pattern, i.e.

{x0, x1} = {1, 0}. Note that N3 spike was triggered first in response to the input of its

context spikes x0 and x1.

Figure 4.13: Recall of pattern {1, 0, 4, 2} captured on oscilloscope; voltage 5V/div, time
10ns/div

4.6 Implementation 49

In terms of hardware resource utilization, the entire system utilizes 8%

(2,764/33,216) of the total LEs available on the FPGA while the SNN takes up less than

1% (328/33,216). Given the compact size of the optimized architecture, approximately

2500 patterns could be stored in high-density FPGAs such as Stratix IV.

50

CHAPTER 5

RESULTS

5.1 Introduction

Having described the design and implementation of the delay-based pattern recognition

circuit and the auto-associative memory in Chapter 3 and 4, respectively, this chapter

presents the results of tests and hardware utilization of the two systems.

5.2 Delay-based Pattern Recognition Circuit

This section elaborates on the delays evaluation of programmable delay lines presented

in Chapter 3. It also presents the simulation result of a manually-trained pattern as well

as the test results for the pattern recognition prototype described in the same chapter.

The hardware utilization and physical layout of the pattern recognition prototype are

also presented.

5.2.1 Delays of programmable delay lines

As described in Chapter 3, programmable delay lines in a delay-based pattern

recognition circuit play an important role in adjusting the arrival time of spikes of a

temporal pattern for triggering a coincidence event. A pattern is trained and recognized

through the detection of coincidence of delayed spikes.

5.2 Delay-based Pattern Recognition Circuit 51

Delay switch settings for
DS0 to DS6

Resulting LUTs and
interconnects used

Delays (ns)

S,X,X,X,X,X,H 2 LUTs + 1 hex 2.13
S,X,D,X,D,X,D 4 LUTs + 3 doubles 4.09
S,X,D,X,D,S,S 5 LUTs + 2 doubles + 2 singles 5.22
S,S,S,X,D,X,D 5 LUTs + 2 doubles + 2 singles 5.19
S,S,X,D,X,D,S 5 LUTs + 2 doubles + 2 singles 5.21
S,X,D,S,S,S,S 6 LUTs + 1 double + 4 singles 6.18
S,S,S,S,X,D,S 6 LUTs + 1 double + 4 singles 6.17
S,S,S,S,S,X,D 6 LUTs + 1 double + 4 singles 6.18
S,S,S,S,S,S,S 7 LUTs + 6 singles 7.15

Table 5.1: Resulting delays against different combinations of delay switch settings for
7-LUT programmable delay line

The design of the programmable delay line allows many combinations of delay

switch settings that produce a series of variable delays. A spike has various signal paths

to propagate through a delay line depending on the settings of the delay switches. Each

of the various signal paths may have a different number of LUTs and the type of

interconnects used along the path, and hence a different resulting delay.

A basic 7-LUT programmable delay line as described in Section 3.2.1 of

Chapter 3 was simulated to evaluate the delays produced across different combinations

of delay switch settings. Table 5.1 shows the list of all possible combinations of delay

switch settings and the simulated delays for these settings. Some of the combinations of

the settings resulted in the same number and type of LUTs and interconnects, and hence

gave a similar delay. For example, the settings of {S,X,D,X,D,S,S}, {S,S,S,X,D,X,D}

and {S,S,X,D,X,D,S} all resulted in the use of 5 LUTs, 2 double line and 2 single line

connections, and produced a delay of about 5.2 ns. The signal path resulted from each

of these three settings is illustrated in Figure 5.1 (a), (b) and (c), respectively.

5.2 Delay-based Pattern Recognition Circuit 52

Figure 5.1 (a)-(c): Resulting signal path for delay switch settings of {S,X,D,X,D,S,S},
{S,S,S,X,D,X,D} and {S,S,X,D,X,D,S}, respectively

Longer programmable delay lines with more combinations of hex line

connections and signal paths were also evaluated and similar results were obtained.

Table 5.2 shows the list of possible combinations of delay switch settings and the

simulated delays for a 9-LUT programmable delay line. In this example, both

{S,X,X,X,X,X,H,X,D} and {S,X,D,X,X,X,X,X,H} resulted in the use of 3 LUTs, 1 hex

line and 1 double line connections, and produced a similar delay of close to 3.1 ns. The

resulting signal path for each of these settings is illustrated in Figure 5.2 (a) and (b),

respectively.

5.2 Delay-based Pattern Recognition Circuit 53

Delay switch settings for
DS0 to DS8

Resulting LUTs and
interconnects used

Delays (ns)

S,X,X,X,X,X,H,X,D 3 LUTs + 1 hex + 1 double 3.08
S,X,D,X,X,X,X,X,H 3 LUTs + 1 hex + 1 double 3.05
S,X,X,X,X,X,H,S,S 4 LUTs + 1 hex + 2 singles 3.71
S,S,X,X,X,X,X,H,S 4 LUTs + 1 hex + 2 singles 3.62
S,S,S,X,X,X,X,X,H 4 LUTs + 1 hex + 2 singles 3.64

Table 5.2: Resulting delays against different combinations of delay switch settings with
hex line connections for 9-LUT programmable delay line

Figure 5.2 (a) and (b): Resulting signal path for delay switch settings of
{S,X,X,X,X,X,H,X,D} and {S,X,D,X,X,X,X,X,H}, respectively

5.2.2 Simulation of pattern recognition

A simulation was set up for the testing of pattern recognition of five ASCII characters,

each having 26 possible values from ‘A’ to ‘Z’, which in this case is detecting patterns

of a 5-element, 26-temporal value vector.

5.2 Delay-based Pattern Recognition Circuit 54

Figure 5.3: Encoding of characters ‘A’ to ‘Z’ into temporal space of 200 ns

Five programmable delay lines were implemented on a Xilinx Spartan-3E FPGA

and simulated using the vendor’s FPGA design tools. Each delay line is a cascade of 9

rows of 20-LUT delay lines that gives variable delays ranging from 62 ns to 200 ns.

This range of delays is sufficient for the testing of patterns with 26 temporal values each

having a 5 ns pulse width. Figure 5.3 illustrates the encoding of characters ‘A’ to ‘Z’

into the temporal space of this delay range. The delays of characters ‘A’ and ‘Z’

respectively represent the maximum and minimum delays needed. Character ‘A’

requires a delay of 200 ns while ‘Z’ needs 62 ns. All the 26 temporal values are fit into

the temporal space with pulse width of 5.52 ns.

5.2 Delay-based Pattern Recognition Circuit 55

Figure 5.4: Simulation result of the detection of a manually-trained 5-element, 26-
temporal value vector pattern

 By knowing the value needed for delaying a particular temporal value, it is

straight forward to manually train a pattern by configuring the delay switch settings of

the delay lines. Figure 5.4 shows the simulation result of the detection of a manually

trained pattern. The pattern represents a ‘HELLO’ word, i.e. {x0, x1, x2, x3, x4} = {H, E,

L, L, O}, and all the spikes were manually adapted to trigger coincidence.

5.2.3 Pattern recognition prototype

As presented in Section 3.4 of Chapter 3, a prototype was developed to demonstrate the

feasibility of the implementation of a delay-based pattern recognition circuit. The

prototype was implemented on a Xilinx Spartan-3E XC3S1600E device available on a

Spartan-3E development board. The board comes with a 50MHz oscillator, a 64MByte

SDRAM, 4 slide switches, 4 push-button switches, 8 surface-mount LEDs and three 6-

pin expansion connectors that are useful for design testing [75]. It also has an on-board

USB-based FPGA download interface.

 The prototype comprises a pattern recognition array, pattern learning blocks and

a pattern generator. The FPGA has a density of 33,192 logic cells. Figure 5.5 shows the

physical layout of the prototype on the FPGA. The pattern recognition array consists of

5.2 Delay-based Pattern Recognition Circuit 56

Figure 5.5: Physical layout of pattern recognition prototype on Xilinx Spartan-3E
XC3S1600E FPGA

a 10×10 CLBs array of programmable delay lines and a coincidence detector. It utilizes

416/33,192 (1.3%) of the total logic cells available on the FPGA. The entire system

including the pattern learning blocks and the pattern generator utilizes 4,494/33,192

(13.5%) of logic cells.

5.2.4 Detection of patterns with pattern recognition prototype

This section shows the results obtained from both simulation and hardware for the tests

conducted on the pattern recognition prototype.

5.2 Delay-based Pattern Recognition Circuit 57

Figure 5.6: Simulation result for the detection of pattern {x0, x1} = {A, D} on pattern
recognition prototype

The pattern recognition array is configured to train and detect patterns of a 2-

element and 8-temporal value vector, {x0, x1}. Each xi element represents a set of 8

characters {A, B, …, H}. x0 and x1 are fed in through the horizontal and vertical delay

lines, respectively. The delay lines in each horizontal and vertical direction are cascaded

to build a long delay line with sufficient delay to store the pattern.

Figure 5.6 shows the simulation result for the detection of a pattern {x0, x1} = {A,

D} with a pulse width of 5 ns. In the initialization stage of the training process, each

delay line was initialized to produce minimum delay. Each input spike was then delayed

incrementally until it coincided with Xtarget spike, inserted after the last spike of the

training pattern. Upon completion of training, the signals for the delayed version of x0

and x1 spikes, i.e. xd0 and xd1, were adapted to Xtarget and coincidence of the two spikes

resulted. After training, when the same pattern {A, D} is presented to the circuit again,

the output of the coincidence detector is asserted indicating the detection of the trained

pattern.

The prototype was implemented and tested on a Spartan-3E FPGA for the

learning and recognition of various 2-element, 8-temporal value vector patterns. Each

delay line for the xi spike was measured to provide a series of variable delays ranging

from 30 ns to 71 ns, which was sufficient to encode patterns of an 8-temporal value

vector with 5 ns pulse width. All patterns tested were successfully trained and detected

by the prototype. The results from the hardware tests are shown in Figure 5.7. The

signals were output through the 6-pin expansion connectors.

5.2 Delay-based Pattern Recognition Circuit 58

Figure 5.7 (a)-(e): Results of the detection of various 2-element, 8-temporal value
vector patterns {A, D}, {G, B}, {F, E}, {C, E} and {H, A}, respectively, on Spartan-3E
FPGA; voltage 2V/div, time 25ns/div

5.3 Auto-associative Memory 59

5.3 Auto-associative Memory

This section elaborates on the delays simulated on the auto-associative memory

presented in Chapter 4, for both pre- and post-optimized versions of the system. The

section also describes the pulse-narrowing effect experienced in the recall of patterns

and presents results in relation to before and after solutions to the problem are

implemented. The results for the hardware tests and resource utilization are also

presented in this section.

5.3.1 Delay as a function of delay elements

The 4-input auto-associative memory with two context spike inputs per coincidence

detector described in Chapter 4 was initially developed to process patterns with pulse

width tspike of 60 ns and context spike delay of no more than 3 unit intervals, i.e. 60 ns ×

3 = 180 ns.

From simulation, it was measured that one delay element gives a delay of 6 ns

when enabled. Each programmable delay line in the auto-associative memory consists

of 32 delay elements to give sufficient context spike delay of up to 180 ns. The amount

of delay produced by a delay line against the number of delay elements enabled was

measured and collected from simulation. Four delay lines were randomly picked for the

measurement of delay. The plot of the delay, D, against the number of delay elements

enabled, n, is shown in Figure 5.8. From the plot, the delay is increasing linearly with

the number of delay elements enabled, which is technically true since all the delay

elements are identical. The plot can be represented by an equation, which is referred to

as the delay function.

D = 6n + 29 (5.1)

It was observed that when all the delay elements are disabled, there is an overhead of 29

ns propagation delay across the delay line and the feedback connection.

5.3 Auto-associative Memory 60

Figure 5.8: Plot of delay for 32-delay-element delay lines

 In order to examine the performance of the memory in terms of speed, the

design was later optimized for operating with smaller pulse width. The optimization was

achieved by reducing the length of the programmable delay lines since lesser delay

elements are needed for patterns with smaller pulse width. The design was optimized to

process patterns with pulse width as small as the delay of a delay element, i.e. 6 ns.

Each delay line was shortened from 32 delay elements to just 2 delay elements. Each

delay element still provides a 6 ns delay when enabled while the overhead propagation

delay was reduced significantly to just 6 ns. The optimized design processes patterns

with pulse width of 6 ns and context spike delay of no more than 3 unit intervals. The 6

ns propagation delay is also being utilized as a delay for 1 unit interval. For example,

for the case of context spike delay of 1 unit interval, i.e. 6 ns, both delay elements on

the delay line are disabled to meet the delay requirement. The plot of the delay against

the number of delay elements enabled for four randomly selected delay lines is shown

in Figure 5.9. The delay function for the optimized memory is expressed in Equation 5.2.

D = 6n + 6 (5.2)

5.3 Auto-associative Memory 61

Figure 5.9: Plot of delay for 2-delay-element delay lines

5.3.2 Coincidence pulses and recall of patterns

A coincidence detector in the auto-associative memory is implemented using an ‘AND’

gate. Since two coincidence pulses arrive at a coincidence detector may have a small

time difference, an AND operation between the two pulses produces an output pulse

with smaller width. Each output pulse from a coincidence detector is fed back to the

delay lines and the stored pattern is subsequently recalled for the next cycle. Due to the

pulse-narrowing effect, the recurrently recalled pattern will eventually disappear over

time, as shown in Figure 5.10.

With the two solutions described in Section 4.4.2 of Chapter 4, i.e. pulse-muxing

coincidence detector and coincidence detector with constant-width pulse generator, the

recall of a pattern can be sustained indefinitely. Figure 5.11 shows the simulation result

for the recall of a pattern using the pulse-muxing coincidence detector. The output pulse

of a coincidence detector is toggled between a smaller and a larger pulse over time and

hence sustaining the recall of a pattern.

The solution with constant-width pulse generator provides a more efficient fix to

the pulse-narrowing effect. Patterns recalled with this solution are always maintained

with a constant pulse width and sustained indefinitely, as shown in Figure 5.12.

5.3 Auto-associative Memory 62

Figure 5.10: Pulse-narrowing effect on a recalled pattern

Figure 5.11: Recall of pattern {4, 2, 0, 1} with pulse-muxing coincidence detectors

Figure 5.12: Recall of pattern {1, 0, 4, 2,} using coincidence detectors with constant-
width pulse generator

5.3 Auto-associative Memory 63

5.3.3 Hardware test results

The auto-associative memory developed was simulated and tested on an Altera Cyclone

II FPGA with twelve simple 4-input patterns. The settings of the pattern include spikes

in random as well as diagonal directions, as illustrated in Figure 5.13. A perfect success

rate of learning and recalling the patterns was achieved from the testing. The network

successfully learned from the training patterns and recalled them recurrently.

Figure 5.13: Random patterns tested on the auto-associative memory

5.3 Auto-associative Memory 64

Figure 5.14 (a)-(c): Results of the recall of patterns {2, 0, 1, 3}, {0, 1, 3, 4} and {1, 4, 0,
3}, respectively, on Cyclone II FPGA; voltage 2V/div, time 10ns/div

5.3 Auto-associative Memory 65

Pattern Output Neuron Context Neurons Delay (unit DEs)
 N0 N2

N1
0
1

{2, 0, 1, 3} N1 N3
N0

1
2

 N2 N1
N3

0
2

 N3 N0
N2

0
1

 N0 N3
N2

0
1

{0, 1, 3, 4} N1 N0
N3

0
1

 N2 N1
N0

1
2

 N3 N2
N1

0
2

 N0 N2
N1

0
1

{1, 4, 0, 3} N1 N3
N0

0
2

 N2 N1
N3

0
1

 N3 N0
N2

1
2

Table 5.3: Context neurons and delay settings of trained patterns

Figure 5.14 (a), (b) and (c) show the hardware test results for the recall of

patterns {2, 0, 1, 3}, {0, 1, 3, 4} and {1, 4, 0, 3}, respectively. The pulse width for each

spike of the patterns is 6 ns and the period for each pattern is 5 unit intervals, i.e. 30 ns.

The settings of the context neurons and the respective number of delay elements

required resulted from the training process for these patterns are shown in Table 5.3.

5.3 Auto-associative Memory 66

5.3.4 Hardware resource utilization

An Altera DE2 board was used for the testing of the auto-associative memory. The

board comes with a Cyclone II EP2C35 family FPGA, which was used for the

implementation of the memory. In addition to the FPGA, the board also equipped with

other useful hardware features such as a 50MHz oscillator, an 8MByte SDRAM, 4

push-button switches, 18 toggle switches, 27 user LEDs and two 40-pin expansion

connectors [4]. The FPGA is configured through an on-board USB download interface.

The Cyclone II device has a total of 33,216 logic elements. Figure 5.15 (a) and

(b) show the physical layout of the auto-associative memory for the case of pre and post

optimization, respectively. The pre-optimized system processes patterns with pulse

width of 60 ns and the SNN consists of 32-delay-element delay lines. The entire system

utilizes 22% (7,206/33,216) of the total logic elements available on the FPGA while the

SNN takes up 13% (4,305/33,216). The size of the SNN is significantly reduced for the

case of the optimized system where the length of the delay lines is reduced to 2 delay

elements. The hardware utilization for the entire optimized system is 8% (2,764/33,216)

of the total logic elements available while the SNN consumed less than 1%

(328/33,216). The optimized system not only improved in size but also processes

patterns at higher speed with pulse width of 6 ns.

5.3 Auto-associative Memory 67

Figure 5.15: Physical layout of auto-associative memory on Cyclone II EP2C35 FPGA
with (a) 32-delay-element delay lines SNN; and (b) the optimized SNN with 2-delay-
element delay lines

5.4 Summary 68

5.4 Summary

The results from the pattern recognition prototype and the auto-associative memory

both demonstrate that an implementation of a time-delay pattern recognition circuit by

exploiting the logic and interconnect resources in an FPGA is achievable, and the

systems developed effectively perform simple learning and recognition tasks.

Table 5.4 compares our implementations with some of the existing pattern

recognizers developed by other researchers, described previously in Section 2.5.3 of

Chapter 2. Although the scale and functionality are fundamentally different across those

systems, the comparison gives a high-level idea of the uniqueness and benefits of our

models in terms of design approach and implementation. From the table, it can be seen

that all the three existing pattern recognizers are implemented using conventional design

approach with standard sequential and combinational logic, and clock; with processing

speed in the range of 50-100 MHz. In contrast, the pattern processor (i.e. SNN) in our

systems is implemented using a ‘clock-free’ design approach with LUTs and

interconnect resources, which enables high speed processing of patterns with pulse

width as small as 5 ns. The unique design approach not only gives advantage in

processing speed but also allows a relatively compact implementation. In the same table,

the Image Recognizer developed by Caron et al. is among the fastest with the system

clocked at 100 MHz. The system however consumes a relatively large amount of logic

resources with a total of ~32,242 logic cells. For systems with slower processing speed

such as the Speed Recognizer proposed by Cassidy et al., at a clock rate of 50 MHz, the

logic utilization is also close to 20,000 logic cells. In comparison, the pattern processor

in our systems that could process patterns with pulse width of 5 ns only utilizes 416

logic cells. The hardware consumption for the programmable delays is relatively low in

both of our systems and that gives plenty of room for larger implementations aiming to

store more patterns or patterns of larger scale. In addition, the implementation of

learning module using soft processor allows flexibility for training algorithm

modification with relatively low impact on hardware size.

5.4 Summary 69

Pattern
Recognition

Systems

Main Functional
Blocks

Hardware
Utilization

Processing
Speed

Frequency
Discriminator
(Upegui et al.)

3-layer SNN: 30 neurons
Neuron hardware:
• control unit – FSM
• weights – memory
• learning modules

~3000 LCs
(on Spartan-2
XC2S200)

Clocked at
54.4 MHz

Image
Recognizer
(Caron et al.)

SNN: 648 neurons
Neuron hardware:
• weights – BRAMs
• synapses – adders
• membrane model

~32424 LCs
126×36Kb BRAMs
(on Virtex-5
XC5VSX50T)

Clocked at
100 MHz

Speech
Recognizer
(Cassidy et al.)

SNN: 32 neurons
Neuron hardware:
• 16-bit accumulator
• dual-port memory

~19168 LCs
10×18Kb BRAMs
(on Spartan-3
XC3S1500)

Clocked at
50 MHz

Delay-based
Pattern
Recognition
Prototype

10×10 CLBs SNN Array
• programmable delay

lines
• coincidence detector
Learning module –
MicroBlaze processor

SNN: 416 LCs
System: 4494 LCs
(on Spartan-3E
XC3S1600E)

SNN: clock-free
Pulse width: 5ns

Auto-associative
Memory

1-layer SNN: 4 neurons
• programmable delay

lines
• coincidence detectors
Learning module – Nios
II processor

SNN: 328 LEs
System: 7206 LEs
 (on Cyclone II
EP2C35)

SNN: clock-free
Pulse width: 6ns

Table 5.4: Comparison of example pattern recognizers with our systems; FSM – finite
state machine; BRAMs – block RAMs; LCs – logic cells; LEs – logic elements

70

CHAPTER 6

CONCLUSION

6.1 Summary and Key Insights

In this thesis, we have developed two pattern recognition systems that process

spatiotemporal spike patterns on field-programmable gate arrays (FPGAs).

 Borrowing the idea from spiking neural networks (SNNs), which suggests the

brain possibly processes information based on action potential timing; the systems were

developed with a similar principle: perform pattern learning and recognition tasks

through the use of time delays. Patterns being processed are in the form of

spatiotemporal spike sequences, which represent the spiking activity of neurons over

time. Information is encoded in spike patterns via time delays. Both systems developed

use a time-delay network consisting of programmable delay lines and coincidence

detectors to process patterns.

 The first system, i.e. the Delay-based Pattern Recognition Prototype in Chapter

3, learns spatiotemporal spike patterns and performs recognition of learned patterns.

Learning is achieved through adaptation of delay lines to spike timing of patterns while

recognition is attained via coincidence detection of delayed spikes. The design of a

programmable delay line is explored with the exploitation of FPGA architecture and

interconnect scheme. The delay lines are extendable for patterns with larger delay

requirements and can be organized into a compact array for better area efficiency. The

test results demonstrate that a hardware realization of a time-delay pattern recognizer is

6.2 Future Directions 71

viable, and that FPGA logic and interconnect resources are effective for implementing

programmable delays. The system developed has a 10×10 CLBs array of delay lines and

a coincidence detector, and consumes only 416 logic cells. The pattern recognizer

demonstrates processing of spike patterns with 2 elements and 8 temporal values, and 5

ns pulse width.

 The second system, i.e. the Auto-associative Memory in Chapter 4, performs

memory tasks of storing and recalling spatiotemporal spike patterns. The system

operates as an auto-associative memory where a complete pattern is retrieved via partial

presentation of the original copy. The memory learns a pattern through identification of

context spikes and adaptation of delay lines to the timing of context spikes. Memory

recall is achieved through coincidence of delayed context spikes. The system uses a

closed feedback SNN that drives recurrent recall of a stored pattern. The delay lines are

built from small units of delay elements and the delay produced by each delay line

exhibits a linear relationship with the number of active delay elements. The SNN

utilizes only 328 logic elements for storing a 4-input pattern with 6 ns pulse width. The

compact size of the SNN is beneficial for implementation of memory blocks of larger

storage capacity through replication of the SNN.

 Unlike existing pattern recognition systems which are usually implemented

using conventional design practices and standard circuitries; we explored and adopted a

‘clock-free’ design approach in the implementation of our models. The pattern

processing unit in our systems uses only combinational logic and interconnect resources.

This unique design approach allows fast processing of patterns with pulse width as

small as 5 ns. The approach may potentially provide inspiration to the design of ultra-

high performance digital processors for applications beyond pattern recognition.

6.2 Future Directions

Having demonstrated the feasibility of realizing a delay-based pattern recognizer, for

future work, it would be interesting to explore a ‘user-interactive’ pattern recognizer

with external inputs from the environment. Given the fast-processing capability of the

models developed in this thesis, it would be beneficial to extend the research into

6.2 Future Directions 72

developing a pattern recognizer that could learn and recognize patterns introduced

directly from the environment, and perform specific user tasks.

Patterns in the real world are complex. A second possible area of study is to

explore a more sophisticated model for complex pattern recognition tasks. A complex

pattern such as a speech can be broken down into levels of sub-patterns such as

sentences, words and characters. One possible approach is to model a pattern recognizer

in a “hierarchical manner” where computation and recognition of higher-level complex

patterns could be made via processing of sub-patterns from lower levels.

A third interesting area to look at is to exploit the present architecture for

working with temporal patterns of longer duration, with minimum increase in hardware

cost. A possible method is to divide a long temporal pattern into shorter “time blocks”

for processing. This could possibly be achieved through a more sophisticated software

algorithm and some hardware memory resources.

A fourth consideration is to make the present systems to be more automated and

easily accustomed to target patterns of different sizes and timing requirements. For

example, in the present systems, the length of delay lines for a target pattern is manually

determined via simulation. It would be beneficial if the systems could automatically

determine the length of delay lines when presented with a target pattern.

 Another consideration is to assess the robustness of these delay-based systems

against temperature variation. Since delays may vary across different temperatures,

patterns trained at one temperature may not be detected at another temperature. Hence,

it would be beneficial to incorporate temperature variation factors into pattern learning

so that delays trained are tolerable across different temperatures.

73

BIBLIOGRAPHY

[1] M. Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge

University Press, 1991.

[2] J. N. Allen, H. S. Abdel-Aty-Zohdy and R. L. Ewing. Plasticity recurrent

spiking neural networks for olfactory pattern recognition. In 48th Midwest

Symposium on Circuits and Systems, volume 2, pages 1741-1744, 2005.

[3] Altera Corp. Cyclone II Device Handbook, volume 1, 2008.

[4] Altera Corp. DE2 Development and Education Board User Manual, version 1.4,

2006.

[5] A. Armato, E. Nardini, A. Lanata, G. Valenza, C. Mancuso, E. P. Scilingo and D.

De Rossi. An FPGA based arrhythmia recognition system for wearable

applications. In Ninth International Conference on Intelligent Systems Design

and Applications 2009, pages 660-664, 2009.

[6] L. Bako, S. T. Brassai, I. Szkely and M. A. Baczo. Hardware implementation of

delay-coded spiking-RBF neural network for unsupervised clustering. In 11th

International Conference on Optimization of Electrical and Electronic

Equipment, 2008, pages 51-56, 2008.

[7] S. Bellis, K. M. Razeeb, C. Saha, K. Delaney, C. O'Mathuna, A. Pounds-Cornish,

G. de Souza, M. Colley, H. Hagras, G. Clarke, V. Callaghan, C. Argyropoulos,

C. Karistianos and G. Nikiforidis. FPGA implementation of spiking neural

networks - an initial step towards building tangible collaborative autonomous

Bibliography 74

agents. Proceedings of the IEEE International Conference on Field-

Programmable Technology 2004, pages 449-452, 2004.

[8] G. Bi and M. Poo. Distributed synaptic modification in neural networks induced

by patterned stimulation. Nature, volume 401, pages 792-796, 1999.

[9] G. Bi and M. Poo. Synaptic Modification by correlated activity: Hebb's postulate

revisited. Annual Review of Neuroscience, volume 24, pages 139-166, 2001.

[10] J. J. Blake, L. P. Maguire, T. M. McGinnity, B. Roche and L. J. McDaid. The

implementation of fuzzy systems, neural networks and fuzzy neural networks

using FPGAs. Information Sciences, volume 112, pages 151-168, 1998.

[11] C. D. Brody and J. J. Hopfield. Simple networks for spike-timing-based

computation, with application to olfactory processing. Neuron, volume 37, pages

843-852, 2003.

[12] L. C. Caron, F. Mailhot and J. Rouat. FPGA implementation of a spiking neural

network for pattern matching. In IEEE International Symposium on Circuits and

Systems 2011, pages 649-652, 2011.

[13] G. A. Carpenter. Neural network models for pattern recognition and associative

memory. Neural Networks, volume 2, pages 243-257, 1989.

[14] A. Cassidy, S. Denham, P. Kanold and A. Andreou. FPGA based silicon spiking

neural array. In IEEE Biomedical Circuits and Systems Conference 2007, pages

75-78, 2007.

[15] K. Cheung, S. R. Schultz and P. H. W. Leong. A parallel spiking neural network

simulator. Proceedings of the IEEE International Conference on Field-

Programmable Technology 2009, pages 247-254, 2009.

[16] J. Cho, S. Mirzaei, J. Oberg and R. Kastner. FPGA-based face detection system

using Haar classifiers. Proceedings of the ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pages 103-112, 2009.

Bibliography 75

[17] R. J. Duro and J. S. Reyes. Discrete-time backpropagation for training synaptic

delay-based artificial neural networks. IEEE Transactions on Neural Networks,

volume 10, pages 779-789, 1999.

[18] C. W. Eurich, K. Pawelzik, U. Ernst, A. Thiel, J. D. Cowan and J. G. Milton.

Delay adaptation in the nervous system. Neurocomputing, volume 32-33, pages

741-748, 2000.

[19] W. Gerstner. Time structure of the activity in neural network models. Physical

Review E, volume 51, page 738, 1995.

[20] B. Glackin, L. P. Maguire and T. M. McGinnity. Intrinsic and extrinsic

implementation of a bio-inspired hardware system. Information Sciences,

volume 161, pages 1-19, 2004.

[21] A. Gupta and L. N. Long. Character recognition using spiking neural networks.

In International Joint Conference on Neural Networks 2007, pages 53-58, 2007.

[22] J. B. Hampshire, II and A. H. Waibel. A novel objective function for improved

phoneme recognition using time-delay neural networks. IEEE Transactions on

Neural Networks, volume 1, pages 216-228, 1990.

[23] E. Heinrich, R. Joost, M. Luder and R. Salomon. Precise indoor localization

with low-cost field-programmable gate arrays. In IEEE Workshop on Merging

Fields of Computational Intelligence and Sensor Technology 2011, pages 23-28,

2011.

[24] E. Heinrich, R. Joost and R. Salomon. A digital implementation of the nucleus

laminaris. In International Joint Conference on Neural Networks 2011, pages

1461-1465, 2011.

[25] E. Heinrich, R. Joost and R. Salomon. Learning from the barn owl auditory

system: A bio-inspired localization hardware architecture. In IEEE Congress on

Evolutionary Computation 2011, pages 216-221, 2011.

Bibliography 76

[26] J. J. Hopfield. Pattern recognition computation using action potential timing for

stimulus representation. Nature, volume 376, pages 33-36, 1995.

[27] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on

Neural Networks, volume 14, pages 1569-1572, 2003.

[28] E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE

Transactions on Neural Networks, volume 15, pages 1063-1070, 2004.

[29] E. M. Izhikevich. Polychronization: Computation with spikes. Neural

Computation, volume 18, pages 245-282, 2006.

[30] A. K. Jain, R. P. W. Duin and M. Jianchang. Statistical pattern recognition: a

review. IEEE Transactions on Pattern Analysis and Machine Intelligence,

volume 22, pages 4-37, 2000.

[31] C. T. Jin, P. L. Rolandi and P. H. W. Leong. Non-volatile programmable pulse

computation cell. Electronics Letters, volume 35, pages 1413-1414, 1999.

[32] R. Kempter, W. Gerstner and J. L. van Hemmen. Hebbian learning and spiking

neurons. Physical Review E, volume 59, page 4498, 1999.

[33] W. M. Kistler, W. Gerstner and J. L. van Hemmen. Reduction of the Hodgkin-

Huxley equations to a single-variable threshold model. Neural Computation,

volume 9, pages 1015-1015, 1997.

[34] T. Koickal, A. Hamilton, S. Tan, J. Covington, J. Gardner and T. Pearce. Analog

VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE

Transactions on Circuits and Systems I: Regular Papers, volume 54, pages 60-

73, 2007.

[35] P. König, A. K. Engel and W. Singer. Integrator or coincidence detector? The

role of the cortical neuron revisited. Trends in Neurosciences, volume 19, pages

130-137, 1996.

Bibliography 77

[36] M. Kugler, V. Benso, S. Kuroyanagi and A. Iwata. A novel approach for

hardware based sound classification. In M. Köppen, N. Kasabov and G. Coghill,

editors, Advances in Neuro-Information Processing, volume 5507, pages 859-

866. Springer Berlin / Heidelberg, 2009.

[37] M. Kugler, K. Iwasa, V. Benso, S. Kuroyanagi and A. Iwata. A complete

hardware implementation of an integrated sound localization and classification

system based on spiking neural networks. In M. Ishikawa, K. Doya, H.

Miyamoto and T. Yamakawa, editors, Neural Information Processing, volume

4985, pages 577-587. Springer Berlin / Heidelberg, 2008.

[38] K. J. Lang, A. H. Waibel and G. E. Hinton. A time-delay neural network

architecture for isolated word recognition. Neural Networks, volume 3, pages

23-43, 1990.

[39] M. P. Leong, C. T. Jin and P. H. W. Leong. Parameterized module generator for

an FPGA-based electronic cochlea. In 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines 2001, pages 21-30, 2001.

[40] T. Lindblad and J. M. Kinser. Image Processing Using Pulse-Coupled Neural

Networks, Springer-Verlag NewYork Inc., Secaucus, NJ, USA, 2005.

[41] J. Liu and D. Liang. A survey of FPGA-based hardware implementation of

ANNs. In International Conference on Neural Networks and Brain 2005, pages

915-918, 2005.

[42] W. Maass. Networks of spiking neurons: The third generation of neural network

models. Neural Networks, pages 1659-1671, 1997.

[43] W. Maass. Fast sigmoidal networks via spiking neurons. Neural Computation,

volume 9, pages 279-304, 1997.

[44] W. Maass. On the relevance of time in neural computation and learning. In M.

Li and A. Maruoka, editors, Algorithmic Learning Theory, volume 1316, pages

364-384. Springer Berlin / Heidelberg, 1997.

Bibliography 78

[45] W. Maass, T. Natschläger and H. Markram. Real-time computing without stable

states: A new framework for neural computation based on perturbations. Neural

Computation, volume 14, pages 2531-2560, 2002.

[46] W. Maass and M. Schmitt. On the complexity of learning for a spiking neuron

(extended abstract). Proceedings of the Tenth Annual Conference on

Computational Learning Theory, pages 54-61, Nashville, Tennessee, United

States, 1997.

[47] W. Maass and M. Schmitt. On the complexity of learning for spiking neurons

with temporal coding. Information and Computation, volume 153, pages 26-46,

1999.

[48] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche and J.

Harkin. Challenges for large-scale implementations of spiking neural networks

on FPGAs. Neurocomputing, volume 71, pages 13-29, 2007.

[49] H. Markram, J. Lubke, M. Frotscher and B. Sakmann. Regulation of synaptic

efficacy by coincidence of postsynaptic APs and EPSPs. Science, volume 275,

pages 213-215, January 10, 1997.

[50] S. Maya, R. Reynoso, C. Torres and M. Arias-Estrada. Compact spiking neural

network implementation in FPGA. In R. Hartenstein and H. Grünbacher, editors,

Field-Programmable Logic and Applications: The Roadmap to Reconfigurable

Computing, volume 1896, pages 270-276. Springer Berlin / Heidelberg, 2000.

[51] R. McCready. Real-time face detection on a configurable hardware system. In R.

Hartenstein and H. Grünbacher, editors, Field-Programmable Logic and

Applications: The Roadmap to Reconfigurable Computing, volume 1896, pages

157-162. Springer Berlin / Heidelberg, 2000.

[52] D. Meunier and H. Paugam-Moisy. Evolutionary supervision of a dynamical

neural network allows learning with on-going weights. Proceedings of the IEEE

International Joint Conference on Neural Networks 2005, volume 3, pages

1493-1498, 2005.

Bibliography 79

[53] J. Misra and I. Saha. Artificial neural networks in hardware: A survey of two

decades of progress. Neurocomputing, doi:10.1016/j.neucom.2010.03.021, 2010.

[54] V. Nair, P. Laprise and J. J. Clark. An FPGA-based people detection system.

EURASIP Journal on Applied Signal Processing, volume 2005, pages 1047-

1061, 2005.

[55] H. Paugam-Moisy. Spiking Neuron Networks – A Survey. IDIAP Research

Institute, Martigny, Switzerland, 2006.

[56] H. Paugam-Moisy, R. Martinez and S. Bengio. Delay learning and

polychronization for reservoir computing. Neurocomputing, volume 71, pages

1143-1158, 2008.

[57] M. Pearson, M. Nibouche, A. G. Pipe, C. Melhuish, I. Gilhespy, B. Mitchison, K.

Gurney, T. Prescott and P. Redgrave. A biologically inspired FPGA based

implementation of a tactile sensory system for object recognition and texture

discrimination. In International Conference on Field Programmable Logic and

Applications 2006, pages 1-4, 2006.

[58] J. Pfister, T. Toyoizumi, D. Barber and W. Gerstner. Optimal spike-timing-

dependent plasticity for precise action potential firing in supervised learning.

Neural Computation, volume 18, pages 1318-1348, 2006.

[59] M. Saldana, L. Shannon and P. Chow. The routability of multiprocessor network

topologies in FPGAs. Proceedings of the 2006 International Workshop on

System-level Interconnect Prediction, pages 49-56, Munich, Germany, 2006.

[60] M. Saldana, L. Shannon, J. S. Yue, S. Bian, J. Craig and P. Chow. Routability of

network topologies in FPGAs. IEEE Transactions on Very Large Scale

Integration Systems, volume 15, pages 948-951, 2007.

[61] M. Schæfer, T. Schoenauer, C. Wolff, G. Hartmann, H. Klar and U. Rückert.

Simulation of spiking neural networks – architectures and implementations.

Neurocomputing, volume 48, pages 647-679, 2002.

Bibliography 80

[62] J. Schemmel, A. Grubl, K. Meier and E. Mueller. Implementing synaptic

plasticity in a VLSI spiking neural network model. In International Joint

Conference on Neural Networks 2006, pages 1-6, 2006.

[63] M. Schmitt. On computing Boolean functions by a spiking neuron. Annals of

Mathematics and Artificial Intelligence, volume 24, pages 181-191, 1998.

[64] B. Schrauwen, M. D’Haene, D. Verstraeten and J. V. Campenhout. Compact

hardware liquid state machines on FPGA for real-time speech recognition.

Neural Networks, volume 21, pages 511-523, 2008.

[65] J. Sohn, B. Zhang and B. Kaang. Temporal pattern recognition using a spiking

neural network with delays. In International Joint Conference on Neural

Networks 1999, volume 4, pages 2590-2593, 1999.

[66] A. Tavaragiri, J. Couch and P. Athanas. Exploration of FPGA interconnect for

the design of unconventional antennas. Proceedings of the 19th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 219-226,

Monterey, CA, USA, 2011.

[67] A. Upegui, C. A. Peña-Reyes and E. Sanchez. An FPGA platform for on-line

topology exploration of spiking neural networks. Microprocessors and

Microsystems, volume 29, pages 211-223, 2005.

[68] A. van Schaik. Building blocks for electronic spiking neural networks. Neural

Networks, volume 14, pages 617-628, 2001.

[69] K. Van Sickle and H. Abdel-Aty-Zohdy. A reconfigurable spiking neural

network digital ASIC simulation and implementation. Proceedings of the IEEE

National Aerospace & Electronics Conference 2009, pages 275-280, 2009.

[70] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang. Phoneme

recognition using time-delay neural networks. IEEE Transactions on Acoustics,

Speech and Signal Processing, volume 37, pages 328-339, 1989.

Bibliography 81

[71] B. Webb and T. Scutt. A simple latency-dependent spiking-neuron model of

cricket phonotaxis. Biological Cybernetics, volume 82, pages 247-269, 2000.

[72] S. A. Wills. Computation with Spiking Neurons. PhD thesis, University of

Cambridge, UK, 2004.

[73] S. Wysoski, L. Benuskova and N. Kasabov. On-line learning with structural

adaptation in a network of spiking neurons for visual pattern recognition. In S.

Kollias, A. Stafylopatis, W. Duch and E. Oja, editors, Artificial Neural Networks

– ICANN 2006, volume 4131, pages 61-70. Springer Berlin / Heidelberg, 2006.

[74] S. G. Wysoski, L. Benuskova and N. Kasabov. Fast and adaptive network of

spiking neurons for multi-view visual pattern recognition. Neurocomputing,

volume 71, pages 2563-2575, 2008.

[75] Xilinx Inc. MicroBlaze Development Kit Spartan-3E 1600E Edition User Guide,

version 1.1, 2007.

[76] Xilinx Inc. Spartan-3 Generation FPGA User Guide, version 1.7, 2010.

82

PUBLICATIONS

• C. H. Ang, C. Jin, A. van Schaik and P. H. W. Leong. Spiking neural network-

based auto-associative memory using FPGA interconnect delays. Proceedings of

the IEEE International Conference on Field-Programmable Technology 2011,

pages 1-4, 2011.

• C. H. Ang, A. L. McEwan, A. van Schaik, C. Jin and P. H. W. Leong. FPGA

implementation of biologically-inspired auto-associative memory. Electronics

Letters, volume 48, pages 148-149, 2012.

	Introduction
	Aims and Motivation
	Thesis Outline

	Background
	Introduction
	Pattern Recognition
	Spiking Neural Networks
	Existing Works on SNN and Time Delay-based Pattern Recognition
	Field-Programmable Gate Arrays
	Architecture and logic resources
	Interconnect resources
	SNN-based pattern recognizers on FPGAs

	The Central Idea

	Delay-based Pattern Recognition
	Introduction
	Programmable delays and pattern recognition
	Spatiotemporal spike sequence
	FPGA interconnect resources

	Design and Implementation of Programmable Delay Lines
	Basic programmable delay line
	Programmable delay switches
	Pattern recognition array

	Training
	Delay-based Pattern Recognition Prototype
	Utilization and Capacity
	Hardware utilization of programmable delay lines
	Capacity of a pattern recognition array

	A Biologically-inspired Auto-associative Memory
	Introduction
	Spatiotemporal Spike Sequence
	Derivation of Model
	Architecture
	Programmable delay lines
	Coincidence detectors

	Training Algorithm
	Implementation
	The complete system
	Optimizing for speed performance and size

	Results
	Introduction
	Delay-based Pattern Recognition Circuit
	Delays of programmable delay lines
	Simulation of pattern recognition
	Pattern recognition prototype
	Detection of patterns with pattern recognition prototype

	Auto-associative Memory
	Delay as a function of delay elements
	Coincidence pulses and recall of patterns
	Hardware test results
	Hardware resource utilization

	Summary

	Conclusion
	Summary and Key Insights
	Future Directions

	Bibliography
	Publications

